Supporting Information for
|
|
- Κλυμένη Βιτάλης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Supporting Information for Acceptorless Dehydrogenation of N-Heterocycles and Secondary Alcohols by Ru(II)-NNC Complexes Bearing a Pyrazoyl-Indolyl-Pyridine Ligand Qingfu Wang,, Huining Chai,, and Zhengkun Yu*,, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian , People s Republic of China; University of Chinese Academy of Sciences, Beijing , People s Republic of China; State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai , People s Republic of China. zkyu@dicp.ac.cn Contents: 1. General considerations S2 2. X-Ray crystallographic studies S3 3. Analytical data S4 4. Copies of NMR spectra S16 S1
2 1. General considerations The spectroscopic features of known compounds 7a-7e, 1 7f, 2 7g, 3 7h, 1 7i-7j, 4 7k-7l, 1 7m, 5 7n, 6 7o, 3 7p-7q, 1 7r, 7 9a-9d, 1 9e, 8 9f-9j, 9 9k-9l, 10 9m, 11 9n, 12 11a-11b, 1 12a-12b, 1 14a, 13 14b, 14 14c, 15 14d-14j, 13 14k, 16 14l, 14 14m, 17 14n-14o, 18 14p, 17 14q, 19 and 14r 20 are in good agreement with those reported in the literatures. References (1) Wu, J.; Talwar, D.; Johnston, S.; Yan, M.; Xiao, J. Angew. Chem., Int. Ed. 2013, 52, (2) El-Damasy, A. K.; Seo, S. H.; Cho. N.-C.; Kang, S. B.; Pae, A. N.; Kim, K.-S.; Keum, G. J. Med. Chem. 2015, 101, (3) Mullick, K.; Biswas, S.; Angeles-Boza, A. M.; Suib, S. L. Chem. Commun. 2017, 53, (4) Kojima, M.; Kanai, M. Angew. Chem., Int. Ed. 2016, 55, (5) Brown, W. D.; Gouliaev, A. H. Synthesis 2002, 1, (6) Muthaiah, S.; Hong, S. H. Adv. Synth. Catal. 2012, 354, (7) Ucar, S.; Essiz, S.; Dastan, A. Tetrahedron 2017, 73, (8) Wang, X.-W.; Hua, Y.-Z.; Wang, M.-C. J. Org. Chem. 2016, 81, (9) He, K. H.; Tan, F. F.; Zhou, C. Z.; Zhou, G. J.; Yang, X. L.; Li, Y. Angew. Chem., Int. Chem. 2017, 56, (10) Zhang, J.; Chen, S.; Chen, F.; Xu, W.;Deng, G.-J.; Gong, H. Adv. Synth. Catal. 2012, 359, (11) Du, P.; Brosmer, J. L.; Peters, D. G. Org. Lett. 2011, 13, (12) Rodriguez-Dafonte, P.; Terrier, F.; Lakhdar, S.; Kurbatov, S.; Goumont, R. J. Org. Chem. 2009, 74, (13) Song, H.; Kang, B.; Hong, S. H. ACS Catal. 2014, 4, (14) Nelson, D. J.; Fernandez-Salas, J. A.; Truscott, B. J.; Nolan, S. P. Org. Biomol. Chem. 2014, 12, (15) Nobuta, T.; Hirashima, S.; Tada, N.; Miura, T.; Itoh, A. Org. Lett. 2011, 13, (16) Zhou, X.; Li, X.; Zhang, W.; Chen, J. Tetrahedron Lett. 2014, 55, (17) Baratta, W.; Bossi, G.; Putignano, E.; Rigo, P. Chem.-Eur. J. 2011, 17, S2
3 (18) Kawahara, R.; Fujita, K.; Yamaguchi, R. Angew. Chem., Int. Chem. 2012, 51, (19) Mo, F.; Lim, H. N.; Dong, G. J. Am. Chem. Soc. 2015, 137, (20) Li, X.; Wang, Y.; Gao, Y.; Li, L.; Guo, X.; Liu, D.; Jing, Y.; Zhao, L. Org. Biomol. Chem. 2014, 12, X-Ray crystallographic studies Figure S1. Molecular structure of 5b. Figure S1. Molecular structure of 5b. Table S1. Crystal data and structure refinement for 5b. Crystal system Monoclinic Space group P 21/c Unit cell dimensions a = (7) Å α= 90. b = (4) Å β= (3). c = (6) Å γ = 90. Volume (3) Å 3 Z 4 Density (calculated) Mg/m 3 Absorption coefficient mm -1 F(000) 1952 Crystal size x x mm 3 Theta range for data collection to Index ranges Reflections collected <=h<=28, -13<=k<=12, -24<=l<=24 S3
4 Independent reflections 9565 [R(int) = ] Completeness to theta = % Absorption correction 3. Analytical data Semi-empirical from equivalents Max. and min. transmission and Refinement method Full-matrix least-squares on F 2 Data / restraints / parameters 9565 / 1 / 575 Goodness-of-fit on F Final R indices [I>2sigma(I)] R1 = , wr2 = R indices (all data) R1 = , wr2 = Extinction coefficient n/a Largest diff. peak and hole and e.å -3 Quinoline (7a): colorless liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ (m, 1 H), (m, 2 H), 7.73 (dd, J = 8.9, 4.8 Hz, 1 H), (m, 1 H), (m, 1H), 7.30 (td, J = 8.2, 4.5 Hz, 1H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 150.3, 148.2, 136.0, 129.4, 129.4, 128.2, 127.8, 126.5, Methylquinoline (7b): yellow liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 7.99 (d, J = 8.5 Hz, 1 H), 7.93 (d, J = 8.3 Hz, 1 H), 7.68 (d, J = 8.0 Hz, 1 H), (m, 1 H), 7.40 (dd, J = 7.8, 7.1 Hz, 1 H), 7.18 (d, J = 8.4 Hz, 1 H), 2.68 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 158.9, 147.8, 136.1, 129.4, 128.6, 127.5, 126.4, 125.6, 121.9, N Ph 2-Phenylquinoline (7c): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ (m, 3 H), 7.94 (d, J = 8.6 Hz, 1 H), (m, 3 H), (m, 4 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 157.3, 148.3, 139.7, 136.7, 129.7, 129.6, 129.3, 128.8, 127.6, 127.5, 127.2, 126.3, S4
5 3-Methylquinoline (7d): yellow liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ (m, 1 H), (m, 1 H), (m, 1 H), (m, 2 H), (m, 1 H), 2.30 (m, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 152.1, 146.2, 134.4, 130.2, 128.8, , 127.9, 126.9, 126.3, Methylquinoline (7e): colorless liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ (m, 1 H), 8.10 (d, J = 8.4 Hz, 1 H), 7.97 (dd, J = 7.1, 3.9 Hz, 1 H), 7.69 (td, J = 6.9, 1.6 Hz, 1 H), (m, 1 H), 7.20 (s, 1 H), 2.68 (d, J = 3.8 Hz, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 150.2, 148.1, 144.4, 130.1, 129.2, , 126.4, 123.9, 121.9, Methoxyquinoline (7f): yellow liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.84 (d, J = 2.4 Hz, 1 H), 8.49 (d, J = 8.3 Hz, 1 H), 7.67 (d, J = 8.6 Hz, 1 H), 7.53 (t, J = 8.1 Hz, 1 H), 7.28 (dd, J = 8.4, 4.2 Hz, 1 H), 6.74 (d, J = 7.6 Hz, 1 H), 3.88 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 155.0, 150.5, 148.9, 130.7, 129.3, 121.3, 120.7, 120.0, 104.1, Methoxyquinoline (7g): yellow liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.68 (m, 1 H), 7.94 (m, 2 H), (m, 2 H), 6.93 (m, 1 H), 3.80 (m, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ , 147.7, 144.2, 134.7, 130.6, 129.2, 122.2, 121.2, 105.0, Fluoro-2-methylquinoline (7h): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ (m, 1 H), (m, 1 H), (m, 1H), (m, 1 H), (m, 1 H), (m, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ (d, J = Hz), 158.5, 144.7, 135.2, (d, J = 9.0 Hz), (d, J = 13.4 Hz), 122.5, (d, J = 25.2 Hz), (d, J = 21.2 Hz), S5
