ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ"

Transcript

1 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Μη αντιστρεπτά φαινόμενα Η ενέργεια διατηρείται και στη χρονικά αντίστροφη μεταβολή, όμως αυτή ποτέ δεν συμβαίνει π.χ. - Όλα τα σώματα που αρχικά ολισθαίνουν πάνω σε μια επιφάνεια στο τέλος ηρεμούν. - Ζεστό ρόφημα σε ένα φλιτζάνι. Κρυώνει παίρνοντας τη θερμοκρασία του περιβάλλοντος 60 C 20 C 20 C 20 C

2 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Ρίχνουμε 3 νομίσματα Κορώνα- Γράμματα: Οι πιθανές καταστάσεις στο πείραμα ρίψης τριών νομισμάτων όπου με βέλη προς τα πάνω και προς τα κάτω σημειώνονται η κορώνα και τα γράμματα αντίστοιχα. Πιθανά αποτελέσματα ( 4 Μακροκαταστάσεις) 3 κορώνα 0 γράμματα 1 (ΚΚΚ) Πιθανές καταστάσεις ( 8 Μίκροκαταστάσεις=2 3 ) 2 κορώνα 1 γράμματα 3 (ΚΚΓ, ΚΓΚ, ΓΚΚ) 1 κορώνα 2 γράμματα 3 (ΚΓΓ, ΓΚΓ, ΓΓΚ) 0 κορώνα 3 γράμματα 1 (ΓΓΓ)

3 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Για Ν νομίσματα Πλήθος πιθανών αποτελεσμάτων (μακροκαταστάσεις) = Ν + 1 Πλήθος μικροκαταστάσεων = 2 Ν (Aν Ν = 100, ο αριθμός αυτός είναι περίπου ίσος με 10 30, αριθμός που ξεπερνά το πλήθος των πρωτονίων στο σώμα σας!) Όσα, όμως, νομίσματα και να στρίψουμε, ο αριθμός που αντιστοιχεί στις μακροκαταστάσεις με την υψηλότερη τάξη (όλα κορώνα ή όλα γράμματα) παραμένει πάντα ίσος με 1. Επομένως, για 100 νομίσματα, το γεγονός να συμβεί ένα τέτοιο γεγονός υψηλής τάξης, δηλαδή όλα τα νομίσματα να έρθουν κορώνα ή όλα γράμματα, είναι ουσιαστικά αδύνατο. Το να στρίψουμε 100 νομίσματα και να έρθουν 100 κορώνες είναι ισοδύναμο με το να ξαναζεσταθεί αυθόρμητα ένα φλυτζάνι καφέ που έχει κρυώσει, απορροφώντας θερμότητα από τον περιβάλλοντα αέρα του δωματίου!

4 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Ποιά από τα 101 αποτελέσματα είναι όμως τα πιο πιθανά στο πείραμα της ρίψης των 100 νομισμάτων; Περισσότερες πιθανότητες το αποτέλεσμα 50 κορώνες και 50 γράμματα. Η θεωρία πιθανοτήτων μάς λέει ότι εάν το πείραμα επαναληφθεί πολλές φορές, περίπου στο 90% αυτών των επαναλήψεων θα εμφανίζονται οι κορώνες στα 45 έως 55 από τα 100 νομίσματα. Η κατανομή των πιθανών αποτελεσμάτων θα εκτείνεται συμμετρικά γύρω από μια αρκετά οξεία κορυφή στο

5 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Μικροκατάσταση ενός συστήματος ονομάζουμε καθεμία από τις τεράστιες σε πλήθος καταστάσεις που μπορεί να βρεθεί το σύστημα και περιγράφεται από το σύνολο των διεγερμένων καταστάσεων των ατόμων του. Θεμελιώδες αξίωμα της στατιστικής μηχανικής: Όλες οι επιτρεπτές μικροκαταστάσεις (δηλαδή εκείνες που ικανοποιούν τη διατήρηση της ενέργειας) ενός συστήματος σε ισορροπία είναι ισοπίθανες. Οι μικροκαταστάσεις ενός φυσικού συστήματος είναι το ανάλογο των 2 Ν διαφορετικών πιθανών «καταστάσεων» στο πείραμα ρίψης νομισμάτων.

6 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Ωστόσο, όπως ακριβώς και στο πείραμα ρίψης νομισμάτων, αυτό που είναι πιο σημαντικό είναι τα «αποτελέσματα»: πόσες κορώνες θα πάρουμε και με ποια πιθανότητα από τη ρίψη Ν νομισμάτων. Η λεπτομέρεια, ποιο συγκεκριμένο νόμισμα ήρθε κορώνα ή γράμματα, δεν είναι σημαντική. Στο φυσικό σύστημα που εξετάζουμε και αποτελείται από τεράστιο πλήθος ατόμων, το ανάλογο του αποτελέσματος, όπως ορίστηκε για τη ρίψη νομισμάτων είναι η μακροκατάσταση. Αυτή καθορίζεται από το πλήθος των ατόμων σε κάθε επιτρεπτή διεγερμένη στάθμη, γνωστό και ως αριθμός κατάληψης. Μακροκατάσταση Μικροκατάσταση 1 Μικροκατάσταση 2 Μικροκατάσταση 3. Μικροκατάσταση Ω Ω = πληθος μικροκαταστασεων που αντιστοιχουν σε μια μακροκατασταση

7 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Σε μια συγκεκριμένη μακροκατάσταση αντιστοιχούν, γενικά, πολλές μικροκαταστάσεις ακριβώς όπως στη ρίψη νομισμάτων πολλοί διαφορετικοί συνδυασμοί (διακριτές «καταστάσεις») δίνουν το ίδιο αποτέλεσμα (εκτός αν αυτό είναι όλα κορώνα ή όλα γράμματα). Επειδή, όλες οι μικροκατάστάσεις είναι ισοπίθανες, η πιθανότητα μιας συγκεκριμένης μακροκατάστασης θα εξαρτάται μόνο από το πλήθος των μικροκαταστάσεων που αντιστοιχούν σε αυτή. Έτσι, όπως και στο πείραμα της ρίψης νομισμάτων, κάποιες μακροκαταστάσεις προκύπτουν από μικρό πλήθος μικροκαταστάσεων και επομένως η πιθανότητά τους είναι πολύ μικρή, ενώ άλλες από πολύ μεγάλο πλήθος μικροκαταστάσεων και επομένως έχουν και μεγάλη πιθανότητα να συμβούν.

8 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Το πλήθος των μικροκαταστάσεων που αντιστοιχούν σε μια δεδομένη μακροκατάσταση συμβολίζεται ως Ω, γνωστό και ως στατιστικό βάρος του συστήματος Ορίζεται ως εντροπία του συστήματος το μέγεθος: όπου k Β είναι η σταθερά Boltzmann. Η εντροπία ορίζεται έτσι ως στατιστική συνάρτηση των αριθμών κατάληψης και των κβαντικών αριθμών ενός συστήματος, έμμεσα όμως, εξαρτάται από τα μακροσκοπικά καταστατικά μεγέθη του, όπως η πίεση, η θερμοκρασία και ο όγκος. Η εντροπία δίνει την πιθανότητα κατάληψης μια συγκεκριμένης μακροκατάστασης, δεδομένης της ολικής ενέργειας και άλλων διατηρήσιμων μεγεθών του συστήματος.

9 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Στα θερμοδυναμικά συστήματα, το πλήθος των μικροκαταστάσεων που αντιστοιχεί σε κάθε μακροκατάσταση είναι πολύ μεγαλύτερο, με αποτέλεσμα το εύρος των ουσιαστικά πιθανών μακροκατάστασεων (όπως ορίζονται από τις τιμές των παραμέτρων τους) να περιορίζεται γύρω από μια εξαιρετικά οξεία κορυφή. Θυμηθείτε: Στο πείραμα ρίψης 100 νομισμάτων, που αναφερθήκαμε προηγουμένως, είδαμε ότι η κατανομή πιθανοτήτων των μακροκαταστάσεων εμφανίζει μια αρκετά οξεία κορυφή μεγίστου στην περιοχή αποτελεσμάτων μεταξύ 45 και 55 κορώνων (το ύψος της κορυφής αντιστοιχούσε σε πιθανότητα περίπου 90%). Ένα νέο αξίωμα της Φυσικής: Το δεύτερο θερμοδυναμικό αξίωμα δηλώνει ότι η συνολική εντροπία στις μεταβολές ενός απομονωμένου συστήματος πάντα θα αυξάνεται, ΔS 0 ΔS = 0 ισχύει μόνο στην ειδική περίπτωση των αντιστρεπτών μεταβολών. Με άλλα λόγια, η συνολική εντροπία ενός απομονωμένου συστήματος ποτέ δεν ελαττώνεται.

10 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Το 2 ο θερμοδυναμικό αξίωμα αποτελεί ένα αξίωμα της στατιστικής, σχετικά με τις πιθανότητες των αριθμών κατάληψης. Η εσωτερική ενέργεια ενός συστήματος μεταβάλλεται με προσφορά έργου από ή προς το σύστημα ή/και με εισροή ή εκροή θερμότητας. Για εφικτά γεγονότα (ικανοποιούν την αρχή διατήρησης της ενέργειας και των άλλων μεγεθών που διατηρούνται), είναι πιθανότερο να συμβεί εκείνο που έχει τις περισσότερες μικροκαταστάσεις. Το πλήθος των διαφορετικών μικροκαταστάσεων μιας συγκεκριμένης μακροκατάστασης συνδέεται εγγενώς με την «τυχαιότητά» της.

