ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ"

Transcript

1 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Μη αντιστρεπτά φαινόμενα Η ενέργεια διατηρείται και στη χρονικά αντίστροφη μεταβολή, όμως αυτή ποτέ δεν συμβαίνει π.χ. - Όλα τα σώματα που αρχικά ολισθαίνουν πάνω σε μια επιφάνεια στο τέλος ηρεμούν. - Ζεστό ρόφημα σε ένα φλιτζάνι. Κρυώνει παίρνοντας τη θερμοκρασία του περιβάλλοντος 60 C 20 C 20 C 20 C

2 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Ρίχνουμε 3 νομίσματα Κορώνα- Γράμματα: Οι πιθανές καταστάσεις στο πείραμα ρίψης τριών νομισμάτων όπου με βέλη προς τα πάνω και προς τα κάτω σημειώνονται η κορώνα και τα γράμματα αντίστοιχα. Πιθανά αποτελέσματα ( 4 Μακροκαταστάσεις) 3 κορώνα 0 γράμματα 1 (ΚΚΚ) Πιθανές καταστάσεις ( 8 Μίκροκαταστάσεις=2 3 ) 2 κορώνα 1 γράμματα 3 (ΚΚΓ, ΚΓΚ, ΓΚΚ) 1 κορώνα 2 γράμματα 3 (ΚΓΓ, ΓΚΓ, ΓΓΚ) 0 κορώνα 3 γράμματα 1 (ΓΓΓ)

3 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Για Ν νομίσματα Πλήθος πιθανών αποτελεσμάτων (μακροκαταστάσεις) = Ν + 1 Πλήθος μικροκαταστάσεων = 2 Ν (Aν Ν = 100, ο αριθμός αυτός είναι περίπου ίσος με 10 30, αριθμός που ξεπερνά το πλήθος των πρωτονίων στο σώμα σας!) Όσα, όμως, νομίσματα και να στρίψουμε, ο αριθμός που αντιστοιχεί στις μακροκαταστάσεις με την υψηλότερη τάξη (όλα κορώνα ή όλα γράμματα) παραμένει πάντα ίσος με 1. Επομένως, για 100 νομίσματα, το γεγονός να συμβεί ένα τέτοιο γεγονός υψηλής τάξης, δηλαδή όλα τα νομίσματα να έρθουν κορώνα ή όλα γράμματα, είναι ουσιαστικά αδύνατο. Το να στρίψουμε 100 νομίσματα και να έρθουν 100 κορώνες είναι ισοδύναμο με το να ξαναζεσταθεί αυθόρμητα ένα φλυτζάνι καφέ που έχει κρυώσει, απορροφώντας θερμότητα από τον περιβάλλοντα αέρα του δωματίου!

4 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Ποιά από τα 101 αποτελέσματα είναι όμως τα πιο πιθανά στο πείραμα της ρίψης των 100 νομισμάτων; Περισσότερες πιθανότητες το αποτέλεσμα 50 κορώνες και 50 γράμματα. Η θεωρία πιθανοτήτων μάς λέει ότι εάν το πείραμα επαναληφθεί πολλές φορές, περίπου στο 90% αυτών των επαναλήψεων θα εμφανίζονται οι κορώνες στα 45 έως 55 από τα 100 νομίσματα. Η κατανομή των πιθανών αποτελεσμάτων θα εκτείνεται συμμετρικά γύρω από μια αρκετά οξεία κορυφή στο

5 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Μικροκατάσταση ενός συστήματος ονομάζουμε καθεμία από τις τεράστιες σε πλήθος καταστάσεις που μπορεί να βρεθεί το σύστημα και περιγράφεται από το σύνολο των διεγερμένων καταστάσεων των ατόμων του. Θεμελιώδες αξίωμα της στατιστικής μηχανικής: Όλες οι επιτρεπτές μικροκαταστάσεις (δηλαδή εκείνες που ικανοποιούν τη διατήρηση της ενέργειας) ενός συστήματος σε ισορροπία είναι ισοπίθανες. Οι μικροκαταστάσεις ενός φυσικού συστήματος είναι το ανάλογο των 2 Ν διαφορετικών πιθανών «καταστάσεων» στο πείραμα ρίψης νομισμάτων.

6 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Ωστόσο, όπως ακριβώς και στο πείραμα ρίψης νομισμάτων, αυτό που είναι πιο σημαντικό είναι τα «αποτελέσματα»: πόσες κορώνες θα πάρουμε και με ποια πιθανότητα από τη ρίψη Ν νομισμάτων. Η λεπτομέρεια, ποιο συγκεκριμένο νόμισμα ήρθε κορώνα ή γράμματα, δεν είναι σημαντική. Στο φυσικό σύστημα που εξετάζουμε και αποτελείται από τεράστιο πλήθος ατόμων, το ανάλογο του αποτελέσματος, όπως ορίστηκε για τη ρίψη νομισμάτων είναι η μακροκατάσταση. Αυτή καθορίζεται από το πλήθος των ατόμων σε κάθε επιτρεπτή διεγερμένη στάθμη, γνωστό και ως αριθμός κατάληψης. Μακροκατάσταση Μικροκατάσταση 1 Μικροκατάσταση 2 Μικροκατάσταση 3. Μικροκατάσταση Ω Ω = πληθος μικροκαταστασεων που αντιστοιχουν σε μια μακροκατασταση

7 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Σε μια συγκεκριμένη μακροκατάσταση αντιστοιχούν, γενικά, πολλές μικροκαταστάσεις ακριβώς όπως στη ρίψη νομισμάτων πολλοί διαφορετικοί συνδυασμοί (διακριτές «καταστάσεις») δίνουν το ίδιο αποτέλεσμα (εκτός αν αυτό είναι όλα κορώνα ή όλα γράμματα). Επειδή, όλες οι μικροκατάστάσεις είναι ισοπίθανες, η πιθανότητα μιας συγκεκριμένης μακροκατάστασης θα εξαρτάται μόνο από το πλήθος των μικροκαταστάσεων που αντιστοιχούν σε αυτή. Έτσι, όπως και στο πείραμα της ρίψης νομισμάτων, κάποιες μακροκαταστάσεις προκύπτουν από μικρό πλήθος μικροκαταστάσεων και επομένως η πιθανότητά τους είναι πολύ μικρή, ενώ άλλες από πολύ μεγάλο πλήθος μικροκαταστάσεων και επομένως έχουν και μεγάλη πιθανότητα να συμβούν.

8 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Το πλήθος των μικροκαταστάσεων που αντιστοιχούν σε μια δεδομένη μακροκατάσταση συμβολίζεται ως Ω, γνωστό και ως στατιστικό βάρος του συστήματος Ορίζεται ως εντροπία του συστήματος το μέγεθος: όπου k Β είναι η σταθερά Boltzmann. Η εντροπία ορίζεται έτσι ως στατιστική συνάρτηση των αριθμών κατάληψης και των κβαντικών αριθμών ενός συστήματος, έμμεσα όμως, εξαρτάται από τα μακροσκοπικά καταστατικά μεγέθη του, όπως η πίεση, η θερμοκρασία και ο όγκος. Η εντροπία δίνει την πιθανότητα κατάληψης μια συγκεκριμένης μακροκατάστασης, δεδομένης της ολικής ενέργειας και άλλων διατηρήσιμων μεγεθών του συστήματος.

9 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Στα θερμοδυναμικά συστήματα, το πλήθος των μικροκαταστάσεων που αντιστοιχεί σε κάθε μακροκατάσταση είναι πολύ μεγαλύτερο, με αποτέλεσμα το εύρος των ουσιαστικά πιθανών μακροκατάστασεων (όπως ορίζονται από τις τιμές των παραμέτρων τους) να περιορίζεται γύρω από μια εξαιρετικά οξεία κορυφή. Θυμηθείτε: Στο πείραμα ρίψης 100 νομισμάτων, που αναφερθήκαμε προηγουμένως, είδαμε ότι η κατανομή πιθανοτήτων των μακροκαταστάσεων εμφανίζει μια αρκετά οξεία κορυφή μεγίστου στην περιοχή αποτελεσμάτων μεταξύ 45 και 55 κορώνων (το ύψος της κορυφής αντιστοιχούσε σε πιθανότητα περίπου 90%). Ένα νέο αξίωμα της Φυσικής: Το δεύτερο θερμοδυναμικό αξίωμα δηλώνει ότι η συνολική εντροπία στις μεταβολές ενός απομονωμένου συστήματος πάντα θα αυξάνεται, ΔS 0 ΔS = 0 ισχύει μόνο στην ειδική περίπτωση των αντιστρεπτών μεταβολών. Με άλλα λόγια, η συνολική εντροπία ενός απομονωμένου συστήματος ποτέ δεν ελαττώνεται.

10 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Το 2 ο θερμοδυναμικό αξίωμα αποτελεί ένα αξίωμα της στατιστικής, σχετικά με τις πιθανότητες των αριθμών κατάληψης. Η εσωτερική ενέργεια ενός συστήματος μεταβάλλεται με προσφορά έργου από ή προς το σύστημα ή/και με εισροή ή εκροή θερμότητας. Για εφικτά γεγονότα (ικανοποιούν την αρχή διατήρησης της ενέργειας και των άλλων μεγεθών που διατηρούνται), είναι πιθανότερο να συμβεί εκείνο που έχει τις περισσότερες μικροκαταστάσεις. Το πλήθος των διαφορετικών μικροκαταστάσεων μιας συγκεκριμένης μακροκατάστασης συνδέεται εγγενώς με την «τυχαιότητά» της.