6 8-Methylquinoline (7i): yellow liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ (m, 1 H), (m, 1 H), 7.61 (d, J = 7.5 Hz, 1 H), 7.54 (s, 1 H), (m, 2 H), 2.84 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 149.2, 147.3, 137.0, 136.3, 129.6, 128.2, 126.3, 125.9, 120.8, Benzo[h]quinoline (7j): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 9.35 (d, J = 8.1 Hz, 1 H), 9.01 (dd, J = 4.3, 1.5 Hz, 1 H), (m, 1 H), 7.90 (d, J = 7.8 Hz, 1H), (m, 2 H), (m, 1 H), 7.63 (d, J = 8.8 Hz, 1 H), 7.48 (dd, J = 7.9, 4.3 Hz, 1 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 148.8, 146.6, 135.8, 133.7, , 128.2, 127.9, 127.8, 127.1, 126.4, 125.4, 124.4, Isoquinoline (7k): yellow liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 9.00 (s, 1 H), 8.30 (d, J = 5.8 Hz, 1 H), 7.60 (d, J = 8.2 Hz, 1 H), 7.46 (d, J = 8.2 Hz, 1 H), (m, 1 H), 7.30 (d, J = 5.8 Hz, 1 H), (m, 1 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 152.0, 142.5, 135.2, 129.8, 128.1, 127.0, 126.7, 125.9, Phenylisoquinoline (7l): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.62 (d, J = 5.6 Hz, 1 H), 8.11 (d, J = 8.5 Hz, 1 H), 7.88 (d, J = 8.2 Hz, 1 H), (m, 4 H), (m, 4 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 160.8, 142.3, 139.6, 137.0, 130.1, 130.0, 128.7, 128.5, 127.7, 127.3, 127.1, 126.8, Bromoisoquinoline (7m): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ (m, 1 H), (m, 1 H), (m, 2 H), (m, 2 S6
7 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 151.8, 143.8, 137.1, 131.2, 130.6, 126.7, 126.4, 122.4, Isoquinoline (7n): yellow liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.72 (dd, J = 4.2, 1.6 Hz, 1 H), 8.21 (d, J = 8.2 Hz, 1 H), 7.92 (d, J = 9.2 Hz, 1 H), 7.43 (dd, J = 8.3, 4.2 Hz, 1 H), 7.38 (dd, J = 9.2, 2.8 Hz, 1 H), 7.31 (d, J = 2.8 Hz, 1 H), 3.86 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 157.3, 147.9, 143.9, 134.8, 130.4, 129.1, 122.1, 121.7, 105.7, Quinoxaline (7o): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.68 (s, 2 H), 7.95 (dd, J = 6.4, 3.5 Hz, 2 H), 7.59 (dd, J = 6.4, 3.4 Hz, 2 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 144.8, 142.8, 129.8, Methylquinoxaline (7p): yellow liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.65 (s, 1 H), 8.00 (d, J = 7.9 Hz, 1 H), 7.94 (d, J = 8.0 Hz, 1 H), 7.63 (dd, J = 9.0, 7.4 Hz, 2 H), 2.69 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 153.7, 145.9, 142.0, 140.9, 129.9, 129.1, 128.8, 128.6, Methylquinoxaline (7q): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.75 (m, 2 H), 7.86 (d, J = 7.1 Hz, 1 H), (m, 2 H), 2.71 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 144.5, 143.6, 143.1, 142.1, 137.6, 130.0, 129.7, 127.3, 77.5, 77.2, 76.8, Bromoquinoxaline (7r): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.79 (d, J = 1.8 Hz, 2 H), 8.23 (d, J = 2.0 Hz, 1 H), 7.91 (d, J = 8.9 Hz, 1 H), 7.78 (dd, J = 8.9, 2.0 Hz, 1 H), 7.26 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 145.7, 145.2, 143.5, 141.8, 133.7, 131.8, 130.9, S7
8 Indole (9a): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 7.98 (s, 1 H), 7.81 (d, J = 7.5 Hz, 1 H), 7.44 (d, J = 8.1 Hz, 1 H), (m, 1 H), (m, 1 H), (m, 1 H), (m, 1 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 135.8, 127.9, 124.3, 122.0, 120.8, 119.9, 111.2, Methyl-1H-indole (9b): yellow solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 7.72 (s, 1 H), (m, 1 H), 7.28 (d, J = 7.5 Hz, 1 H), (m, 2 H), 6.27 (s, 1 H), 2.43 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 136.1, 135.2, 129.1, 121.0, 119.7, 110.4, 100.4, 77.5, 77.1, 76.8, Phenyl -1H-indole (9c): white solid. 1 H NMR (DMSO-d 6, 400 MHz, 23 C) δ (s, 1 H), 7.87 (d, J = 7.6 Hz, 2 H), 7.54 (d, J = 7.8 Hz, 1 H), 7.45 (dd, J = 14.3, 7.4 Hz, 3 H), 7.31 (t, J = 7.3 Hz, 1 H), 7.11 (t, J = 7.4 Hz, 1 H), 7.01 (t, J = 7.4 Hz, 1 H), 6.90 (d, J = 1.3 Hz, 1 H). 13 C{ 1 H} NMR (DMSO-d 6, 100 MHz, 23 C) δ 137.7, 137.2, 132.3, 129.0, 128.7, 127.4, 125.0, 121.6, 120.1, 119.4, 111.4, Methyl-1H-indole (9d): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 7.85 (s, 1 H), 7.67 (d, J = 7.8 Hz, 1 H), 7.40 (d, J = 8.0 Hz, 1 H), (m, 1 H), (m, 1 H), 7.01 (s, 1 H), 2.42 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 136.4, 128.4, 122.0, 121.7, 119.2, 118.9, 111.8, 111.1, Methoxy-1H-indole (9e): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.13 (s, 1 H), 7.30 (t, J = 7.8 Hz, 1 H), 7.09 (d, J = 8.5 Hz, 2 H), 6.85 (s, 1 H), 6.71 (d, J = 7.6 Hz, 1 H), 4.10 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 153.3, 137.2, 122.9, 122.7, 118.5, 104.7, 99.6, 99.6, S8
9 5-Methoxy-1H-indole (9f): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.11 (s, 1 H), 7.31 (d, J = 8.9 Hz, 1 H), (m, 2 H), 6.97 (dd, J = 8.8, 2.2 Hz, 1 H), 6.57 (s, 1 H), 3.95 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 154.2, 131.1, 128.3, 125.1, 112.4, 111.9, 102.4, 102.3, Methyl-1H-indole (9g): colorless liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.04 (s, 1 H), 7.55 (d, J = 7.7 Hz, 1 H), 7.21 (t, J = 2.8 Hz, 1 H), (m, 2 H), 6.60 (t, J = 2.3 Hz, 1 H), 2.52 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 135.5, 127.5, 123.9, 122.6, 120.3, 120.1, 118.6, 103.2, Fluoro-1H-indole (9h): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.08 (s, 1 H), 7.47 (d, J = 9.5 Hz, 1 H), 7.34 (dd, J = 8.4, 4.1 Hz, 1 H), 7.27 (s, 1 H), (m, 1 H), 6.66 (s, 1 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ (d, J = Hz), 132.4, (d, J = 10.2 Hz), 126.2, (d, J = 9.7 Hz), (d, J = 26.2 Hz), (d, J = 23.2 Hz), (d, J = 4.7 Hz). 5-Chloro-1H-indole (9i): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.12 (s, 1 H), 7.71 (s, 1 H), 7.32 (d, J = 8.7 Hz, 1 H), 7.24 (d, J = 2.8 Hz, 2 H), 6.57 (s, 1 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 134.2, 129.0, 125.7, 125.4, 122.3, 120.1, 112.2, Bromo-1H-indole (9j): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.08 (s, 1 H), 7.82 (s, 1 H), 7.32 and 7.23 (d each, J = 8.6 Hz, 1:1 H), 7.18 (s, 1 H), 6.53 (s, 1 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 134.4, 129.7, 125.6, 124.8, 123.2, 113.0, 112.6, S9