11 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Η φύση της μηχανικής ενέργειας είναι περισσότερο «οργανωμένη» και λιγότερο «τυχαία», συγκριτικά με τη θερμική ενέργεια. Σύμφωνα με το 2ο θερμοδυναμικό αξίωμα, αν και μπορεί σε κάποια περίπτωση οι ποσότητες των δύο μορφών ενέργειας να είναι αρχικά ίσες, η στατιστική κατευθύνει αντιδράσεις ή άλλα γεγονότα προς τη μετατροπή μηχανικής σε θερμική ενέργεια, έτσι ώστε να μεγιστοποιήσει την εντροπία. Οι δυνάμεις τριβής είναι μη διατηρήσιμες, ακριβώς επειδή η θερμική ενέργεια που παράγουν δεν μπορεί αντιστρέψιμα να μετατραπεί ξανά σε μηχανική ενέργεια. Ένα γενικό συμπέρασμα είναι ότι, όποτε η εντροπία ενός απομονωμένου συστήματος αυξάνεται, η ποσότητα της ενέργειας του που μπορεί να αποδώσει έργο, μειώνεται. Η αύξηση της εντροπίας υποβαθμίζει την ωφελιμότητα της ενέργειας

12 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Κλασική Θερμοδυναμική Εντροπία (Entropy) = «εν + τροπή» Την εισήγαγε το1865 ο Γερμανός Φυσικός Rudolf Clausius για να εκφράσει ποσοτικά την ικανότητα αλλαγής (τροπής) ενός συστήματος (όπως η θερμότητα που ρέει από περιοχές υψηλής θερμοκρασίας σε περιοχές χαμηλότερης θερμοκρασίας) και να προσδιορίσει κατά πόσο μια θερμοδυναμική διαδικασία μπορεί να συμβεί αυθόρμητα. 2o ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Καμιά φυσική μεταβολή δεν είναι δυνατή στην οποία η ολική εντροπία μειώνεται, όταν συμπεριληφθούν όλα τα συστήματα που λαμβάνουν μέρος στη μεταβολή.

13 Οι περιπτώσεις ανάμιξης ουσιών σε διαφορετικές θερμοκρασίες ή η ροή θερμότητας από υψηλότερη σε χαμηλότερη θερμοκρασία είναι χαρακτηριστικά παραδείγματα όλων των φυσικών (δηλ. μη αντιστρεπτών μεταβολών). Ερωτηση: Εξηγείστε πως οι έννοιες της εντροπίας και του 2ου θερμοδ. αξιώματος μας διδάσκουν ότι είναι πολύ δύσκολο να αντιστρέψουμε την ρύπανση του φυσικού μας περιβάλλοντος, αφού αυτή έχει συμβεί. Παράδειγμα ανάμειξης ζεστού και κρύου νερού: Θα μπορούσαμε να χρησιμοποιήσουμε το ζεστό και το κρύο νερό ως δεξαμενές υψηλής και χαμηλής θερμοκρασίας αντίστοιχα μιας θερμικής μηχανής και να κερδίσουμε κάποιο μηχανικό έργο. Αλλά από τη στιγμή που το ζεστό και το κρύο έχουν αναμειχθεί και έχει αποκατασταθεί ομοιόμορφη θερμοκρασία, η ευκαιρία της μετατροπής θερμότητας σε μηχανικό έργο έχει χαθεί ανεπιστρεπτί. Το χλιαρό νερό δεν πρόκειται να διαχωριστεί από μόνο του σε θερμότερα και ψυχρότερα μέρη. Σύμφωνα και με το 1 ο ΘΑ καμία ελάττωση σε ενέργεια δεν παρατηρείται όταν αναμειχθεί το ζεστό και το κρύο νερό. Αυτό που χάνεται δεν είναι ενέργεια αλλά δυνατότητα μετατροπής μέρους της θερμότητας από το ζεστό σε μηχανικό έργο. Όταν αυξάνει η εντροπία τόσο ελαττώνεται η διαθέσιμη ενέργεια και το σύμπαν έχει γίνει περισσότερο τυχαίο ή «αποδιοργανωμένο».

14 Εντροπία και τυχαιότητα Μίξη δύο υγρών Με την ανάμειξη των δύο υγρών (φυσική μη αντιστρεπτή μεταβολή) η συνολική εντροπία αυξάνεται γιατί αυξάνεται η αταξία του συστήματος. Ο αριθμός των πιθανών μικρο - καταστάσεων (πιθανών συνδυασμών της θέσης και της ταχύτητας των μορίων) αυξάνεται, επειδή έχουμε δύο είδη μορίων σε ανάμειξη. Το άθροισμα των πιθανών συνδυασμών των σχετικών θέσεων μεταξύ των μορίων του κάθε υγρού ξεχωριστά είναι μικρότερο από τον συνολικό αριθμό πιθανών συνδυασμών μετά την ανάμειξη, επειδή τώρα κάθε μόριο μπορεί να περιβάλλεται και από διαφορετικά μόρια (του άλλου υγρού). Ετσι η επιστροφή στην αρχική κατάσταση είναι πολύ απίθανη (εως αδύνατη), όπως όταν ανακατεύουμε τα χαρτιά μιας τράπουλας που αρχικά ήταν τακτοποιημένα.

15 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Κλασική Θερμοδυναμική Ορίζουμε την απειροστή μεταβολή της εντροπίας ds κατά τη διάρκεια μιας αντιστρεπτής μεταβολής σε απόλυτη θερμοκρασία Τ: ds dq T S S2 S1 Αντιστρεπτή ισόθερμη μεταβολή Q T Μονάδες: 1 J/K ή ή kcal/k. Συχνά εκφράζεται και με γραμμομοριακές μονάδες όπως kcal/(mol.k). ds είναι η μεταβολή της εντροπίας και dq η θερμότητα που προσφέρεται ή απάγεται αντιστρεπτά (υπό σταθερή Τ). Ο ορισμός αυτός της εντροπίας αναφέρεται σε μεταβολές της και όχι σε απόλυτες τιμές της (όπως αυτός της στατιστικής μηχανικής). Όταν ένα σύστημα μεταβαίνει από μια αρχική κατάσταση με εντροπία S 1 σε μια τελική κατάσταση με εντροπία S 2, η μεταβολή στην εντροπία ΔS = S 2 - S 1, δεν εξαρτάται από τη διαδρομή αλλά από την αρχική κατάσταση στην τελική.

16 ΕΝΤΡΟΠΙΑ ΚΑΙ ΤΟ 2ο ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Όπως και με την εσωτερική ενέργεια ορίζεται μόνο η μεταβολή της εντροπίας σε μια δεδομένη φυσική μεταβολή. Μπορούμε αυθαίρετα να αποδώσουμε μια τιμή στην εντροπία ενός συστήματος σε μια συγκεκριμένη κατάσταση αναφοράς και στη συνέχεια να υπολογίσουμε την εντροπία οποιασδήποτε άλλης κατάστασης ως προς την κατάσταση αναφοράς. Κλασική Θερμοδυναμική ds dq T Αντιστρεπτή ισόθερμη μεταβολή Το γεγονός ότι η εντροπία είναι μια συνάρτηση της κατάστασης του συστήματος μόνο μας δείχνει πως να υπολογίζουμε τις μεταβολές της εντροπίας σε μη αντιστρεπτές φυσικές μεταβολές (καταστάσεις μη ισορροπίας) για τις οποίες η ΔS = δq/t δεν ισχύει. Απλά επινοούμε μια διαδρομή η οποία συνδέει την αρχική και την τελική κατάσταση που δίνονται και η οποία αποτελείται αποκλειστικά από αντιστρεπτές μεταβολές ισορροπίας. Στη συνέχεια υπολογίζουμε την ολική μεταβολή της εντροπίας για τη διαδρομή αυτή.

17 ΠΑΡΑΔΕΙΓΜΑ. Το λιώσιμο του πάγου στο ποτήρι της εικόνας αποτελεί ένα παράδειγμα της αύξησης της εντροπίας σε ένα μικρό σύστημα. Το θερμοδυναμικό αυτό σύστημα αποτελείται από το περιβάλλον (το δωμάτιο σε συνήθη θερμοκρασία) και το ποτήρι που περιέχει αρχικά 10 παγάκια και καθόλου νερό σε υρή φάση. Σε αυτό το σύστημα θερμότητα από το περιβάλλον που βρίσκεται σε θερμοκρασία 298 Κ (25 C) μεταφέρεται στο ψυχρότερο σύστημα του πάγου που τήκεται σε υγρό νερό και βρίσκεται στη σταθερή θερμοκρασία τήξης πάγου Τ = 273 Κ (0 C). Η αύξηση της εντροπίας του συστήματος νερού πάγου είναι Q/273 K. Η θερμότητα Q είναι εκείνη που απαιτείται για την τήξη του πάγου: Q = m π L f. Η θερμότητα τήξης του πάγου είναι L f = 3,34 x 10 5 J/kg. Έτσι, π.χ για 10 παγάκια 10 g το καθένα η αύξηση της εντροπίας του συστήματος νερού-πάγου είναι: S 3 5 Q ,34 10 J S2 S1 122,34 T 273 K J / K

18 Αυτή η αύξηση αντιστοιχεί σε αύξηση της αταξίας όταν τα μόρια του νερού μεταβαίνουν από μία διατεταγμένη κατάσταση κρυσταλλικού στερεού στην κατά πολύ πιο άτακτη κατάσταση του υγρού. ή καλύτερα στο «άπλωμα» και την τελική κατανομή της ενέργειας ευρύτερα σε όλη την περιοχή που καταλαμβάνει το υγρό νερό μέσα στο ποτήρι συγκριτικά με την αρχική περισσότερο τοπικά εντοπισμένη ενέργεια στη διάταξη του πάγου. Σε οποιαδήποτε ισόθερμη αντιστρεπτή μεταβολή η μεταβολή της εντροπίας είναι ίση προς το πηλίκο της θερμότητας που διαδίδεται προς την απόλυτη θερμοκρασία. Εάν πάγωνε αντίστοιχη μάζα νερού (100 g), η μεταβολή στην εντροπία θα ήταν: ΔS = - 122,3 J/Κ Θα πρέπει να τονιστεί ότι η εντροπία του περιβάλλοντος (δωματίου) μειώνεται λιγότερο από την αύξηση της εντροπίας του συστήματος νερού-πάγου. Η θερμοκρασία δωματίου των 298 Κ είναι υψηλότερη από αυτή των 273 Κ και επομένως: ΔS περιβάλλοντος = Q/298 K < ΔS σύστημα νερού-πάγου = Q/273 K Αυτό είναι πάντα αληθές για αυθόρμητα γεγονότα σε ένα θερμοδυναμικό σύστημα και φανερώνει τη σημασία της εντροπίας για τη πρόβλεψη της πορείας τέτοιων γεγονότων αφού: η ολική τελική εντροπία μετά από ένα αυθόρμητο γεγονός είναι πάντα μεγαλύτερη από την αρχική της τιμή.