11 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Η φύση της μηχανικής ενέργειας είναι περισσότερο «οργανωμένη» και λιγότερο «τυχαία», συγκριτικά με τη θερμική ενέργεια. Σύμφωνα με το 2ο θερμοδυναμικό αξίωμα, αν και μπορεί σε κάποια περίπτωση οι ποσότητες των δύο μορφών ενέργειας να είναι αρχικά ίσες, η στατιστική κατευθύνει αντιδράσεις ή άλλα γεγονότα προς τη μετατροπή μηχανικής σε θερμική ενέργεια, έτσι ώστε να μεγιστοποιήσει την εντροπία. Οι δυνάμεις τριβής είναι μη διατηρήσιμες, ακριβώς επειδή η θερμική ενέργεια που παράγουν δεν μπορεί αντιστρέψιμα να μετατραπεί ξανά σε μηχανική ενέργεια. Ένα γενικό συμπέρασμα είναι ότι, όποτε η εντροπία ενός απομονωμένου συστήματος αυξάνεται, η ποσότητα της ενέργειας του που μπορεί να αποδώσει έργο, μειώνεται. Η αύξηση της εντροπίας υποβαθμίζει την ωφελιμότητα της ενέργειας

12 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Κλασική Θερμοδυναμική Εντροπία (Entropy) = «εν + τροπή» Την εισήγαγε το1865 ο Γερμανός Φυσικός Rudolf Clausius για να εκφράσει ποσοτικά την ικανότητα αλλαγής (τροπής) ενός συστήματος (όπως η θερμότητα που ρέει από περιοχές υψηλής θερμοκρασίας σε περιοχές χαμηλότερης θερμοκρασίας) και να προσδιορίσει κατά πόσο μια θερμοδυναμική διαδικασία μπορεί να συμβεί αυθόρμητα. 2o ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Καμιά φυσική μεταβολή δεν είναι δυνατή στην οποία η ολική εντροπία μειώνεται, όταν συμπεριληφθούν όλα τα συστήματα που λαμβάνουν μέρος στη μεταβολή.

13 Οι περιπτώσεις ανάμιξης ουσιών σε διαφορετικές θερμοκρασίες ή η ροή θερμότητας από υψηλότερη σε χαμηλότερη θερμοκρασία είναι χαρακτηριστικά παραδείγματα όλων των φυσικών (δηλ. μη αντιστρεπτών μεταβολών). Ερωτηση: Εξηγείστε πως οι έννοιες της εντροπίας και του 2ου θερμοδ. αξιώματος μας διδάσκουν ότι είναι πολύ δύσκολο να αντιστρέψουμε την ρύπανση του φυσικού μας περιβάλλοντος, αφού αυτή έχει συμβεί. Παράδειγμα ανάμειξης ζεστού και κρύου νερού: Θα μπορούσαμε να χρησιμοποιήσουμε το ζεστό και το κρύο νερό ως δεξαμενές υψηλής και χαμηλής θερμοκρασίας αντίστοιχα μιας θερμικής μηχανής και να κερδίσουμε κάποιο μηχανικό έργο. Αλλά από τη στιγμή που το ζεστό και το κρύο έχουν αναμειχθεί και έχει αποκατασταθεί ομοιόμορφη θερμοκρασία, η ευκαιρία της μετατροπής θερμότητας σε μηχανικό έργο έχει χαθεί ανεπιστρεπτί. Το χλιαρό νερό δεν πρόκειται να διαχωριστεί από μόνο του σε θερμότερα και ψυχρότερα μέρη. Σύμφωνα και με το 1 ο ΘΑ καμία ελάττωση σε ενέργεια δεν παρατηρείται όταν αναμειχθεί το ζεστό και το κρύο νερό. Αυτό που χάνεται δεν είναι ενέργεια αλλά δυνατότητα μετατροπής μέρους της θερμότητας από το ζεστό σε μηχανικό έργο. Όταν αυξάνει η εντροπία τόσο ελαττώνεται η διαθέσιμη ενέργεια και το σύμπαν έχει γίνει περισσότερο τυχαίο ή «αποδιοργανωμένο».

14 Εντροπία και τυχαιότητα Μίξη δύο υγρών Με την ανάμειξη των δύο υγρών (φυσική μη αντιστρεπτή μεταβολή) η συνολική εντροπία αυξάνεται γιατί αυξάνεται η αταξία του συστήματος. Ο αριθμός των πιθανών μικρο - καταστάσεων (πιθανών συνδυασμών της θέσης και της ταχύτητας των μορίων) αυξάνεται, επειδή έχουμε δύο είδη μορίων σε ανάμειξη. Το άθροισμα των πιθανών συνδυασμών των σχετικών θέσεων μεταξύ των μορίων του κάθε υγρού ξεχωριστά είναι μικρότερο από τον συνολικό αριθμό πιθανών συνδυασμών μετά την ανάμειξη, επειδή τώρα κάθε μόριο μπορεί να περιβάλλεται και από διαφορετικά μόρια (του άλλου υγρού). Ετσι η επιστροφή στην αρχική κατάσταση είναι πολύ απίθανη (εως αδύνατη), όπως όταν ανακατεύουμε τα χαρτιά μιας τράπουλας που αρχικά ήταν τακτοποιημένα.

15 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Κλασική Θερμοδυναμική Ορίζουμε την απειροστή μεταβολή της εντροπίας ds κατά τη διάρκεια μιας αντιστρεπτής μεταβολής σε απόλυτη θερμοκρασία Τ: ds dq T S S2 S1 Αντιστρεπτή ισόθερμη μεταβολή Q T Μονάδες: 1 J/K ή ή kcal/k. Συχνά εκφράζεται και με γραμμομοριακές μονάδες όπως kcal/(mol.k). ds είναι η μεταβολή της εντροπίας και dq η θερμότητα που προσφέρεται ή απάγεται αντιστρεπτά (υπό σταθερή Τ). Ο ορισμός αυτός της εντροπίας αναφέρεται σε μεταβολές της και όχι σε απόλυτες τιμές της (όπως αυτός της στατιστικής μηχανικής). Όταν ένα σύστημα μεταβαίνει από μια αρχική κατάσταση με εντροπία S 1 σε μια τελική κατάσταση με εντροπία S 2, η μεταβολή στην εντροπία ΔS = S 2 - S 1, δεν εξαρτάται από τη διαδρομή αλλά από την αρχική κατάσταση στην τελική.

16 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Όπως και με την εσωτερική ενέργεια ορίζεται μόνο η μεταβολή της εντροπίας σε μια δεδομένη φυσική μεταβολή. Μπορούμε αυθαίρετα να αποδώσουμε μια τιμή στην εντροπία ενός συστήματος σε μια συγκεκριμένη κατάσταση αναφοράς και στη συνέχεια να υπολογίσουμε την εντροπία οποιασδήποτε άλλης κατάστασης ως προς την κατάσταση αναφοράς. Κλασική Θερμοδυναμική ds dq T Αντιστρεπτή ισόθερμη μεταβολή Το γεγονός ότι η εντροπία είναι μια συνάρτηση της κατάστασης του συστήματος μόνο μας δείχνει πως να υπολογίζουμε τις μεταβολές της εντροπίας σε μη αντιστρεπτές φυσικές μεταβολές (καταστάσεις μη ισορροπίας) για τις οποίες η ΔS = δq/t δεν ισχύει. Απλά επινοούμε μια διαδρομή η οποία συνδέει την αρχική και την τελική κατάσταση που δίνονται και η οποία αποτελείται αποκλειστικά από αντιστρεπτές μεταβολές ισορροπίας. Στη συνέχεια υπολογίζουμε την ολική μεταβολή της εντροπίας για τη διαδρομή αυτή.

17 ΠΑΡΑΔΕΙΓΜΑ. Το λιώσιμο του πάγου στο ποτήρι της εικόνας αποτελεί ένα παράδειγμα της αύξησης της εντροπίας σε ένα μικρό σύστημα. Το θερμοδυναμικό αυτό σύστημα αποτελείται από το περιβάλλον (το δωμάτιο σε συνήθη θερμοκρασία) και το ποτήρι που περιέχει αρχικά 10 παγάκια και καθόλου νερό σε υρή φάση. Σε αυτό το σύστημα θερμότητα από το περιβάλλον που βρίσκεται σε θερμοκρασία 298 Κ (25 C) μεταφέρεται στο ψυχρότερο σύστημα του πάγου που τήκεται σε υγρό νερό και βρίσκεται στη σταθερή θερμοκρασία τήξης πάγου Τ = 273 Κ (0 C). Η αύξηση της εντροπίας του συστήματος νερού πάγου είναι Q/273 K. Η θερμότητα Q είναι εκείνη που απαιτείται για την τήξη του πάγου: Q = m π L f. Η θερμότητα τήξης του πάγου είναι L f = 3,34 x 10 5 J/kg. Έτσι, π.χ για 10 παγάκια 10 g το καθένα η αύξηση της εντροπίας του συστήματος νερού-πάγου είναι: S 3 5 Q ,34 10 J S2 S1 122,34 T 273 K J / K