10 5-Nitro-1H-indole (9k): yellow solid. 1 H NMR (CD 3 OD, 400 MHz, 23 C) δ 8.49 (s, 1 H), 7.98 (d, J = 8.7 Hz, 1 H), 7.42 (m, 2 H), 6.63 (s, 1 H). 13 C{ 1 H} NMR (CD 3 OD, 100 MHz, 23 C) δ 142.5, 140.6, 129.3, 128.6, 118.3, 117.6, 112.2, Chloro-1H-indole (9l): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.08 (s, 1 H), 7.57 (d, J = 8.4 Hz, 1 H), 7.37 (s, 1 H), 7.18 (t, J = 2.4 Hz, 1 H), 7.13 (d, J = 8.4 Hz, 1 H), 6.56 (s, 1 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 136.2, 127.9, 126.5, 125.0, 121.7, 120.7, 111.1, ,6-Methylenedioxy-2-phenylindole (9m): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.24 (s, 1 H), 7.62 (d, J = 7.6 Hz, 2 H), 7.45 (t, J = 7.5 Hz, 2 H), 7.31 (d, J = 7.7 Hz, 1 H), 7.04 (s, 1 H), 6.90 (s, 1 H), 6.75 (s, 1 H), 5.98 (s, 2 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 145.3, 143.4, 132.6, 132.0, 129.1, 127.3, 124.7, 123.4, 100.8, 100.4, 99.3, Chloro-2-methyl-1H-indole (9n): yellow solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 7.81 (s, 1 H), 7.49 (s, 1 H), 7.16 (d, J = 8.5 Hz, 1 H), 7.07 (d, J = 8.5 Hz, 1 H), 6.17 (s, 1 H), 2.42 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 136.8, 134.5, 130.3, 125.3, 121.2, 119.1, 111.2, 100.3, Methyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (11a): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.14 (s, 1 H), 7.50 (d, J = 7.5 Hz, 1 H), 7.30 (d, J = 7.8 Hz, 1 H), 7.14 (dt, J = 14.7, 7.0 Hz, 2 H), 4.17 (q, J = 6.5 Hz, 1 H), 3.37 (dt, J = 12.8, 4.5 Hz, 1 H), (m, 1 H), (m, 2 H), 2.35 (d, J = 5.9 Hz, 1 H), S10
11 1.45 (d, J = 6.7 Hz, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 137.0, 135.8, 127.6, 121.6, 119.4, 118.2, 110.9, 108.4, 48.3, 42.7, 22.7, Phenyl-2,3,4,9-tetrahydro-1H-pyrido[3,4-b]indole (11b): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.01 (s, 1 H), 7.59 (dd, J = 5.6, 2.9 Hz, 1 H), 7.37 (dd, J = 6.5, 3.5 Hz, 3 H), (m, 2 H), (m, 3 H), 5.12 (s, 1 H), 3.34 (dt, J = 9.1, 4.8 Hz, 1 H), (m, 1 H), (m, 1 H), (m, 1 H), 1.97 (s, 1 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 141.8, 136.0, 134.5, 128.9, 128.6, 128.3, 127.4, 121.7, 119.4, 118.3, 110.9, 110.2, 58.1, 42.8, Methyl-9H-pyrido[3,4-b]indole (12a): white solid. 1 H NMR (DMSO-d 6, 400 MHz, 23 C) δ (s, 1 H), 8.18 (d, J = 6.8 Hz, 2 H), 7.91 (d, J = 3.3 Hz, 1 H), 7.60 (d, J = 7.6 Hz, 1 H), 7.52 (t, J = 7.1 Hz, 1 H), 7.22 (t, J = 6.7 Hz, 1 H), 2.76 (s, 3 H). 13 C{ 1 H} NMR (DMSO-d 6, 100 MHz, 23 C) δ 142.2, 140.4, 137.6, 134.6, 127.9, 127.0, 121.8, 121.1, 119.3, 112.7, 112.0, Phenyl-9H-pyrido[3,4-b]indole (12b): white solid. 1 H NMR (DMSO-d 6, 400 MHz, 23 C) δ (s, 1 H), 8.46 (d, J = 5.1 Hz, 1 H), 8.25 (d, J = 7.8 Hz, 1 H), 8.11 (d, J = 5.1 Hz, 1 H), 8.04 (d, J = 7.8 Hz, 2 H), 7.67 (d, J = 8.2 Hz, 1 H), 7.61 (t, J = 7.5 Hz, 2 H), 7.53 (dt, J = 14.5, 7.3 Hz, 2 H), 7.26 (t, J = 7.5 Hz, 1 H). 13 C{ 1 H} NMR (DMSO-d 6, 100 MHz, 23 C) δ 142.2, 141.2, 138.4, 133.1, 129.3, 128.8, 128.6, 128.4, 128.2, 121.6, 120.9, 119.6, 113.9, Acetophenone (14a): colorless liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 7.95 (d, J = 7.5 Hz, 2 H), 7.56 (t, J = 7.3 Hz, 1 H), 7.45 (t, J = 7.7 Hz, 2 H), 2.60 (s, 3 S11
12 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 198.2, 137.2, 133.2, 128.7, 128.4, Propiophenone (14b): colorless liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ (m, 2 H), (m, 1 H), 7.44 (dd, J = 10.5, 4.6 Hz, 2 H), 3.00 (q, J = 7.2 Hz, 2 H), 1.22 (t, J = 7.2 Hz, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 200.9, 137.0, 133.0, 128.6, 128.1, 31.9, '-Methylacetophenone (14c): colorless liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 7.72 (d, J = 7.6 Hz, 1 H), 7.40 (t, J = 7.5 Hz, 1 H), 7.28 (dd, J = 11.8, 7.6 Hz, 2 H), 2.60 (s, 3 H), 2.56 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 201.8, 138.5, 137.7, 132.1, 131.6, 129.4, 125.8, 29.6, '-Methylacetophenone (14d): colorless liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) 7.73 (m, 2 H), 7.31 (m, 2 H), 2.54 (s, 3 H), 2.37 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 198.1, 138.2, 137.0, 133.7, 128.6, 128.3, 125.4, 26.5, '-Methylacetophenone (14e): colorless liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 7.89 (d, J = 8.2 Hz, 2 H), 7.29 (d, J = 8.0 Hz, 2 H), 2.61 (s, 3 H), 2.44 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 198.1, 144.0, 134.9, 129.4, 128.6, 26.6, '-Methoxyacetophenone (14f): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 7.88 (d, J = 8.9 Hz, 2 H), 6.88 (d, J = 8.9 Hz, 2 H), 3.81 (s, 3 H), 2.50 (s, 3 S12
13 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 196.7, 163.5, 130.6, 130.3, 113.7, 55.4, '-Chloroacetophenone (14g): colorless liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ (m, 2 H), (m, 2 H), 2.58 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 196.9, 139.7, 135.6, 129.9, 129.0, '-Trifluoromethylacetophenone (14h): colorless liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.0 (d, J = 8.1 Hz, 2 H), 7.7 (d, J = 8.2 Hz, 2 H), 2.6 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 197.0, 139.8, (q, J = 32.5 Hz), 128.7, (q, J = 3.7 Hz), (q, J = Hz), Acetophenone (14i): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 8.44 (s, 1 H), 8.02 (d, J = 8.6 Hz, 1 H), 7.94 (d, J = 8.0 Hz, 1 H), 7.86 (dd, J = 8.3, 3.7 Hz, 2 H), 7.56 (dt, J = 14.9, 6.9 Hz, 2 H), 2.70 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 198.1, 135.6, 134.5, 132.6, 130.2, 129.6, 128.5, 128.4, 127.8, 126.8, 123.9, Benzophenone (14j): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ (m, 4 H), 7.59 (dd, J = 10.6, 4.2 Hz, 2 H), 7.48 (t, J = 7.6 Hz, 4 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 196.8, 137.7, 132.5, 130.2, ,5-Diphenylpentan-3-one (14k): colorless liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ (m, 10 H), 2.94 (t, J = 7.5 Hz, 4 H), 2.76 (t, J = 7.5 Hz, 4 H). S13
