UV fixed-point structure of the 3d Thirring model

Σχετικά έγγραφα
PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ERG for a Yukawa Theory in 3 Dimensions

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Reminders: linear functions

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Matrices and Determinants

D-term Dynamical SUSY Breaking

SPONTANEOUS GENERATION OF GEOMETRY IN 4D

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Neutrino emissivities in quark matter

Higher spin gauge theories and their CFT duals

Non-Gaussianity from Lifshitz Scalar

Space-Time Symmetries

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Numerical Analysis FMN011

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

If we restrict the domain of y = sin x to [ π 2, π 2

Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Dark matter from Dark Energy-Baryonic Matter Couplings

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Homework 8 Model Solution Section

Three coupled amplitudes for the πη, K K and πη channels without data

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Thermodynamics of the motility-induced phase separation

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Formal Semantics. 1 Type Logic

Hartree-Fock Theory. Solving electronic structure problem on computers

4.6 Autoregressive Moving Average Model ARMA(1,1)

EE512: Error Control Coding

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Quantum gravity with torsion and non-metricity

Higher Derivative Gravity Theories

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Physics 513, Quantum Field Theory Examination 1

Symmetric Stress-Energy Tensor

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

D Alembert s Solution to the Wave Equation

Markov chains model reduction

Lecture 2 The Wess-Zumino Model

Finite Field Problems: Solutions

Non-Abelian Gauge Fields

Example Sheet 3 Solutions

Math 6 SL Probability Distributions Practice Test Mark Scheme

Inverse trigonometric functions & General Solution of Trigonometric Equations

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Approximation of distance between locations on earth given by latitude and longitude

Homework 4 Solutions Weyl or Chiral representation for γ-matrices. Phys624 Dirac Equation Homework 4

Parametrized Surfaces

Differential equations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Constitutive Relations in Chiral Media

Lecture 2. Soundness and completeness of propositional logic

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

PARTIAL NOTES for 6.1 Trigonometric Identities

Ηλεκτρονικοί Υπολογιστές IV

TMA4115 Matematikk 3

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

A manifestly scale-invariant regularization and quantum effective operators

Other Test Constructions: Likelihood Ratio & Bayes Tests

Derivation of Optical-Bloch Equations

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

Cable Systems - Postive/Negative Seq Impedance

Areas and Lengths in Polar Coordinates

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

C.S. 430 Assignment 6, Sample Solutions

derivation of the Laplacian from rectangular to spherical coordinates

Particle Physics: Introduction to the Standard Model

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Σύνθεση και Χαρακτηρισµός Χαµηλοδιάστατων Ηµιαγωγών Αλογονιδίων του Μολύβδου και Χαλκογενιδίων.

Second Order Partial Differential Equations

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Lifting Entry (continued)

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Sampling Basics (1B) Young Won Lim 9/21/13

Assalamu `alaikum wr. wb.

From Fierz-Pauli to Einstein-Hilbert

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Areas and Lengths in Polar Coordinates

FORMULAS FOR STATISTICS 1

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

Section 9.2 Polar Equations and Graphs

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

4 Dirac Equation. and α k, β are N N matrices. Using the matrix notation, we can write the equations as imc

Dirac Matrices and Lorentz Spinors

Solutions to Exercise Sheet 5

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Graded Refractive-Index

8.324 Relativistic Quantum Field Theory II

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Transcript:

UV fixed-point structure of the 3d Thirring model arxiv:1006.3747 [hep-th] (PRD accepted) Lukas Janssen in collaboration with Holger Gies Friedrich-Schiller-Universität Jena Theoretisch-Physikalisches Institut Corfu Summer Institute, ERG 2010, 13/09/2010 Lukas Janssen (FSU Jena) UV fixed-point structure of 3d Thirring ERG 2010, 13/09/2010 1 / 11

Outline 1 Introduction 2 Chirality in 3d 3 Fermionic RG flow and phase transitions 4 Conclusions Lukas Janssen (FSU Jena) UV fixed-point structure of 3d Thirring ERG 2010, 13/09/2010 2 / 11

Introduction I 3d massless Thirring model: L = i ψ a γ µ µ ψ a + g ( ψ a γ µ ψ a ) 2, 2N f a = 1, 2,..., N f Effective model for high-t c cuprate superconductors [Herbut, PRL 94, 237001 (2005)] electronic structure of graphene [Herbut et al., PRB 79, 146401 (2009)] But also...... 3d Thirring model per se very interesting field theory! TEM image of graphene Lukas Janssen (FSU Jena) UV fixed-point structure of 3d Thirring ERG 2010, 13/09/2010 3 / 11

