ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Σχετικά έγγραφα
Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

BetaRegularized. Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation.

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

GegenbauerC3General. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Section 8.3 Trigonometric Equations

Introductions to EllipticThetaPrime4

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

PARTIAL NOTES for 6.1 Trigonometric Identities

Math221: HW# 1 solutions

2 Composition. Invertible Mappings

Example Sheet 3 Solutions

SPECIAL FUNCTIONS and POLYNOMIALS

Inverse trigonometric functions & General Solution of Trigonometric Equations

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Reminders: linear functions

Homework 3 Solutions

Trigonometric Formula Sheet

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Differential equations

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

D Alembert s Solution to the Wave Equation

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

CRASH COURSE IN PRECALCULUS

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Fundamentals of Signals, Systems and Filtering

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Second Order Partial Differential Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Section 9.2 Polar Equations and Graphs

A summation formula ramified with hypergeometric function and involving recurrence relation

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Areas and Lengths in Polar Coordinates

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Matrices and Determinants

MathCity.org Merging man and maths

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

derivation of the Laplacian from rectangular to spherical coordinates

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

4.6 Autoregressive Moving Average Model ARMA(1,1)

Approximation of distance between locations on earth given by latitude and longitude

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Solutions to Exercise Sheet 5

Trigonometry Functions (5B) Young Won Lim 7/24/14

Areas and Lengths in Polar Coordinates

Concrete Mathematics Exercises from 30 September 2016

Other Test Constructions: Likelihood Ratio & Bayes Tests

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Homework 8 Model Solution Section

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Lecture 26: Circular domains

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Partial Trace and Partial Transpose

The k-α-exponential Function

TMA4115 Matematikk 3

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Uniform Convergence of Fourier Series Michael Taylor

An Inventory of Continuous Distributions

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Chapter 6 BLM Answers

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Parametrized Surfaces

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

Lifting Entry (continued)

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Every set of first-order formulas is equivalent to an independent set

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Sampling Basics (1B) Young Won Lim 9/21/13

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Spectrum Representation (5A) Young Won Lim 11/3/16

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

TABLES OF SOME INDEFINITE INTEGRALS OF BESSEL FUNCTIONS

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

IIT JEE (2013) (Trigonomtery 1) Solutions

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

The Simply Typed Lambda Calculus

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Fibonacci. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

CORDIC Background (4A)

Transcript:

ExpIntegralE Notations Traditional name Exponential integral E Traditional notation E Mathematica StandardForm notation ExpIntegralE, Primary definition 06.34.0.000.0 E t t t ; Re 0 Specific values Specialied values For fixed 06.34.03.000.0 E 0 ; Re 06.34.03.000.0 E 0 ; Re 06.34.03.007.0 E Subfactorial For fixed E 0 06.34.03.0003.0 06.34.03.0004.0 E Π erf

http://functions.wolfram.com 06.34.03.0005.0 E Π erfc E n E 06.34.03.0006.0 n Π n n n erfc 06.34.03.0007.0 Π erfc 3 k n k ; n 06.34.03.0008.0 E n n n erfc n n kn ; n nk 06.34.03.0009.0 E Ei log log log 06.34.03.000.0 E E Shi log log 06.34.03.00.0 E n n n Ei log log n log ; n n k k k 06.34.03.008.0 E n n n n, ; n 06.34.03.00.0 E 06.34.03.003.0 E n n n kn k ; n 06.34.03.005.0 n E n n Ei n log 06.34.03.006.0 n log log n kn n kn k k n k ; n E n n erfc n n k n n kn kn n k k ; n Values at infinities 06.34.03.004.0 E 0

http://functions.wolfram.com 3 General characteristics Domain and analyticity E is an analytical function of and which is defined in. For fixed, it is an entire function of. 06.34.04.000.0 E Symmetries and periodicities Mirror symmetry 06.34.04.000.0 E E ;, 0 Periodicity No periodicity Poles and essential singularities With respect to For fixed, the function E has an essential singularity at. At the same time, the point is a branch point for generic. 06.34.04.0003.0 ing E. With respect to For fixed, the function E has only one singular point at. It is an essential singular point. 06.34.04.0004.0 ing E, Branch points With respect to For fixed, not being a nonpositive integer, the function E has two branch points: 0,. At the same time, the point is an essential singularity. 06.34.04.0005.0 E 0, 06.34.04.0006.0 E, 0 log ; 06.34.04.0007.0 E p, 0 q ; p q gcdp, q q