18 Αυτή η αύξηση αντιστοιχεί σε αύξηση της αταξίας όταν τα μόρια του νερού μεταβαίνουν από μία διατεταγμένη κατάσταση κρυσταλλικού στερεού στην κατά πολύ πιο άτακτη κατάσταση του υγρού. ή καλύτερα στο «άπλωμα» και την τελική κατανομή της ενέργειας ευρύτερα σε όλη την περιοχή που καταλαμβάνει το υγρό νερό μέσα στο ποτήρι συγκριτικά με την αρχική περισσότερο τοπικά εντοπισμένη ενέργεια στη διάταξη του πάγου. Σε οποιαδήποτε ισόθερμη αντιστρεπτή μεταβολή η μεταβολή της εντροπίας είναι ίση προς το πηλίκο της θερμότητας που διαδίδεται προς την απόλυτη θερμοκρασία. Εάν πάγωνε αντίστοιχη μάζα νερού (100 g), η μεταβολή στην εντροπία θα ήταν: ΔS = - 122,3 J/Κ Θα πρέπει να τονιστεί ότι η εντροπία του περιβάλλοντος (δωματίου) μειώνεται λιγότερο από την αύξηση της εντροπίας του συστήματος νερού-πάγου. Η θερμοκρασία δωματίου των 298 Κ είναι υψηλότερη από αυτή των 273 Κ και επομένως: ΔS περιβάλλοντος = Q/298 K < ΔS σύστημα νερού-πάγου = Q/273 K Αυτό είναι πάντα αληθές για αυθόρμητα γεγονότα σε ένα θερμοδυναμικό σύστημα και φανερώνει τη σημασία της εντροπίας για τη πρόβλεψη της πορείας τέτοιων γεγονότων αφού: η ολική τελική εντροπία μετά από ένα αυθόρμητο γεγονός είναι πάντα μεγαλύτερη από την αρχική της τιμή.

19 Θέματα παλαιών εξετάσεων 1) Τι από τα παρακάτω ισχύει για την εντροπία S μιας ποσότητας ουσίας σε στερεή (σ), υγρή (υ) και αέρια (α) φάση; Α. S σ < S υ < S α B. S σ > S υ > S α Γ. S σ < 0, S α > 0 Δ. S σ =S υ = S α 2) Δυο κυβικά μέτρα πάγου θερμαίνονται απο μια πηγή, τήκονται και μετατρέπονται σε νερό. Πόση θα είναι η μεταβολή της εντροπίας του πάγου; Αν η τήξη γίνει με πηγή μισής ισχύος, σε διπλάσιο χρόνο, πόση θα είναι η μεταβολή της εντροπίας; Η πυκνότητα του πάγου είναι 0,9167 g/cm³. 3) Μια ατσαλένια ράβδος ( θερμοχωρητικότητας c = 0,113 cal/g K), μάζας 5 Kg και θερμοκρασίας 300 C βυθίζεται στη θάλασσα (άπειρη θερμοχωρητικότητα) που έχει θερμοκρασία 27 C. Α. Είναι αντιστρεπτή η ψύξη της ράβδου; Β. Ποια η μεταβολή ΔU της εσωτερικής ενέργειας ; (1)της ράβδου (2)της θάλασσας Γ. Ποια η μεταβολή ΔS της εντροπίας της ράβδου; Ποια η φυσική σημασία του προσήμου του ΔS; Δ. Ποια η μεταβολή ΔS της εντροπίας του σύμπαντος; Ποια η φυσική σημασία του προσήμου του ΔS;

20 Η ΕΛΕΥΘΕΡΗ ΕΝΕΡΓΕΙΑ GIBBS Εσωτερική ενέργεια U Ενθαλπία Η = U + PV Η ελεύθερη ενέργεια Gibbs, G, μέγεθος για την ενέργεια ιδιαίτερα χρήσιμο για ανοιχτά συστήματα σε σταθερή θερμοκρασία και πίεση, όπως είναι συνήθως οι συνθήκες στη βιολογία. Ορίζεται ως: G = H TS = U + PV TS Σε συνθήκες σταθερής p καιt, οι μόνες ενεργειακές μεταβολές που μπορούν να συμβούν σε ένα ανοιχτό σύστημα, είναι έργο PΔV, ροή θερμότητας από ή προς το περιβάλλον και άλλες μορφές ωφέλιμου έργου, όπως χημικό ή ηλεκτρικό. Σε τέτοιες συνθήκες, οι μεταβολές της ελεύθερης ενέργειας εκφράζουν τις ενεργειακές μεταβολές που αφορούν μόνο «ωφέλιμο» έργο. Έτσι, ο όρος «ελεύθερη» σημαίνει διαθέσιμη ενέργεια για παραγωγή ωφέλιμου έργου. Αποδεικνύεται ότι σε σύστημα που τείνει να έρθει σε ισορροπία, η ελεύθερη ενέργεια Gibbs πάντα μειώνεται και ελαχιστοποιείται στη θέση ισορροπίας.

21 Η ΕΛΕΥΘΕΡΗ ΕΝΕΡΓΕΙΑ GIBBS Η ελεύθερη ενέργεια ενός ανοιχτού συστήματος τείνει να μειωθεί και τα γεγονότα (όπως οι χημικές αντιδράσεις) που οδηγούν σε μείωση της ελεύθερης ενέργειας, συμβαίνουν αυθόρμητα. Σε μια ισόθερμη μεταβολή ισχύει ΔG = ΔΗ ΤΔS και επομένως το αν η μεταβολή θα οδηγήσει σε αύξηση ή μείωση της ελεύθερης ενέργειας εξαρτάται από το πρόσημο της ΔΗ και της ΔS. Για ένα συγκεκριμένο σύστημα μπορούμε να διακρίνουμε τέσσερις πιθανές περιπτώσεις: Αυθόρμητες και μη αυθόρμητες θερμοδυναμικές μεταβολές

22 Θέμα παλαιών εξετάσεων Η μεταβολή της ενθαλπίας κατά την τήξη μιας ουσίας είναι ΔΗ=29,8 KJ/mole και της εντροπίας ΔS=65,4 J/ mole K. α) Στην θερμοκρασία 100 C, η ουσία είναι στερεή η υγρή και γιατί; β) Πόση είναι η μεταβολή της εσωτερικής ενέργειας ανά μόριο κατά την τήξη ; Η πίεση και ο όγκος δεν μεταβάλλονται. γ) Στην συγκεκριμένη περίπτωση η μεταβολή αυτή (στο ερώτημα (β)) είναι μεταβολή : Α) κινητικής ενέργειας του μορίου Β) δυναμικής ενέργειας του μορίου Γ) κινητικής και δυναμικής ενέργειας του μορίου Δ) τίποτα από τα παραπάνω δ) Τι σχέση εχει η τιμή που βρήκατε στο (β) με τους δεσμούς ανάμεσα στα μόρια;

23 ΕΛΕΥΘΕΡΗ ΕΝΕΡΓΕΙΑ GIBBS ΣΧΕΣΗ ΜΕ K eq Η ελεύθερη ενέργεια ΔG o ενός συστήματος συνδέεται με την σταθερά χημικής ισορροπίας K eq μιας χημικής αντίδρασης σε κανονικές συνθήκες με την σχέση ΔG o = -RTlnK eq Αν Κ eq > 1 τοτε ΔG o < 0 αυθόρμητη αντίδραση (εξώθερμη) Αν Κ eq < 1 τοτε ΔG o > 0 μη αυθόρμητη αντίδραση (ενδόθερμη) Λύνοντας ως προς Κ eq βρισκουμε Κ eq =e -ΔGo /RT O παράγοντας Boltzmann (e -ΔGo /RT ) εκφράζει τον λόγο των πληθυσμών 2 καταστάσεων που διαχωρίζονται από ενέργεια ΔG o ε

24 Η ΕΛΕΥΘΕΡΗ ΕΝΕΡΓΕΙΑ GIBBS Κινητική αντιδράσεων Ενέργεια ενεργοποίησης Μεταβατικό σύμπλοκο Κ eq =e ΔG ο αντίδρασης -ΔGo /RT Αν η ενέργεια ενεργοποίησης είναι μικρή, λεμε οτι η αντίδραση ειναι ελεγχόμενη από την διάχυση

25 Τα ένζυμα καταλύουν μια αντίδραση μειώνοντας την ενέργεια ενεργοποίησης ενζυμο ενζυμο Ενέργεια ενεργοποίησης Πορεία αντίδρασης

26 ΠΑΡΑΔΕΙΓΜΑ Μετουσίωση (denaturation) πρωτεϊνών Οι πρωτεΐνες στη φυσική τους μορφή έχουν μοναδικές διαμορφώσεις που αποτελούνται από περιοχές μεγαλύτερης (έλικες, β-πτυχωτές επιφάνειες) ή μικρότερης (τυχαίο σπείρωμα) δομικής τάξης. Τρία δομικά μοτίβα βιολογικών μακρομορίων: (a) α-έλικα, (b) β-πτυχωτή, και (c) διπλή έλικα. (d) Η πρωτεΐνη λυσοζύμη όπου σημειώνονται οι περιοχές α-έλικας (κόκκινο) και β-πτυχωτής (πράσινο) καθώς και τυχαίου σπειρώματος. (e) H αιμοσφαιρίνη που αποτελείται από τέσσερεις πανομοιότυπες υπομονάδες που σημειώνονται με διαφορετικά χρώματα.385

27 ΠΑΡΑΔΕΙΓΜΑ Μετουσίωση (denaturation) πρωτεϊνών Αν μια πρωτεΐνη θερμανθεί ήπια και προσλάβει αρκετή θερμική ενέργεια ώστε να σπάσουν οι ασθενέστεροι δεσμοί που συγκρατούν τη δευτεροταγή δομή της, όχι όμως και οι ομοιοπολικοί δεσμοί κατά μήκος της κύριας αλυσίδας, τότε η πρωτεΐνη μπορεί να χάσει τη συνολική τρισδιάστατη δομή της και να καταλήξει ολόκληρη σε ένα τυχαίο σπείρωμα (μετουσίωση). Συχνά, αυτές οι μετουσιωμένες πρωτεΐνες, με αργή ψύξη κάτω από ελεγχόμενες συνθήκες, μπορούν αυθόρμητα να ανακτήσουν την αρχική τρισδιάστατη δομή τους σχηματίζοντας φυσικές και λειτουργικές πρωτεΐνες.

