ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ θερµι µ κή µ η µ χα χ ν α ή ενεργό υλικό Κυκλική µεταβολή

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ θερµι µ κή µ η µ χα χ ν α ή ενεργό υλικό Κυκλική µεταβολή"

Transcript

1 ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ ιάγραµµα ροής ενέργειας σε µια θερµική µηχανή (=διάταξη που µεταφέρει µέρος της θερµότητας σε µηχανική ενέργεια. Περιέχει ενεργό υλικόδηλ., µια ποσότητα ύλης στο εσωτερικό της που υποβάλλεται σε προσθήκη και απαγωγή θερµότητας, σε εκτόνωση και συµπίεση και µερικές φορές σε αλλαγή φάσης, π.χ. για ατµοµηχανές νερό, για µηχανές εσωτερικής καύσης µίγµα αερίου και καυσίµου) Κυκλική µεταβολή = µια σειρά µεταβολών που τελικά επαναφέρουν το υλικό στην αρχική του κατάσταση (π.χ. σε ατµοµηχανή το νερό ανακυκλώνεται και επαναχρησιµοποιείται) U 2 U 1 = 0 = W και = W ηλ. το τελικό ποσό θερµότητας που αξιοποιείται από µια µηχανή σε µια κυκλική µεταβολή είναι ίσο προς το τελικό έργο που παράγεται από τη µηχανή

2 = H + C = H - C Α ΘΑ: W = = H + C = H - C Ιδανική περίπτωση: Μετατροπή όλης της θερµότητας H σε έργο H = W και C = 0. Α ΥΝΑΤΟ (2 ο Θερµοδυναµικό αξίωµα) Θερµική απόδοση µηχανής e = W / H e W C = = 1+ = 1 H H C H Μηχανές εσωτερικής καύσης

3 Κύκλος Οtto Εξιδανικευµένο µοντέλο της θερµοδυναµικής µεταβολής σε µια βενζινοκίνητη µηχανή κύκλος Diesel Εξιδανικευµένος κύκλος Diesel

4 ΑΣΚΗΣΗ 1: Μια µεγάλη µηχανή diesel προσλαµβάνει 8000 J θερµότητας και αποδίδει 2000 J έργου ανά κύκλο. Η θερµότητα προκύπτει από την καύση πετρελαίου diesel µε θερµότητα καύσης L C = 5,00 x 10 4 J/g. α) Πόση είναι η θερµική απόδοση; β) Πόση θερµότητα αποβάλλεται σε κάθε κύκλο; γ) Πόση µάζα πετρελαίου καταναλώνεται σε κάθε κύκλο; δ) Αν η µηχανή εκτελεί 40 κύκλους ανά δευτερόλεπτο, πόση είναι η ισχύς εξόδου; ΛΥΣΗ Έχουµε H = 8000 J και W = 2000 J α) Χαρακτηριστική τιµή για πετρελαιοκινητήρες β) W = H + C 2000 J = 8000 J + C C = J γ) Έστω mη µάζα της βενζίνης που καίγεται σε κάθε κύκλο = m Lc 8000 J = m (5,00 x 104 J/g) m = 0,16 g δ) Η ισχύς Ρ (ρυθµός παραγωγής έργου) είναι το έργο ανά κύκλο επί τον αριθµό των κύκλων ανά δευτερόλεπτο Ρ = (2000 J/κύκλο) (40 κυκλοι/s) = W = 80 kw

5 Ψυκτικές µηχανές VS Θερµικές µηχανές Παίρνει θερµότητα από ένα ψυχρό µέρος (το εσωτερικό της ψυκτικής µηχανής) και την αποδίδει σε ένα θερµότερο µέρος (ο αέρας του χώρου στον οποίο είναι τοποθετηµένη) Απαιτεί την προσφορά µηχανικού έργου σε αυτή C θετική ποσότητα W και H αρνητικά, οπότε W = - W και H = - H Παίρνει θερµότητα από ένα θερµό µέρος και την αποδίδει σε ένα ψυχρότερο µέρος Παράγει στην έξοδό της µηχανικό έργο C αρνητική ποσότητα οπότε C = - C W και H θετικά

6 Ψυκτικές µηχανές VS Θερµικές µηχανές = C W W = H C H + Η θερµότητα H που εγκαταλείπει το ενεργό υλικό και προσφέρεται στη θερµή δεξαµενή είναι πάντοτε µεγαλύτερη από τη θερµότητα C που απάγεται από την ψυχρή δεξαµενή Η θερµότητα H που απορροφά το ενεργό υλικό και είναι πάντοτε µεγαλύτερη από το ωφέλιµο έργο εξόδου της µηχανής H = C + W Συντελεστής Απόδοσης K = C W = H C C e W C = = 1+ = 1 H H C H K = C W = H t P t = H P

7 Παραλλαγή αυτών των συστηµάτων: Αντλία θερµότητας

8 ΑΣΚΗΣΗ 2:Ένας καταψύκτης έχει συντελεστή απόδοσης Κ = 4. Ο καταψύκτης µετατρέπει 1,5 kgνερού θερµοκρασίας T = 20 C σε 1,5 kg πάγου θερµοκρασίας Τ = -10 Cσε µια ώρα. α) Πόση θερµότητα πρέπει να αφαιρεθεί από το νερό; β) Πόση ηλεκτρική ενέργεια καταναλώνεται από τον καταψύκτη σε αυτήν την ώρα; γ) Πόση ανεκµετάλλευτη θερµότητα αποβάλλεται στον χώρο, στον οποίο βρίσκεται ο καταψύκτης; (c ν = 4190 J/kg K, c π = 2000 J/kg K, L = 3,34 x 10 5 J/kg) ΛΥΣΗ α) -Νερό 20 C 0 C ν = m cν Τν = (1,5 kg) (4190 J/kg K) (0 C - 20 C) = J -Πάγος 0 C -10 C π = m cπ Τπ = (1,5 kg) (2000 J/kg K) (-10 C 0 C) = J -Πήξη νερού = - m L = - (1,5 kg) (3,34 x 105 J/kg) = - 5,01 x 10 5 J Άρα c = ν + π + = J β) W = c/k = J γ) H + C W = 0 - H = C W - H = J J = J H = J ΕΡΩΤΗΣΗ 3. Αν αφήσετε ανοιχτή την πόρτα του ψυγείου θα πέσει η θερµοκρασία της κουζίνας (και γιατί);

9 ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Το 1 ο θερµοδυναµικό αξίωµα δεν επιτρέπει τη δηµιουργία ή την καταστροφή ενέργειας Το 2 ο θερµοδυναµικό αξίωµα περιορίζει τη διάθεση ενέργειας και τους τρόπους µε τους οποίους µπορεί να χρησιµοποιηθεί και να µετατραπεί Για αντιστρεπτές µεταβολές (H θερµοκρασία του συστήµατος παραµένει σταθερή καθώς ενέργεια µεταφέρεται από ή προς αυτό.) Είναι αδύνατο να κατασκευαστεί µηχανή που να µετατρέπει εξ ολοκλήρου θερµότητα σε έργο, δηλ., µια µηχανή µε θερµικό συντελεστή 100% ιατύπωση θερµικής µηχανής εν υπάρχει σύστηµα που υφίσταται µια µεταβολή, κατά την οποία απορροφά θερµότητα από µία δεξαµενή σε µια συγκεκριµένη θερµοκρασία, την µετατρέπει εξ ολοκλήρου σε µηχανικό έργο και καταλήγει στην ίδια αρχική κατάσταση ιατύπωση ψυκτικής µηχανής Είναι αδύνατο οποιαδήποτε µεταβολή να έχει σαν αποκλειστικό αποτέλεσµα την µεταφορά θερµότητας από ένα ψυχρότερο σώµα σε ένα θερµότερο. Για µη αντιστρεπτές µεταβολές (Μετατροπή έργου σε θερµότητα όπως π.χ. στην τριβή, στη ροή παχύρευστων υγρών...) το 2 ο Θ.Α. εκφράζει τη µονόδροµη εγγενή θεώρησή τους