http://functions.wolfram.com 4 06.34.04.0008.0 E, log ; 06.34.04.0009.0 E p, q ; p q gcdp, q q With respect to For fixed, the function E does not have branch points. 06.34.04.000.0 E Branch cuts With respect to For fixed, not being a nonpositive integer, the function E is a single-valued function on the -plane cut along the interval, 0, where it is continuous from above. 06.34.04.00.0 E, 0, 06.34.04.00.0 lim E x Ε E x ; x 0 Ε0 06.34.04.003.0 lim E x Ε E x Π x ; x 0 Ε0 With respect to For fixed, the function E does not have branch cuts. 06.34.04.004.0 E Series representations Generalied power series Expansions at generic point 0 For the function itself 06.34.06.007.0 E E 0 0 0 F 0, 0 ; 0, 0 ; 0 H 0 log 0 0 0 H 0 log Ψ 0 0 3F 3 0, 0, 0 ; 0, 0, 0 ; 0 ; 0

http://functions.wolfram.com 5 06.34.06.008.0 E E 0 0 0 F 0, 0 ; 0, 0 ; 0 H 0 log 0 0 0 H 0 log Ψ 0 0 3F 3 0, 0, 0 ; 0, 0, 0 ; 0 O 0 3 E 06.34.06.009.0 0 k s s 0 k k s log ks s 0 0 sj s j 0 s j s j 0 js log j sj F sja, a,, a sj ; a, a,, a sj ; 0 k ; a a a k 0 k 06.34.06.000.0 E E 0 O 0 Expansions at generic point For the function itself E 06.34.06.00.0 E arg arg, arg arg 3 0 3, 3 arg arg ; 06.34.06.00.0 E E arg arg, arg arg 3 0 3, 3 arg arg O 3 06.34.06.003.0 E k k arg arg k k F, ; k, ; k

http://functions.wolfram.com 6 06.34.06.004.0 E E arg arg O Expansions on branch cuts For the function itself 06.34.06.005.0 E E x x argx x argx, x x x3 argx 3 3, x x ; x x x 0 06.34.06.006.0 E E x x argx x argx, x x x3 argx 3 3, x x O x 3 ; x x 0 06.34.06.007.0 E k x k argx k x k F, ; k, ; x x k ; x x 0 06.34.06.008.0 E E x x argx O x ; x x 0 Expansions at 0 For the function itself General case 06.34.06.000.0 E 06.34.06.009.0 E 06.34.06.000.0 k k E k k 06.34.06.0003.0 E ; 0 3 3 O3 F ; ;

http://functions.wolfram.com 7 06.34.06.0004.0 E O 06.34.06.0030.0 E F, ; n k k F n, k k n n, n n F, n ; n, n 3; n Summed form of the truncated series expansion. Special cases 06.34.06.003.0 E log O 06.34.06.003.0 E log O3 06.34.06.0033.0 E n n n n Ψn log k k k n k n n n O n ; n n 06.34.06.0034.0 k k E log k k k 06.34.06.0005.0 E n n n Ψn log k n 06.34.06.0006.0 k k ; n k n k E n n F, ;, n ; n n n n Ψn log k k ; n k n k 06.34.06.0007.0 E log O ; 0 06.34.06.0008.0 E O log ; 0 06.34.06.0009.0 E 3 O ; 0 06.34.06.000.0 E n n O Ψn log ; 0 n n n

http://functions.wolfram.com 8 06.34.06.00.0 n k E n n n ; n k 06.34.06.00.0 E n n n O ; 0 n Asymptotic series expansions 06.34.06.003.0 E F 0, ; ; ; 06.34.06.004.0 E O ; 06.34.06.0035.0 E ; Residue representations 06.34.06.005.0 E res s j 0 s s j s 06.34.06.006.0 E res s s s s res s j 0 s s j s Integral representations On the real axis Of the direct function 06.34.07.000.0 E t t t ; arg Π Contour integral representations 06.34.07.000.0 E Π s s s s s 06.34.07.0003.0 E Γ s s Π s s ; 0 Γ Re arg Π Γ s

http://functions.wolfram.com 9 06.34.07.0004.0 E Π s ss s s 06.34.07.0005.0 E Γ s s s Π s ; max Re, 0 Γ arg Π Γ s Continued fraction representations 06.34.0.000.0 E 3 ;, 0 E 06.34.0.000.0 k k k k k k, k ;, 0 06.34.0.0003.0 E 4 3 4 3 6 5 4 8 0 ;, 0 06.34.0.0004.0 E k k k, k ;, 0 06.34.0.0005.0 E 3 4 3 5 6 ;, 0

http://functions.wolfram.com 0 06.34.0.0006.0 E k k k k, k ;, 0 06.34.0.0007.0 E 3 3 4 4 5 5 6 06.34.0.0008.0 E k k, k 06.34.0.0009.0 E 3 4 3 5 6 06.34.0.000.0 E k k k k k k, k Differential equations Ordinary linear differential equations and wronskians For the direct function itself 06.34.3.000.0 w w w 0 ; w c E c 06.34.3.000.0 W, E