28 ΠΑΡΑΔΕΙΓΜΑ Μετουσίωση (denaturation) πρωτεϊνών Η εντροπία αυξάνεται όταν μια πρωτεΐνη μετουσιώνεται και χάνει τη φυσική της διαμόρφωση (π.χ. ελικοειδή). Αυτό οφείλεται στο γεγονός ότι το σπείρωμα (coil) είναι πολύ πιο τυχαία δομή, με πολύ περισσότερους τρόπους κατανομής της ενέργειάς του, και επομένως πολύ μεγαλύτερο στατιστικό βάρος Ω και εντροπία. Αν θεωρήσουμε ως αρχική κατάσταση την ελικοειδή δομή, μπορούμε να γράψουμε για τη μεταβολή της εντροπίας, ΔS coil > 0. Για να σπάσουν οι δεσμοί που συγκρατούν τη δευτεροταγή δομή και να καταλήξει έτσι η έλικα σε σπείρωμα, θα πρέπει να εισρεύσει θερμότητα και επομένως ΔΗ coil > 0. Η ΔG μπορεί να είναι θετική σε χαμηλές θερμοκρασίες αλλά μπορεί να γίνει αρνητική σε επαρκώς υψηλές θερμοκρασίες. Έτσι η έλικα είναι σταθερή σε χαμηλές θερμοκρασίες ενώ το σπείρωμα σε υψηλότερες θερμοκρασίες.

29 ΠΑΡΑΔΕΙΓΜΑ Μετουσίωση (denaturation) πρωτεϊνών. Θερμοκρασία τήξης πρωτεινης

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Μη αντιστρεπτά φαινόμενα Η ενέργεια διατηρείται και στη χρονικά αντίστροφη μεταβολή, όμως αυτή ποτέ δεν συμβαίνει π.χ. Δεν μπορούμε να κατασκευάσουμε το αεικίνητο.

Διαβάστε περισσότερα

ΤΟ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

ΤΟ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΤΟ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Το πρώτο θερμοδυναμικό αξίωμα είναι μια έκφραση της διατήρησης της ενέργειας για θερμοδυναμικά συστήματα. Εάν ένα κλειστό σύστημα αλληλεπιδρά με το περιβάλλον μπορεί να αυξήσει

Διαβάστε περισσότερα

Α Θερμοδυναμικός Νόμος

Α Θερμοδυναμικός Νόμος Α Θερμοδυναμικός Νόμος Θερμότητα Έχουμε ήδη αναφέρει ότι πρόκειται για έναν τρόπο μεταφορά ενέργειας που βασίζεται στη διαφορά θερμοκρασιών μεταξύ των σωμάτων. Ορίζεται από τη σχέση: Έργο dw F dx F dx

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ θερµι µ κή µ η µ χα χ ν α ή ενεργό υλικό Κυκλική µεταβολή

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ θερµι µ κή µ η µ χα χ ν α ή ενεργό υλικό Κυκλική µεταβολή ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ ιάγραµµα ροής ενέργειας σε µια θερµική µηχανή (=διάταξη που µεταφέρει µέρος της θερµότητας σε µηχανική ενέργεια. Περιέχει ενεργό υλικόδηλ., µια ποσότητα ύλης στο εσωτερικό της που υποβάλλεται

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ

ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ ΕΦΑΡΜΟΓΕΣ - ΑΣΚΗΣΕΙΣ ΘΕΡΜΙΚΗΣ ΚΑΙ ΣΤΑΤΙΣΤΙΚΗΣ ΦΥΣΙΚΗΣ 1. Ένα κιλό νερού σε θερμοκρασία 0 C έρχεται σε επαφή με μιά μεγάλη θερμική δεξαμενή θερμοκρασίας 100 C. Όταν το νερό φτάσει στη θερμοκρασία της δεξαμενής,

Διαβάστε περισσότερα

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ

ΘΕΡΜΟΧΗΜΕΙΑ. Είδη ενέργειας ΘΕΡΜΟΔΥΝΑΜΙΚΟΙ ΟΡΙΣΜΟΙ ΘΕΡΜΟΧΗΜΕΙΑ Όλες οι χημικές αντιδράσεις περιλαμβάνουν έκλυση ή απορρόφηση ενέργειας υπό μορφή θερμότητας. Η γνώση του ποσού θερμότητας που συνδέεται με μια χημική αντίδραση έχει και πρακτική και θεωρητική

Διαβάστε περισσότερα

Εντροπία Ελεύθερη Ενέργεια

Εντροπία Ελεύθερη Ενέργεια Μάθημα Εντροπία Ελεύθερη Ενέργεια Εξαγωγική Μεταλλουργία Καθ. Ι. Πασπαλιάρης Εργαστήριο Μεταλλουργίας ΕΜΠ Αυθόρμητες χημικές αντιδράσεις Ηαντίδρασηοξείδωσηςενόςμετάλλουμπορείναγραφτείστη γενική της μορφή

Διαβάστε περισσότερα

Ενέργεια:η ικανότητα επιτέλεσης έργου. Μορφές ενέργειας. η αιτία εµφάνισης φυσικών, χηµικών βιολογικών φαινοµένων

Ενέργεια:η ικανότητα επιτέλεσης έργου. Μορφές ενέργειας. η αιτία εµφάνισης φυσικών, χηµικών βιολογικών φαινοµένων Ενέργεια -Μεταβολισµός Ενέργεια:η ικανότητα επιτέλεσης έργου Μορφές ενέργειας η αιτία εµφάνισης φυσικών, χηµικών βιολογικών φαινοµένων ηλιακή, θερµότητα, χηµική, ηλεκτρική, πυρηνική. κινητική η ενέργεια

Διαβάστε περισσότερα

Η Εντροπία. Δρ. Αθανάσιος Χρ. Τζέμος. Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών

Η Εντροπία. Δρ. Αθανάσιος Χρ. Τζέμος. Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών Η Εντροπία Δρ. Αθανάσιος Χρ. Τζέμος Κέντρο Ερευνών Αστρονομίας και Εφηρμοσμένων Μαθηματικών Ακαδημία Αθηνών Θερμοδυναμική +Στατιστική Μηχανική= Θερμική Φυσική Η Θερμοδυναμική ασχολείται με τις μακροσκοπικές

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

Course: Renewable Energy Sources

Course: Renewable Energy Sources Course: Renewable Energy Sources Interdisciplinary programme of postgraduate studies Environment & Development, National Technical University of Athens C.J. Koroneos (koroneos@aix.meng.auth.gr) G. Xydis

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου 2006 Ώρα: 10:30 13.00 Προτεινόµενες Λύσεις ΜΕΡΟΣ Α 1. α) Η πυκνότητα του υλικού υπολογίζεται από τη m m m σχέση d

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών

Στατιστική Ι. Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας. Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Στατιστική Ι Ενότητα 5: Θεωρητικές Κατανομές Πιθανότητας Δρ. Γεώργιος Κοντέος Τμήμα Διοίκησης Επιχειρήσεων Γρεβενών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

7 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. Α/Α Μετατροπή. 2. Οι μαθητές θα πρέπει να μετρήσουν τη μάζα

7 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. Α/Α Μετατροπή. 2. Οι μαθητές θα πρέπει να μετρήσουν τη μάζα ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 15 Μαΐου, 2011 Ώρα: 11:00-13:30 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ 1. Α/Α Μετατροπή 1 2h= 2.60= 120 min Χρόνος 2 4500m= 4,5 km Μήκος 3 2m 3

Διαβάστε περισσότερα

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης)

Θερμοκρασία - Θερμότητα. (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία - Θερμότητα (Θερμοκρασία / Θερμική διαστολή / Ποσότητα θερμότητας / Θερμοχωρητικότητα / Θερμιδομετρία / Αλλαγή φάσης) Θερμοκρασία Ποσοτικοποιεί την αντίληψή μας για το πόσο ζεστό ή κρύο είναι

Διαβάστε περισσότερα

ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ

ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ 1 ΑΡΧΕΣ ΜΕΤΑΦΟΡΑΣ ΘΕΡΜΟΤΗΤΑΣ Προβλήματα μεταφοράς θερμότητας παρουσιάζονται σε κάθε βήμα του μηχανικού της χημικής βιομηχανίας. Ο υπολογισμός των θερμικών απωλειών, η εξοικονόμηση ενέργειας και ο σχεδιασμός