19 Θέματα παλαιών εξετάσεων 1) Τι από τα παρακάτω ισχύει για την εντροπία S μιας ποσότητας ουσίας σε στερεή (σ), υγρή (υ) και αέρια (α) φάση; Α. S σ < S υ < S α B. S σ > S υ > S α Γ. S σ < 0, S α > 0 Δ. S σ =S υ = S α 2) Δυο κυβικά μέτρα πάγου θερμαίνονται απο μια πηγή, τήκονται και μετατρέπονται σε νερό. Πόση θα είναι η μεταβολή της εντροπίας του πάγου; Αν η τήξη γίνει με πηγή μισής ισχύος, σε διπλάσιο χρόνο, πόση θα είναι η μεταβολή της εντροπίας; Η πυκνότητα του πάγου είναι 0,9167 g/cm³. 3) Μια ατσαλένια ράβδος ( θερμοχωρητικότητας c = 0,113 cal/g K), μάζας 5 Kg και θερμοκρασίας 300 C βυθίζεται στη θάλασσα (άπειρη θερμοχωρητικότητα) που έχει θερμοκρασία 27 C. Α. Είναι αντιστρεπτή η ψύξη της ράβδου; Β. Ποια η μεταβολή ΔU της εσωτερικής ενέργειας ; (1)της ράβδου (2)της θάλασσας Γ. Ποια η μεταβολή ΔS της εντροπίας της ράβδου; Ποια η φυσική σημασία του προσήμου του ΔS; Δ. Ποια η μεταβολή ΔS της εντροπίας του σύμπαντος; Ποια η φυσική σημασία του προσήμου του ΔS;

20 Η ΕΛΕΥΘΕΡΗ ΕΝΕΡΓΕΙΑ GIBBS Εσωτερική ενέργεια U Ενθαλπία Η = U + PV Η ελεύθερη ενέργεια Gibbs, G, μέγεθος για την ενέργεια ιδιαίτερα χρήσιμο για ανοιχτά συστήματα σε σταθερή θερμοκρασία και πίεση, όπως είναι συνήθως οι συνθήκες στη βιολογία. Ορίζεται ως: G = H TS = U + PV TS Σε συνθήκες σταθερής p καιt, οι μόνες ενεργειακές μεταβολές που μπορούν να συμβούν σε ένα ανοιχτό σύστημα, είναι έργο PΔV, ροή θερμότητας από ή προς το περιβάλλον και άλλες μορφές ωφέλιμου έργου, όπως χημικό ή ηλεκτρικό. Σε τέτοιες συνθήκες, οι μεταβολές της ελεύθερης ενέργειας εκφράζουν τις ενεργειακές μεταβολές που αφορούν μόνο «ωφέλιμο» έργο. Έτσι, ο όρος «ελεύθερη» σημαίνει διαθέσιμη ενέργεια για παραγωγή ωφέλιμου έργου. Αποδεικνύεται ότι σε σύστημα που τείνει να έρθει σε ισορροπία, η ελεύθερη ενέργεια Gibbs πάντα μειώνεται και ελαχιστοποιείται στη θέση ισορροπίας.

21 Η ΕΛΕΥΘΕΡΗ ΕΝΕΡΓΕΙΑ GIBBS Η ελεύθερη ενέργεια ενός ανοιχτού συστήματος τείνει να μειωθεί και τα γεγονότα (όπως οι χημικές αντιδράσεις) που οδηγούν σε μείωση της ελεύθερης ενέργειας, συμβαίνουν αυθόρμητα. Σε μια ισόθερμη μεταβολή ισχύει ΔG = ΔΗ ΤΔS και επομένως το αν η μεταβολή θα οδηγήσει σε αύξηση ή μείωση της ελεύθερης ενέργειας εξαρτάται από το πρόσημο της ΔΗ και της ΔS. Για ένα συγκεκριμένο σύστημα μπορούμε να διακρίνουμε τέσσερις πιθανές περιπτώσεις: Αυθόρμητες και μη αυθόρμητες θερμοδυναμικές μεταβολές

22 Θέμα παλαιών εξετάσεων Η μεταβολή της ενθαλπίας κατά την τήξη μιας ουσίας είναι ΔΗ=29,8 KJ/mole και της εντροπίας ΔS=65,4 J/ mole K. α) Στην θερμοκρασία 100 C, η ουσία είναι στερεή η υγρή και γιατί; β) Πόση είναι η μεταβολή της εσωτερικής ενέργειας ανά μόριο κατά την τήξη ; Η πίεση και ο όγκος δεν μεταβάλλονται. γ) Στην συγκεκριμένη περίπτωση η μεταβολή αυτή (στο ερώτημα (β)) είναι μεταβολή : Α) κινητικής ενέργειας του μορίου Β) δυναμικής ενέργειας του μορίου Γ) κινητικής και δυναμικής ενέργειας του μορίου Δ) τίποτα από τα παραπάνω δ) Τι σχέση εχει η τιμή που βρήκατε στο (β) με τους δεσμούς ανάμεσα στα μόρια;

23 ΕΛΕΥΘΕΡΗ ΕΝΕΡΓΕΙΑ GIBBS ΣΧΕΣΗ ΜΕ K eq Η ελεύθερη ενέργεια ΔG o ενός συστήματος συνδέεται με την σταθερά χημικής ισορροπίας K eq μιας χημικής αντίδρασης σε κανονικές συνθήκες με την σχέση ΔG o = -RTlnK eq Αν Κ eq > 1 τοτε ΔG o < 0 αυθόρμητη αντίδραση (εξώθερμη) Αν Κ eq < 1 τοτε ΔG o > 0 μη αυθόρμητη αντίδραση (ενδόθερμη) Λύνοντας ως προς Κ eq βρισκουμε Κ eq =e -ΔGo /RT O παράγοντας Boltzmann (e -ΔGo /RT ) εκφράζει τον λόγο των πληθυσμών 2 καταστάσεων που διαχωρίζονται από ενέργεια ΔG o ε

24 Η ΕΛΕΥΘΕΡΗ ΕΝΕΡΓΕΙΑ GIBBS Κινητική αντιδράσεων Ενέργεια ενεργοποίησης Μεταβατικό σύμπλοκο Κ eq =e ΔG ο αντίδρασης -ΔGo /RT Αν η ενέργεια ενεργοποίησης είναι μικρή, λεμε οτι η αντίδραση ειναι ελεγχόμενη από την διάχυση

25 Τα ένζυμα καταλύουν μια αντίδραση μειώνοντας την ενέργεια ενεργοποίησης ενζυμο ενζυμο Ενέργεια ενεργοποίησης Πορεία αντίδρασης

26 ΠΑΡΑΔΕΙΓΜΑ Μετουσίωση (denaturation) πρωτεϊνών Οι πρωτεΐνες στη φυσική τους μορφή έχουν μοναδικές διαμορφώσεις που αποτελούνται από περιοχές μεγαλύτερης (έλικες, β-πτυχωτές επιφάνειες) ή μικρότερης (τυχαίο σπείρωμα) δομικής τάξης. Τρία δομικά μοτίβα βιολογικών μακρομορίων: (a) α-έλικα, (b) β-πτυχωτή, και (c) διπλή έλικα. (d) Η πρωτεΐνη λυσοζύμη όπου σημειώνονται οι περιοχές α-έλικας (κόκκινο) και β-πτυχωτής (πράσινο) καθώς και τυχαίου σπειρώματος. (e) H αιμοσφαιρίνη που αποτελείται από τέσσερεις πανομοιότυπες υπομονάδες που σημειώνονται με διαφορετικά χρώματα.385

27 ΠΑΡΑΔΕΙΓΜΑ Μετουσίωση (denaturation) πρωτεϊνών Αν μια πρωτεΐνη θερμανθεί ήπια και προσλάβει αρκετή θερμική ενέργεια ώστε να σπάσουν οι ασθενέστεροι δεσμοί που συγκρατούν τη δευτεροταγή δομή της, όχι όμως και οι ομοιοπολικοί δεσμοί κατά μήκος της κύριας αλυσίδας, τότε η πρωτεΐνη μπορεί να χάσει τη συνολική τρισδιάστατη δομή της και να καταλήξει ολόκληρη σε ένα τυχαίο σπείρωμα (μετουσίωση). Συχνά, αυτές οι μετουσιωμένες πρωτεΐνες, με αργή ψύξη κάτω από ελεγχόμενες συνθήκες, μπορούν αυθόρμητα να ανακτήσουν την αρχική τρισδιάστατη δομή τους σχηματίζοντας φυσικές και λειτουργικές πρωτεΐνες.

28 ΠΑΡΑΔΕΙΓΜΑ Μετουσίωση (denaturation) πρωτεϊνών Η εντροπία αυξάνεται όταν μια πρωτεΐνη μετουσιώνεται και χάνει τη φυσική της διαμόρφωση (π.χ. ελικοειδή). Αυτό οφείλεται στο γεγονός ότι το σπείρωμα (coil) είναι πολύ πιο τυχαία δομή, με πολύ περισσότερους τρόπους κατανομής της ενέργειάς του, και επομένως πολύ μεγαλύτερο στατιστικό βάρος Ω και εντροπία. Αν θεωρήσουμε ως αρχική κατάσταση την ελικοειδή δομή, μπορούμε να γράψουμε για τη μεταβολή της εντροπίας, ΔS coil > 0. Για να σπάσουν οι δεσμοί που συγκρατούν τη δευτεροταγή δομή και να καταλήξει έτσι η έλικα σε σπείρωμα, θα πρέπει να εισρεύσει θερμότητα και επομένως ΔΗ coil > 0. Η ΔG μπορεί να είναι θετική σε χαμηλές θερμοκρασίες αλλά μπορεί να γίνει αρνητική σε επαρκώς υψηλές θερμοκρασίες. Έτσι η έλικα είναι σταθερή σε χαμηλές θερμοκρασίες ενώ το σπείρωμα σε υψηλότερες θερμοκρασίες.

