Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός"

Transcript

1 Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών

2 Ηλεκτρικό δυναμικό Ηλεκτρικό δυναμικό Σε προηγούμενα κεφάλαια συνδέσαμε τη μελέτη του ηλεκτρομαγνητισμού με τις προγενέστερες γνώσεις μας σχετικά με τις δυνάμεις. Σε αυτό το κεφάλαιο, θα συνδέσουμε τον ηλεκτρομαγνητισμό με την ενέργεια. Χρησιμοποιώντας την αρχή διατήρησης της ενέργειας μπορούμε να λύνουμε διάφορα προβλήματα μηχανικής, τα οποία δεν είναι δυνατόν να λυθούν με μεθόδους που χρησιμοποιούν την έννοια της δύναμης. Η έννοια της δυναμικής ενέργειας είναι πολύ χρήσιμη και στη μελέτη του ηλεκτρισμού. Επειδή η ηλεκτροστατική δύναμη είναι συντηρητική, μπορούμε να περιγράψουμε τα ηλεκτροστατικά φαινόμενα χρησιμοποιώντας την έννοια της ηλεκτρικής δυναμικής ενέργειας. Αυτή η έννοια μας επιτρέπει να ορίσουμε το μέγεθος του ηλεκτρικού δυναμικού. Εισαγωγή Ηλεκτρική δυναμική ενέργεια Ηλεκτρική δυναμική ενέργεια (συνέχεια) Όταν ένα δοκιμαστικό φορτίο βρεθεί μέσα σε ένα ηλεκτρικό πεδίο, δέχεται μια ηλεκτρική δύναμη. Fe qoe Η ηλεκτρική δύναμη είναι συντηρητική. Αν το δοκιμαστικό φορτίο μετακινείται μέσα στο πεδίο υπό την επίδραση κάποιου εξωτερικού παράγοντα, τότε το έργο που παράγει το πεδίο στο φορτίο είναι ίσο κατά μέτρο και αντίθετο με το έργο που παράγει ο εξωτερικός παράγοντας. Με το σύμβολο ds συμβολίζουμε το απειροστό διάνυσμα μετατόπισης, το οποίο εφάπτεται σε μια διαδρομή στον χώρο. Η διαδρομή αυτή μπορεί να είναι ευθεία ή καμπύλη και το ολοκλήρωμα σε αυτή τη διαδρομή ονομάζεται επικαμπύλιο ολοκλήρωμα. Στο σύστημα φορτίου-πεδίου, το έργο που παράγει το ηλεκτρικό πεδίο στο φορτίο είναι F ds q E ds o Επειδή το έργο αυτό παράγεται από το πεδίο, η δυναμική ενέργεια του συστήματος φορτίου-πεδίου μεταβάλλεται κατά ΔU = q. oeds Για μια πεπερασμένη μετατόπιση του φορτίου από το σημείο A στο σημείο B, η μεταβολή της δυναμικής ενέργειας του συστήματος είναι U UB U B qo d A A Επειδή η δύναμη είναι συντηρητική, το επικαμπύλιο ολοκλήρωμα δεν εξαρτάται από τη διαδρομή που ακολουθεί το φορτίο. Ενότητα Η3.1 Ενότητα Η3.1 Ηλεκτρικό δυναμικό (1) Ηλεκτρικό δυναμικό (2) Η δυναμική ενέργεια ανά μονάδα φορτίου, U/q o, ονομάζεται ηλεκτρικό δυναμικό. Το δυναμικό είναι χαρακτηριστικό μόνο του πεδίου. Η δυναμική ενέργεια είναι χαρακτηριστικό του συστήματος φορτίου-πεδίου. Το δυναμικό είναι ανεξάρτητο από την τιμή του φορτίου q o. Το δυναμικό έχει τιμή σε κάθε σημείο του ηλεκτρικού πεδίου. Το ηλεκτρικό δυναμικό είναι U V q o Το δυναμικό είναι βαθμωτό μέγεθος. Επειδήη ενέργεια είναι βαθμωτό μέγεθος. Όταν ένα φορτισμένο σωματίδιο κινείται μέσα σε ένα ηλεκτρικό πεδίο, το δυναμικό μεταβάλλεται κατά U B V d q E s A o Η απειροστή μετατόπιση μπορεί να εκληφθεί ως απόσταση μεταξύ δύο σημείων του χώρου αντί ως μετατόπιση ενός σημειακού φορτίου. Ενότητα Η3.1 Ενότητα Η3.1 1