Διαβάστε περισσότερα

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Σ υ ν δ υ α σ τ ι κ ή Πειραιάς 2007 1 Μάθημα 2ο Κανόνες Απαρίθμησης (συνέχεια) 2 ΙΣΤΟΣΕΛΙΔΑ ΜΕ ΔΙΑΦΑΝΕΙΕΣ, ΒΙΒΛΙΟ & ΔΕΙΓΜΑ ΘΕΜΑΤΩΝ www.unipi.gr/faculty/mkoutras/index.htm

Διαβάστε περισσότερα

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων Β' τάξη Γενικού Λυκείου Κεφάλαιο 1 Κινητική θεωρία αερίων Κεφάλαιο 1 Κινητική θεωρία αερίων Χιωτέλης Ιωάννης Γενικό Λύκειο Πελοπίου 1.1 Ποιο από τα παρακάτω διαγράμματα αντιστοιχεί σε ισοβαρή μεταβολή;

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ)

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) Διαλέξεις Μ4, ΤΕΙ Χαλκίδας Επικ. Καθηγ. Δρ. Μηχ. Α. Φατσής ΣΚΟΠΟΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Το «φρεσκάρισμα» των γνώσεων από τη Θερμοδυναμική με σκοπό

Διαβάστε περισσότερα

Οργανική Χημεία. Κεφάλαιο 5: Επισκόπηση οργανικών αντιδράσεων

Οργανική Χημεία. Κεφάλαιο 5: Επισκόπηση οργανικών αντιδράσεων Οργανική Χημεία Κεφάλαιο 5: Επισκόπηση οργανικών αντιδράσεων 1. Κατηγορίες οργανικών αντιδράσεων Γενικά, εξετάζουμε το είδος της αντίδρασης και τον τρόπο που αυτές συντελούνται Γενικοί τύποι αντιδράσεων

Διαβάστε περισσότερα

Θερµότητα χρόνος θέρµανσης. Εξάρτηση από είδος (c) του σώµατος. Μονάδα: Joule. Του χρόνου στον οποίο το σώµα θερµαίνεται

Θερµότητα χρόνος θέρµανσης. Εξάρτηση από είδος (c) του σώµατος. Μονάδα: Joule. Του χρόνου στον οποίο το σώµα θερµαίνεται 1 2 Θερµότητα χρόνος θέρµανσης Εξάρτηση από είδος (c) του σώµατος Αν ένα σώµα θερµαίνεται από µια θερµική πηγή (γκαζάκι, ηλεκτρικό µάτι), τότε η θερµότητα (Q) που απορροφάται από το σώµα είναι ανάλογη

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΕΡΓΟ ΑΕΡΙΟΥ

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 2 ΕΡΓΟ ΑΕΡΙΟΥ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ ΕΡΓΟ ΑΕΡΙΟΥ Κατά την εκτόνωση ενός αερίου, το έρο του είναι θετικό ( δηλαδή παραόμενο). Κατά την συμπίεση ενός

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου;

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου; E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ 1. Β2.25 Θερµική µηχανή είναι, α) το τρόλεϊ; β) ο φούρνος; γ) το ποδήλατο; δ) ο κινητήρας του αεροπλάνου; Επιλέξτε τη σωστή απάντηση. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά

Διαβάστε περισσότερα

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ 1 B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ÅÕÏÓÌÏÓ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ÊÏÑÕÖÁÉÏ ÅÕÏÓÌÏÓ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ ΧΗΜΕΙΑ Ηµεροµηνία: Τετάρτη 3 Απριλίου 014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Για τις ερωτήσεις Α1 έως και Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

Επαναληπτικό Χριστουγέννων Β Λυκείου

Επαναληπτικό Χριστουγέννων Β Λυκείου Επαναληπτικό Χριστουγέννων Β Λυκείου 1.Ποιά από τις παρακάτω προτάσεις είναι σωστή ; Σύµφωνα µε τον 1ο θερµοδυναµικό νόµο το ποσό της θερµότητας που απορροφά η αποβάλει ένα θερµοδυναµικό σύστηµα είναι

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ - 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ - 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Μαΐου 2010 Ώρα : 10:00-12:30 Προτεινόμενες λύσεις ΘΕΜΑ 1 0 (12 μονάδες) Για τη μέτρηση της πυκνότητας ομοιογενούς πέτρας (στερεού

Διαβάστε περισσότερα

Πείραμα 2 Αν αντίθετα, στο δοχείο εισαχθούν 20 mol ΗΙ στους 440 ºC, τότε το ΗΙ διασπάται σύμφωνα με τη χημική εξίσωση: 2ΗΙ(g) H 2 (g) + I 2 (g)

Πείραμα 2 Αν αντίθετα, στο δοχείο εισαχθούν 20 mol ΗΙ στους 440 ºC, τότε το ΗΙ διασπάται σύμφωνα με τη χημική εξίσωση: 2ΗΙ(g) H 2 (g) + I 2 (g) Α. Θεωρητικό μέρος Άσκηση 5 η Μελέτη Χημικής Ισορροπίας Αρχή Le Chatelier Μονόδρομες αμφίδρομες αντιδράσεις Πολλές χημικές αντιδράσεις οδηγούνται, κάτω από κατάλληλες συνθήκες, σε κατάσταση ισορροπίας

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

4 Έργο ενέργεια- μεταβολισμός

4 Έργο ενέργεια- μεταβολισμός 4 Έργο ενέργεια- μεταβολισμός Έργο ενέργεια Αρχή διατήρησης της μηχανικής ενέργειας Θεώρημα έργου ενέργειας Η θερμότητα ως μορφή ενέργειας ο και ο θερμοδυναμικό αξίωμα Απόδοση μηχανής Το ανθρώπινο σώμα

Διαβάστε περισσότερα

Όνομα και Επώνυμο: Όνομα Πατέρα: Όνομα Μητέρας: Δημοτικό Σχολείο: Τάξη/Τμήμα:

Όνομα και Επώνυμο: Όνομα Πατέρα: Όνομα Μητέρας: Δημοτικό Σχολείο: Τάξη/Τμήμα: Πανεπιστήμιο Αθηνών, α φάση Στ τάξη Ημερομηνία:. Όνομα και Επώνυμο: Όνομα Πατέρα: Όνομα Μητέρας: Δημοτικό Σχολείο: Τάξη/Τμήμα: Θέμα 1ο Ένας μαθητής χρησιμοποιεί το ποδήλατό του για να μετακινείται γρήγορα,

Διαβάστε περισσότερα

Θερμόχήμεία Κεφάλαιό 2 ό

Θερμόχήμεία Κεφάλαιό 2 ό Θερμόχήμεία Κεφάλαιό 2 ό Επιμέλεια: Χημικός Διδάκτωρ Πανεπιστημίου Πατρών 11 12 Τι είναι η χημική ενέργεια των χημικών ουσιών; Που οφείλεται; Μπορεί να αποδοθεί στο περιβάλλον; Πότε μεταβάλλεται η χημική

Διαβάστε περισσότερα

Μαρία Κωνσταντίνου. Τρίτη Διάλεξη ΟΙ ΤΡΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ. Στη φύση τα σώματα κατατάσσονται σε τρεις κατηγορίες:

Μαρία Κωνσταντίνου. Τρίτη Διάλεξη ΟΙ ΤΡΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ. Στη φύση τα σώματα κατατάσσονται σε τρεις κατηγορίες: Τρίτη Διάλεξη ΟΙ ΤΡΕΙΣ ΚΑΤΑΣΤΑΣΕΙΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΟΙ ΙΔΙΟΤΗΤΕΣ ΤΟΥΣ Στη φύση τα σώματα κατατάσσονται σε τρεις κατηγορίες: ΥΛΙΚΑ ΣΩΜΑΤΑ Στερεά Υγρά Αέρια ΙΔΙΟΤΗΤΕΣ ΣΤΕΡΕΩΝ 1. Έχουν συγκεκριμένο όγκο 2. Έχουν

Διαβάστε περισσότερα

Θερμότητα. Κ.-Α. Θ. Θωμά

Θερμότητα. Κ.-Α. Θ. Θωμά Θερμότητα Οι έννοιες της θερμότητας και της θερμοκρασίας Η θερμοκρασία είναι μέτρο της μέσης κινητικής κατάστασης των μορίων ή ατόμων ενός υλικού. Αν m είναι η μάζα ενός σωματίου τότε το παραπάνω εκφράζεται

Διαβάστε περισσότερα

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ 45 6.1. ΓΕΝΙΚΑ ΠΕΡΙ ΦΑΣΕΩΝ ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΕΩΝ Όλα τα σώµατα,στερεά -ά-αέρια, που υπάρχουν στη φύση βρίσκονται σε µια από τις τρεις φάσεις ή σε δύο ή και τις τρεις. Όλα τα σώµατα µπορεί να αλλάξουν φάση

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ' ΛΥΚΕΙΟΥ ΗΜ/ΝΙΑ: 08-11-2015 ΔΙΑΡΚΕΙΑ: 3 ώρες

ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ' ΛΥΚΕΙΟΥ ΗΜ/ΝΙΑ: 08-11-2015 ΔΙΑΡΚΕΙΑ: 3 ώρες ΦΡΟΝΤΙΣΤΗΡΙΑ Μ.Ε ΠΡΟΟΔΟΣ ΔΙΑΓΩΝΙΣΜΑ ΧΗΜΕΙΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ' ΛΥΚΕΙΟΥ ΗΜ/ΝΙΑ: 08--05 ΔΙΑΡΚΕΙΑ: 3 ώρες ΘΕΜΑ Α Για τις ερωτήσεις Α. Α.5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα

Διαβάστε περισσότερα

Εξετάσεις Φυσικής για τα τμήματα Βιοτεχνολ. / Ε.Τ.Δ.Α Ιούνιος 2014 (α) Ονοματεπώνυμο...Τμήμα...Α.Μ...