14 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 209.2, 141.1, 128.6, 128.4, 126.2, 44.6, Phenylbutan-2-one (14l): colorless liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 7.33 (t, J = 7.2 Hz, 2 H), 7.24 (t, J = 6.6 Hz, 3 H), 2.94 (t, J = 7.5 Hz, 2 H), 2.80 (t, J = 7.6 Hz, 2 H), 2.18 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 207.9, 141.0, 128.5, 128.3, 126.1, 45.2, 30.1, O 4 Heptan-2-one (14m): colorless liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 2.40 (t, J = 7.5 Hz, 2 H), 2.12 (s, 3 H), (m, 2 H), (m, 4 H), 0.88 (t, J = 7.0 Hz, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 209.5, 43.9, 31.5, 30.0, 23.7, 22.6, O 5 Octan-2-one (14n): colorless liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 2.41 (t, J = 7.5 Hz, 2 H), 2.12 (s, 3 H), (m, 2 H), 1.28 (m, 6 H), 0.87 (t, J = 6.7 Hz, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 209.6, 44.0, 31.7, 30.0, 29.0, 24.0, 22.6, Cyclohexanone (14o): colorless liquid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 2.31 (t, J = 6.7 Hz, 4 H), (m, 4 H), (m, 2 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 212.4, 42.0, 27.1, Cholest-4-en-3-one (14p): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ1h NMR (400 MHz, CDCl3) δ 5.72 (s, 1 H), (m, 4 H), (m, 2 H), 1.84 S14
15 (m, 2 H), (m, 4 H), 1.35 (m, 4 H), 1.15 (m, 12 H), 1.01 (m, 2 H), 0.93 (m, 10 H), 0.70 (m, 4 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) 199.8, 171.9, 123.9, 56.2, 56.0, 53.9, 42.5, 39.7, 39.6, 38.7, 36.2, 35.9, 35.8, 35.7, 34.1, 33.1, 32.2, 28.3, 28.1, 24.3, 23.9, 23.0, 22.7, 21.1, 18.8, 17.5, Dihydrocholesterone (14q): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ (m, 1 H), (m, 2 H), (m, 3 H), (m, 1 H), (m, 1 H), (s, 4 H), (m, 8 H), (m, 12 H), (dd, J = 6.5, 1.2 Hz, 10 H), (m, 1 H), 0.66 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 212.1, 56.4, 53.9, 46.8, 44.8, 42.7, 40.0, 39.6, 38.7, 38.3, 36.3, 35.9, 35.7, 35.5, 31.8, 29.1, 28.3, 28.1, 24.3, 23.9, 22.9, 22.7, 21.6, 18.8, 12.2, (18β,20β)-3,11-Dioxoolean-12-en-29-oic acid methyl ester (14r): white solid. 1 H NMR (CDCl 3, 400 MHz, 23 C) δ 5.68 (s, 1 H), 3.67 (s, 3 H), 2.95 (m, 1 H), 2.61 (m, 1 H), 2.42 (s, 1 H), 2.34 (m, 1 H), (m, 3 H), (m, 2 H), (m, 5 H), (m, 13 H), 1.15 (t, J = 7.3 Hz, 6 H), 1.07 (d, J = 14.3 Hz, 6 H), 0.80 (s, 3 H). 13 C{ 1 H} NMR (CDCl 3, 100 MHz, 23 C) δ 217.2, 199.5, 177.0, 169.8, 128.6, 61.2, 55.5, 51.9, 48.5, 47.9, 45.3, 44.1, 43.4, 41.3, 39.9, 37.9, 36.8, 34.3, 26.5, 23.4, 21.5, 18.9, S15
16 4. Copies of NMR spectra Figure S2. 1 H NMR spectrum of 3a (CDCl 3, 400 MHz, 23 o C). Figure S3. 13 C{ 1 H} NMR spectrum of 3a (CDCl 3, 100 MHz, 23 o C). S16
17 Figure S4. 1 H NMR spectrum of 3b (CDCl 3, 400 MHz, 23 o C). Figure S5. 13 C{ 1 H} NMR spectrum of 3b (CDCl 3, 100 MHz, 23 o C). S17
18 Figure S6. 1 H NMR spectrum of 3c (CDCl 3, 400 MHz, 23 o C). Figure S7. 13 C{ 1 H} NMR spectrum of 3c (CDCl 3, 100 MHz, 23 o C). S18
19 Figure S8. 1 H NMR spectrum of 4a (CDCl 3, 400 MHz, 23 o C). Figure S9. 13 C{ 1 H} NMR spectrum of 4a (CDCl 3, 100 MHz, 23 o C). S19
20 Figure S P NMR spectrum of complex 4a (CDCl 3, 162 MHz, 23 o C). Figure S11. 1 H NMR spectrum of 4b (CDCl 3, 400 MHz, 23 o C). S20
21 Figure S C{ 1 H} NMR spectrum of 4b (CDCl 3, 100 MHz, 23 o C). Figure S P NMR spectrum of complex 4b (CDCl 3, 162 MHz, 23 o C). S21
22 Figure S14. 1 H NMR spectrum of 4c (CDCl 3, 400 MHz, 23 o C). Figure S P NMR spectrum of complex 4c (CDCl 3, 162 MHz, 23 o C). S22
23 Figure S16. 1 H NMR spectrum of 5a (C 6 D 6- d 6, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 5a (C 6 D 6- d 6, 100 MHz, 23 o C). S23
24 Figure S P{ 1 H} NMR spectrum of 5a (C 6 D 6- d 6, 162 MHz, 23 o C). Figure S19. 1 H NMR spectrum of 5b (C 6 D 6- d 6, 400 MHz, 23 o C). S24
25 Figure S C{ 1 H} NMR spectrum of 5b (C 6 D 6- d 6, 100 MHz, 23 o C). Figure S P{ 1 H} NMR spectrum of 5b (C 6 D 6- d 6, 162 MHz, 23 o C). S25
26 Figure S22. 1 H NMR spectrum of 7a (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 7a (CDCl 3, 100 MHz, 23 o C). S26
27 Figure S24. 1 H NMR spectrum of 7b (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 7b (CDCl 3, 100 MHz, 23 o C). S27
28 Figure S26. 1 H NMR spectrum of 7c (CDCl 3, 100 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 7c (CDCl 3, 100 MHz, 23 o C). S28
29 Figure S28. 1 H NMR spectrum of 7d (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 7d (CDCl 3, 100 MHz, 23 o C). S29
30 Figure S30. 1 H NMR spectrum of 7e (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 7e (CDCl 3, 100 MHz, 23 o C). S30
31 Figure S32. 1 H NMR spectrum of 7f (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 7f (CDCl 3, 100 MHz, 23 o C). S31
32 Figure S34. 1 H NMR spectrum of 7g (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 7g (CDCl 3, 100 MHz, 23 o C). S32
33 Figure S36. 1 H NMR spectrum of 7h (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 7h (CDCl 3, 100 MHz, 23 o C). S33
34 Figure S38. 1 H NMR spectrum of 7i (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 7i (CDCl 3, 100 MHz, 23 o C). S34
35 Figure S40. 1 H NMR spectrum of 7j (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 7j (CDCl 3, 100 MHz, 23 o C). S35
36 Figure S42. 1 H NMR spectrum of 7k (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 7k (CDCl 3, 100 MHz, 23 o C). S36
37 Figure S44. 1 H NMR spectrum of 7l (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 7l (CDCl 3, 100 MHz, 23 o C). S37
38 Figure S46. 1 H NMR spectrum of 7m (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 7m (CDCl 3, 100 MHz, 23 o C). S38
39 Figure S48. 1 H NMR spectrum of 7n (DMSO-d 6, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 7n (DMSO-d 6, 100 MHz, 23 o C). S39