29 ΠΑΡΑΔΕΙΓΜΑ Μετουσίωση (denaturation) πρωτεϊνών. Θερμοκρασία τήξης πρωτεινης

ΤΟ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ

ΤΟ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ ΤΟ ΠΡΩΤΟ ΘΕΡΜΟΔΥΝΑΜΙΚΟ ΑΞΙΩΜΑ Το πρώτο θερμοδυναμικό αξίωμα είναι μια έκφραση της διατήρησης της ενέργειας για θερμοδυναμικά συστήματα. Εάν ένα κλειστό σύστημα αλληλεπιδρά με το περιβάλλον μπορεί να αυξήσει

Διαβάστε περισσότερα

Α Θερμοδυναμικός Νόμος

Α Θερμοδυναμικός Νόμος Α Θερμοδυναμικός Νόμος Θερμότητα Έχουμε ήδη αναφέρει ότι πρόκειται για έναν τρόπο μεταφορά ενέργειας που βασίζεται στη διαφορά θερμοκρασιών μεταξύ των σωμάτων. Ορίζεται από τη σχέση: Έργο dw F dx F dx

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ θερµι µ κή µ η µ χα χ ν α ή ενεργό υλικό Κυκλική µεταβολή

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ θερµι µ κή µ η µ χα χ ν α ή ενεργό υλικό Κυκλική µεταβολή ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ ιάγραµµα ροής ενέργειας σε µια θερµική µηχανή (=διάταξη που µεταφέρει µέρος της θερµότητας σε µηχανική ενέργεια. Περιέχει ενεργό υλικόδηλ., µια ποσότητα ύλης στο εσωτερικό της που υποβάλλεται

Διαβάστε περισσότερα

Course: Renewable Energy Sources

Course: Renewable Energy Sources Course: Renewable Energy Sources Interdisciplinary programme of postgraduate studies Environment & Development, National Technical University of Athens C.J. Koroneos (koroneos@aix.meng.auth.gr) G. Xydis

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

7 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. Α/Α Μετατροπή. 2. Οι μαθητές θα πρέπει να μετρήσουν τη μάζα

7 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. Α/Α Μετατροπή. 2. Οι μαθητές θα πρέπει να μετρήσουν τη μάζα ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 7 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 15 Μαΐου, 2011 Ώρα: 11:00-13:30 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ 1. Α/Α Μετατροπή 1 2h= 2.60= 120 min Χρόνος 2 4500m= 4,5 km Μήκος 3 2m 3

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ)

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΘΕΡΜΟΔΥΝΑΜΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΗ ΣΤΙΣ Μ.Ε.Κ. Μ.Ε.Κ. Ι (Θ) Διαλέξεις Μ4, ΤΕΙ Χαλκίδας Επικ. Καθηγ. Δρ. Μηχ. Α. Φατσής ΣΚΟΠΟΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Το «φρεσκάρισμα» των γνώσεων από τη Θερμοδυναμική με σκοπό

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ

ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) Α. ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ ΜΑΘΗΜΑ - VI ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ Ι (ΚΛΑΣΙΚΗ ΜΗΧΑΝΙΚΗ) ΑΣΚΗΣΗ Α3 - Θερµοχωρητικότητα αερίων Προσδιορισµός του Αδιαβατικού συντελεστή γ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

Οργανική Χημεία. Κεφάλαιο 5: Επισκόπηση οργανικών αντιδράσεων

Οργανική Χημεία. Κεφάλαιο 5: Επισκόπηση οργανικών αντιδράσεων Οργανική Χημεία Κεφάλαιο 5: Επισκόπηση οργανικών αντιδράσεων 1. Κατηγορίες οργανικών αντιδράσεων Γενικά, εξετάζουμε το είδος της αντίδρασης και τον τρόπο που αυτές συντελούνται Γενικοί τύποι αντιδράσεων

Διαβάστε περισσότερα

Επαναληπτικό Χριστουγέννων Β Λυκείου

Επαναληπτικό Χριστουγέννων Β Λυκείου Επαναληπτικό Χριστουγέννων Β Λυκείου 1.Ποιά από τις παρακάτω προτάσεις είναι σωστή ; Σύµφωνα µε τον 1ο θερµοδυναµικό νόµο το ποσό της θερµότητας που απορροφά η αποβάλει ένα θερµοδυναµικό σύστηµα είναι

Διαβάστε περισσότερα

Θερµότητα χρόνος θέρµανσης. Εξάρτηση από είδος (c) του σώµατος. Μονάδα: Joule. Του χρόνου στον οποίο το σώµα θερµαίνεται

Θερµότητα χρόνος θέρµανσης. Εξάρτηση από είδος (c) του σώµατος. Μονάδα: Joule. Του χρόνου στον οποίο το σώµα θερµαίνεται 1 2 Θερµότητα χρόνος θέρµανσης Εξάρτηση από είδος (c) του σώµατος Αν ένα σώµα θερµαίνεται από µια θερµική πηγή (γκαζάκι, ηλεκτρικό µάτι), τότε η θερµότητα (Q) που απορροφάται από το σώµα είναι ανάλογη

Διαβάστε περισσότερα

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου;

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου; E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ 1. Β2.25 Θερµική µηχανή είναι, α) το τρόλεϊ; β) ο φούρνος; γ) το ποδήλατο; δ) ο κινητήρας του αεροπλάνου; Επιλέξτε τη σωστή απάντηση. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ - 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ - 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 6 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΓΥΜΝΑΣΙΟΥ Κυριακή, 16 Μαΐου 2010 Ώρα : 10:00-12:30 Προτεινόμενες λύσεις ΘΕΜΑ 1 0 (12 μονάδες) Για τη μέτρηση της πυκνότητας ομοιογενούς πέτρας (στερεού

Διαβάστε περισσότερα

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Οι ιδιότητες των αερίων και καταστατικές εξισώσεις. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι ιδιότητες των αερίων και καταστατικές εξισώσεις Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Τι είναι αέριο; Λέμε ότι μία ουσία βρίσκεται στην αέρια κατάσταση όταν αυθόρμητα

Διαβάστε περισσότερα

Εισαγωγή στην πυρηνοποίηση. http://users.auth.gr/~paloura/ Ομο- & ετερογενής πυρηνοποίηση: αρχικά στάδια ανάπτυξης υλικών ή σχηματισμού νέας φάσης.

Εισαγωγή στην πυρηνοποίηση. http://users.auth.gr/~paloura/ Ομο- & ετερογενής πυρηνοποίηση: αρχικά στάδια ανάπτυξης υλικών ή σχηματισμού νέας φάσης. Εισαγωγή στην πυρηνοποίηση. http://users.auth.gr/~paloura/ Αντικείμενο Ομο- & ετερογενής πυρηνοποίηση: αρχικά στάδια ανάπτυξης υλικών ή σχηματισμού νέας φάσης. Ομογενής πυρηνοποίηση: αυθόρμητος σχηματισμός

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ

ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ ΘΕΡΜΟΔΥΝΑΜΙΚΕΣ ΜΕΤΑΒΟΛΕΣ Η ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΤΩΝ ΤΕΛΕΙΩΝ ΑΕΡΙΩΝ Η εξίσωση αυτή εκφράζει μια σχέση μεταξύ της πίεσης, της θερμοκρασίας και του ειδικού όγκου. P v = R Όπου P = πίεση σε Pascal v = Ο ειδικός

Διαβάστε περισσότερα

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ

6.2. ΤΗΞΗ ΚΑΙ ΠΗΞΗ, ΛΑΝΘΑΝΟΥΣΕΣ ΘΕΡΜΟΤΗΤΕΣ 45 6.1. ΓΕΝΙΚΑ ΠΕΡΙ ΦΑΣΕΩΝ ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΕΩΝ Όλα τα σώµατα,στερεά -ά-αέρια, που υπάρχουν στη φύση βρίσκονται σε µια από τις τρεις φάσεις ή σε δύο ή και τις τρεις. Όλα τα σώµατα µπορεί να αλλάξουν φάση

Διαβάστε περισσότερα

Ο πρώτος νόμος της Θερμοδυναμικής. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι

Ο πρώτος νόμος της Θερμοδυναμικής. Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Ο πρώτος νόμος της Θερμοδυναμικής Θεόδωρος Λαζαρίδης Σημειώσεις για τις παραδόσεις του μαθήματος Φυσικοχημεία Ι Οι έννοιες Το θερμοδυναμικό σύστημα ή απλά σύστημα είναι η περιοχή του σύμπαντος που μας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ.

ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ. ΚΕΦΑΛΑΙΟ 2 ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΚΑΘΑΡΩΝ ΟΥΣΙΩΝ. 2.1 Η ΕΝΝΟΙΑ ΤΗΣ ΚΑΘΑΡΗΣ ΟΥΣΙΑΣ. Μια ουσία της οποίας η χημική σύσταση παραμένει σταθερή σε όλη της την έκταση ονομάζεται καθαρή ουσία. Δεν είναι υποχρεωτικό να

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 Α4 και δίπλα το γράμμα

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: Εσωτερική ενέργεια: Το άθροισμα της κινητικής (εσωτερική κινητική ενέργεια ή θερμική ενέργεια τυχαία, μη συλλογική κίνηση) και δυναμικής ενέργειας (δεσμών κλπ) όλων των σωματιδίων (ατόμων ή μορίων) του

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε ΔΙΑΓΩΝΙΣΜΑ Α Θέµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων, η πίεση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ

Generated by Foxit PDF Creator Foxit Software http://www.foxitsoftware.com For evaluation only. ΑΣΚΗΣΗ ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΑΣΚΗΣΗ 13 ΜΕΤΡΗΣΗ ΤΗΣ ΕΙΔΙΚΗΣ ΘΕΡΜΟΤΗΤΑΣ ΥΓΡΟΥ ΜΕΡΟΣ ΠΡΩΤΟ ΒΑΣΙΚΕΣ ΘΕΩΡΗΤΙΚΕΣ ΓΝΩΣΕΙΣ 1.1. Εσωτερική ενέργεια Γνωρίζουμε ότι τα μόρια των αερίων κινούνται άτακτα και προς όλες τις διευθύνσεις με ταχύτητες,

Διαβάστε περισσότερα

ιαγώνισµα για το σπίτι

ιαγώνισµα για το σπίτι ιαγώνισµα για το σπίτι p 2 V Θέµα 1 ο Να εξηγήσετε γιατί στη µεταβολή 1 2 η γραµµοµοριακή θερµοχωρητικότητα του αερίου είναι µικρότερη από το µέγεθος C p και µεγαλύτερη από το C V Για τη δικαιολόγηση θα

Διαβάστε περισσότερα

Διάδοση Θερμότητας. (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία)

Διάδοση Θερμότητας. (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία) Διάδοση Θερμότητας (Αγωγή / Μεταφορά με τη βοήθεια ρευμάτων / Ακτινοβολία) Τρόποι διάδοσης θερμότητας Με αγωγή Με μεταφορά (με τη βοήθεια ρευμάτων) Με ακτινοβολία άλλα ΠΑΝΤΑ από το θερμότερο προς το ψυχρότερο

Διαβάστε περισσότερα

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ

ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ ΔΕΣΜΕΥΜΕΝΕΣ Ή ΥΠΟ ΣΥΝΘΗΚΗ ΠΙΘΑΝΟΤΗΤΕΣ Έστω ότι επιθυμούμε να μελετήσουμε ένα τυχαίο πείραμα με δειγματικό χώρο Ω και έστω η πιθανότητα να συμβεί ένα ενδεχόμενο Α Ω Υπάρχουν περιπτώσεις όπου ενώ δεν γνωρίζουμε