Εξετάσεις Φυσικής για τα τμήματα Βιοτεχνολ. / Ε.Τ.Δ.Α Ιούνιος 2014 (α) Ονοματεπώνυμο...Τμήμα...Α.Μ... Εξετάσεις Φυσικής για τα τμήματα Βιοτεχνολ. / Ε.Τ.Δ.Α Ιούνιος 2014 (α) Ονοματεπώνυμο...Τμήμα...Α.Μ... Σημείωση: Διάφοροι τύποι και φυσικές σταθερές βρίσκονται στην τελευταία σελίδα. Θέμα 1ο (20 μονάδες)

Διαβάστε περισσότερα

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Το έργο μίας από τις δυνάμεις που ασκούνται σε ένα σώμα. α. είναι μηδέν όταν το σώμα είναι ακίνητο β. έχει πρόσημο το οποίο εξαρτάται από τη γωνία

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΑΣΚΗΣΗ 13 ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ 1.1. Εσωτερική ενέργεια Γνωρίζουμε ότι τα μόρια των αερίων κινούνται άτακτα και προς όλες τις διευθύνσεις με ταχύτητες,

Διαβάστε περισσότερα

1. ΣΥΣΤΗΜΑΤΑ ΙΑΣΠΟΡΑΣ ΦΑΙΝΟΜΕΝΑ ΚΑΙ ΕΝΕΡΓΕΙΑ

1. ΣΥΣΤΗΜΑΤΑ ΙΑΣΠΟΡΑΣ ΦΑΙΝΟΜΕΝΑ ΚΑΙ ΕΝΕΡΓΕΙΑ 1. ΣΥΣΤΗΜΑΤΑ ΙΑΣΠΟΡΑΣ ΦΑΙΝΟΜΕΝΑ ΚΑΙ ΕΝΕΡΓΕΙΑ Ως γνωστόν, οι χηµικές ενώσεις προκύπτουν από την ένωση δύο ή περισσοτέρων στοιχείων, οπότε και έχουµε σηµαντική µεταβολή του ενεργειακού περιεχοµένου του συστήµατος.

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ B ΓΥΜΝΑΣΙΟΥ Κυριακή, 17 Μαΐου 2009 Ώρα: 10:00 12:30 Οδηγίες: 1) Το δοκίμιο αποτελείται από οκτώ (8) θέματα. 2) Απαντήστε σε όλα τα θέματα. 3) Επιτρέπεται η χρήση μόνο μη

Διαβάστε περισσότερα

Να γράψετε στο τετράδιο σας την σωστή απάντηση στις παρακάτω ερωτήσεις.

Να γράψετε στο τετράδιο σας την σωστή απάντηση στις παρακάτω ερωτήσεις. ΘΕΜΑ 1 Να γράψετε στο τετράδιο σας την σωστή απάντηση στις παρακάτω ερωτήσεις. 1. Αέριο συμπιέζεται ισόθερμα στο μισό του αρχικού όγκου.η ενεργός ταχύτητα των μορίων του: α) διπλασιάζεται. β) παραμένει

Διαβάστε περισσότερα

Εισαγωγή στην πυρηνοποίηση. http://users.auth.gr/~paloura/ Ομο- & ετερογενής πυρηνοποίηση: αρχικά στάδια ανάπτυξης υλικών ή σχηματισμού νέας φάσης.

Εισαγωγή στην πυρηνοποίηση. http://users.auth.gr/~paloura/ Ομο- & ετερογενής πυρηνοποίηση: αρχικά στάδια ανάπτυξης υλικών ή σχηματισμού νέας φάσης. Εισαγωγή στην πυρηνοποίηση. http://users.auth.gr/~paloura/ Αντικείμενο Ομο- & ετερογενής πυρηνοποίηση: αρχικά στάδια ανάπτυξης υλικών ή σχηματισμού νέας φάσης. Ομογενής πυρηνοποίηση: αυθόρμητος σχηματισμός

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ Η εξίσωση αυτή εκφράζει μια σχέση μεταξύ της πίεσης, της θερμοκρασίας και του ειδικού όγκου. P v = R Όπου P = πίεση σε Pascal v = Ο ειδικός

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 2 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Απριλίου 26 Ώρα : 1:3-13: Οδηγίες: 1)Το δοκίµιο αποτελείται από τρία (3) µέρη. Και στα τρία µέρη υπάρχουν συνολικά δώδεκα (12)

Διαβάστε περισσότερα

Τμήμα Χημείας Πανεπιστήμιο Κρήτης. Εαρινό εξάμηνο 2009

Τμήμα Χημείας Πανεπιστήμιο Κρήτης. Εαρινό εξάμηνο 2009 Τμήμα Χημείας Πανεπιστήμιο Κρήτης Εργαστήριο Φυσικοχημείας Ι Στοιχεία Στατιστικής Θερμοδυναμικής Εαρινό εξάμηνο 9 Διδάσκων : Δ. Άγγλος Υπευθ. Εργαστηρίου : Ν. Στρατηγάκης Μεταπτυχιακοί : Ν. Διαμαντοπούλου,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ . ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ 1. Σε µια ισόθερµη µεταβολή : α) Το αέριο µεταβάλλεται µε σταθερή θερµότητα β) Η µεταβολή της εσωτερικής ενέργειας είναι µηδέν V W = PV ln V γ) Το έργο που παράγεται δίνεται

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε ΔΙΑΓΩΝΙΣΜΑ Α Θέµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων, η πίεση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ.

ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ. ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ. 2.1 Η ΕΝΝΟΙΑ ΤΗΣ ΚΑΘΑΡΗΣ ΟΥΣΙΑΣ. Μια ουσία της οποίας η χημική σύσταση παραμένει σταθερή σε όλη της την έκταση ονομάζεται καθαρή ουσία. Δεν είναι υποχρεωτικό να

Διαβάστε περισσότερα

Ο πρώτος νόμος της Θερμοδυναμικής. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Ο πρώτος νόμος της Θερμοδυναμικής. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Ο πρώτος νόμος της Θερμοδυναμικής Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι έννοιες Το θερμοδυναμικό σύστημα ή απλά σύστημα είναι η περιοχή του σύμπαντος που μας

Διαβάστε περισσότερα

ΟΙ ΑΛΛΑΓΕΣ ΚΑΤΑΣΤΑΣΗΣ ΤΟΥ ΝΕΡΟΥ Ο «ΚΥΚΛΟΣ» ΤΟΥ ΝΕΡΟΥ

ΟΙ ΑΛΛΑΓΕΣ ΚΑΤΑΣΤΑΣΗΣ ΤΟΥ ΝΕΡΟΥ Ο «ΚΥΚΛΟΣ» ΤΟΥ ΝΕΡΟΥ ΟΙ ΑΛΛΑΓΕΣ ΚΑΤΑΣΤΑΣΗΣ ΤΟΥ ΝΕΡΟΥ Ο «ΚΥΚΛΟΣ» ΤΟΥ ΝΕΡΟΥ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 6 Τι πρέπει να γνωρίζεις Θεωρία 6.1 Να αναφέρεις τις τρεις φυσικές καταστάσεις στις οποίες μπορεί να βρεθεί ένα υλικό σώμα. Όπως και

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ 1ο ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ο ΝΟΜΟΙ ΑΕΡΙΩΝ -ΚΙΝΗΤΙΚΗ ΘΕΩΡΙΑ ΑΕΡΙΩΝ ΝΟΜΟΙ ΑΕΡΙΩΝ - ΘΕΡΜΟ ΥΝΑΜΙΚΗ Τι γνωρίζετε για την καταστατική εξίσωση των ιδανικών αερίων; Η καταστατική εξίσωση των αερίων είναι µια σχέση που συνδέει µεταξύ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

κλασσική περιγραφή Κλασσική στατιστική

κλασσική περιγραφή Κλασσική στατιστική Η κανονική κατανομή στη κλασσική περιγραφή Κλασσική στατιστική φυσική Βίγκα Ελένη (ttp://users.aut.gr/vinga) Στατιστική Φυσική Διαφάνεια o o Μια πολύ απλή περίπτωση για να ξεκινήσουμε είναι: Na θεωρήσουμε

Διαβάστε περισσότερα

C=dQ/dT~ 6.4 cal/mole.grad

C=dQ/dT~ 6.4 cal/mole.grad ΘΕΡΜΟΤΗΤΑ Ηεσωτερικήενέργειαενόςσώµατος, είναι το σύνολο των οποιονδήποτε ενεργειών των ατόµων και των µορίων του Η θερµοκρασία είναι µέτρο της µέσης κινητικής ενέργειας των ατόµων και των µορίων Ε=3ΚΤ/2

Διαβάστε περισσότερα

Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας: Δημοτικό Σχολείο: Τάξη/Τμήμα:.

Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας: Δημοτικό Σχολείο: Τάξη/Τμήμα:. Ημερομηνία:. Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας: Δημοτικό Σχολείο: Τάξη/Τμήμα:. Θέμα 1ο Δύο μαθητές βυθίζουν για λίγο το χέρι τους στο νερό των δοχείων Α και Β, ο ένας στο Α και ο άλλος στο

Διαβάστε περισσότερα

ιαγώνισµα για το σπίτι

ιαγώνισµα για το σπίτι ιαγώνισµα για το σπίτι p 2 V Θέµα 1 ο Να εξηγήσετε γιατί στη µεταβολή 1 2 η γραµµοµοριακή θερµοχωρητικότητα του αερίου είναι µικρότερη από το µέγεθος C p και µεγαλύτερη από το C V Για τη δικαιολόγηση θα

Διαβάστε περισσότερα

Διάδοση Θερμότητας. (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία)

Διάδοση Θερμότητας. (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία) Διάδοση Θερμότητας (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία) Τρόποι διάδοσης θερμότητας Με αγωγή Με μεταφορά (με τη βοήθεια ρευμάτων) Με ακτινοβολία άλλα ΠΑΝΤΑ από το θερμότερο προς το ψυχρότερο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 Α4 και δίπλα το γράμμα

Διαβάστε περισσότερα

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ ΠΑΡΑΤΗΡΗΣΕΙΣ 1. Διαδοση θερμοτητας και εργο είναι δυο τροποι με τους οποιους η ενεργεια ενός θερμοδυναμικου συστηματος μπορει να αυξηθει ή να ελαττωθει. Δεν εχει εννοια

Διαβάστε περισσότερα

ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ

ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ Δ. Τσιπλακίδης Πρόγραμμα Μεταπτυχιακών Σπουδών Κατεύθυνση: «Φυσική Χημεία Υλικών και Ηλεκτροχημεία» ΠΡΟΧΩΡΗΜΕΝΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΠΡΩΤΟΣ ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ Βασικές

Διαβάστε περισσότερα

Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής. Γεώργιος Φανουργάκης

Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής. Γεώργιος Φανουργάκης Πρόχειρες σημειώσεις Στατιστικής Θερμοδυναμικής 1 Γεώργιος Φανουργάκης 2 Κεφάλαιο 1 Εισαγωγή στη Στατιστική Θερμοδυναμική H Στατιστική θερμοδυναμική ή Στατιστική μηχανική είναι η εφαρμογή της θεωρίας πιθανοτήτων,

Διαβάστε περισσότερα

4.2 Παρα γοντες που επηρεα ζουν τη θε ση χημικη ς ισορροπι ας - Αρχη Le Chatelier

4.2 Παρα γοντες που επηρεα ζουν τη θε ση χημικη ς ισορροπι ας - Αρχη Le Chatelier Χημικός Διδάκτωρ Παν. Πατρών 4.2 Παρα γοντες που επηρεα ζουν τη θε ση χημικη ς ισορροπι ας - Αρχη Le Chatelier Τι ονομάζεται θέση χημικής ισορροπίας; Από ποιους παράγοντες επηρεάζεται η θέση της χημικής

Διαβάστε περισσότερα

Εισαγωγή στην Μεταφορά Θερμότητας

Εισαγωγή στην Μεταφορά Θερμότητας Εισαγωγή στην Μεταφορά Θερμότητας ΜΜΚ 312 Μεταφορά Θερμότητας Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής Διάλεξη 1 MMK 312 Μεταφορά Θερμότητας Κεφάλαιο 1 1 Μεταφορά Θερμότητας - Εισαγωγή Η θερμότητα

Διαβάστε περισσότερα

panagiotisathanasopoulos.gr

panagiotisathanasopoulos.gr Χημική Ισορροπία 61 Παναγιώτης Αθανασόπουλος Χημικός, Διδάκτωρ Πανεπιστημίου Πατρών Χημικός Διδάκτωρ Παν. Πατρών 62 Τι ονομάζεται κλειστό χημικό σύστημα; Παναγιώτης Αθανασόπουλος Κλειστό ονομάζεται το

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΗΜΕΡΟΜΗΝΙΑ: 7 /6/13 ΟΝΟΜΑΤΕΠΩΝΥΜΟ:

ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΗΜΕΡΟΜΗΝΙΑ: 7 /6/13 ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΛΕΜΕΣΟΥ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2012-2013 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2013 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΗΜΕΡΟΜΗΝΙΑ: 7 /6/13 ΤΑΞΗ: Β ΧΡΟΝΟΣ:2 ώρες ΟΝΟΜΑΤΕΠΩΝΥΜΟ: TΜΗΜΑ: AΡ:. ΒΑΘΜΟΣ: ΥΠΟΓΡΑΦΗ ΚΑΘΗΓΗΤΗ:.

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Χημεία Α Λυκείου

Τράπεζα Θεμάτων Χημεία Α Λυκείου Τράπεζα Θεμάτων Χημεία Α Λυκείου ΟΛΑ ΤΑ ΘΕΜΑΤΑ ΣΤΗ ΔΙΑΛΥΤΟΤΗΤΑ ΑΠΟ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 11 ερωτήσεις με απάντηση Επιμέλεια: Γιάννης Καλαμαράς, Διδάκτωρ Χημικός 1. Σε ορισμένη ποσότητα ζεστού νερού διαλύεται

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης 1 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης ΘΕΜΑ 1 ο : Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Μια ποσότητα ιδανικού αέριου εκτονώνεται ισόθερμα μέχρι τετραπλασιασμού

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση

ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ. Θεωρητικη αναλυση ΗΛΕΚΤΡΟΤΕΧΝΙΚΑ Υλικα 3ο μεροσ Θεωρητικη αναλυση μεταλλα Έχουν κοινές φυσικές ιδιότητες που αποδεικνύεται πως είναι αλληλένδετες μεταξύ τους: Υψηλή φυσική αντοχή Υψηλή πυκνότητα Υψηλή ηλεκτρική και θερμική

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων ή μορίων) του

Διαβάστε περισσότερα

Συνδυάζοντας το πρώτο και το δεύτερο θερμοδυναμικό αξίωμα προκύπτει ότι:

Συνδυάζοντας το πρώτο και το δεύτερο θερμοδυναμικό αξίωμα προκύπτει ότι: Συνδυάζοντας το πρώτο και το δεύτερο θερμοδυναμικό αξίωμα προκύπτει ότι: Για να είναι μια αντίδραση αυθόρμητη, πρέπει η μεταβολή της ελεύθερης ενέργειας της αντίδρασης να είναι αρνητική. Η μεταβολή της

Διαβάστε περισσότερα

ΦΥΣΙΚΗ-Ι ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΦΥΣΙΚΗ-Ι ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΦΥΣΙΚΗ-Ι ΘΕΡΜΟ ΥΝΑΜΙΚΗ Η έννοια της ερμοκρασίας Τι είναι ερμοκρασία; η ερμοκρασία αποτελεί ένα μέτρο του πόσο ερμό ή ψυχρό είναι ένα σώμα Υποκειμενική παρατήρηση: Ένα σώμα Α είναι ερμότερο ή ψυχρότερο

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ Θερμικες μηχανες 1. Το ωφελιμο εργο μπορει να υπολογιστει με ένα από τους παρακατω τροπους: Α.Υπολογιζουμε το αλγεβρικο αθροισμα των εργων ( μαζι με τα προσημα

Διαβάστε περισσότερα

7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ

7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ 7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ Συμβαίνει κι αυτό: ο όγκος ενός σώματος να 'ναι μεγάλος, αλλά η μάζα του να 'ναι μικρή Από την καθημερινή μας ζωή, ξέρουμε τι σημαίνει πυκνό και αραιό: πυκνό δάσος, αραιά

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ. Ηλεκτρισμένα σώματα. πως διαπιστώνουμε ότι ένα σώμα είναι ηλεκτρισμένο ; Ηλεκτρικό φορτίο

ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ. Ηλεκτρισμένα σώματα. πως διαπιστώνουμε ότι ένα σώμα είναι ηλεκτρισμένο ; Ηλεκτρικό φορτίο ΦΥΣΙΚΗ Γ ΓΥΜΝΑΣΙΟΥ 1 Η ΕΝΟΤΗΤΑ ΗΛΕΚΤΡΙΣΜΟΣ ΚΕΦΑΛΑΙΟ 1 Ο Ηλεκτρική δύναμη και φορτίο Ηλεκτρισμένα σώματα 1.1 Ποια είναι ; Σώματα (πλαστικό, γυαλί, ήλεκτρο) που έχουν την ιδιότητα να ασκούν δύναμη σε ελαφρά

Διαβάστε περισσότερα

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος

2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος 2η Εργαστηριακή Άσκηση Εξάρτηση της ηλεκτρικής αντίστασης από τη θερμοκρασία Θεωρητικό μέρος Όπως είναι γνωστό από την καθημερινή εμπειρία τα περισσότερα σώματα που χρησιμοποιούνται στις ηλεκτρικές ηλεκτρονικές

Διαβάστε περισσότερα

Δραστηριότητες από τον κόσμο της Φυσικής για το Νηπιαγωγείο

Δραστηριότητες από τον κόσμο της Φυσικής για το Νηπιαγωγείο Δραστηριότητες από τον κόσμο της Φυσικής για το Νηπιαγωγείο Ενότητα 10: Τα φαινόμενα της τήξης και της πήξης Ραβάνης Κωνσταντίνος Σχολή Ανθρωπιστικών και Κοινωνικών Επιστημών Τμήμα Επιστημών της Εκπαίδευσης