3 Ηλεκτρικό δυναμικό (τελική διαφάνεια) Έργο και ηλεκτρικό δυναμικό Το μέγεθος που έχει σημασία είναι η διαφορά του ηλεκτρικού δυναμικού. Συχνά θεωρούμε αυθαίρετα ότι σε κάποιο κατάλληλο σημείο του ηλεκτρικού πεδίου η τιμή του ηλεκτρικού δυναμικού είναι ίση με μηδέν. Το ηλεκτρικό δυναμικό είναι ένα βαθμωτό μέγεθος που χαρακτηρίζει το ηλεκτρικό πεδίο και είναι ανεξάρτητο από το όποιο φορτίο ενδέχεται να βρεθεί μέσα στο πεδίο. Η διαφορά δυναμικού μεταξύ δύο σημείων οφείλεται αποκλειστικά στην ύπαρξη ενός φορτίου-πηγής και εξαρτάται από την κατανομή του φορτίουπηγής. Για να υπάρχει δυναμική ενέργεια, πρέπει να έχουμε ένα σύστημα με δύο ή περισσότερα φορτία. Η δυναμική ενέργεια ανήκει στο σύστημα και μεταβάλλεται μόνο όταν ένα φορτίο μετακινείται σε σχέση με το υπόλοιπο σύστημα. Έστω ότι ένα φορτίο κινείται μέσα σε ένα ηλεκτρικό πεδίο χωρίς να μεταβάλλεται η κινητική ενέργειά του. Το έργο που παράγεται στο φορτίο είναι: W = ΔU = q ΔV Μονάδα μέτρησης: 1 V 1 J/C Το V είναι το αρχικό του volt. Χρειάζεται 1 joule έργου για να μετακινήσουμε ένα φορτίο 1 coulomb μεταξύ δύο σημείων που έχουν διαφορά δυναμικού 1 volt. Επιπλέον, 1 N/C = 1 V/m. Συνεπώς, μπορούμε να εκλάβουμε το ηλεκτρικό πεδίο ως ένα μέτρο του ρυθμού μεταβολής του ηλεκτρικού δυναμικού συναρτήσει της απόστασης. Ενότητα Η3.1 Ενότητα Η3.1 Τάση και βολτάζ Ηλεκτρονιοβόλτ Το ηλεκτρικό δυναμικό περιγράφεται με διάφορους όρους. Οι πιο κοινοί είναι η τάση και το βολτάζ. Η τάση που εφαρμόζεται σε μια συσκευή ή στα άκρα μιας συσκευής είναι ίδια με τη διαφορά δυναμικού στα άκρα της συσκευής. Παρά το γεγονός ότι οι εκφράσεις αυτές υποδηλώνουν κίνηση, η τάση δεν είναι κάτι που κινείται διαμέσου της συσκευής. Μια άλλη μονάδα ενέργειας που χρησιμοποιείται συνήθως στην ατομική και πυρηνική φυσική είναι το ηλεκτρονιοβόλτ. Ένα ηλεκτρονιοβόλτ είναι η ενέργεια που προσλαμβάνει ή χάνει ένα σύστημα φορτίου-πεδίου όταν ένα φορτίο με τιμή e (δηλαδή ένα ηλεκτρόνιο ή πρωτόνιο) κινείται μεταξύ δύο θέσεων με διαφορά δυναμικού 1 volt. 1 ev = 1.60 x J Ενότητα Η3.1 Ενότητα Η3.1 Διαφορά δυναμικού σε ομογενές ηλεκτρικό πεδίο Αν το ηλεκτρικό πεδίο είναι ομογενές, οι εξισώσεις που δίνουν τη διαφορά δυναμικού μεταξύ δύο σημείων A και B μπορούν να αναχθούν σε πιο απλή μορφή: V B B B V A V E d s E d Ed A s A Η μετατόπιση γίνεται από το σημείο A στο σημείο B, παράλληλα στις γραμμές του ηλεκτρικού πεδίου. Το αρνητικό πρόσημο δείχνει ότι το ηλεκτρικό δυναμικό είναι μικρότερο στο σημείο B απ ό,τι στο σημείο A. Οι γραμμές του ηλεκτρικού πεδίου πάντα δείχνουν προς την κατεύθυνση στην οποία μειώνεται το ηλεκτρικό δυναμικό. Η ενέργεια και η κατεύθυνση του ηλεκτρικού πεδίου Όταν το ηλεκτρικό πεδίο έχει κατεύθυνση προς τα κάτω, το σημείο B έχει χαμηλότερο δυναμικό από το A. Όταν ένα θετικό δοκιμαστικό φορτίο μετακινείται από το σημείο A στο B, το σύστημα φορτίου-πεδίου χάνει δυναμική ενέργεια. Οι γραμμές του ηλεκτρικού πεδίου πάντα δείχνουν προς την κατεύθυνση στην οποία μειώνεται το ηλεκτρικό δυναμικό. Ενότητα Η3.2 Ενότητα Η3.2 2