10 Η ενέργεια δεν χάνεται (Α ΘΑ) αλλά υποβιβάζεται η ποιότητά της (Β ΘΑ) Τι σηµαίνει υποβιβάζεται η ποιότητα της ενέργειας; - εν µπορεί να χρησιµοποιηθεί για να αποδώσει έργο Στη µελέτη της ΜΗΧΑΝΙΚΗΣ: Απουσία τριβών, η Μηχανική Ενέργεια (U + T) µπορεί να αποδώσει 100% έργο Στη µελέτη της ΘΕΡΜΟ ΥΝΑΜΙΚΗΣ: Η εσωτερική (θερµοδυναµική) ενέργεια δεν µπορεί να αποδώσει 100% ιαφορά ανάµεσα στη φύση εσωτερικής (θερµοδυναµικής) και µακροσκοπικής µηχανικής ενέργειας: Σε ένα κινούµενο σώµα τα µόρια εκτελούν τυχαία κίνηση, στην οποία όµως προστίθεται η διατεταγµένη κίνηση του σώµατος στην κατεύθυνση της κίνησής του. Κινητική ενέργεια κινούµενου σώµατος = κινητική ενέργεια συνυφασµένη µε τη διατεταγµένη µακροσκοπική κίνηση Εσωτερική ενέργεια = κινητική και δυναµική ενέργεια συνυφασµένες µε την τυχαία κίνηση των µορίων του σώµατος Σε ένα τέτοιο φυσικό σύστηµα το ποσοτικό µέγεθος που αντιστοιχεί στην ενέργεια που δεν µπορεί να χρησιµοποιηθεί για να αποδώσει έργο ονοµάζεται εντροπίατου συστήµατος

11 ΕΝΤΡΟΠΙΑ Ο όρος Εντροπία (Entropy) προέρχεται από τις Ελληνικές λέξεις «εν + τροπή» (κατ αναλογία µε την εν+εργεια)και χρησιµοποιήθηκε πρώτατο1865 από τογερµανόφυσικό Rudolf Clausius για να εκφράσειποσοτικά την ικανότητα αλλαγής (τροπής) ενός συστήµατος (όπως η θερµότητα που ρέει από περιοχές υψηλής θερµοκρασίας σε περιοχές χαµηλότερης θερµοκρασίας) και να προσδιορίσει κατά πόσο µια θερµοδυναµική διαδικασία µπορεί να συµβεί αυθόρµητα. Εισάγει µια ποσοτική έκφραση του 2 ου θερµοδυναµικού αξιώµατος Η εντροπία προσδιορίζει ποσοτικά πόσο οµοιόµορφα κατανέµεται η ενέργεια σε ένα σύστηµα. Όταν θερµότητα ρέει από µια θερµή σε µια ψυχρή περιοχή η εντροπία αυξάνει καθώς η θερµότητα κατανέµεται σε όλο το σύστηµα. Το Β ΘΑ ορίζει ότι σε αυθόρµητες φυσικές διαδικασίες η θερµότητα ρέει πάντα από τις υψηλές θερµοκρασίες προς τις χαµηλές θερµοκρασίες. Εποµένως το Β ΘΑ διατυπώνεται ως: Η εντροπία ενός αποµονωµένου συστήµατος πάντα αυξάνεται και οι διαδικασίες που οδηγούν σε αύξηση εντροπίας συµβαίνουν αυθόρµητα. Αφού αύξηση εντροπίας σηµαίνει πιο οµοιόµορφη κατανοµή της ενέργειας το Β ΘΑ µπορεί να αποδοθεί ποιοτικά ως: Η ενέργεια αποµονωµένου συστήµατος τείνει να κατανεµηθεί οµοιόµορφα

12 Σύµφωνα µε το Α ΘΑ (διατήρηση της ενέργειας): απώλεια θερµότητας από ένα θερµοδυναµικό σύστηµα οδηγεί σε µείωση της εσωτερικής του ενέργειας κατά. Που πάει η αυτή η θερµότηταδ; -Στο περιβάλλον του συστήµατος του οποίου η εσωτερική ενέργεια αυξάνει κατά Η θερµοδυναµική εντροπία παρέχει µια ποσοτική µέτρηση της µείωσης της εσωτερικής ενέργειας ενός συστήµατος και της αύξησης της εσωτερικής ενέργειας του περιβάλλοντός του κατά τη µεταφορά θερµότητας σε συγκεκριµένη θερµοκρασία Τ. Γιατί σε συγκεκριµένη θερµοκρασία Τ; ιότι η εσωτερική ενέργεια ιδανικού αερίου εξαρτάται µόνο από τη θερµοκρασία του, η εσωτερική ενέργεια στο αποµονωµένο σύστηµα (=σύστηµα + περιβάλλον = σύµπαν) παραµένει σταθερή. Αυτό που αλλάζει µε τη µεταφορά της είναι η κατανοµή της. Σύµφωνα µε το Β ΘΑ η ενέργεια κάθε µορφής τείνει να «απλωθεί» ευρύτερα στις αυθόρµητες διαδικασίες. Η µεταβολή της εντροπίας προσδιορίζει ποσοτικά πόση ενέργεια ρέει ή πόσο ευρέως έχει απλωθεί σε συγκεκριµένη θερµοκρασία.

13 Αρχικά, η εντροπία εισήχθη για τον προσδιορισµό της θερµότητας που χάνεται (δηλ. των ενεργειακών απωλειών λόγω θερµότητας) σε θερµικές µηχανές και άλλες µηχανικές συσκευές οι οποίες δεν µπορούν πότε να µετατρέψουν 100% την ενέργεια σε έργο. Στα τέλη του 19 ου αιώνα, µε την κατανόηση της συµπεριφοράς των µορίων σε µικροσκοπικό επίπεδο, ο όρος εντροπία συνδέθηκε από τον Αυστριακό Φυσικό Ludwin Boltzmannµε την αταξίατων µορίων. Η εντροπία στην Στατιστική και Κβαντική Μηχανικήσήµερα ορίζει το «µέτρο της αταξίας των στοιχείων της ύλης». Ο όρος αταξία εδώ αφορά την «ενεργειακή αταξία» των στοιχείων της ύλης. Η εντροπία µιας συγκεκριµένης µακροκατάστασης (π.χ. P, V, T ενός αερίου σε δοχείο) ορίζεται από τη σχέση: S=K lnω Όπου: Κ η σταθερά του Boltzmannκαι lnω ο φυσικός λογάριθµος του πλήθους των µικροκατασάσεων που αντιστοιχούν σε αυτήν την µακροκατάσταση. Τα µαθηµατικά που αναπτύχθηκαν από τη στατιστική µηχανική βρήκαν εφαρµογές και σε άλλα πεδία όπως η πληροφορική. Η εντροπία στην Πληροφορικήεισήχθη οριστικά από τον Αµερικανό Μαθηµατικό και Ηλεκτρολόγο Μηχανικό Claude Shannon

14 ΕΝΤΡΟΠΙΑ (στην κλασική θερµοδυναµική) Για απειροστή ισόθερµη εκτόνωση ιδανικού αερίου, προσθέτουµε θερµότητα dκαι αφήνουµε το αέριο να εκτονωθεί όσο χρειάζεται για να παραµείνει η θερµοκρασία του σταθερή. Επειδή η εσωτερική ενέργεια ιδανικού αερίου εξαρτάται µόνο από τη θερµοκρασία του, η εσωτερική του ενέργεια παραµένει επίσης σταθερή και εποµένως (Α ΘΑ) το έργο που παράγεται από το αέριο είναι ίσο προς τη θερµότητα που του προσφέρεται. ηλ., d = dw = p dv = ds = d T S = S S = nrt V Το αέριο βρίσκεται σε µια κατάσταση αυξηµένης αταξίας µετά την εκτόνωση από ότι πριν, επειδή τα µόρια κινούνται σε µεγαλύτερο όγκο και έχουν περισσότερη τυχαιότητα ως προς τη θέση. Εποµένως η ποσοστιαία µεταβολή του όγκου dv/vείναι ένα µέτρο της αύξησης της αταξίας και είναι ανάλογη προς την ποσότητα d/t. Ορίζουµε την απειροστή µεταβολή της εντροπίας ds κατά τη διάρκεια µιας αντιστρεπτής µεταβολής σε απόλυτη θερµοκρασία Τ: 2 1 dv Αντιστρεπτή ισόθερµη µεταβολή T Μονάδες: 1 J/K

15 S είναι η µεταβολή της εντροπίας και η θερµότητα που προσφέρεται ή απάγεται αντιστρεπτά (υπό σταθερή Τ). Ο ορισµός αυτός της εντροπίας αναφέρεται σε µεταβολές της και όχι σε απόλυτες τιµές της (όπως αυτός της στατιστικής µηχανικής). Όταν ένα σύστηµα µεταβαίνει από µια αρχική κατάσταση µε εντροπία S 1 σε µια τελική κατάσταση µε εντροπία S 2, η µεταβολή στην εντροπία S = S 2 - S 1, δεν εξαρτάται από τη διαδροµή αλλά από την αρχική κατάσταση στην τελική. Το γεγονός ότι η εντροπία είναι µια συνάρτηση της κατάστασης του συστήµατος µόνο µας δείχνει πως να υπολογίζουµε τις µεταβολές της εντροπίας σε µη αντιστρεπτές φυσικές µεταβολές (καταστάσεις µη ισορροπίας) για τις οποίες η S = /T δεν ισχύει. BHMATA: 1. Eπινοούµε µια διαδροµή η οποία συνδέει την αρχική και την τελική κατάσταση που δίνονται και η οποία αποτελείται αποκλειστικά από αντιστρεπτές µεταβολές ισορροπίας. 2. Στη συνέχεια υπολογίζουµε την ολική µεταβολή της εντροπίας για τη διαδροµή αυτή. Όπως και µε την εσωτερική ενέργεια ορίζεται µόνο η µεταβολή της εντροπίας σε µια δεδοµένη φυσική µεταβολή. Μπορούµε αυθαίρετα να αποδώσουµε µια τιµή στην εντροπία ενός συστήµατος σε µια συγκεκριµένη κατάσταση αναφοράς και στη συνέχεια να υπολογίσουµε την εντροπία οποιασδήποτε άλλης κατάστασης ως προς την κατάσταση αναφοράς.