Introduction II Chiral symmetry and/or parity symmetry spontaneously broken? Gap equation (leading 1/N f ): No SSB % Dyson-Schwinger Eq.: [Kondo, NPB 450, 251 (1995)] [Sugiura, PTP 97, 311 (1997)] [Hong et al., PRD 49, 5507 (1994)] χsb (large coupling) N f N cr f 2, 3.24, 4.32,? MC simulations: [Christofi et al., PRD 75, 101701 (2007)] N cr f 6.6(1)? Questions for effective models (N f = 2): Cuprate in χsb phase? Graphene in vacuum an insulator? [Drut et al., PRL 102, 026802 (2009)] [Drut et al., arxiv:1005.5089 [cond-mat.str-el]]... Lukas Janssen (FSU Jena) UV fixed-point structure of 3d Thirring ERG 2010, 13/09/2010 4 / 11

Chirality in 3d: 4-component formalism L = i ψ a γ µ µ ψ a + g 2N f ( ψ a γ µ ψ a ) 2, a = 1, 2,..., N f ψ, ψ: 4-component spinors γ µ : 4 4 matrices 2 fifth-γ matrices γ 4 & γ 5 : {γ 4,5, γ µ } = 0, {γ 4, γ 5 } = 0 For each flavor a = 1,..., N f : U(2) chiral symmetry 2 possible U A (1) generated by γ 4, γ 5 : ψ e iαγ4 ψ, etc. 2 possible UV (1) generated by 1, γ 45 := iγ 4 γ 5 : ψ e iβγ45 ψ, etc. U(N f ) flavor rotations: ψ a U ab ψ b, etc. Symmetry of 3d massless Thirring model: U(2N f ) generated by λ i {1, γ 4, γ 5, γ 45 } 1, γ 4, γ 5, γ 45 : generators of U(2) λ 1, λ 2,..., λ N 2: f generators of U(N f ) (N f N f Gell-Mann matrices) Lukas Janssen (FSU Jena) UV fixed-point structure of 3d Thirring ERG 2010, 13/09/2010 5 / 11

Chirality in 3d: 4-component formalism L = i ψ a γ µ µ ψ a + g 2N f ( ψ a γ µ ψ a ) 2, a = 1, 2,..., N f ψ, ψ: 4-component spinors γ µ : 4 4 matrices 2 fifth-γ matrices γ 4 & γ 5 : {γ 4,5, γ µ } = 0, {γ 4, γ 5 } = 0 For each flavor a = 1,..., N f : U(2) chiral symmetry 2 possible U A (1) generated by γ 4, γ 5 : ψ e iαγ4 ψ, etc. 2 possible UV (1) generated by 1, γ 45 := iγ 4 γ 5 : ψ e iβγ45 ψ, etc. U(N f ) flavor rotations: ψ a U ab ψ b, etc. Symmetry of 3d massless Thirring model: U(2N f ) generated by λ i {1, γ 4, γ 5, γ 45 } 1, γ 4, γ 5, γ 45 : generators of U(2) λ 1, λ 2,..., λ N 2: f generators of U(N f ) (N f N f Gell-Mann matrices) Lukas Janssen (FSU Jena) UV fixed-point structure of 3d Thirring ERG 2010, 13/09/2010 5 / 11

Chiral symmetry as part of flavor symmetry U(2N f ) in 2-component formalism: ( ) ψ a χ a L = i χ A σ µ µ χ A + ( χ A σ µ χ A ) 2 χ a+n f where a = 1,..., N f and A = 1,..., 2N f U(2N f ) symmetry manifest: χ A U AB χ B, etc. Chiral symmetry flavor symmetry Symmetry breaking mechanisms: χsb vs. PSB ψ a ψ a = χ a χ a χ a+n f χ a+n f 0 U(2N % f ) U(N f ) U(N f ), P " ψ a γ 45 ψ a = χ A χ A 0 U(2N f ) ", P% Lukas Janssen (FSU Jena) UV fixed-point structure of 3d Thirring ERG 2010, 13/09/2010 6 / 11