Διαβάστε περισσότερα

β) διπλασιάζεται. γ) υποδιπλασιάζεται. δ) υποτετραπλασιάζεται. Μονάδες 4

β) διπλασιάζεται. γ) υποδιπλασιάζεται. δ) υποτετραπλασιάζεται. Μονάδες 4 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΟΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ B ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΑΝΟΥΑΡΙΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac;

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac; Τάξη : Β ΛΥΚΕΙΟΥ Μάθημα : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Εξεταστέα Ύλη : Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση Καθηγητής : Mάρθα Μπαμπαλιούτα Ημερομηνία : 14/10/2012 ΘΕΜΑ 1 ο 1. Ποιο από τα παρακάτω διαγράμματα

Διαβάστε περισσότερα

2.7 Χημική αντίδραση

2.7 Χημική αντίδραση 1 2.7 Χημική αντίδραση Ερωτήσεις θεωρίας με απάντηση 7-1. Τι ονομάζουμε φαινόμενο στη Φυσική και στη Χημεία; Φαινόμενο είναι η μεταβολή 7-2. Τι ονομάζουμε φυσικά φαινόμενα ή φυσικές μεταβολές; Είναι οι

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΒΙΟΛΟΓΙΑΣ 3.1 ΕΝΕΡΓΕΙΑ ΚΑΙ ΟΡΓΑΝΙΣΜΟΙ

ΕΡΓΑΣΙΑ ΒΙΟΛΟΓΙΑΣ 3.1 ΕΝΕΡΓΕΙΑ ΚΑΙ ΟΡΓΑΝΙΣΜΟΙ ΕΡΓΑΣΙΑ ΒΙΟΛΟΓΙΑΣ 3.1 ΕΝΕΡΓΕΙΑ ΚΑΙ ΟΡΓΑΝΙΣΜΟΙ Οι οργανισμοί εξασφαλίζουν ενέργεια, για τις διάφορες λειτουργίες τους, διασπώντας θρεπτικές ουσίες που περιέχονται στην τροφή τους. Όμως οι φωτοσυνθετικοί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο H XHΜΕΙΑ ΤΗΣ ΖΩΗΣ. Χημεία της ζωής 1

ΚΕΦΑΛΑΙΟ 2 Ο H XHΜΕΙΑ ΤΗΣ ΖΩΗΣ. Χημεία της ζωής 1 ΚΕΦΑΛΑΙΟ 2 Ο H XHΜΕΙΑ ΤΗΣ ΖΩΗΣ Χημεία της ζωής 1 2.1 ΒΑΣΙΚΕΣ ΧΗΜΙΚΕΣ ΕΝΝΟΙΕΣ Η Βιολογία μπορεί να μελετηθεί μέσα από πολλά και διαφορετικά επίπεδα. Οι βιοχημικοί, για παράδειγμα, ενδιαφέρονται περισσότερο

Διαβάστε περισσότερα

2.2 Θερμιδόμετρι α- Νό μόι Θερμόχήμει ας

2.2 Θερμιδόμετρι α- Νό μόι Θερμόχήμει ας 2.2 Θερμιδόμετρι α- Νό μόι Θερμόχήμει ας Τι είναι η θερμιδομετρία; Τι είναι το θερμιδόμετρο; Ποιος είναι ο νόμος της θερμιδομετρίας; Περιγράψτε το θερμιδόμετρο βόμβας Η διαδικασία προσδιορισμού μέτρησης

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου Τμήμα Χημείας. ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΕΙΑ ΓΙΑ ΒΙΟΛΟΓΟΥΣ ΚΑΙ ΦΥΣΙΚΟΥΣ ΧΗΜ 021 Χειμερινό Εξάμηνο 2008

Πανεπιστήμιο Κύπρου Τμήμα Χημείας. ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΕΙΑ ΓΙΑ ΒΙΟΛΟΓΟΥΣ ΚΑΙ ΦΥΣΙΚΟΥΣ ΧΗΜ 021 Χειμερινό Εξάμηνο 2008 Πανεπιστήμιο Κύπρου Τμήμα Χημείας ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΕΙΑ ΓΙΑ ΒΙΟΛΟΓΟΥΣ ΚΑΙ ΦΥΣΙΚΟΥΣ ΧΗΜ 021 Χειμερινό Εξάμηνο 2008 Κωνσταντίνος Ζεϊναλιπούρ Λευκωσία, Σεπτέμβριος 2008 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΡΜΟΧΗΜΕΙΑΣ Έργο (w)

Διαβάστε περισσότερα

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης

Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης Μοριακή Φασματοσκοπία I Παραδόσεις μαθήματος Θ. Λαζαρίδης 2 Τι μελετά η μοριακή φασματοσκοπία; Η μοριακή φασματοσκοπία μελετά την αλληλεπίδραση των μορίων με την ηλεκτρομαγνητική ακτινοβολία Από τη μελέτη

Διαβάστε περισσότερα

ΟΡΓΑΝΙΚΕΣ ΟΥΣΙΕΣ. 1. (α) Ποιο μόριο απεικονίζεται στο σχεδιάγραμμα; (β) Ποια είναι η απλούστερη μορφή του R;

ΟΡΓΑΝΙΚΕΣ ΟΥΣΙΕΣ. 1. (α) Ποιο μόριο απεικονίζεται στο σχεδιάγραμμα; (β) Ποια είναι η απλούστερη μορφή του R; ΟΡΓΑΝΙΚΕΣ ΟΥΣΙΕΣ 1. (α) Ποιο μόριο απεικονίζεται στο σχεδιάγραμμα; (β) Ποια είναι η απλούστερη μορφή του R; (γ) Ποιο μέρος του μορίου προσδίδει σε αυτό όξινες ιδιότητες; (δ) Ποιο μέρος του μορίου προσδίδει

Διαβάστε περισσότερα

ΠΠΜ 477 ΠΑΡΑΚΤΙΑ ΜΗΧΑΝΙΚΗ

ΠΠΜ 477 ΠΑΡΑΚΤΙΑ ΜΗΧΑΝΙΚΗ ΠΠΜ 477 ΠΑΡΑΚΤΙΑ ΜΗΧΑΝΙΚΗ ΠΕΙΡΑΜΑΤΙΚΗ ΑΣΚΗΣΗ - ΣΥΜΠΕΡΙΦΟΡΑ ΝΕΡΟΥ ΟΜΑΔΑ:. ΗΜΕΡ. ΠΑΡΑΔΟΣΗΣ: 2 ΠΕΡΙΕΧΟΜΕΝΑ ΥΠΟΒΟΛΗ ΕΡΓΑΣΙΑΣ... ΠΕΡΙΛΗΨΗ... 1.0 ΕΙΣΑΓΩΓH... 2.0 ΑΣΚΗΣΕΙΣ 2.1. ΝΕΡΟ ΕΛΕΥΘΕΡΟ ΣΤΟ ΠΕ ΙΟ ΒΑΡΥΤΗΤΑΣ...

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Ποσοτική και Ποιoτική Ανάλυση

Ποσοτική και Ποιoτική Ανάλυση Ποσοτική και Ποιoτική Ανάλυση ιδάσκων: Σπύρος Περγαντής Γραφείο: Α206 Τηλ. 2810 545084 E-mail: spergantis@chemistry.uoc.gr Κεφ. 14 Χημική Ισορροπία Μια υναμική Ισορροπία Χημική ισορροπία είναι η κατάσταση

Διαβάστε περισσότερα

ΥΔΡΟΣΤΑΤΙΚΗ ΡΕΥΣΤΑ ΤΟ ΝΕΡΟ

ΥΔΡΟΣΤΑΤΙΚΗ ΡΕΥΣΤΑ ΤΟ ΝΕΡΟ ΥΔΡΟΣΤΑΤΙΚΗ είναι ο επιστημονικός κλάδος γνώσεων της μηχανικής των ρευστών, που εξετάζει τα ρευστά που βρίσκονται σε στατική ισορροπία η μεταφέρονται μετατίθενται κινούμενα ως συμπαγή σώματα, χωρίς λόγου

Διαβάστε περισσότερα

8. Θερμοκρασία και θερμότητα - Μεταβολές καταστάσεων της ύλης

8. Θερμοκρασία και θερμότητα - Μεταβολές καταστάσεων της ύλης 8. Θερμοκρασία και θερμότητα - Μεταβολές καταστάσεων της ύλης Φύλλο Εργασίας Τίτλος: Μεταβολές καταστάσεων της ύλης Γνωστικό Αντικείμενο: Μελέτη Περιβάλλοντος Διδακτική Ενότητα: Μεταβολές καταστάσεων της

Διαβάστε περισσότερα

Τράπεζα Χημεία Α Λυκείου

Τράπεζα Χημεία Α Λυκείου Τράπεζα Χημεία Α Λυκείου 1 ο Κεφάλαιο Όλα τα θέματα του 1 ου Κεφαλαίου από τη Τράπεζα Θεμάτων 25 ερωτήσεις Σωστού Λάθους 30 ερωτήσεις ανάπτυξης Επιμέλεια: Γιάννης Καλαμαράς, Διδάκτωρ Χημικός Ερωτήσεις

Διαβάστε περισσότερα