16 ΠΑΡΑ ΕΙΓΜΑ. Το λιώσιµο του πάγου στο ποτήρι της εικόνας αποτελεί ένα παράδειγµα της αύξησης της εντροπίας σε ένα µικρό σύστηµα. Το θερµοδυναµικό αυτό σύστηµα αποτελείται από το περιβάλλον (το δωµάτιο σε συνήθη θερµοκρασία) και το ποτήρι που περιέχει αρχικά 10 παγάκια και καθόλου νερό σε υρή φάση. Σε αυτό το σύστηµα θερµότητα από το περιβάλλον που βρίσκεται σε θερµοκρασία 298 Κ (25 C) µεταφέρεται στο ψυχρότερο σύστηµα του πάγου που τήκεται σε υγρό νερό και βρίσκεται στη σταθερή θερµοκρασία τήξης πάγου Τ = 273 Κ (0 C). Η αύξηση της εντροπίας του συστήµατος νερού πάγου είναι /273 K. Η θερµότητα είναι εκείνη που απαιτείται για την τήξη του πάγου: = m π L f. Η θερµότητα τήξης του πάγου είναι L f = 3,34 x 10 5 J/kg. Έτσι, π.χ για 10 παγάκια 10 gτο καθένα η αύξηση της εντροπίας του συστήµατος νερούπάγου είναι: S = ,34 10 J S2 S1 = = = 122,34 T 273 K J / K

17 Αυτή η αύξηση αντιστοιχεί σε αύξηση της αταξίας όταν τα µόρια του νερού µεταβαίνουν από µία διατεταγµένη κατάσταση κρυσταλλικού στερεού στην κατά πολύ πιο άτακτη κατάσταση του υγρού. ή καλύτερα στο «άπλωµα» και την τελική κατανοµή της ενέργειας ευρύτερα σε όλη την περιοχή που καταλαµβάνει το υγρό νερό µέσα στο ποτήρι συγκριτικά µε την αρχική περισσότερο τοπικά εντοπισµένη ενέργεια στη διάταξη του πάγου. Σε οποιαδήποτε ισόθερµη,αντιστρεπτή µεταβολή,η µεταβολή της εντροπίας είναι ίση προς το πηλίκο της θερµότητας που διαδίδεται προς την απόλυτη θερµοκρασία. Εάν πάγωνε αντίστοιχη µάζα νερού (100 g), η µεταβολή στην εντροπία θα ήταν: S = - 122,3 J/Κ Θα πρέπει να τονιστεί ότι η εντροπία του περιβάλλοντος (δωµατίου) µειώνεται λιγότερο από την αύξηση της εντροπίας του συστήµατος νερού-πάγου. Η θερµοκρασία δωµατίου των 298 Κ είναι υψηλότερη από αυτή των 273 Κ και εποµένως: Sπεριβάλλοντος = /298 K < Sσύστηµα νερού-πάγου = /273 K Αυτό είναι πάντα αληθές για αυθόρµητα γεγονότα σε ένα θερµοδυναµικό σύστηµα και φανερώνει τη σηµασία της εντροπίας για τη πρόβλεψη της πορείας τέτοιων γεγονότων αφού: η ολική τελική εντροπία µετά από ένα αυθόρµητο γεγονός είναι πάντα µεγαλύτερη από την αρχική της τιµή.

18 Θερµό (Θ) Ψυχρό (Ψ) Τ 1 > Τ 2 Θερµότητα ρέει από το θερµό στο ψυχρό σώµα, εποµένως < 0 > 0 S = / T S θ (<0) < S Ψ (>0) Για το σύστηµα Θ + Ψ s ολικ. = S θ + S Ψ > 0

19 Αυτό που συµβαίνει στη συνέχεια είναι ότι η θερµοκρασία του κρύου νερού αυξάνεται ώστε να επιτευχθεί θερµική ισορροπία µε τη θερµοκρασία του δωµατίου η οποία αντίστοιχα θα ελαττώνεται. Οι µεταβολές αυτές δεν είναι ισόθερµες. Μπορούµε όµως να παραστήσουµε µια τέτοια µεταβολή σαν µια ακολουθία από απειροστά αντιστρεπτά βήµατα. Κατά τη διάρκεια ενός χαρακτηριστικού βήµατος προστίθεται στο σύστηµα µια απειροστή ποσότητα θερµότητας d σε απόλυτη θερµοκρασία Τ. Στη συνέχεια προσθέτουµε (ολοκληρώνουµε) τα πηλίκα d/t για ολόκληρη τη διαδικασία. Έχουµε δηλαδή, Τα όρια 1 και 2 αναφέρονται στην αρχική και στην τελική κατάσταση Έτσι αν το ποτήρι βρίσκεται σε ένα δωµάτιο µε διαστάσεις 5 m x 8 m x 3 m και δεδοµένου ότι η πυκνότητα του ξηρού αέρα στους 25 C είναι περίπου 1,2 kg/m 3. Η µάζα του αέρα στο δωµάτιο θα είναι: M = 1,2 kg/m 3 x 5 m x 8 m x 3 m = 144 kg Η ειδική θερµοχωρητικότητα του ξηρού αέρα στους 25 C είναι περίπου c air = 1,005 kj/kg K. Εποµένως η θερµότητα που µεταφέρεται από τον αέρα όλου του δωµατίου θα είναι = M c air Τ αέρα = 1, kg 1, J/kg K Τ αέρα

20 Το ποσό αυτό της θερµότητας προσφέρεται στο παγωµένο νερό εως ότου αποκατασταθεί θερµική ισορροπία µε κοινή Τ τελική. (m νερού = 10-1 kg και c νερού = 4,19 kj/kg K.) Εποµένως: = m νερού c νερού Τ νερού = 10-1 kg 4, J/kg K Τ νερού 1, kg 1, J/kg K Τ αέρα = 10-1 kg 4, J/kg K Τ νερού Τ αέρα / Τ νερού = (4,19/1,44) 10-3 ηλ., η µεταβολή στη θερµοκρασία του αέρα είναι περίπου 3 τάξεις µεγέθους µικρότερη αυτής του νερού (εξαιτίας της πολύ µεγαλύτερης µάζας του) και θα τη θεωρούµε αµελητέα. Η µεταβολή της εντροπίας για το νερό αν θεωρήσουµε ότι Τ τελική = 298 Κ θα υπολογίζεται ως εξής: S = τελ T 1 298K ( 10 kg)( 4190 J / kg K) ln 36,7 J / K τελ d dt Tτελ S2 S1 = = mc mc ln = T = = T T 273K αρχ T αρχ αρχ Η θερµότητα που µεταφέρθηκε στο παγωµένο νερό όπως είδαµε είναι: = m νερού c νερού Τ νερού = 10-1 kg 4, J/kg K (25 Κ) = 10,475 kj Εποµένως η ελάττωση της εντροπίας του δωµατίου (αν θεωρήσουµε ότι η έκλυση θερµότητας προς το παγωµένο νερό γίνεται υπό σταθερή θερµοκρασία Τ αέρα = 298 Κ

21 αφού θεωρήσαµε Τ αερα = αµελητέο S αερα = /T = J / 298 K = -35,15 J/K που είναι µικρότερη από την αύξηση της εντροπίας του παγωµένου νερού 36,7 J/K Επαληθεύεται έτσι ακόµα µια φορά ότι για το σύµπαν: ποτήρι µε παγάκια και δωµάτιο η εντροπία αυξάνεται και η ενέργεια αυθόρµητα διαχέεται. ΑΣΚΗΣΗ Να βρεθεί η µεταβολή της εντροπίας ενός moleνερού, αν θερµαίνεται αντιστρεπτά από τους 20 Cστους 150 Cκάτω από σταθερή πίεση 1 atm. ίνονται : θερµότητα εξαέρωσης νερού = 9720 cal /mol K, C νερου =18 cal / mole K,C ατµου =8,6 cal / mole K. (1 cal = 4186 J) Για Αδιαβατική αντιστρεπτή µεταβολή