Διαβάστε περισσότερα

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ . ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ 1. Σε µια ισόθερµη µεταβολή : α) Το αέριο µεταβάλλεται µε σταθερή θερµότητα β) Η µεταβολή της εσωτερικής ενέργειας είναι µηδέν V W = PV ln V γ) Το έργο που παράγεται δίνεται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

ΟΙ ΑΛΛΑΓΕΣ ΚΑΤΑΣΤΑΣΗΣ ΤΟΥ ΝΕΡΟΥ Ο «ΚΥΚΛΟΣ» ΤΟΥ ΝΕΡΟΥ

ΟΙ ΑΛΛΑΓΕΣ ΚΑΤΑΣΤΑΣΗΣ ΤΟΥ ΝΕΡΟΥ Ο «ΚΥΚΛΟΣ» ΤΟΥ ΝΕΡΟΥ ΟΙ ΑΛΛΑΓΕΣ ΚΑΤΑΣΤΑΣΗΣ ΤΟΥ ΝΕΡΟΥ Ο «ΚΥΚΛΟΣ» ΤΟΥ ΝΕΡΟΥ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 6 Τι πρέπει να γνωρίζεις Θεωρία 6.1 Να αναφέρεις τις τρεις φυσικές καταστάσεις στις οποίες μπορεί να βρεθεί ένα υλικό σώμα. Όπως και

Διαβάστε περισσότερα

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac;

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac; Τάξη : Β ΛΥΚΕΙΟΥ Μάθημα : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Εξεταστέα Ύλη : Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση Καθηγητής : Mάρθα Μπαμπαλιούτα Ημερομηνία : 14/10/2012 ΘΕΜΑ 1 ο 1. Ποιο από τα παρακάτω διαγράμματα

Διαβάστε περισσότερα

7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ

7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ 7ο Μάθημα Η ΠΥΚΝΟΤΗΤΑ ΕΝΟΣ ΥΛΙΚΟΥ Συμβαίνει κι αυτό: ο όγκος ενός σώματος να 'ναι μεγάλος, αλλά η μάζα του να 'ναι μικρή Από την καθημερινή μας ζωή, ξέρουμε τι σημαίνει πυκνό και αραιό: πυκνό δάσος, αραιά

Διαβάστε περισσότερα

Εισαγωγή στην Μεταφορά Θερμότητας

Εισαγωγή στην Μεταφορά Θερμότητας Εισαγωγή στην Μεταφορά Θερμότητας ΜΜΚ 312 Μεταφορά Θερμότητας Τμήμα Μηχανικών Μηχανολογίας και Κατασκευαστικής Διάλεξη 1 MMK 312 Μεταφορά Θερμότητας Κεφάλαιο 1 1 Μεταφορά Θερμότητας - Εισαγωγή Η θερμότητα

Διαβάστε περισσότερα

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς

Κεφάλαιο 2 Πιθανότητες. Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς Κεφάλαιο 2 Πιθανότητες Πέτρος Ε. Μαραβελάκης, Επίκουρος Καθηγητής, Πανεπιστήμιο Πειραιώς 2-2 2 Πιθανότητες Χρησιμοποιώντας την Στατιστική Βασικοί ορισμοί: Ενδεχόμενα, Δειγματικός χώρος και Πιθανότητες

Διαβάστε περισσότερα

ΟΡΓΑΝΙΚΕΣ ΟΥΣΙΕΣ. 1. (α) Ποιο μόριο απεικονίζεται στο σχεδιάγραμμα; (β) Ποια είναι η απλούστερη μορφή του R;

ΟΡΓΑΝΙΚΕΣ ΟΥΣΙΕΣ. 1. (α) Ποιο μόριο απεικονίζεται στο σχεδιάγραμμα; (β) Ποια είναι η απλούστερη μορφή του R; ΟΡΓΑΝΙΚΕΣ ΟΥΣΙΕΣ 1. (α) Ποιο μόριο απεικονίζεται στο σχεδιάγραμμα; (β) Ποια είναι η απλούστερη μορφή του R; (γ) Ποιο μέρος του μορίου προσδίδει σε αυτό όξινες ιδιότητες; (δ) Ποιο μέρος του μορίου προσδίδει

Διαβάστε περισσότερα

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α)

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) Α. ΝΟΜΟΙ ΑΕΡΙΩΝ 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) P = σταθ. V P 2) Ισόχωρη µεταβολή β) = σταθ. 3) Ισοβαρής µεταβολή γ) V

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΓΥΜΝΑΣΙΟΥ 1. Μετρήσεις μήκους Η μέση τιμή. 1. Ποια μεγέθη λέγονται φυσικά μεγέθη; Πως γίνεται η μέτρησή τους; Οι ποσότητες που μπορούν να μετρηθούν ονομάζονται φυσικά μεγέθη. Η μέτρησή

Διαβάστε περισσότερα

ΕΝΖΥΜΑ. 3. Στο σχήμα φαίνεται η υποθετική δράση ενός ενζύμου πάνω σε ένα υπόστρωμα και ο αναστολέας του.

ΕΝΖΥΜΑ. 3. Στο σχήμα φαίνεται η υποθετική δράση ενός ενζύμου πάνω σε ένα υπόστρωμα και ο αναστολέας του. ΕΝΖΥΜΑ 1. (α) Να εξηγήσετε τι εννοούμε με τον όρο «εξειδίκευση των ενζύμων» καθώς και που οφείλεται αυτή. (β) Ποιες ουσίες μπορούν να επηρεάσουν τη δράση ενός ενζύμου και πώς; (γ) Πώς τα ένζυμα επηρεάζουν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 Ο H XHΜΕΙΑ ΤΗΣ ΖΩΗΣ. Χημεία της ζωής 1

ΚΕΦΑΛΑΙΟ 2 Ο H XHΜΕΙΑ ΤΗΣ ΖΩΗΣ. Χημεία της ζωής 1 ΚΕΦΑΛΑΙΟ 2 Ο H XHΜΕΙΑ ΤΗΣ ΖΩΗΣ Χημεία της ζωής 1 2.1 ΒΑΣΙΚΕΣ ΧΗΜΙΚΕΣ ΕΝΝΟΙΕΣ Η Βιολογία μπορεί να μελετηθεί μέσα από πολλά και διαφορετικά επίπεδα. Οι βιοχημικοί, για παράδειγμα, ενδιαφέρονται περισσότερο

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

8. Θερμοκρασία και θερμότητα - Μεταβολές καταστάσεων της ύλης

8. Θερμοκρασία και θερμότητα - Μεταβολές καταστάσεων της ύλης 8. Θερμοκρασία και θερμότητα - Μεταβολές καταστάσεων της ύλης Φύλλο Εργασίας Τίτλος: Μεταβολές καταστάσεων της ύλης Γνωστικό Αντικείμενο: Μελέτη Περιβάλλοντος Διδακτική Ενότητα: Μεταβολές καταστάσεων της

Διαβάστε περισσότερα

1.4 Καταστάσεις της ύλης - Ιδιότητες της ύλης -Φυσικά και Χημικά φαινόμενα

1.4 Καταστάσεις της ύλης - Ιδιότητες της ύλης -Φυσικά και Χημικά φαινόμενα 1.4 Καταστάσεις της ύλης - Ιδιότητες της ύλης -Φυσικά και Χημικά φαινόμενα Μάθημα 4 Θεωρία Καταστάσεις της ύλης 4.1. Πόσες και ποιες είναι οι φυσικές καταστάσεις που μπορεί να έχει ένα υλικό σώμα; Τέσσερις.

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 έως Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΑ LASER ΤΜΗΜΑ ΟΠΤΙΚΗΣ & ΟΠΤΟΜΕΤΡΙΑΣ ΑΤΕΙ ΠΑΤΡΑΣ

ΤΕΧΝΟΛΟΓΙΑ LASER ΤΜΗΜΑ ΟΠΤΙΚΗΣ & ΟΠΤΟΜΕΤΡΙΑΣ ΑΤΕΙ ΠΑΤΡΑΣ ΤΕΧΝΟΛΟΓΙΑ LASER ΤΜΗΜΑ ΟΠΤΙΚΗΣ & ΟΠΤΟΜΕΤΡΙΑΣ ΑΤΕΙ ΠΑΤΡΑΣ «Ίσως το φως θα ναι μια νέα τυραννία. Ποιος ξέρει τι καινούρια πράγματα θα δείξει.» Κ.Π.Καβάφης ΑΡΧΕΣ ΛΕΙΤΟΥΡΓΙΑΣ ΤΟΥ LASER Εισαγωγικές Έννοιες

Διαβάστε περισσότερα

2 ο κεφάλαιο. φυσικές έννοιες. κινητήριες μηχανές

2 ο κεφάλαιο. φυσικές έννοιες. κινητήριες μηχανές 2 ο κεφάλαιο φυσικές έννοιες κινητήριες μηχανές 1. Τι μπορεί να προκαλέσει η επίδραση μιας δύναμης, πάνω σ ένα σώμα ; 21 Την μεταβολή της κινητικής του κατάστασης ή την παραμόρφωσή του. 2. Πώς καθορίζεται

Διαβάστε περισσότερα

Σοφία Κόττου Αναπλ. Καθηγήτρια Ιατρικής Φυσικής. Υπεύθυνος: Αφορά τη μελέτη των μακροσκοπικών συστημάτων

Σοφία Κόττου Αναπλ. Καθηγήτρια Ιατρικής Φυσικής. Υπεύθυνος: Αφορά τη μελέτη των μακροσκοπικών συστημάτων Αθήνα 2011 Υπεύθυνος: Σοφία Κόττου Αναπλ. Καθηγήτρια Ιατρικής Φυσικής 1 Θερμότητα Θερμοδυναμική Αφορά τη μελέτη των μακροσκοπικών συστημάτων δηλαδή συστήματα (τμήματα του σύμπαντος που μελετάμε) με πάρα

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια 1 ΘΕΜΑ 1 ο Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ 1. οχείο σταθερού όγκου περιέχει ορισµένη ποσότητα ιδανικού αερίου. Αν θερµάνουµε το αέριο µέχρι να τετραπλασιαστεί η απόλυτη θερµοκρασία

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:.. Δημοτικό Σχολείο:.. Τάξη/Τμήμα:.. Εξεταστικό Κέντρο:...

Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:.. Δημοτικό Σχολείο:.. Τάξη/Τμήμα:.. Εξεταστικό Κέντρο:... Ε Όνομα και Επώνυμο:.. Όνομα Πατέρα: Όνομα Μητέρας:.. Δημοτικό Σχολείο:.. Τάξη/Τμήμα:.. Εξεταστικό Κέντρο:.... Παρατήρησε τα διάφορα φαινόμενα αλλαγής της φυσικής κατάστασης του νερού που σημειώνονται

Διαβάστε περισσότερα

ΜΕΡΟΣ Β ΔΙΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΘΕΡΜΟΤΗΤΑ ΑΠΟΡΡΟΦΗΣΗΣ ΤΩΝ ΙΝΩΝ

ΜΕΡΟΣ Β ΔΙΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΘΕΡΜΟΤΗΤΑ ΑΠΟΡΡΟΦΗΣΗΣ ΤΩΝ ΙΝΩΝ ΜΕΡΟΣ Β ΔΙΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΘΕΡΜΟΤΗΤΑ ΑΠΟΡΡΟΦΗΣΗΣ ΤΩΝ ΙΝΩΝ 2. 1. Διάδοση της θερμότητας Σύμφωνα με τον ορισμό της, θερμότητα είναι η ενέργεια που μεταβιβάζεται από ένα σώμα σε ένα άλλο μόνο λόγω διαφοράς

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΧΗΜΕΙΑΣ ΥΠΟΨΗΦΙΩΝ ΑΣΕΠ

ΘΕΜΑΤΑ ΧΗΜΕΙΑΣ ΥΠΟΨΗΦΙΩΝ ΑΣΕΠ ΘΕΜΑΤΑ ΧΗΜΕΙΑΣ ΥΠΟΨΗΦΙΩΝ ΑΣΕΠ Οι ερωτήσεις προέρχονται από την τράπεζα των χιλιάδων θεμάτων του συνεξεταζόμενου γνωστικού αντικειμένου Χημείας ΠΕ 04 που επιμελήθηκε η εξειδικευμένη ομάδα εισηγητών των

Διαβάστε περισσότερα

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια

Φυσική Γ Γυμνασίου - Κεφάλαιο 3: Ηλεκτρική Ενέργεια. ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια ΚΕΦΑΛΑΙΟ 3: Ηλεκτρική Ενέργεια (παράγραφοι ά φ 3.1 31& 3.6) 36) Φυσική Γ Γυμνασίου Εισαγωγή Τα σπουδαιότερα χαρακτηριστικά της ηλεκτρικής ενέργειας είναι η εύκολη μεταφορά της σε μεγάλες αποστάσεις και

Διαβάστε περισσότερα

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 5. Θερμοχημεία, είναι ο κλάδος της χημείας που μελετά τις μεταβολές ενέργειας που συνοδεύουν τις χημικές αντιδράσεις.

ΧΗΜΕΙΑ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 5. Θερμοχημεία, είναι ο κλάδος της χημείας που μελετά τις μεταβολές ενέργειας που συνοδεύουν τις χημικές αντιδράσεις. ΚΕΦΑΛΑΙΟ 5 ΘΕΡΜΟΧΗΜΕΙΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Θερμοχημεία, είναι ο κλάδος της χημείας που μελετά τις μεταβολές ενέργειας που συνοδεύουν τις χημικές αντιδράσεις. Ενθαλπία (Η), ονομάζεται η ολική ενέργεια ενός

Διαβάστε περισσότερα

Εργασία Βιολογίας 3.1 ΕΝΕΡΓΕΙΑ ΚΑΙ ΟΡΓΑΝΙΣΜΟΙ ΜΕΤΑΒΟΛΙΣΜΟΣ

Εργασία Βιολογίας 3.1 ΕΝΕΡΓΕΙΑ ΚΑΙ ΟΡΓΑΝΙΣΜΟΙ ΜΕΤΑΒΟΛΙΣΜΟΣ Εργασία Βιολογίας Καθηγητής: Πιτσιλαδής Β. Μαθητής: Μ. Νεκτάριος Τάξη: Β'2 Υλικό: Κεφάλαιο 3 3.1 ΕΝΕΡΓΕΙΑ ΚΑΙ ΟΡΓΑΝΙΣΜΟΙ ΜΕΤΑΒΟΛΙΣΜΟΣ Την ενέργεια και τα υλικά που οι οργανισμοί εξασφαλίζουν από το περιβάλλον

Διαβάστε περισσότερα

ΠΠΜ 477 ΠΑΡΑΚΤΙΑ ΜΗΧΑΝΙΚΗ

ΠΠΜ 477 ΠΑΡΑΚΤΙΑ ΜΗΧΑΝΙΚΗ ΠΠΜ 477 ΠΑΡΑΚΤΙΑ ΜΗΧΑΝΙΚΗ ΠΕΙΡΑΜΑΤΙΚΗ ΑΣΚΗΣΗ - ΣΥΜΠΕΡΙΦΟΡΑ ΝΕΡΟΥ ΟΜΑΔΑ:. ΗΜΕΡ. ΠΑΡΑΔΟΣΗΣ: 2 ΠΕΡΙΕΧΟΜΕΝΑ ΥΠΟΒΟΛΗ ΕΡΓΑΣΙΑΣ... ΠΕΡΙΛΗΨΗ... 1.0 ΕΙΣΑΓΩΓH... 2.0 ΑΣΚΗΣΕΙΣ 2.1. ΝΕΡΟ ΕΛΕΥΘΕΡΟ ΣΤΟ ΠΕ ΙΟ ΒΑΡΥΤΗΤΑΣ...

Διαβάστε περισσότερα

1.3 Δομικά σωματίδια της ύλης - Δομή ατόμου - Ατομικός αριθμός - Μαζικός αριθμός - Ισότοπα

1.3 Δομικά σωματίδια της ύλης - Δομή ατόμου - Ατομικός αριθμός - Μαζικός αριθμός - Ισότοπα 1.3 Δομικά σωματίδια της ύλης - Δομή ατόμου - Ατομικός αριθμός - Μαζικός αριθμός - Ισότοπα Θεωρία 3.1. Ποια είναι τα δομικά σωματίδια της ύλης; Τα άτομα, τα μόρια και τα ιόντα. 3.2. SOS Τι ονομάζεται άτομο

Διαβάστε περισσότερα

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ

ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ ΑΝΤΙΚΕΙΜΕΝΟ ΜΑΘΗΜΑΤΟΣ Χρήση τυχαίων µεταβλητών για την απεικόνιση εκβάσεων τυχαίου πειράµατος Κατανόηση της έννοιας κατανοµής πιθανοτήτων τυχαίας µεταβλητής Υπολογισµός της συνάρτηση κατανοµής πιθανοτήτων

Διαβάστε περισσότερα

Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009

Q 40 th International Physics Olympiad, Merida, Mexico, 12-19 July 2009 Q 40 th Intrnational Physis Olympiad, Mrida, Mxio, 1-19 July 009 ΘΕΩΡΗΤΙΚΟ ΠΡΟΒΛΗΜΑ No. 3 ΓΙΑΤΙ ΤΑ ΑΣΤΕΡΙΑ ΕΧΟΥΝ ΜΕΓΑΛΕΣ ΔΙΑΣΤΑΣΕΙΣ? Τα αστέρια είναι σφαίρες από ζεστό αέριο. Τα περισσότερα από αυτά λάμπουν

Διαβάστε περισσότερα

Χημεία θετικής κατεύθυνσης Β ΛΥΚΕΊΟΥ

Χημεία θετικής κατεύθυνσης Β ΛΥΚΕΊΟΥ Χημεία θετικής κατεύθυνσης Β ΛΥΚΕΊΟΥ Θέμα 1 ο πολλαπλής επιλογής 1. ε ποιο από τα υδατικά δ/τα : Δ1 - MgI 2 1 M, Δ2 С 6 H 12 O 6 1 M, Δ3 С 12 H 22 O 11 1 M, Δ4 - ΗI 1 M,που βρίσκονται σε επαφή με καθαρό

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤ-ΤΕΧΝ ΚΑΤΕΥΘΥΝΣΗΣ

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤ-ΤΕΧΝ ΚΑΤΕΥΘΥΝΣΗΣ ΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕ-ΕΧΝ ΚΑΕΥΘΥΝΣΗΣ Κινητική θεωρία των ιδανικών αερίων. Νόμος του Boyle (ισόθερμη μεταβή).σταθ. για σταθ.. Νόμος του hales (ισόχωρη μεταβή) p σταθ. για σταθ. 3. Νόμος του Gay-Lussac

Διαβάστε περισσότερα

Ι < Ι. Οπότε ο λαμπτήρας θα φωτοβολεί περισσότερο. Ο λαμπτήρα λειτουργεί κανονικά. συνεπώς το ρεύμα που τον διαρρέει είναι 1 Α.

Ι < Ι. Οπότε ο λαμπτήρας θα φωτοβολεί περισσότερο. Ο λαμπτήρα λειτουργεί κανονικά. συνεπώς το ρεύμα που τον διαρρέει είναι 1 Α. ΘΕΜΑ Α. Σωστή απάντηση είναι η α. Πριν το κλείσιμο του διακόπτη η αντίσταση του κυκλώματος είναι: λ, = Λ +. Μετά το κλείσιμο του διακόπτη η ολική αντίσταση είναι: λ, = Λ. Έτσι,,,, Ι < Ι. Οπότε ο λαμπτήρας

Διαβάστε περισσότερα

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd

Πιθανότητες. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Πιθανότητες Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 2 Ενότητα 2 η Πιθανότητες Σκοπός Ο σκοπός της 2 ης ενότητας είναι οι μαθητές να αναγνωρίζουν ένα πείραμα τύχης

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός

Γραμμικός Προγραμματισμός Γραμμικός Προγραμματισμός Εισαγωγή Το πρόβλημα του Σχεδιασμού στη Χημική Τεχνολογία και Βιομηχανία. Το συνολικό πρόβλημα του Σχεδιασμού, από μαθηματική άποψη ανάγεται σε ένα πρόβλημα επίλυσης συστήματος

Διαβάστε περισσότερα

Όπου Q η θερμότητα, C η θερμοχωρητικότητα και Δθ η διαφορά θερμοκρασίας.