40 Figure S50. 1 H NMR spectrum of 7o (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 7o (CDCl 3, 100 MHz, 23 o C). S40
41 Figure S52. 1 H NMR spectrum of 7p (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 7p (CDCl 3, 100 MHz, 23 o C). S41
42 Figure S54. 1 H NMR spectrum of 7q (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 7q (CDCl 3, 100 MHz, 23 o C). S42
43 Figure S56. 1 H NMR spectrum of 7r (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 7r (CDCl 3, 100 MHz, 23 o C). S43
44 Figure S58. 1 H NMR spectrum of 9a (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 9a (CDCl 3, 100 MHz, 23 o C). S44
45 Figure S60. 1 H NMR spectrum of 9b (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 9b (CDCl 3, 100 MHz, 23 o C). S45
46 Figure S62. 1 H NMR spectrum of 9c (DMSO-d 6, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 9c (DMSO-d 6, 100 MHz, 23 o C). S46
47 Figure S64. 1 H NMR spectrum of 9d (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 9d (CDCl 3, 100 MHz, 23 o C). S47
48 Figure S66. 1 H NMR spectrum of 9e (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 9e (CDCl 3, 100 MHz, 23 o C). S48
49 Figure S68. 1 H NMR spectrum of 9f (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 9f (CDCl 3, 100 MHz, 23 o C). S49
50 Figure S70. 1 H NMR spectrum of 9g (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 9g (CDCl 3, 100 MHz, 23 o C). S50
51 Figure S72. 1 H NMR spectrum of 9h (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 9h (CDCl 3, 100 MHz, 23 o C). S51
52 Figure S74. 1 H NMR spectrum of 9i (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 9i (CDCl 3, 100 MHz, 23 o C). S52
53 Figure S76. 1 H NMR spectrum of 9j (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 9j (CDCl 3, 100 MHz, 23 o C). S53
54 Figure S78. 1 H NMR spectrum of 9k (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 9k (CDCl 3, 100 MHz, 23 o C). S54
55 Figure S80. 1 H NMR spectrum of 9l (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 9l (CDCl 3, 100 MHz, 23 o C). S55
56 Figure S82. 1 H NMR spectrum of 9m (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 9m (CDCl 3, 100 MHz, 23 o C). S56
57 Figure S84. 1 H NMR spectrum of 9n (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 9n (CDCl 3, 100 MHz, 23 o C). S57
58 Figure S86. 1 H NMR spectrum of 11a (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 11a (CDCl 3, 100 MHz, 23 o C). S58
59 Figure S88. 1 H NMR spectrum of 11b (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 11b (CDCl 3, 100 MHz, 23 o C). S59
60 Figure S90. 1 H NMR spectrum of 12a (DMSO-d 6, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 11b (DMSO-d 6, 100 MHz, 23 o C). S60
61 Figure S92. 1 H NMR spectrum of 12b (DMSO-d 6, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 12b (DMSO-d 6, 100 MHz, 23 o C). S61
62 Figure S94. 1 H NMR spectrum of 14a (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 14a (CDCl 3, 100 MHz, 23 o C). S62
63 Figure S96. 1 H NMR spectrum of 14b (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 14b (CDCl 3, 100 MHz, 23 o C). S63
64 Figure S98. 1 H NMR spectrum of 14c (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 14c (CDCl 3, 100 MHz, 23 o C). S64
65 Figure S H NMR spectrum of 14d (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 14d (CDCl 3, 100 MHz, 23 o C). S65
66 Figure S H NMR spectrum of 14e (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 14e (CDCl 3, 100 MHz, 23 o C). S66
67 Figure S H NMR spectrum of 14f (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 14f (CDCl 3, 100 MHz, 23 o C). S67
68 Figure S H NMR spectrum of 14g (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 14g (CDCl 3, 100 MHz, 23 o C). S68
69 Figure S H NMR spectrum of 14h (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 14h (CDCl 3, 100 MHz, 23 o C). S69
70 Figure S H NMR spectrum of 14i (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 14i (CDCl 3, 100 MHz, 23 o C). S70
71 Figure S H NMR spectrum of 14j (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 14j (CDCl 3, 100 MHz, 23 o C). S71
72 Figure S H NMR spectrum of 14k (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 14k (CDCl 3, 100 MHz, 23 o C). S72
73 Figure S H NMR spectrum of 14l (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 14l (CDCl 3, 100 MHz, 23 o C). S73
74 Figure S H NMR spectrum of 14m (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 14m (CDCl 3, 100 MHz, 23 o C). S74
75 Figure S H NMR spectrum of 14n (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 14n (CDCl 3, 100 MHz, 23 o C). S75
76 Figure S H NMR spectrum of 14o (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 14o (CDCl 3, 100 MHz, 23 o C). S76
77 Figure S H NMR spectrum of 14p (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 14p (CDCl 3, 100 MHz, 23 o C). S77
78 Figure S H NMR spectrum of 14q (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 14q (CDCl 3, 100 MHz, 23 o C). S78
79 Figure S H NMR spectrum of 14r (CDCl 3, 400 MHz, 23 o C). Figure S C{ 1 H} NMR spectrum of 14r (CDCl 3, 100 MHz, 23 o C). S79
chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX
σ-donor/acceptor confused ligands: The case of a chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX 77843-3255. *To whom correspondence
Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory
Supporting Information Dysiherbols A C and Dysideanone E, Cytotoxic and NF-κB Inhibitory Tetracyclic Meroterpenes from a Dysidea sp. Marine Sponge Wei-Hua Jiao,, Guo-Hua Shi,, Ting-Ting Xu,, Guo-Dong Chen,
Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2016 Enantioselective Organocatalytic Michael Addition of Isorhodanines to α,
Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond
Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond Ken-ichi Yamashita, Kei-ichi Sato, Masaki Kawano and Makoto Fujita* Contents; Figure S1.