22 Εντροπία σε κυκλικές µεταβολές Αντιστρεπτός κύκλος (µηχανή Carnot: ισόθερµη εκτόνωση, αδιαβατική συµπίεση, ισόθερµη συµπίεση, αδιαβατική εκτόνωση) Η ολική µεταβολή της εντροπίας ανά κύκλο µιας οποιασδήποτε µηχανής Carnot είναι µηδέν

23 Η ολική µεταβολή της εντροπίας κατά τη διάρκεια οποιουδήποτε αντιστρεπτού κύκλου είναι µηδέν d = 0 T (αντιστρεπτή κυκλική µεταβολή) Εποµένως, όταν ένα σύστηµα υπόκεινται σε µια αντιστρεπτή µεταβολή από την κατάσταση (α) στην κατάσταση (b), η µεταβολή της εντροπίας είναι ανεξάρτητη από τη µεταβολή

24

25 Μη αντιστρεπτή µεταβολή σε θερµικά µονωµένο σώµα

26 8. Εξηγείστε πως οι έννοιες της εντροπίας και του 2ου θερµοδ. αξιώµατος µας διδάσκουν ότι είναι πολύ δύσκολο να αντιστρέψουµε την ρύπανση του φυσικού µας περιβάλλοντος, αφού αυτή έχει συµβεί. Οι περιπτώσεις ανάµιξης ουσιών σε διαφορετικές θερµοκρασίες ή η ροή θερµότητας από υψηλότερη σε χαµηλότερη θερµοκρασία είναι χαρακτηριστικά παραδείγµατα όλων των φυσικών (δηλ. µη αντιστρεπτών µεταβολών). (Β ΘΑ, εντροπία): Καµιά φυσική µεταβολή δεν είναι δυνατή στην οποία η ολική εντροπία µειώνεται, όταν συµπεριληφθούν όλα τα συστήµατα που λαµβάνουν µέρος στη µεταβολή. Στο παράδειγµα ανάµειξης ζεστού και κρύου νερού: Θα µπορούσαµε να χρησιµοποιήσουµε το ζεστό και το κρύο νερό ως δεξαµενές υψηλής και χαµηλής θερµοκρασίας αντίστοιχα µιας θερµικής µηχανής και να κερδίσουµε κάποιο µηχανικό έργο. Αλλά από τη στιγµή που το ζεστό και το κρύο έχουν αναµειχθεί και έχει αποκατασταθεί οµοιόµορφη θερµοκρασία, η ευκαιρία της µετατροπής θερµότητας σε µηχανικό έργο έχει χαθεί ανεπιστρεπτί. Το χλιαρό νερό δεν πρόκειται να διαχωριστεί από µόνο του σε θερµότερα και ψυχρότερα µέρη. Σύµφωνα και µε το Α ΘΑ καµία ελάττωση σε ενέργεια δεν παρατηρείται όταν αναµειχθεί το ζεστό και το κρύο νερό. Αυτό που χάνεται δεν είναι ενέργεια αλλά δυνατότητα µετατροπής µέρους της θερµότητας από το ζεστό σε µηχανικό έργο. Όταν αυξάνει η εντροπία τόσο ελαττώνεται η διαθέσιµη ενέργεια και το σύµπαν έχει γίνει περισσότερο τυχαίο ή «αποδιοργανωµένο».

27

28 Υποθέστε ότι φέρουµε 1 kgνερού σε 100 C σε θερµική επαφή µε 1 kgνερού σε 0 C. Πόση είναι η ολική µεταβολή της εντροπίας; Υποθέστε, ότι η ειδική θερµότητα του νερού είναι σταθερή και ίση προς 4190 J/kg K στην περιοχή αυτή των θερµοκρασιών.

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Μη αντιστρεπτά φαινόμενα Η ενέργεια διατηρείται και στη χρονικά αντίστροφη μεταβολή, όμως αυτή ποτέ δεν συμβαίνει π.χ. Δεν μπορούμε να κατασκευάσουμε το αεικίνητο.

Διαβάστε περισσότερα

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Μη αντιστρεπτά φαινόμενα Η ενέργεια διατηρείται και στη χρονικά αντίστροφη μεταβολή, όμως αυτή ποτέ δεν συμβαίνει π.χ. - Όλα τα σώματα που αρχικά ολισθαίνουν πάνω

Διαβάστε περισσότερα

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου;

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου; E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ 1. Β2.25 Θερµική µηχανή είναι, α) το τρόλεϊ; β) ο φούρνος; γ) το ποδήλατο; δ) ο κινητήρας του αεροπλάνου; Επιλέξτε τη σωστή απάντηση. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά

Διαβάστε περισσότερα

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ . ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ 1. Σε µια ισόθερµη µεταβολή : α) Το αέριο µεταβάλλεται µε σταθερή θερµότητα β) Η µεταβολή της εσωτερικής ενέργειας είναι µηδέν V W = PV ln V γ) Το έργο που παράγεται δίνεται

Διαβάστε περισσότερα

Α Θερμοδυναμικός Νόμος

Α Θερμοδυναμικός Νόμος Α Θερμοδυναμικός Νόμος Θερμότητα Έχουμε ήδη αναφέρει ότι πρόκειται για έναν τρόπο μεταφορά ενέργειας που βασίζεται στη διαφορά θερμοκρασιών μεταξύ των σωμάτων. Ορίζεται από τη σχέση: Έργο dw F dx F dx

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ 1 B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΕΡΓΟ ΑΕΡΙΟΥ

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΕΡΓΟ ΑΕΡΙΟΥ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ ΕΡΓΟ ΑΕΡΙΟΥ Κατά την εκτόνωση ενός αερίου, το έρο του είναι θετικό ( δηλαδή παραόμενο). Κατά την συμπίεση ενός

Διαβάστε περισσότερα

1. Θερµοδυναµικό σύστηµα Αντιστρεπτές και µη αντιστρεπτές µεταβολές

1. Θερµοδυναµικό σύστηµα Αντιστρεπτές και µη αντιστρεπτές µεταβολές Θερµοδυναµική Φυσική Θετικής & εχνολοικής Κατεύθυνσης Λυκείου ο Κεφάλαιο Θερµοδυναµική. Θερµοδυναµικό σύστηµα ντιστρεπτές και µη αντιστρεπτές µεταβολές Σύστηµα είναι ένα τµήµα του φυσικού κόσµου που διαχωρίζεται

Διαβάστε περισσότερα

ΤΟ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

ΤΟ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΤΟ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Το πρώτο θερμοδυναμικό αξίωμα είναι μια έκφραση της διατήρησης της ενέργειας για θερμοδυναμικά συστήματα. Εάν ένα κλειστό σύστημα αλληλεπιδρά με το περιβάλλον μπορεί να αυξήσει

Διαβάστε περισσότερα

PV=nRT : (p), ) ) ) : :

PV=nRT  : (p), ) ) ) :     : Μιχαήλ Π. Μιχαήλ 1 ΘΕΡΜΟ ΥΝΑΜΙΚΟ ΣΥΣΤΗΜΑ 1.Τι ονοµάζουµε σύστηµα και τι περιβάλλον ενός φυσικού συστήµατος; Σύστηµα είναι ένα τµήµα του φυσικού κόσµου που διαχωρίζεται από τον υπόλοιπο κόσµο µε πραγµατικά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ 1ο ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ο ΝΟΜΟΙ ΑΕΡΙΩΝ -ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ Τι γνωρίζετε για την καταστατική εξίσωση των ιδανικών αερίων; Η καταστατική εξίσωση των αερίων είναι µια σχέση που συνδέει µεταξύ

Διαβάστε περισσότερα

Επαναληπτικό Χριστουγέννων Β Λυκείου

Επαναληπτικό Χριστουγέννων Β Λυκείου Επαναληπτικό Χριστουγέννων Β Λυκείου 1.Ποιά από τις παρακάτω προτάσεις είναι σωστή ; Σύµφωνα µε τον 1ο θερµοδυναµικό νόµο το ποσό της θερµότητας που απορροφά η αποβάλει ένα θερµοδυναµικό σύστηµα είναι

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε ΔΙΑΓΩΝΙΣΜΑ Α Θέµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων, η πίεση

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 Α4 και δίπλα το γράμμα

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ Θερμικες μηχανες 1. Το ωφελιμο εργο μπορει να υπολογιστει με ένα από τους παρακατω τροπους: Α.Υπολογιζουμε το αλγεβρικο αθροισμα των εργων ( μαζι με τα προσημα

Διαβάστε περισσότερα

2. Ασκήσεις Θερμοδυναμικής. Ομάδα Γ.