Όπου Q η θερμότητα, C η θερμοχωρητικότητα και Δθ η διαφορά θερμοκρασίας. Άσκηση Η9 Θερμότητα Joule Θερμική ενέργεια Η θερμότητα μπορεί να είναι επιθυμητή π.χ. σε σώματα θέρμανσης. Αλλά μπορεί να είναι και αντιεπιθυμητή, π.χ. στους κινητήρες ή στους μετασχηματιστές. Θερμότητα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ - X ΗΛΕΚΤΡΟΛΥΣΗ ΑΣΚΗΣΗ Β11 - (Ι) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑ FARADAY ΑΣΚΗΣΗ Β11 - (ΙΙ) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΦΟΡΤΙΩΝ ΚΑΙ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΙΣΟ ΥΝΑΜΩΝ

ΜΑΘΗΜΑ - X ΗΛΕΚΤΡΟΛΥΣΗ ΑΣΚΗΣΗ Β11 - (Ι) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑ FARADAY ΑΣΚΗΣΗ Β11 - (ΙΙ) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΦΟΡΤΙΩΝ ΚΑΙ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΙΣΟ ΥΝΑΜΩΝ ΜΑΘΗΜΑ - X ΗΛΕΚΤΡΟΛΥΣΗ ΑΣΚΗΣΗ Β11 - (Ι) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΣΤΑΘΕΡΑΣ FARADAY ΑΣΚΗΣΗ Β11 - (ΙΙ) ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΦΟΡΤΙΩΝ ΚΑΙ ΗΛΕΚΤΡΟΧΗΜΙΚΩΝ ΙΣΟ ΥΝΑΜΩΝ Τµήµα Χηµείας, Πανεπιστήµιο Κρήτης, και Ινστιτούτο Ηλεκτρονικής

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΣΗΣΗ 5

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΣΗΣΗ 5 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΦΥΣΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΣΗΣΗ 5 Προσδιορισµός του ύψους του οραικού στρώµατος µε τη διάταξη lidar. Μπαλής

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Β Γυμνασίου >> Αρχική σελίδα ΕΝΕΡΓΕΙΙΑ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμ εε ααππααννττήή σσεει ιςς (σελ. 1 ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. 4 ΙΑΒΑΣΕ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ ΘΕΜΑ 1 ο 17/4/2015 Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

: Γ ΛΥΚΕΙΟΥ. : Φυσική γενικής παιδείας. Εξεταστέα Ύλη : : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ. Ημερομηνία : 07-12-2014 ΘΕΜΑ 1 Ο

: Γ ΛΥΚΕΙΟΥ. : Φυσική γενικής παιδείας. Εξεταστέα Ύλη : : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ. Ημερομηνία : 07-12-2014 ΘΕΜΑ 1 Ο Τάξη Μάθημα : Γ ΛΥΚΕΙΟΥ : Φυσική γενικής παιδείας Εξεταστέα Ύλη : Καθηγητής : ΝΙΚΟΛΟΠΟΥΛΟΣ ΧΡΗΣΤΟΣ Ημερομηνία : 07-12-2014 ΘΕΜΑ 1 Ο Στις παρακάτω ερωτήσεις να βρείτε τη σωστή απάντηση: Α. Σύμφωνα με το

Διαβάστε περισσότερα

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER

Θέμα: ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΙΣ ΔΙΑΚΡΙΤΕΣ ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΚΕΦΑΛΑΙΟ 7 ΒΙΒΛΙΟ KELLER ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθηγητής

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΕΣ & ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές. αυτό το βιβλίο αποτελεί ένα βοήθημα στην ύλη της Άλγεβρας Α Λυκείου, που είναι ένα από

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ ΕΝΕΡΓΕΙΑ-ΕΝΖΥΜΑ

ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ ΕΝΕΡΓΕΙΑ-ΕΝΖΥΜΑ ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ ΕΝΕΡΓΕΙΑ-ΕΝΖΥΜΑ 2013 2 ΕΝΕΡΓΕΙΑ-ΕΝΖΥΜΑ ΕΝΕΡΓΕΙΑ ΚΕΦΑΛΑΙΟ ΔΕΥΤΕΡΟ ΕΝΕΡΓΕΙΑ-ΕΝΖΥΜΑ Η Ενέργεια είναι δύσκολο να ορισθεί, αλλά μπορεί να θεωρηθεί ως η ικανότητα επιτέλεσης έργου ή η αιτία

Διαβάστε περισσότερα

ο αέρας, τα αέρια και η αέρια κατάσταση

ο αέρας, τα αέρια και η αέρια κατάσταση Ε Ν O Τ Η Τ Α ο αέρας, τα αέρια και η αέρια κατάσταση Α Α 1 ο ατμοσφαιρικός αέρας Α 2 τα άτομα και η ατομική δομή Α 3 τα μόρια και η μοριακή δομή Α.4 η χημική αντίδραση Α.5 το οξυγόνο και τα ευγενή αέρια

Διαβάστε περισσότερα

1.1 Για την ενέργεια γενικά

1.1 Για την ενέργεια γενικά 1 Μορφές ενέργειας ΣΧΗΜΑ 1 1.1 Για την ενέργεια γενικά Αν παρατηρήσεις καλά το σχήμα 1 και το σχήμα 2, θα δεις ότι ανάμεσα στο (α) και στο (β), στο καθένα, κάτι άλλαξε. Για να γίνει η άπνοια δυνατός άνεμος

Διαβάστε περισσότερα

Καταστατική εξίσωση ιδανικών αερίων

Καταστατική εξίσωση ιδανικών αερίων Καταστατική εξίσωση ιδανικών αερίων 21-1. Από τι εξαρτάται η συμπεριφορά των αερίων; Η συμπεριφορά των αερίων είναι περισσότερο απλή και ομοιόμορφη από τη συμπεριφορά των υγρών και των στερεών. Σε αντίθεση

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 2.4 Παράγοντες από τους οποίους εξαρτάται η αντίσταση ενός αγωγού Λέξεις κλειδιά: ειδική αντίσταση, μικροσκοπική ερμηνεία, μεταβλητός αντισ ροοστάτης, ποτενσιόμετρο 2.4 Παράγοντες που επηρεάζουν την

Διαβάστε περισσότερα

2. Ασκήσεις Θερμοδυναμικής. Ομάδα Γ.

2. Ασκήσεις Θερμοδυναμικής. Ομάδα Γ. . σκήσεις ς. Ομάδα..1. Ισοβαρής θέρμανση και έργο. Ένα αέριο θερμαίνεται ισοβαρώς από θερμοκρασία Τ 1 σε θερμοκρασία Τ, είτε κατά την μεταβολή, είτε κατά την μεταβολή Δ. i) Σε ποια μεταβολή παράγεται περισσότερο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ ΤΗΣ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ Η επιστήμη της Θερμοδυναμικής (Thermodynamics) συσχετίζεται με το ποσό της μεταφερόμενης ενέργειας (έργου ή θερμότητας) από ένα σύστημα προς ένα

Διαβάστε περισσότερα

1.5 Ταξινόμηση της ύλης

1.5 Ταξινόμηση της ύλης 1.5 Ταξινόμηση της ύλης Θεωρία 5.1. Πως ταξινομείται η ύλη; Η ύλη ταξινομείται σε καθαρές ή καθορισμένες ουσίες και μίγματα. Τα μίγματα ταξινομούνται σε ομογενή και ετερογενή. Οι καθορισμένες ουσίες ταξινομούνται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΗ ΛΥΕΙΟΥ ΘΕΤΙΗΣ Ι ΤΕΧ/ΗΣ ΤΕΥΘΥΝΣΗΣ ΘΕΜ : Στις ερωτήσεις - να γράψετε στο φύλλο απαντήσεων τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Στις ερωτήσεις -5 να γράψετε

Διαβάστε περισσότερα

Εύρεση της πυκνότητας στερεών και υγρών.

Εύρεση της πυκνότητας στερεών και υγρών. Μ4 Εύρεση της πυκνότητας στερεών και υγρών. 1 Σκοπός Στην άσκηση αυτή προσδιορίζεται πειραματικά η πυκνότητα του υλικού ενός στερεού σώματος. Το στερεό αυτό σώμα βυθίζεται ή επιπλέει σε υγρό γνωστής πυκνότητας

Διαβάστε περισσότερα

2). i = n i - n i - n i (2) 9-2

2). i = n i - n i - n i (2) 9-2 ΕΠΙΦΑΝΕΙΑΚΗ ΤΑΣΗ ΙΑΛΥΜΑΤΩΝ Έννοιες που πρέπει να γνωρίζετε: Εξίσωση Gbbs-Duhem, χηµικό δυναµικό συστατικού διαλύµατος Θέµα ασκήσεως: Μελέτη της εξάρτησης της επιφανειακής τάσης διαλυµάτων από την συγκέντρωση,

Διαβάστε περισσότερα

1. Εναλλάκτες θερµότητας (Heat Exchangers)

1. Εναλλάκτες θερµότητας (Heat Exchangers) 1. Εναλλάκτες θερµότητας (Heat Exangers) Οι εναλλάκτες θερµότητας είναι συσκευές µε τις οποίες επιτυγχάνεται η µεταφορά ενέργειας από ένα ρευστό υψηλής θερµοκρασίας σε ένα άλλο ρευστό χαµηλότερης θερµοκρασίας.

Διαβάστε περισσότερα

f = c p + 2 (1) f = 3 1 + 2 = 4 (2) x A + x B + x C = 1 (3) x A + x B + x Γ = 1 3-1

f = c p + 2 (1) f = 3 1 + 2 = 4 (2) x A + x B + x C = 1 (3) x A + x B + x Γ = 1 3-1 ΙΣΟΡΡΟΠΙΑ ΦΑΣΕΩΝ ΣΥΣΤΗΜΑΤΟΣ ΠΟΛΛΩΝ ΣΥΣΤΑΤΙΚΩΝ ΑΜΟΙΒΑΙΑ ΙΑΛΥΤΟΤΗΤΑ Θέµα ασκήσεως Προσδιορισµός καµπύλης διαλυτότητας σε διάγραµµα φάσεων συστήµατος τριών υγρών συστατικών που το ένα ζεύγος παρουσιάζει περιορισµένη

Διαβάστε περισσότερα

Συνοπτική Θεωρία Χημείας Α Λυκείου. Στοιχειομετρία. Σχετική ατομική μάζα σχετική μοριακή μάζα- mole- γραμμομοριακός όγκος

Συνοπτική Θεωρία Χημείας Α Λυκείου. Στοιχειομετρία. Σχετική ατομική μάζα σχετική μοριακή μάζα- mole- γραμμομοριακός όγκος 1 Web page www.a8eno.gr e-ail vrentzou@a8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή a8eno.gr Συνοπτική Θεωρία Χημείας Α Λυκείου Στοιχειομετρία Σχετική ατομική μάζα σχετική μοριακή