Chiral symmetry as part of flavor symmetry U(2N f ) in 2-component formalism: ( ) ψ a χ a L = i χ A σ µ µ χ A + ( χ A σ µ χ A ) 2 χ a+n f where a = 1,..., N f and A = 1,..., 2N f U(2N f ) symmetry manifest: χ A U AB χ B, etc. Chiral symmetry flavor symmetry Symmetry breaking mechanisms: χsb vs. PSB ψ a ψ a = χ a χ a χ a+n f χ a+n f 0 U(2N % f ) U(N f ) U(N f ), P " ψ a γ 45 ψ a = χ A χ A 0 U(2N f ) ", P% Lukas Janssen (FSU Jena) UV fixed-point structure of 3d Thirring ERG 2010, 13/09/2010 6 / 11

Classification of bilinears/4-fermi interactions Find all bilinears/4-fermi terms invariant under U(2N f )! Bilinears: No mass terms: % ψψ, ψγ % 45 ψ First order in derivative: i ψγ µ µ ψ " 4-fermi terms: ( ψ a γ µ ψ a ) 2 = ( χ A σ µ χ A ) 2 " ( ψ a γ 45 ψ a ) 2 = ( χ A χ A ) 2 " ( ψ a ψ b ) 2 ( ψ a γ 4 ψ b ) 2 ( ψ a γ 5 ψ b ) 2 + ( ψ a γ 45 ψ b ) 2 = ( χ A χ B ) 2 " ( ψ a γ µ ψ b ) 2 + ( ψ a σ µν ψ b ) 2 ( ψ a iγ µ γ 4 ψ b ) 2 ( ψ a iγ µ γ 5 ψ b ) 2 = ( χ A σ µ χ B ) 2 2 " where ( ψ a ψ b ) 2 ψ a ψ b ψ b ψ a, etc. Fierz: ( χ A χ B ) 2 = ( χ A σ µ χ A ) 2 ( χ A χ A ) 2, ( χ A σ µ χ B ) 2 = ( χ A σ µ χ A ) 2 3( χ A χ A ) 2 2 independent couplings Lukas Janssen (FSU Jena) UV fixed-point structure of 3d Thirring ERG 2010, 13/09/2010 7 / 11

Classification of bilinears/4-fermi interactions Find all bilinears/4-fermi terms invariant under U(2N f )! Bilinears: No mass terms: % ψψ, ψγ % 45 ψ First order in derivative: i ψγ µ µ ψ " 4-fermi terms: ( ψ a γ µ ψ a ) 2 = ( χ A σ µ χ A ) 2 " ( ψ a γ 45 ψ a ) 2 = ( χ A χ A ) 2 " ( ψ a ψ b ) 2 ( ψ a γ 4 ψ b ) 2 ( ψ a γ 5 ψ b ) 2 + ( ψ a γ 45 ψ b ) 2 = ( χ A χ B ) 2 " ( ψ a γ µ ψ b ) 2 + ( ψ a σ µν ψ b ) 2 ( ψ a iγ µ γ 4 ψ b ) 2 ( ψ a iγ µ γ 5 ψ b ) 2 = ( χ A σ µ χ B ) 2 2 " where ( ψ a ψ b ) 2 ψ a ψ b ψ b ψ a, etc. Fierz: ( χ A χ B ) 2 = ( χ A σ µ χ A ) 2 ( χ A χ A ) 2, ( χ A σ µ χ B ) 2 = ( χ A σ µ χ A ) 2 3( χ A χ A ) 2 2 independent couplings Lukas Janssen (FSU Jena) UV fixed-point structure of 3d Thirring ERG 2010, 13/09/2010 7 / 11

Classification of bilinears/4-fermi interactions Find all bilinears/4-fermi terms invariant under U(2N f )! Bilinears: No mass terms: % ψψ, ψγ % 45 ψ First order in derivative: i ψγ µ µ ψ " 4-fermi terms: ( ψ a γ µ ψ a ) 2 = ( χ A σ µ χ A ) 2 " ( ψ a γ 45 ψ a ) 2 = ( χ A χ A ) 2 " ( ψ a ψ b ) 2 ( ψ a γ 4 ψ b ) 2 ( ψ a γ 5 ψ b ) 2 + ( ψ a γ 45 ψ b ) 2 = ( χ A χ B ) 2 " ( ψ a γ µ ψ b ) 2 + ( ψ a σ µν ψ b ) 2 ( ψ a iγ µ γ 4 ψ b ) 2 ( ψ a iγ µ γ 5 ψ b ) 2 = ( χ A σ µ χ B ) 2 2 " where ( ψ a ψ b ) 2 ψ a ψ b ψ b ψ a, etc. Fierz: ( χ A χ B ) 2 = ( χ A σ µ χ A ) 2 ( χ A χ A ) 2, ( χ A σ µ χ B ) 2 = ( χ A σ µ χ A ) 2 3( χ A χ A ) 2 2 independent couplings Lukas Janssen (FSU Jena) UV fixed-point structure of 3d Thirring ERG 2010, 13/09/2010 7 / 11