http://functions.wolfram.com 06.34.3.0003.0 w g g g g g w g w 0 ; w c E g c g g 06.34.3.0004.0 W E g, g g g g 06.34.3.0005.0 w g g g g g h h h g g h g g h 0 ; w c h E g c h g 06.34.3.0006.0 h w W h E g, h g g g h g 06.34.3.0007.0 h g h g g h h h w w a r r r s r w s a r r s r w 0 ; w c s a r c s E a r 06.34.3.0008.0 W s E a r, s a r a r r s a r 06.34.3.0009.0 w a r logr logs w a r logr logs logr logs w 0 ; w c s E a r c s a r 06.34.3.000.0 W s E a r, s a r a r a r s logr Transformations Transformations and argument simplifications Argument involving basic arithmetic operations 06.34.6.000.0 E E 06.34.6.000.0 E E 06.34.6.0003.0 E n n E n ; n n n k 06.34.6.0004.0 n E n n n E n k k ; n k

http://functions.wolfram.com Identities Recurrence identities Consecutive neighbors 06.34.7.000.0 E E 06.34.7.000.0 E E Distant neighbors 06.34.7.0003.0 E n n n E n k k ; n E 06.34.7.0004.0 n n n E n n k k ; n Functional identities Relations of special kind 06.34.7.0005.0 k E n n n n E ; n n k k Differentiation Low-order differentiation With respect to 06.34.0.000.0 E log Ψ F, ;, ; 06.34.0.000.0 E Π cot log cotπ Π csc log Ψ cotπ log Ψ Ψ 3 3 F 3,, ;,, ; With respect to

http://functions.wolfram.com 3 06.34.0.0003.0 E E 06.34.0.0004.0 E E Symbolic differentiation With respect to 06.34.0.0005.0 n E n n 06.34.0.0006.0 n E n n k logk nk nk k n ; n nk k n k n k n k lognk k kj k j 0 k j k j kj log j kj F kja, a,, a kj ; a, a,, a kj ; ; a a a n n With respect to n E 06.34.0.00.0 n n n n n E kn k ; n 06.34.0.0007.0 n E n E n ; n n 06.34.0.0008.0 n E Π cscπ n n n F, ; n, ; ; n n Fractional integro-differentiation With respect to Α E Α 06.34.0.0009.0 Α k k F k k ; k Α ; log Α k k Α I Α k ; 06.34.0.000.0 Α E Α Α t t logt Α QΑ, 0, logtt ; Re 0 With respect to

http://functions.wolfram.com 4 06.34.0.00.0 Α E Α Α exp, Α Α F, ; Α, ; Integration Indefinite integration Involving only one direct function 06.34..000.0 E a E a a 06.34..000.0 E E Involving one direct function and elementary functions Involving power function 06.34..0003.0 Α Α E a Α E a E Α a 06.34..0004.0 Α Α E Α E E Α Involving only one direct function with respect to 06.34..0005.0 E k k F k ; k ; log k I k k k ; Integral transforms Fourier cos transforms 06.34..000.0 c t E tx Π csc Π x Π x F, ; ; ; x Re 0 x Fourier sin transforms 06.34..000.0 s t E tx Π x sgnx sec Π Π x F, ; 3 ; x ; x Re Laplace transforms

http://functions.wolfram.com 5 06.34..0003.0 t E t F, ; ; Π cscπ ; Re 0 Re 0 Representations through more general functions Through hypergeometric functions Involving F 06.34.6.000.0 E F ; ; ; Involving F 06.34.6.000.0 E Involving hypergeometric U 06.34.6.0003.0 E U,, F ; ; Through Meijer G Classical cases for the direct function itself 06.34.6.0004.0 E G,, 0, 06.34.6.0005.0 E G,0,, 0 Classical cases involving exp 06.34.6.0006.0 E G,, 0 0, Classical cases for products of exponential integrals E E E 06.34.6.0007.0 Π G 4,,4 4 0, 0,,, 06.34.6.0008.0 E E Π 4, G,4 4 0, 0,,, Representations through equivalent functions

http://functions.wolfram.com 6 With inverse function 06.34.7.000.0 E Q, Q, With related functions 06.34.7.000.0 E, 06.34.7.0003.0 E Q,

http://functions.wolfram.com 7 Copyright This document was downloaded from functions.wolfram.com, a comprehensive online compendium of formulas involving the special functions of mathematics. For a key to the notations used here, see http://functions.wolfram.com/notations/. Please cite this document by referring to the functions.wolfram.com page from which it was downloaded, for example: http://functions.wolfram.com/constants/e/ To refer to a particular formula, cite functions.wolfram.com followed by the citation number. e.g.: http://functions.wolfram.com/0.03.03.000.0 This document is currently in a preliminary form. If you have comments or suggestions, please email comments@functions.wolfram.com. 00-008, Wolfram Research, Inc.