Supporting Information
Supporting Information Vinylogous elimination/heck coupling/allylation domino reactions: access to 2- substituted 2,3-dihydrobenzofurans and indolines Jianguo Yang, *, Hanjie Mo, Xiuxiu Jin, Dongdong Cao,
Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles
X-Ray crystallographic data tables for paper: Supplementary Material (ESI) for Organic & Biomolecular Chemistry Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically
SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids
10.1071/CH17272_AC CSIRO 2017 Australian Journal of Chemistry 2017, 70(12), 1285-1290 SUPPLEMENTARY MATERIAL A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine
Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid
Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid Taotao Ling, a Chinmay Chowdhury, a Bryan A. Kramer, a Binh G. Vong, a Michael A. Palladino b and Emmanuel A. Theodorakis a
Electronic Supplementary Information (ESI)
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) Cyclopentadienyl iron dicarbonyl (CpFe(CO) 2 ) derivatives
IV. ANHANG 179. Anhang 178
Anhang 178 IV. ANHANG 179 1. Röntgenstrukturanalysen (Tabellen) 179 1.1. Diastereomer A (Diplomarbeit) 179 1.2. Diastereomer B (Diplomarbeit) 186 1.3. Aldoladdukt 5A 193 1.4. Aldoladdukt 13A 200 1.5. Aldoladdukt
Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings
ickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings Braulio M. Puerta Lombardi, Rudy M. Braun, Chris Gendy, Chia Yun Chang,
Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds
Supporting Information for Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds Zhongxue Fang, a Yongquan Ning, a Pengbing Mi, a Peiqiu Liao, a Xihe Bi* a,b a Department of Chemistry,
C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged
Supporting Information C H Activation of Cp* Ligand Coordinated to Ruthenium Center: Synthesis and Reactivity of a Thiolate-Bridged Diruthenium Complex Featuring Fulvene-like Cp* Ligand Xiaoxiao Ji, Dawei
Supporting Information
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supporting Information Abnormal N-Heterocyclic Carbene Based Nickel Complex for Catalytic
Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.
; doi:10.3390/molecules22020254 S1 of S23 Supplementary Materials: Reaction of 3-Amino-1,2,4-Triazole with Diethyl Phosphite and Triethyl Orthoformate: Acid-Base Properties and Antiosteoporotic Activities
Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads
Table of Contents 1 Supplementary Data MCD
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Supporting Information for Magnetic circular dichroism and density functional theory
Fused Bis-Benzothiadiazoles as Electron Acceptors
Fused Bis-Benzothiadiazoles as Electron Acceptors Debin Xia, a,b Xiao-Ye Wang, b Xin Guo, c Martin Baumgarten,*,b Mengmeng Li, b and Klaus Müllen*,b a MIIT Key Laboratory of ritical Materials Technology
D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical
Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3
Supplementary Information Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3 Lewis Pairs: Structures of Intermediates, Kinetics, and Mechanism Qianyi Wang, Wuchao Zhao,
Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2
Free Radical Initiated Coupling Reaction of Alcohols and Alkynes: not C-O but C-C Bond Formation Zhongquan Liu,* Liang Sun, Jianguo Wang, Jie Han, Yankai Zhao, Bo Zhou Institute of Organic Chemistry, Gannan
Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.
Supporting Information Palladium Complexes with Bulky Diphosphine Ligands as Highly Selective Catalysts for the Synthesis of (Bio-) Adipic Acid from Pentenoic Acid Mixtures. Choon Heng Low, James D. Nobbs,*
Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;
Supporting Information File 2 Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ; Preparation, structures and host guest chemistry of fluorinated syn-bisquinoxaline molecular tweezers
A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes
Supplementary Material
Supplementary Material Synthesis of bis-oxathiaaza[3.3.3]propellanes via nucleophilic addition of (1,ω-alkanediyl)bis(N'-organylthioureas) on dicyanomethylene-1,3-indanedione Alaa A. Hassan, a * Kamal
Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]
Supporting Information Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ] Eun Young Lee, Seung Yeon Jang, and Myunghyun Paik Suh* School of Chemistry,
Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines
Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A new Entry to N-Carbamate Protected Arylamines Bing Zhou,* Juanjuan Du, Yaxi Yang,* Huijin Feng, Yuanchao Li Shanghai Institute of Materia Medica,
Supporting Information for Substituent Effects on the Properties of Borafluorenes
Supporting Information for Substituent Effects on the Properties of Borafluorenes Mallory F. Smith, S. Joel Cassidy, Ian A. Adams, Monica Vasiliu, Deidra L. Gerlach, David Dixon*, Paul A. Rupar* Department
Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes
Supporting Information for Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes Changkun Li and Jianbo Wang* Beijing National Laboratory
SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation
Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 213 SUPPORTING INFORMATION Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst
and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol
FeCl 3 6H 2 O-Catalyzed Disproportionation of Allylic Alcohols and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol Jialiang Wang, Wen Huang, Zhengxing Zhang, Xu
Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-
Supporting Information for A catalyst-free multicomponent domino sequence for the diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3- (arylamino)allyl]chromen-4-ones Pitchaimani Prasanna 1, Pethaiah
Supporting Information
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2018 Supporting Information Silver or Cerium-Promoted Free Radical Cascade Difunctionalization
SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds
SUPPORTING INFORMATION Pyramidanes: The Covalent Form of the Ionic Compounds Vladimir Ya. Lee, 1 * Olga A. Gapurenko, 2 Yuki Ito, 1 Takahiko Meguro, 1 Haruka Sugasawa, 1 Akira Sekiguchi, 1 *, Ruslan M.
Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes
SUPPORTING INFORMATION Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes Eric J. Uzelac, Casey B. McCausland, and Seth C. Rasmussen*
Supporting information for
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supporting information for Palladium-Catalyzed Benzothieno[2,3-b]indole Formation via Dehydrative-Dehydrogenative
Supporting Information
Supporting Information Transition-metal-free Ring Expansion Reactions of Indene-1,3-dione: Synthesis of Functionalized Benzoannulated Seven-Membered Ring Compounds Qiyi Yao, Lingkai Kong, Mengdan Wang,
Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2017 Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via
Supporting Information
Supporting Information Chloroyttrium 2-(1-(arylimino)alkyl)quinolin-8-olate Complexes: Synthesis, Characterization, and Catalysis of the Ring-Opening Polymerization (ROP) of ε- Caprolactone (ε-cl) Wenjuan
Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information
Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans Liang Yun, Shi Tang, Xu-Dong Zhang, Li-Qiu Mao, Ye-Xiang Xie and Jin-Heng Li* Key Laboratory
Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones
Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is the Partner Organisations 2016 Supporting information Copper-Catalyzed Oxidative Dehydrogenative - Bond Formation
Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents
Electronic upplementary Material (EI) for RC Advances. This journal is The Royal ociety of Chemistry 205 upporting Information Palladium-Catalyzed Direct ortho-ulfonylation of Azobenzenes with Arylsulfonyl
Controlling Growth of Molecular Crystal Aggregates with Distinct Linear and Nonlinear Optical Properties
Supporting Information Controlling Growth of Molecular Crystal Aggregates with Distinct Linear and Nonlinear Optical Properties Yusen Luo,,,# Chunqing Yuan,,# Jialiang Xu*, Yongjun Li*, Huibiao Liu, Sergey
Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009
Supporting Information Copyright Wiley-VC Verlag Gmb & Co. KGaA, 69451 Weinheim, 2009 Supporting Information for Graphite-Supported Gold anoparticles as Efficient Catalyst for Aerobic xidation of Benzylic
SUPPORTING INFORMATION. Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated
SUPPORTING INFORMATION for Diastereoselective synthesis of nitroso acetals from (S,E)- -aminated nitroalkenes via multicomponent [4 + 2]/[3 + 2] cycloadditions promoted by LiCl or LiClO 4 Leandro Lara
Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls
Supporting Information Pd()-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the Synthesis of Heteroaromatic Biaryls Debkumar andi, Yang-Ming Jhou, Jhen-Yi Lee, Bing-Chiuan
Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity
Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity Jian-Long Li 1,a, Wei Zhao 1,a, Chen Zhou 1,a, Ya-Xuan
Practical Pd(II)-catalyzed C H Alkylation with Epoxides: One-step Syntheses of 3,4-Dihydroisocoumarins
Practical Pd(II)-catalyzed C H Alkylation with Epoxides: One-step Syntheses of 3,4-Dihydroisocoumarins Guolin Cheng, Tuan-Jie Li, and Jin-Quan Yu* Department of Chemistry, The Scripps Research Institute,
Supporting Information. for
Supporting Information for A general synthetic route to [Cu(X)(NHC)] (NHC = N- heterocyclic carbene, X =Cl, Br, I) complexes Orlando Santoro, Alba Collado, Alexandra M. Z. Slawin, Steven P. Nolan and Catherine
Supporting Information
Supporting Information Gold-catalyzed Cycloisomerization of 1,6-Diyne-4-en-3-ols to form Naphthyl Ketone Derivatives. Jian-Jou Lian and Rai-Shung Liu* Department of Chemistry, National Tsing-Hua University,
Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.
Supporting Information [NH 3 CH 3 ] [In SbS 9 SH]: A novel methylamine-directed indium thioantimonate with Rb + ion-exchange property Kai-Yao Wang a,b, Mei-Ling Feng a, Jian-Rong Li a and Xiao-Ying Huang
Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes
Supplementary information Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes Marcos A. P. Martins 1 *, Alexandre R. Meyer 1, Paulo R. S. Salbego
Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent
Supplementary information for the paper Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent Yang Xue, Ling-Po Li, Yan-Hong He * & Zhi Guan * School of Chemistry and Chemical Engineering,
Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines
Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines Zhanhui Yang, Wei He, Baoxiang Cheng and Jiaxi Xu* State Key Laboratory of Chemical Resource Engineering,
Supplementary material
Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015 Supplementary material Recyclable
Supporting information
Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 204 Supporting information Palladium nanoparticles supported on triazine functionalised mesoporous
Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate
upporting Information Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate Jing-Yu Wu, Zhi-Bin Luo, Li-Xin Dai and Xue-Long Hou* a tate Key Laboratory of Organometallic
Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process
Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process Jincan Zhao 1, Hong Fang 1, Jianlin Han* 1,2 and Yi Pan* 1
Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis
Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of α-diazoketones with Various Amines: A Strategy for Catalytic Wolff 1,2,3-Triazole Synthesis Zikun Wang, a Xihe
Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate
Supporting Information. for. A novel application of 2-silylated 1,3-dithiolanes for the. synthesis of aryl/hetaryl-substituted ethenes and
Supporting Information for A novel application of 2-silylated 1,3-dithiolanes for the synthesis of aryl/hetaryl-substituted ethenes and dibenzofulvenes Grzegorz Mlostoń *1, Paulina Pipiak 1, Róża Hamera-Fałdyga
Supporting Information
Supporting Information Direct Olefination of Alcohols with Sulfones by Using Heterogeneous Platinum Catalysts S. M. A. Hakim Siddiki, [a] Abeda Sultana Touchy, [b] Kenichi Kon, [b] [a, b] and Ken-ichi
Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting information An unusual bifunctional Tb-MOF for highly sensing
Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic
Supporting Information
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information Domino reaction of cyclic sulfamidate imines with
Electronic Supplementary Information
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 205 Electronic Supplementary Information DMSO/I 2 mediated C C bond cleavage
Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 ELECTRONIC SUPPORTING INFORMATION For Synthesis of New Heteroscorpionate Iridium(I)
Electronic Supplementary Information (ESI)
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) CPh 3 as a functional group in P-heterocyclic
Supporting information
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting information Copper-catalysed intramolecular O-arylation: a simple
Supporting Information
Supporting Information Aluminum Complexes of N 2 O 2 3 Formazanate Ligands Supported by Phosphine Oxide Donors Ryan R. Maar, Amir Rabiee Kenaree, Ruizhong Zhang, Yichen Tao, Benjamin D. Katzman, Viktor
Electronic Supplementary Information
Electronic Supplementary Information Unprecedented Carbon-Carbon Bond Cleavage in Nucleophilic Aziridine Ring Opening Reaction, Efficient Ring Transformation of Aziridines to Imidazolidin-4-ones Jin-Yuan
Electronic Supplementary Information
Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Syntheses and structures of copper complexes of
Supporting Information-B. A Facile Iterative Synthesis of 2,5-Terpyrimidinylenes as Non-peptidic α-helical Mimics
Supporting Information-B A Facile Iterative Synthesis of 2,5-Terpyrimidinylenes as on-peptidic α-helical Mimics Laura Anderson, 1,2 Mingzhou Zhou, 1,2 Vasudha Sharma, 2 Jillian M. McLaughlin, 2 Daniel.