Fermionic RG flow Truncation: Full basis of fermionic 4-point functions ( Γ k = d 3 x iz k ψ a γ µ µ ψ a + ḡk ( ψ a γ µ ψ a ) 2 + ḡ ) k ( ψ a γ 45 ψ a ) 2 2N f 2N f Wetterich Eq. β functions: β i = g i + g j A (i) jk g k Explicitly: k k g = g 4l(F) 1 π 2 k k g = g + 4l(F) 1 π 2 η k := k k ln Z k = 0 g, g : dim less couplings l (F) 1 : threshold function [ 2Nf 1 g 2 3 gg 1 ] g 2 2N f 2N f N f [ 1 gg + 2N ] f + 1 g 2 2N f 6N f l (F) 1 = { 2/3 linear cut-off 1 sharp cut-off Lukas Janssen (FSU Jena) UV fixed-point structure of 3d Thirring ERG 2010, 13/09/2010 8 / 11

RG flow for N f = 1 Analytic expressions for FPs & critical exponents Generically for NGFP: Bg = g Θ = 1 Separatrices regions I IV Lukas Janssen (FSU Jena) UV fixed-point structure of 3d Thirring ERG 2010, 13/09/2010 9 / 11

RG flow for N f = 1 Analytic expressions for FPs & critical exponents Generically for NGFP: Bg = g Θ = 1 Separatrices regions I IV Interpretation of FP A: Tune along g = 0: Interaction g( ψγ 45 ψ) 2 Large g > 0: ψγ45 ψ 0 A governs PSB Interpretation of Thirring FP C: Fierz Interaction (2g g)( ψγ µ ψ) 2 g[( ψψ) 2 ( ψγ 4 ψ) 2 ( ψγ 5 ψ) 2 ] If g / 2g g 1 : ψψ = 0 χsb If g / 2g g 1 : vector condensate ψγ µψ χsb % C : g / 2g g 4.3 expect: C governs χsb Lukas Janssen (FSU Jena) UV fixed-point structure of 3d Thirring ERG 2010, 13/09/2010 9 / 11

RG flow for N f 1 (a) FPs for N f = 1, 2, 4, 10, 100: (b)... and separatrices: g N f = 1 N f = 100 N f = 1 1 1 2 3 O A C 1 g 2 3 N f = 100 N f = 100 4 B 5 N f = 1 Large N f : C (0, 3) g / 2g g 1: χsb % Transition region g / 2g g 1 N f 7/4: Nf cr O(7/4) Quantum phase transition at Nf cr occurs because of competing large-n f d.o.f. not because of change in UV critical structure! Lukas Janssen (FSU Jena) UV fixed-point structure of 3d Thirring ERG 2010, 13/09/2010 10 / 11

Conclusions Summary: Fermionic RG flow for full basis of fermionic 4-point functions 2 possible phase transitions: parity breaking or χsb If N f Nf cr : χsb % even for large coupling Justification for MC/DSE studies building on microscopic definition fixed only with Thirring coupling g In attractive domain of Thirring FP But: No universality of FP values Outlook: Include composite bosonic degrees of freedom Competing order parameters: V µ χ A σ µ χ A vs. ϕ AB χ A χ B Direct calculation of Nf cr Implications for graphene/cuprates (N f = 2)? Lukas Janssen (FSU Jena) UV fixed-point structure of 3d Thirring ERG 2010, 13/09/2010 11 / 11

Conclusions Summary: Fermionic RG flow for full basis of fermionic 4-point functions 2 possible phase transitions: parity breaking or χsb If N f Nf cr : χsb % even for large coupling Justification for MC/DSE studies building on microscopic definition fixed only with Thirring coupling g In attractive domain of Thirring FP But: No universality of FP values Outlook: Include composite bosonic degrees of freedom Competing order parameters: V µ χ A σ µ χ A vs. ϕ AB χ A χ B Direct calculation of Nf cr Implications for graphene/cuprates (N f = 2)? Lukas Janssen (FSU Jena) UV fixed-point structure of 3d Thirring ERG 2010, 13/09/2010 11 / 11