2. Ασκήσεις Θερμοδυναμικής. Ομάδα Γ. . σκήσεις ς. Ομάδα..1. Ισοβαρής θέρμανση και έργο. Ένα αέριο θερμαίνεται ισοβαρώς από θερμοκρασία Τ 1 σε θερμοκρασία Τ, είτε κατά την μεταβολή, είτε κατά την μεταβολή Δ. i) Σε ποια μεταβολή παράγεται περισσότερο

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ)

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) Διαλέξεις Μ4, ΤΕΙ Χαλκίδας Επικ. Καθηγ. Δρ. Μηχ. Α. Φατσής ΣΚΟΠΟΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Το «φρεσκάρισμα» των γνώσεων από τη Θερμοδυναμική με σκοπό

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου 2006 Ώρα: 10:30 13.00 Προτεινόµενες Λύσεις ΜΕΡΟΣ Α 1. α) Η πυκνότητα του υλικού υπολογίζεται από τη m m m σχέση d

Διαβάστε περισσότερα

Ι Α Γ Ω Ν Ι Σ Μ Α ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Θέµα 1 ο. α. Το σύστηµα των ηλεκτρικών φορτίων έχει δυναµική ενέργεια

Ι Α Γ Ω Ν Ι Σ Μ Α ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Θέµα 1 ο. α. Το σύστηµα των ηλεκτρικών φορτίων έχει δυναµική ενέργεια Ι Α Γ Ω Ν Ι Σ Μ Α ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΙΚΗΣ & ΕΧΝΟΛΟΓΙΚΗΣ ΚΑΕΥΘΥΝΣΗΣ Θέµα ο Στις παρακάτω ερωτήσεις να ράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το ράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

Να γράψετε στο τετράδιο σας την σωστή απάντηση στις παρακάτω ερωτήσεις.

Να γράψετε στο τετράδιο σας την σωστή απάντηση στις παρακάτω ερωτήσεις. ΘΕΜΑ 1 Να γράψετε στο τετράδιο σας την σωστή απάντηση στις παρακάτω ερωτήσεις. 1. Αέριο συμπιέζεται ισόθερμα στο μισό του αρχικού όγκου.η ενεργός ταχύτητα των μορίων του: α) διπλασιάζεται. β) παραμένει

Διαβάστε περισσότερα

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ 45 6.1. ΓΕΝΙΚΑ ΠΕΡΙ ΦΑΣΕΩΝ ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΕΩΝ Όλα τα σώµατα,στερεά -ά-αέρια, που υπάρχουν στη φύση βρίσκονται σε µια από τις τρεις φάσεις ή σε δύο ή και τις τρεις. Όλα τα σώµατα µπορεί να αλλάξουν φάση

Διαβάστε περισσότερα

β) διπλασιάζεται. γ) υποδιπλασιάζεται. δ) υποτετραπλασιάζεται. Μονάδες 4

β) διπλασιάζεται. γ) υποδιπλασιάζεται. δ) υποτετραπλασιάζεται. Μονάδες 4 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΟΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ B ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΑΝΟΥΑΡΙΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων Β' τάξη Γενικού Λυκείου Κεφάλαιο 1 Κινητική θεωρία αερίων Κεφάλαιο 1 Κινητική θεωρία αερίων Χιωτέλης Ιωάννης Γενικό Λύκειο Πελοπίου 1.1 Ποιο από τα παρακάτω διαγράμματα αντιστοιχεί σε ισοβαρή μεταβολή;

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Θερµότητα χρόνος θέρµανσης. Εξάρτηση από είδος (c) του σώµατος. Μονάδα: Joule. Του χρόνου στον οποίο το σώµα θερµαίνεται

Θερµότητα χρόνος θέρµανσης. Εξάρτηση από είδος (c) του σώµατος. Μονάδα: Joule. Του χρόνου στον οποίο το σώµα θερµαίνεται 1 2 Θερµότητα χρόνος θέρµανσης Εξάρτηση από είδος (c) του σώµατος Αν ένα σώµα θερµαίνεται από µια θερµική πηγή (γκαζάκι, ηλεκτρικό µάτι), τότε η θερµότητα (Q) που απορροφάται από το σώµα είναι ανάλογη

Διαβάστε περισσότερα

Παραγωγή Ηλεκτρικής Ενέργειας 6ο Εξάμηνο Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών Ροή Ε. 1η Σειρά Ασκήσεων

Παραγωγή Ηλεκτρικής Ενέργειας 6ο Εξάμηνο Ηλεκτρολόγων Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών Ροή Ε. 1η Σειρά Ασκήσεων ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Σχολή Ηλεκτρολόγων Μηχ. και Μηχ. Υπολογιστών Ακαδ. Έτος 0- Τομέας Ηλεκτρικής Ισχύος Αθήνα, 0 Μαρτίου 0 Καθηγητής Κ.Βουρνάς Παράδοση,,5: 8// Λέκτωρ Σ. Καβατζά 6,,4: /4/ Παραγωγή

Διαβάστε περισσότερα

ΜΕΤΑΒΟΛΕΣ ΚΑΤΑΣΤΑΣΗΣ ΑΕΡΙΩΝ. 1. Δώστε τον ορισμό τον τύπο και το διάγραμμα σε άξονες P v της ισόθερμης μεταβολής. σελ. 10. και

ΜΕΤΑΒΟΛΕΣ ΚΑΤΑΣΤΑΣΗΣ ΑΕΡΙΩΝ. 1. Δώστε τον ορισμό τον τύπο και το διάγραμμα σε άξονες P v της ισόθερμης μεταβολής. σελ. 10. και ΜΕΤΑΒΟΛΕΣ ΚΑΤΑΣΤΑΣΗΣ ΑΕΡΙΩΝ 1. Δώστε τον ορισμό τον τύπο και το διάγραμμα σε άξονες P v της ισόθερμης μεταβολής. σελ. 10 ορισμός : Ισόθερμη, ονομάζεται η μεταβολή κατά τη διάρκεια της οποίας η θερμοκρασία

Διαβάστε περισσότερα

Σχολικό έτος 2012-2013 Πελόπιο, 30 Μαΐου 2013

Σχολικό έτος 2012-2013 Πελόπιο, 30 Μαΐου 2013 Σχολικό έτος 0-03 Πελόπιο, 30 Μαΐου 03 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΛΥΚΕΙΟΥ ΠΕΡIΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 03 ΣΤΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤ. ΚΑΙ ΤΕΧ. ΚΑΤΕΥΘΥΝΣΗΣ ΕΙΣΗΓΗΤΕΣ: ΖΑΦΕΙΡΟΠΟΥΛΟΥ Ε., ΧΙΩΤΕΛΗΣ Ι. ΘΕΜΑ. Να σημειώσετε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΗ ΛΥΕΙΟΥ ΘΕΤΙΗΣ Ι ΤΕΧ/ΗΣ ΤΕΥΘΥΝΣΗΣ ΘΕΜ : Στις ερωτήσεις - να γράψετε στο φύλλο απαντήσεων τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Στις ερωτήσεις -5 να γράψετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

1. ΣΥΣΤΗΜΑΤΑ ΙΑΣΠΟΡΑΣ ΦΑΙΝΟΜΕΝΑ ΚΑΙ ΕΝΕΡΓΕΙΑ

1. ΣΥΣΤΗΜΑΤΑ ΙΑΣΠΟΡΑΣ ΦΑΙΝΟΜΕΝΑ ΚΑΙ ΕΝΕΡΓΕΙΑ 1. ΣΥΣΤΗΜΑΤΑ ΙΑΣΠΟΡΑΣ ΦΑΙΝΟΜΕΝΑ ΚΑΙ ΕΝΕΡΓΕΙΑ Ως γνωστόν, οι χηµικές ενώσεις προκύπτουν από την ένωση δύο ή περισσοτέρων στοιχείων, οπότε και έχουµε σηµαντική µεταβολή του ενεργειακού περιεχοµένου του συστήµατος.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 29/12/12 ΛΥΣΕΙΣ

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 29/12/12 ΛΥΣΕΙΣ ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / ΣΕΙΡΑ: 1η ΗΜΕΡΟΜΗΝΙΑ: 29/12/12 B ΛΥΚΕΙΟΥ ΘΕΜΑ A Σελίδα 1 από 6 ΛΥΣΕΙΣ Στις ημιτελείς προτάσεις Α 1 -Α 4 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα

Διαβάστε περισσότερα

Course: Renewable Energy Sources

Course: Renewable Energy Sources Course: Renewable Energy Sources Interdisciplinary programme of postgraduate studies Environment & Development, National Technical University of Athens C.J. Koroneos (koroneos@aix.meng.auth.gr) G. Xydis

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ ΘΕΜΑ 1 ο 17/4/2015 Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ ΘΕΡΜΟΧΗΜΕΙΑ Όλες οι χημικές αντιδράσεις περιλαμβάνουν έκλυση ή απορρόφηση ενέργειας υπό μορφή θερμότητας. Η γνώση του ποσού θερμότητας που συνδέεται με μια χημική αντίδραση έχει και πρακτική και θεωρητική

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ 1. Ένα κιλό νερού σε θερμοκρασία 0 C έρχεται σε επαφή με μιά μεγάλη θερμική δεξαμενή θερμοκρασίας 100 C. Όταν το νερό φτάσει στη θερμοκρασία της δεξαμενής,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 4: Ψύξη - Κατάψυξη (/3), ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Συντελεστής

Διαβάστε περισσότερα

ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ

ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ 1 ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ Προβλήματα μεταφοράς θερμότητας παρουσιάζονται σε κάθε βήμα του μηχανικού της χημικής βιομηχανίας. Ο υπολογισμός των θερμικών απωλειών, η εξοικονόμηση ενέργειας και ο σχεδιασμός

Διαβάστε περισσότερα

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές.

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές. ΜΑΘΗΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ Θέµα 1 ο α) Ορισµένη ποσότητα ιδανικού αερίου πραγµατοποιεί µεταβολή AB από την κατάσταση A (p, V, T ) στην κατάσταση B (p, V 1, T ). i) Ισχύει V 1 = V. ii) Η µεταβολή παριστάνεται

Διαβάστε περισσότερα

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ ΠΑΡΑΤΗΡΗΣΕΙΣ 1. Διαδοση θερμοτητας και εργο είναι δυο τροποι με τους οποιους η ενεργεια ενός θερμοδυναμικου συστηματος μπορει να αυξηθει ή να ελαττωθει. Δεν εχει εννοια

Διαβάστε περισσότερα

Ενέργεια:η ικανότητα επιτέλεσης έργου. Μορφές ενέργειας. η αιτία εµφάνισης φυσικών, χηµικών βιολογικών φαινοµένων

Ενέργεια:η ικανότητα επιτέλεσης έργου. Μορφές ενέργειας. η αιτία εµφάνισης φυσικών, χηµικών βιολογικών φαινοµένων Ενέργεια -Μεταβολισµός Ενέργεια:η ικανότητα επιτέλεσης έργου Μορφές ενέργειας η αιτία εµφάνισης φυσικών, χηµικών βιολογικών φαινοµένων ηλιακή, θερµότητα, χηµική, ηλεκτρική, πυρηνική. κινητική η ενέργεια

Διαβάστε περισσότερα

Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 15 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα

Διαβάστε περισσότερα

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης)

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία - Θερμότητα (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία Ποσοτικοποιεί την αντίληψή μας για το πόσο ζεστό ή κρύο είναι

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 έως Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

1. Τι είναι οι ΜΕΚ και πώς παράγουν το μηχανικό έργο ; 8

1. Τι είναι οι ΜΕΚ και πώς παράγουν το μηχανικό έργο ; 8 ΚΕΦΑΛΑΙΟ 1 ο 1. Τι είναι οι ΜΕΚ και πώς παράγουν το μηχανικό έργο ; 8 Είναι θερμικές μηχανές που μετατρέπουν την χημική ενέργεια του καυσίμου σε θερμική και μέρος αυτής για την παραγωγή μηχανικού έργου,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ-Ι ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΦΥΣΙΚΗ-Ι ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΦΥΣΙΚΗ-Ι ΘΕΡΜΟ ΥΝΑΜΙΚΗ Η έννοια της ερμοκρασίας Τι είναι ερμοκρασία; η ερμοκρασία αποτελεί ένα μέτρο του πόσο ερμό ή ψυχρό είναι ένα σώμα Υποκειμενική παρατήρηση: Ένα σώμα Α είναι ερμότερο ή ψυχρότερο

Διαβάστε περισσότερα

Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ 1ο Στις ερωτήσεις 1.1-1.4, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.1 Η εξαέρωση ενός υγρού µόνο από την επιφάνειά του, σε σταθερή

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

Μετά τη λύση του παραδείγµατος 1 του σχολικού βιβλίου να διαβάσετε τα παραδείγµατα 1, 2, 3 και 4 που ακολουθούν. ΠΑΡΑ ΕΙΓΜΑ 2 ο

Μετά τη λύση του παραδείγµατος 1 του σχολικού βιβλίου να διαβάσετε τα παραδείγµατα 1, 2, 3 και 4 που ακολουθούν. ΠΑΡΑ ΕΙΓΜΑ 2 ο ΕΝΕΡΓΕΙΑ ΚΑΙ ΙΣΧΥΣ Οι ασκήσεις που αναφέρονται στο νόµο του Τζάουλ είναι απλή εφαρµογή στον τύπο. Για τη λύση των ασκήσεων θα ακολουθούµε τα εξής βήµατα: i) ιαβάζουµε προσεκτικά την εκφώνηση της άσκησης,

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση B' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΖΗΤΗΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

Διαβάστε περισσότερα

7 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. Α/Α Μετατροπή. 2. Οι μαθητές θα πρέπει να μετρήσουν τη μάζα

7 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. Α/Α Μετατροπή. 2. Οι μαθητές θα πρέπει να μετρήσουν τη μάζα ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 15 Μαΐου, 2011 Ώρα: 11:00-13:30 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ 1. Α/Α Μετατροπή 1 2h= 2.60= 120 min Χρόνος 2 4500m= 4,5 km Μήκος 3 2m 3

Διαβάστε περισσότερα

ΥΠΟΔΕΙΓΜΑ ΘΕΩΡΗΤΙΚΩΝ ΕΡΩΤΗΣΕΩΝ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΔΕΙΓΜΑ ΘΕΩΡΗΤΙΚΩΝ ΕΡΩΤΗΣΕΩΝ ΕΞΕΤΑΣΕΩΝ ΥΠΟΔΕΙΓΜΑ ΘΕΩΡΗΤΙΚΩΝ ΕΡΩΤΗΣΕΩΝ ΕΞΕΤΑΣΕΩΝ 1. Πώς ορίζεται η περίσσεια αέρα και η ισχύς μίγματος σε μία καύση; 2. Σε ποιές περιπτώσεις παρατηρείται μή μόνιμη μετάδοση της θερμότητας; 3. Τί είναι η αντλία

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

ιαγώνισµα για το σπίτι

ιαγώνισµα για το σπίτι ιαγώνισµα για το σπίτι p 2 V Θέµα 1 ο Να εξηγήσετε γιατί στη µεταβολή 1 2 η γραµµοµοριακή θερµοχωρητικότητα του αερίου είναι µικρότερη από το µέγεθος C p και µεγαλύτερη από το C V Για τη δικαιολόγηση θα

Διαβάστε περισσότερα

2 ο κεφάλαιο. φυσικές έννοιες. κινητήριες μηχανές

2 ο κεφάλαιο. φυσικές έννοιες. κινητήριες μηχανές 2 ο κεφάλαιο φυσικές έννοιες κινητήριες μηχανές 1. Τι μπορεί να προκαλέσει η επίδραση μιας δύναμης, πάνω σ ένα σώμα ; 21 Την μεταβολή της κινητικής του κατάστασης ή την παραμόρφωσή του. 2. Πώς καθορίζεται

Διαβάστε περισσότερα

Πείραμα 2 Αν αντίθετα, στο δοχείο εισαχθούν 20 mol ΗΙ στους 440 ºC, τότε το ΗΙ διασπάται σύμφωνα με τη χημική εξίσωση: 2ΗΙ(g) H 2 (g) + I 2 (g)

Πείραμα 2 Αν αντίθετα, στο δοχείο εισαχθούν 20 mol ΗΙ στους 440 ºC, τότε το ΗΙ διασπάται σύμφωνα με τη χημική εξίσωση: 2ΗΙ(g) H 2 (g) + I 2 (g) Α. Θεωρητικό μέρος Άσκηση 5 η Μελέτη Χημικής Ισορροπίας Αρχή Le Chatelier Μονόδρομες αμφίδρομες αντιδράσεις Πολλές χημικές αντιδράσεις οδηγούνται, κάτω από κατάλληλες συνθήκες, σε κατάσταση ισορροπίας

Διαβάστε περισσότερα

Θερμότητα. Κ.-Α. Θ. Θωμά

Θερμότητα. Κ.-Α. Θ. Θωμά Θερμότητα Οι έννοιες της θερμότητας και της θερμοκρασίας Η θερμοκρασία είναι μέτρο της μέσης κινητικής κατάστασης των μορίων ή ατόμων ενός υλικού. Αν m είναι η μάζα ενός σωματίου τότε το παραπάνω εκφράζεται

Διαβάστε περισσότερα

Ι < Ι. Οπότε ο λαμπτήρας θα φωτοβολεί περισσότερο. Ο λαμπτήρα λειτουργεί κανονικά. συνεπώς το ρεύμα που τον διαρρέει είναι 1 Α.