Supporting Information
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Copper immobilized on nano-silica triazine dendrimer (Cu(II)-TD@nSiO
Supporting information
Supporting information Spectroscopic data of compounds 1a-f Benzyl bromide (1a) Yield: 81%. Colorless oil. b.p. 79-82 o C/15 mmhg (Lit. 83.5 84 o C/13 mmhg). 1 1 H NMR (CDCl 3 ): δ 4.45 (2H, s, PhCH 2
Supporting Information
Supporting Information Molecular Cage Impregnated Palladium Nanoparticles: Efficient, Additive-Free Heterogeneous Catalysts for Cyanation of Aryl Halides. Bijnaneswar Mondal, Koushik Acharyya, Prodip Howlader
Supporting Information
Supporting Information 1,3,5-Triazapentadienes by Nucleophilic Addition to 1,3- and 1,4-Dinitriles - Sterically Constrained Examples by Incorporation into Cyclic Peripheries: Synthesis, Aggregation and
Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group
Supporting Information Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group Changsheng Kuai, Lianhui Wang, Bobin Li, Zhenhui Yang, Xiuling Cui* Engineering
ANNEXE 2 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE
ANNEXE 2 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE 175 4-Oxopentyl acetate (1-9) 27.56 17.91 63.49 39.76 29.86 22.66 2.82 2. 1.97 2.91 2.96 2.9 4. 3.98 3.96 2.47 2.44 2.42 2.7 1.95 1.86 1.84 1.82 1.79
College of Life Science, Dalian Nationalities University, Dalian , PR China.
Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018 Postsynthetic modification
Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic
Supporting Information Asymmetric Binary-acid Catalysis with Chiral Phosphoric Acid and MgF 2 : Catalytic Enantioselective Friedel-Crafts Reactions of β,γ- Unsaturated-α-Ketoesters Jian Lv, Xin Li, Long
Supporting Information
Supporting Information for Lewis acid-catalyzed redox-neutral amination of 2-(3-pyrroline-1-yl)benzaldehydes via intramolecular [1,5]-hydride shift/isomerization reaction Chun-Huan Jiang, Xiantao Lei,
Supplementary Material
Supplementary Material Efficient, mild synthesis of - unsubstituted 1,2,3- triazoles from methanolysis of 1-sulfonyl-1,2,3-triazoles Janeth Rodríguez-Florencio, Diego Martínez-tero, Marco A. García-Eleno,
Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting information for Metal-free Oxidative Coupling of Amines with Sodium Sulfinates:
Supporting Information for
Supporting Information for An atom-economic route to densely functionalized thiophenes via base-catalyzed rearrangement of 5-propargyl-2H-thiopyran-4(3H)-ones Chunlin Tang a, Jian Qin b, Xingqi Li *a a
Synthesis and Biological Evaluation of Novel Acyclic and Cyclic Glyoxamide derivatives as Bacterial Quorum Sensing and Biofilm Inhibitors
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2017 Synthesis and Biological Evaluation of Novel Acyclic and Cyclic Glyoxamide
Supporting Information
Supporting Information Lewis acid catalyzed ring-opening reactions of methylenecyclopropanes with diphenylphosphine oxide in the presence of sulfur or selenium Min Shi,* Min Jiang and Le-Ping Liu State
Synthesis, Characterization, and Computational Study of Three-Coordinate SNS-Copper(I) Complexes Based on Bis-Thione Precursors
For Synthesis, Characterization, and Computational Study of Three-Coordinate SNS-Copper(I) Complexes Based on Bis-Thione Precursors John R. Miecznikowski a *; Matthew A. Lynn b ; Jerry P. Jasinski c ;
SUPPLEMENTARY MATERIAL
10.1071/CH16014_AC The Authors 2016 Australian Journal of Chemistry 2016, 69(9), 1049-1053 SUPPLEMENTARY MATERIAL A Green Approach for the Synthesis of Novel 7,11-Dihydro-6H-chromeno[3,4- e]isoxazolo[5,4-b]pyridin-6-one
Supplementary Information. Bio-catalytic asymmetric Mannich reaction of ketimines using. wheat germ lipase
Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2016 Supplementary Information Bio-catalytic asymmetric Mannich reaction of ketimines
Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl
Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl Philippe Pierrat, Philippe Gros* and Yves Fort Synthèse Organométallique
Supporting Information
Supporting Information for AgOTf-catalyzed one-pot reactions of 2-alkynylbenzaldoximes with α,β-unsaturated carbonyl compounds Qiuping Ding 1, Dan Wang 1, Puying Luo* 2, Meiling Liu 1, Shouzhi Pu* 3 and
Ionic liquid effect over the Biginelli reaction under homogeneous and heterogeneous catalysis
Supporting Information for Ionic liquid effect over the Biginelli reaction under homogeneous and heterogeneous catalysis Haline G. O. Alvim, a,b Tatiani B. de Lima, c Heibbe C. B. de Oliveira, a Fabio
Supporting Information
Supporting Information Montmorillonite KSF-Catalyzed One-pot, Three-component, Aza-Diels- Alder Reactions of Methylenecyclopropanes With Arylaldehydes and Aromatic Amines Li-Xiong Shao and Min Shi* General
Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*
Facile construction of the functionalized 4H-chromene via tandem benzylation and cyclization Jinmin Fan and Zhiyong Wang* Hefei National Laboratory for Physical Science at Microscale, Joint- Lab of Green
Four- and Five-membered Cobaltacycles by Regioselective Cyclometalation. of Benzylsulfide Derivatives via Co(V) intermediates
Electronic Supplementary Information for Dalton Transactions This journal is The Royal Society of Chemistry 2008 Supporting Information for: Four- and Five-membered Cobaltacycles by Regioselective Cyclometalation
ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.
ESI for A simple and efficient protocol for the palladium-catalyzed ligand-free Suzuki reaction at room temperature in aqueous DMF Chun Liu,* Qijian i, Fanying Bao and Jieshan Qiu State Key Laboratory
SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands
10.1071/CH16555_AC CSIRO 2017 Australian Journal of Chemistry 2017, 70(5), 546-555 SUPPLEMENTARY MATERIAL In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine
Supporting Information
Supporting Information Copper/Silver Cocatalyzed Oxidative Coupling of Vinylarenes with ICH 2 CF 3 or ICH 2 CHF 2 Leading to β-cf 3 /CHF 2 -Substituted Ketones Niannian Yi, Hao Zhang, Chonghui Xu, Wei
Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction
Supporting Information ne-pot Approach to Chiral Chromenes via Enantioselective rganocatalytic Domino xa-michael-aldol Reaction Hao Li, Jian Wang, Timiyin E-Nunu, Liansuo Zu, Wei Jiang, Shaohua Wei, *