Διαβάστε περισσότερα

Οργανική Χημεία. Κεφάλαια 12 &13: Φασματοσκοπία μαζών και υπερύθρου

Οργανική Χημεία. Κεφάλαια 12 &13: Φασματοσκοπία μαζών και υπερύθρου Οργανική Χημεία Κεφάλαια 12 &13: Φασματοσκοπία μαζών και υπερύθρου 1. Γενικά Δυνατότητα προσδιορισμού δομών με σαφήνεια χρησιμοποιώντας τεχνικές φασματοσκοπίας Φασματοσκοπία μαζών Μέγεθος, μοριακός τύπος

Διαβάστε περισσότερα

ΥΠΟΔΕΙΓΜΑ ΘΕΩΡΗΤΙΚΩΝ ΕΡΩΤΗΣΕΩΝ ΕΞΕΤΑΣΕΩΝ

ΥΠΟΔΕΙΓΜΑ ΘΕΩΡΗΤΙΚΩΝ ΕΡΩΤΗΣΕΩΝ ΕΞΕΤΑΣΕΩΝ ΥΠΟΔΕΙΓΜΑ ΘΕΩΡΗΤΙΚΩΝ ΕΡΩΤΗΣΕΩΝ ΕΞΕΤΑΣΕΩΝ 1. Πώς ορίζεται η περίσσεια αέρα και η ισχύς μίγματος σε μία καύση; 2. Σε ποιές περιπτώσεις παρατηρείται μή μόνιμη μετάδοση της θερμότητας; 3. Τί είναι η αντλία

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5 ΕΝΕΡΓΕΙΑ ΚΑΙ ΘΕΡΜΟΤΗΤΑ

ΚΕΦΑΛΑΙΟ 5 ΕΝΕΡΓΕΙΑ ΚΑΙ ΘΕΡΜΟΤΗΤΑ ΚΕΦΑΛΑΙΟ 5 ΕΝΕΡΓΕΙΑ ΚΑΙ ΘΕΡΜΟΤΗΤΑ 5. Η εσωτερική ενέργεια Τα υλικά σώµατα αποτελούνται από δοµικούς λίθους, δηλαδή άτοµα, ιόντα ή µόρια. Kάθε δοµικός λίθος σώµατος διαθέτει δυναµική και κινητική ενέργεια.

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ Υποθέστε ότι έχουμε μερικά ακίνητα φορτισμένα σώματα (σχ.). Τα σώματα αυτά δημιουργούν γύρω τους ηλεκτρικό πεδίο. Αν σε κάποιο σημείο Α του ηλεκτρικού πεδίου τοποθετήσουμε ένα

Διαβάστε περισσότερα

ΜΗΧΑΝΙΣΜΟΙ ΚΥΤΤΑΡΙΚΗΣ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΔΙΑΠΕΡΑΤΟΤΗΤΑ

ΜΗΧΑΝΙΣΜΟΙ ΚΥΤΤΑΡΙΚΗΣ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΔΙΑΠΕΡΑΤΟΤΗΤΑ ΜΗΧΑΝΙΣΜΟΙ ΚΥΤΤΑΡΙΚΗΣ ΜΕΤΑΦΟΡΑΣ ΚΑΙ ΔΙΑΠΕΡΑΤΟΤΗΤΑ Διάχυση Η διάχυση είναι το κύριο φαινόμενο με το οποίο γίνεται η παθητική μεταφορά διαμέσου ενός διαχωριστικού φράγματος Γενικά στη διάχυση ένα αέριο ή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ

ΚΕΦΑΛΑΙΟ 1 Ο ΠΙΘΑΝΟΤΗΤΕΣ ΚΕΦΛΙΟ Ο ΠΙΘΝΟΤΗΤΕΣ. Εισαγωγή Στην Θεωρία Πιθανοτήτων, ξεκινάµε από το λεγόµενο πείραµα δηλαδή µια διαδικασία η οποία µπορεί να επαναληφθεί θεωρητικά άπειρες φορές, κάτω από τις ίδιες ουσιαστικά συνθήκες,

Διαβάστε περισσότερα

ΑΡΧΗ LE CHATELIER - ΔΙΑΛΥΤΟΤΗΤΑ

ΑΡΧΗ LE CHATELIER - ΔΙΑΛΥΤΟΤΗΤΑ ΑΡΧΗ LE CHATELIER - ΔΙΑΛΥΤΟΤΗΤΑ Σκοπός Εργαστηριακής Άσκησης Η παρατήρηση και η κατανόηση της Αρχής Le Chatelier και η μελέτη της διαλυτότητας των ιοντικών ενώσεων Θεωρητικό Μέρος Αρχή Le Chatelier Οι

Διαβάστε περισσότερα

α. Όταν από έναν αντιστάτη διέρχεται ηλεκτρικό ρεύμα, η θερμοκρασία του αυξάνεται Η αύξηση αυτή συνδέεται με αύξηση της θερμικής ενέργειας

α. Όταν από έναν αντιστάτη διέρχεται ηλεκτρικό ρεύμα, η θερμοκρασία του αυξάνεται Η αύξηση αυτή συνδέεται με αύξηση της θερμικής ενέργειας 1 3 ο κεφάλαιο : Απαντήσεις των ασκήσεων Χρησιμοποίησε και εφάρμοσε τις έννοιες που έμαθες: 1. Συμπλήρωσε τις λέξεις που λείπουν από το παρακάτω κείμενο, έτσι ώστε οι προτάσεις που προκύπτουν να είναι

Διαβάστε περισσότερα

ΘΕΡΜΙΚΗ ΑΠΟΔΟΣΗ ΤΟΙΧΟΥ TROMBE & ΤΟΙΧΟΥ ΜΑΖΑΣ ΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΩΣ ΔΕΞΑΜΕΝΗ ΝΕΡΟΥ ΜΕ ΤΟΙΧΩΜΑΤΑ ΑΠΟ ΜΑΡΜΑΡΟ

ΘΕΡΜΙΚΗ ΑΠΟΔΟΣΗ ΤΟΙΧΟΥ TROMBE & ΤΟΙΧΟΥ ΜΑΖΑΣ ΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΩΣ ΔΕΞΑΜΕΝΗ ΝΕΡΟΥ ΜΕ ΤΟΙΧΩΜΑΤΑ ΑΠΟ ΜΑΡΜΑΡΟ ΘΕΡΜΙΚΗ ΑΠΟΔΟΣΗ ΤΟΙΧΟΥ TROMBE & ΤΟΙΧΟΥ ΜΑΖΑΣ ΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΩΣ ΔΕΞΑΜΕΝΗ ΝΕΡΟΥ ΜΕ ΤΟΙΧΩΜΑΤΑ ΑΠΟ ΜΑΡΜΑΡΟ Α1) ΓΕΝΙΚΗ ΠΕΡΙΓΡΑΦΗ ΗΛΙΑΚΟΥ ΤΟΙΧΟΥ Ο ηλιακός τοίχος Trombe και ο ηλιακός τοίχος μάζας αποτελούν

Διαβάστε περισσότερα

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C.

Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. 4.1 Βασικές έννοιες Ατομική μονάδα μάζας (amu) ορίζεται ως το 1/12 της μάζας του ατόμου του άνθρακα 12 6 C. Σχετική ατομική μάζα ή ατομικό βάρος λέγεται ο αριθμός που δείχνει πόσες φορές είναι μεγαλύτερη

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Β Γυμνασίου >> Αρχική σελίδα ΔΥΝΑΜΗ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμ εε ααππααννττήή σσεει ιςς (σελ. 1) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. 5) ΙΑΒΑΣΕ

Διαβάστε περισσότερα

ΜΕΡΟΣ Α ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ-ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΗΣ ΥΓΡΟΣΚΟΠΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΙΝΩΝ

ΜΕΡΟΣ Α ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ-ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΗΣ ΥΓΡΟΣΚΟΠΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΙΝΩΝ ΜΕΡΟΣ Α ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ-ΜΕΤΑΤΡΟΠΕΣ ΦΑΣΗΣ ΥΓΡΟΣΚΟΠΙΚΕΣ ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΙΝΩΝ Εισαγωγή Τα περισσότερα είδη ινών είναι υγροσκοπικά, έχουν δηλαδή την ιδιότητα να απορροφούν υγρασία (υδρατμούς) όταν η ατμόσφαιρα

Διαβάστε περισσότερα

ΠΥΡΗΝΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ ΩΣ ΠΗΓΗ ΕΝΕΡΓΕΙΑΣ ΣΤΑ ΑΣΤΕΡΙΑ. 4 Η Ηe

ΠΥΡΗΝΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ ΩΣ ΠΗΓΗ ΕΝΕΡΓΕΙΑΣ ΣΤΑ ΑΣΤΕΡΙΑ. 4 Η Ηe ΠΥΡΗΝΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ ΩΣ ΠΗΓΗ ΕΝΕΡΓΕΙΑΣ ΣΤΑ ΑΣΤΕΡΙΑ Η ενέργεια στον Ήλιο (και στα άλλα αστέρια της Κύριας Ακολουθίας ) παράγεταi μέσω αντιδράσεων σύντηξης. Σύντηξη: πυρηνική αντίδραση μέσω της οποίας βαρείς

Διαβάστε περισσότερα

8 2.ΘΕΜΑ B 2-16138 Β.1

8 2.ΘΕΜΑ B 2-16138 Β.1 1 ΘΕΜΑ B Καταστατική εξίσωση των ιδανικών αερίων 1.ΘΕΜΑ Β 2-16146 Β.1 Μια ποσότητα ιδανικού αερίου βρίσκεται σε κατάσταση θερμοδυναμικής ισορροπίας, καταλαμβάνει όγκο V, έχει απόλυτη θερμοκρασία Τ, ενώ

Διαβάστε περισσότερα

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: AN EXPERIMENTAL BIOLOGY MYSEYM

ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: AN EXPERIMENTAL BIOLOGY MYSEYM Γενικό Λύκειο Μοιρών 2012-2013 ΕΡΕΥΝΗΤΙΚΗ ΕΡΓΑΣΙΑ: AN EXPERIMENTAL BIOLOGY MYSEYM ΩΣΜΩΣΗ-ΜΕΤΟΥΣΙΩΣΗ Γρηγοράκη Αγγελική Ντρετάκη Αγάπη Πηρουνάκη Στέλλα Πολυχρονάκη Παναγιώτα ΠΕΡΙΕΧΟΜΕΝΑ Εισαγωγή..3 Μεθοδολογία.4

Διαβάστε περισσότερα