Ι < Ι. Οπότε ο λαμπτήρας θα φωτοβολεί περισσότερο. Ο λαμπτήρα λειτουργεί κανονικά. συνεπώς το ρεύμα που τον διαρρέει είναι 1 Α. ΘΕΜΑ Α. Σωστή απάντηση είναι η α. Πριν το κλείσιμο του διακόπτη η αντίσταση του κυκλώματος είναι: λ, = Λ +. Μετά το κλείσιμο του διακόπτη η ολική αντίσταση είναι: λ, = Λ. Έτσι,,,, Ι < Ι. Οπότε ο λαμπτήρας

Διαβάστε περισσότερα

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α)

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) Α. ΝΟΜΟΙ ΑΕΡΙΩΝ 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) P = σταθ. V P 2) Ισόχωρη µεταβολή β) = σταθ. 3) Ισοβαρής µεταβολή γ) V

Διαβάστε περισσότερα

Η Εντροπία. Δρ. Αθανάσιος Χρ. Τζέμος. Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών

Η Εντροπία. Δρ. Αθανάσιος Χρ. Τζέμος. Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών Η Εντροπία Δρ. Αθανάσιος Χρ. Τζέμος Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών Θερμοδυναμική +Στατιστική Μηχανική= Θερμική Φυσική Η Θερμοδυναμική ασχολείται με τις μακροσκοπικές

Διαβάστε περισσότερα

Κεφάλαιο 8 Διατήρηση της Ενέργειας

Κεφάλαιο 8 Διατήρηση της Ενέργειας Κεφάλαιο 8 Διατήρηση της Ενέργειας ΔΥΝΑΜΗ ΕΡΓΟ ΕΝΕΡΓΕΙΑ µηχανική, χηµική, θερµότητα, βαρυτική, ηλεκτρική, µαγνητική, πυρηνική, ραδιοενέργεια, τριβής, κινητική, δυναµική Περιεχόµενα Κεφαλαίου 8 Συντηρητικές

Διαβάστε περισσότερα

4 Έργο ενέργεια- μεταβολισμός

4 Έργο ενέργεια- μεταβολισμός 4 Έργο ενέργεια- μεταβολισμός Έργο ενέργεια Αρχή διατήρησης της μηχανικής ενέργειας Θεώρημα έργου ενέργειας Η θερμότητα ως μορφή ενέργειας ο και ο θερμοδυναμικό αξίωμα Απόδοση μηχανής Το ανθρώπινο σώμα

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤ-ΤΕΧΝ ΚΑΤΕΥΘΥΝΣΗΣ

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤ-ΤΕΧΝ ΚΑΤΕΥΘΥΝΣΗΣ ΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕ-ΕΧΝ ΚΑΕΥΘΥΝΣΗΣ Κινητική θεωρία των ιδανικών αερίων. Νόμος του Boyle (ισόθερμη μεταβή).σταθ. για σταθ.. Νόμος του hales (ισόχωρη μεταβή) p σταθ. για σταθ. 3. Νόμος του Gay-Lussac

Διαβάστε περισσότερα

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια (παράγραφοι ά φ 3.1 31& 3.6) 36) Φυσική Γ Γυμνασίου Εισαγωγή Τα σπουδαιότερα χαρακτηριστικά της ηλεκτρικής ενέργειας είναι η εύκολη μεταφορά της σε μεγάλες αποστάσεις και

Διαβάστε περισσότερα

Εντροπία Ελεύθερη Ενέργεια

Εντροπία Ελεύθερη Ενέργεια Μάθημα Εντροπία Ελεύθερη Ενέργεια Εξαγωγική Μεταλλουργία Καθ. Ι. Πασπαλιάρης Εργαστήριο Μεταλλουργίας ΕΜΠ Αυθόρμητες χημικές αντιδράσεις Ηαντίδρασηοξείδωσηςενόςμετάλλουμπορείναγραφτείστη γενική της μορφή

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια 1 ΘΕΜΑ 1 ο Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ 1. οχείο σταθερού όγκου περιέχει ορισµένη ποσότητα ιδανικού αερίου. Αν θερµάνουµε το αέριο µέχρι να τετραπλασιαστεί η απόλυτη θερµοκρασία

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ÅÕÏÓÌÏÓ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ÅÕÏÓÌÏÓ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 3 Απριλίου 014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

1. Εναλλάκτες θερµότητας (Heat Exchangers)

1. Εναλλάκτες θερµότητας (Heat Exchangers) 1. Εναλλάκτες θερµότητας (Heat Exangers) Οι εναλλάκτες θερµότητας είναι συσκευές µε τις οποίες επιτυγχάνεται η µεταφορά ενέργειας από ένα ρευστό υψηλής θερµοκρασίας σε ένα άλλο ρευστό χαµηλότερης θερµοκρασίας.

Διαβάστε περισσότερα

ΥΠΟΔΕΙΓΜΑ ΑΣΚΗΣΕΩΝ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΔΕΙΓΜΑ ΑΣΚΗΣΕΩΝ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ ΥΠΟΔΕΙΓΜΑ ΑΣΚΗΣΕΩΝ ΓΡΑΠΤΩΝ ΕΞΕΤΑΣΕΩΝ 1. Να υπολογιστεί η μαζική παροχή του ατμού σε (kg/h) που χρησιμοποιείται σε ένα θερμαντήρα χυμού με τα παρακάτω στοιχεία: αρχική θερμοκρασία χυμού 20 C, τελική θερμοκρασία

Διαβάστε περισσότερα

8 2.ΘΕΜΑ B 2-16138 Β.1

8 2.ΘΕΜΑ B 2-16138 Β.1 1 ΘΕΜΑ B Καταστατική εξίσωση των ιδανικών αερίων 1.ΘΕΜΑ Β 2-16146 Β.1 Μια ποσότητα ιδανικού αερίου βρίσκεται σε κατάσταση θερμοδυναμικής ισορροπίας, καταλαμβάνει όγκο V, έχει απόλυτη θερμοκρασία Τ, ενώ

Διαβάστε περισσότερα

ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ- ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ- ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ- ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 1. Ποιες από τις επόµενες προτάσεις που αναφέρονται στο έργο αερίου, είναι σωστές; α. Όταν το αέριο εκτονώνεται, το έργο του είναι θετικό.

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ VIII Θερµιδοµετρία και Θερµοστοιχεία

ΠΕΙΡΑΜΑ VIII Θερµιδοµετρία και Θερµοστοιχεία ΠΕΙΡΑΜΑ VIII Θερµιδοµετρία και Θερµοστοιχεία Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε τις βασικές αρχές της θερµιδοµετρίας προκειµένου να µετρήσουµε τα εξής: Ειδική θερµότητα θερµιδοµέτρου.

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 8 ΜΑΪΟΥ 00 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου 26 Ώρα : 1:3-13: Οδηγίες: 1)Το δοκίµιο αποτελείται από τρία (3) µέρη. Και στα τρία µέρη υπάρχουν συνολικά δώδεκα (12)

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης 1 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης ΘΕΜΑ 1 ο : Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Μια ποσότητα ιδανικού αέριου εκτονώνεται ισόθερμα μέχρι τετραπλασιασμού

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΑΣΚΗΣΗ 13 ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ 1.1. Εσωτερική ενέργεια Γνωρίζουμε ότι τα μόρια των αερίων κινούνται άτακτα και προς όλες τις διευθύνσεις με ταχύτητες,

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑ IX Θερµιδοµετρία και Θερµοστοιχεία

ΠΕΙΡΑΜΑ IX Θερµιδοµετρία και Θερµοστοιχεία ΠΕΙΡΑΜΑ IX Θερµιδοµετρία και Θερµοστοιχεία Σκοπός πειράµατος Στο πείραµα αυτό θα χρησιµοποιήσουµε τισ βασικές αρχές της θερµιδοµετρίας προκειµένου να µετρήσουµε τα εξής: Ειδική θερµότητα θερµιδοµέτρου.

Διαβάστε περισσότερα

m A m B Δ4) Να υπολογιστεί το ποσό θερμικής ενέργειας (θερμότητας) που ελευθερώνεται εξ αιτίας της κρούσης των δύο σωμάτων.

m A m B Δ4) Να υπολογιστεί το ποσό θερμικής ενέργειας (θερμότητας) που ελευθερώνεται εξ αιτίας της κρούσης των δύο σωμάτων. Το σώμα Α μάζας m A = 1 kg κινείται με ταχύτητα u 0 = 8 m/s σε λείο οριζόντιο δάπεδο και συγκρούεται μετωπικά με το σώμα Β, που έχει μάζα m B = 3 kg και βρίσκεται στο άκρο αβαρούς και μη εκτατού (που δεν

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ Η εξίσωση αυτή εκφράζει μια σχέση μεταξύ της πίεσης, της θερμοκρασίας και του ειδικού όγκου. P v = R Όπου P = πίεση σε Pascal v = Ο ειδικός

Διαβάστε περισσότερα

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Ο Να επιλέξετε τη σωστή απάντηση σε κάθε μία από τις ερωτήσεις - που ακολουθούν: Η ενεργός ταχύτητα των μορίων ορισμένης ποσότητας

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ - 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ - 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Μαΐου 2010 Ώρα : 10:00-12:30 Προτεινόμενες λύσεις ΘΕΜΑ 1 0 (12 μονάδες) Για τη μέτρηση της πυκνότητας ομοιογενούς πέτρας (στερεού

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 31-10-10 ΣΕΙΡΑ Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΤΑΞΙΝOΜΗΣΗ ΦΛΟΓΩΝ ΒΑΘΜΟΣ ΑΠΟ ΟΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΚΑΥΣΗΣ. Μ. Φούντη Σχολή Μηχανολόγων Μηχανικών, 2004

ΤΑΞΙΝOΜΗΣΗ ΦΛΟΓΩΝ ΒΑΘΜΟΣ ΑΠΟ ΟΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΚΑΥΣΗΣ. Μ. Φούντη Σχολή Μηχανολόγων Μηχανικών, 2004 ΤΑΞΙΝOΜΗΣΗ ΦΛΟΓΩΝ ΒΑΘΜΟΣ ΑΠΟ ΟΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΚΑΥΣΗΣ Μ. Φούντη Σχολή Μηχανολόγων Μηχανικών, 2004 Oρισµός φλόγας Ογεωµετρικός τόπος στον οποίο λαµβάνει χώρα το µεγαλύτερο ενεργειακό µέρος της χηµικής µετατροπής

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΑΠΟ ΤΟ ΒΙΒΛΙΟ: ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΙΣ: ΤΣΙΤΣΑΣ ΓΡΗΓΟΡΗΣ- ΠΑΠΑΤΣΑΚΩΝΑΣ ΗΜΗΤΡΗΣ ΘΕΜΑ 1 ο Επιλέξτε τη σωστή απάντηση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 23-10-11 ΣΕΙΡΑ Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1 η. r 1. Σε κύκλο ισόογκης καύσης (OTTO) να αποδειχθούν ότι: Οθεωρητικόςβαθμόςαπόδοσηςείναι:. Η μέση θεωρητική πίεση κύκλου είναι:. th 1.

ΑΣΚΗΣΗ 1 η. r 1. Σε κύκλο ισόογκης καύσης (OTTO) να αποδειχθούν ότι: Οθεωρητικόςβαθμόςαπόδοσηςείναι:. Η μέση θεωρητική πίεση κύκλου είναι:. th 1. ΑΣΚΗΣΗ η Σε κύκλο ισόοκης καύσης (OO) να αποδειχθούν ότι: Οθεωρητικόςβαθμόςαπόδοσηςείναι:. Η μέση θεωρητική πίεση κύκλου είναι:. q R q q tot ΑΣΚΗΣΗ η Δ tot q q q ( ) cv ( ) cv q q q ΑΣΚΗΣΗ η q q Από αδιαβατικές

Διαβάστε περισσότερα

ε = = 9,5 =, γ=1,4, R = 287 J/KgK, Q = Cv ΔT = P2 Εξισώσεις αδιαβατικών μεταβολών: T [Απ: (β) 1571,9 Κ, 4808976 Pa, (γ) 59,36%, (δ) 451871,6 Pa] ΛΥΣΗ

ε = = 9,5 =, γ=1,4, R = 287 J/KgK, Q = Cv ΔT = P2 Εξισώσεις αδιαβατικών μεταβολών: T [Απ: (β) 1571,9 Κ, 4808976 Pa, (γ) 59,36%, (δ) 451871,6 Pa] ΛΥΣΗ ΑΣΚΗΣΗ Μείμα αέρα-καυσίμου σε στοιχειομετρική αναλοία εκλύει θερμότητα 5 Kcl/Kg κατά τη καύση του εντός κυλίνδρου ΜΕΚ που λειτουρεί βασιζόμενη στο θερμοδυναμικό κύκλο του Otto. Ο βαθμός συμπίεσης της μηχανής

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 ΚΕΦΑΛΑΙΟ 3ο ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ Σκοπός Στο τρίτο κεφάλαιο θα εισαχθεί η έννοια της ηλεκτρικής ενέργειας. 3ο κεφάλαιο ΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ 1 2 3.1 Θερμικά αποτελέσματα του ηλεκτρικού ρεύματος Λέξεις κλειδιά:

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΟΥ ΗΡΑΚΛΕΙΟΥ Τρίτη 19/5/2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ 2015 ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΟΥ ΗΡΑΚΛΕΙΟΥ Τρίτη 19/5/2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ 2015 ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΟΥ ΗΡΑΚΛΕΙΟΥ Τρίτη 19/5/015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ 015 ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α 1 Για τις επόμενες τέσσερες ερωτήσεις από την Α1 έως

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 23/4/2009

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 23/4/2009 ΕΠΩΝΥΜΟ:........................ ΟΝΟΜΑ:........................... ΤΜΗΜΑ:........................... ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ : 7077 594 ΑΡΤΑΚΗΣ 1 Κ. ΤΟΥΜΠΑ THΛ : 919113 9494 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:.....................

Διαβάστε περισσότερα

Μαρία Κωνσταντίνου. Τρίτη Διάλεξη ΟΙ ΤΡΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ. Στη φύση τα σώματα κατατάσσονται σε τρεις κατηγορίες:

Μαρία Κωνσταντίνου. Τρίτη Διάλεξη ΟΙ ΤΡΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ. Στη φύση τα σώματα κατατάσσονται σε τρεις κατηγορίες: Τρίτη Διάλεξη ΟΙ ΤΡΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Στη φύση τα σώματα κατατάσσονται σε τρεις κατηγορίες: ΥΛΙΚΑ ΣΩΜΑΤΑ Στερεά Υγρά Αέρια ΙΔΙΟΤΗΤΕΣ ΣΤΕΡΕΩΝ 1. Έχουν συγκεκριμένο όγκο 2. Έχουν

Διαβάστε περισσότερα

Μηχανική Τροφίµων. Θερµικές Ιδιότητες Τροφίµων. Η έννοια του «τροφίµου»

Μηχανική Τροφίµων. Θερµικές Ιδιότητες Τροφίµων. Η έννοια του «τροφίµου» Μηχανική Τροφίµων Θερµικές Ιδιότητες Τροφίµων Η έννοια του «τροφίµου» Στην µηχανική τροφίµων πολλές φορές χρησιµοποιούµε τον όρο τρόφιµο. Σε αντίθεση όµως µε άλλα επιστηµονικά πεδία της επιστήµης των τροφίµων,

Διαβάστε περισσότερα

Σεµινάριο Αυτοµάτου Ελέγχου

Σεµινάριο Αυτοµάτου Ελέγχου ΤΕΙ ΠΕΙΡΑΙΑ Τµήµα Αυτοµατισµού Σεµινάριο Αυτοµάτου Ελέγχου Ειδικά θέµατα Ανάλυσης συστηµάτων Σύνθεσης συστηµάτων ελέγχου Μελέτης στοχαστικών συστηµάτων. Καλλιγερόπουλος Σεµινάριο Αυτοµάτου Ελέγχου Ανάλυση

Διαβάστε περισσότερα

6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ

6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ 6-1 6. ΘΕΡΜΙΚΕΣ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΠΟΛΥΜΕΡΩΝ 6.1. ΙΑ ΟΣΗ ΤΗΣ ΘΕΡΜΟΤΗΤΑΣ Πολλές βιοµηχανικές εφαρµογές των πολυµερών αφορούν τη διάδοση της θερµότητας µέσα από αυτά ή γύρω από αυτά. Πολλά πολυµερή χρησιµοποιούνται

Διαβάστε περισσότερα