4 Περισσότερα σχετικά με την κατεύθυνση του πεδίου Σε ένα σύστημα που αποτελείται από ένα θετικό φορτίο και ένα ηλεκτρικό πεδίο, η ηλεκτρική δυναμική ενέργεια του συστήματος μειώνεται όταν το φορτίο κινείται με κατεύθυνση ίδια με αυτή του πεδίου. Το ηλεκτρικό πεδίο παράγει έργο σε ένα θετικό φορτίο όταν το φορτίο κινείται στην κατεύθυνση του πεδίου. Η αύξηση της κινητικής ενέργειας του φορτισμένου σωματιδίου συνοδεύεται από ισόποση μείωση της δυναμικής ενέργειας του συστήματος φορτίου-πεδίου. Ένα ακόμα παράδειγμα της αρχής διατήρησης της ενέργειας. Κατεύθυνση του ηλεκτρικού πεδίου (συνέχεια) Αν το φορτίο q o είναι αρνητικό, τότε η μεταβολή της ηλεκτρικής δυναμικής ενέργειας ΔU είναι θετική. Σε ένα σύστημα που αποτελείται από ένα αρνητικό φορτίο και ένα ηλεκτρικό πεδίο, η ηλεκτρική δυναμική ενέργεια του συστήματος αυξάνεται όταν το φορτίο κινείται με κατεύθυνση ίδια με αυτή του πεδίου. Για να κινηθεί το αρνητικό φορτίο στην κατεύθυνση του πεδίου, πρέπει να δεχτεί μια εξωτερική δύναμη η οποία θα παραγάγει θετικό έργο στο φορτίο. Ενότητα Η3.2 Ενότητα Η3.2 Ισοδυναμικές επιφάνειες Το σημείο B έχει χαμηλότερο δυναμικό από το A. Τα σημεία A και Γ έχουν το ίδιο δυναμικό. Όλα τα σημεία που ανήκουν σε ένα επίπεδο το οποίο είναι κάθετο σε ένα ομογενές ηλεκτρικό πεδίο έχουν το ίδιο ηλεκτρικό δυναμικό. Κάθε επιφάνεια που αποτελείται από μια συνεχή κατανομή σημείων, τα οποία έχουν το ίδιο ηλεκτρικό δυναμικό, ονομάζεται ισοδυναμική επιφάνεια. Φορτισμένο σωματίδιο σε ομογενές πεδίο Παράδειγμα Ένα θετικό φορτίο, που βρίσκεται σε κατάσταση ηρεμίας,αφήνεται ελεύθερο και κινείται σε κατεύθυνση ίδια με αυτή του ηλεκτρικού πεδίου. Η μεταβολή του δυναμικού είναι αρνητική. Η μεταβολή της δυναμικής ενέργειας είναι αρνητική. Η δύναμη και η επιτάχυνση έχουν κατεύθυνση ίδια με αυτή του πεδίου. Μπορούμε να υπολογίσουμε το μέτρο της ταχύτητας του φορτίου χρησιμοποιώντας την αρχή διατήρησης της ενέργειας. Ενότητα Η3.2 Ενότητα Η3.2 Ηλεκτρικό δυναμικό και σημειακά φορτία Ένα απομονωμένο θετικό σημειακό φορτίο δημιουργεί ηλεκτρικό πεδίο με ακτινική κατεύθυνση προς τα έξω. Η διαφορά δυναμικού μεταξύ των σημείων A και B είναι: 1 1 VB VA keq r B r A Ηλεκτρικό δυναμικό και σημειακά φορτία (συνέχεια) Το ηλεκτρικό δυναμικό είναι ανεξάρτητο από τη διαδρομή που ακολουθεί το φορτίο για να μετακινηθεί από το σημείο A στο B. Ως τιμή αναφοράς του ηλεκτρικού δυναμικού συνήθως επιλέγουμε τη V = 0 στο r A =. Έτσι, το ηλεκτρικό δυναμικό ενός σημειακού φορτίου σε απόσταση r από αυτό είναι ίσο με: q V ke r Ενότητα Η3.3 Ενότητα Η3.3 3

5 Το ηλεκτρικό δυναμικό ενός σημειακού φορτίου Στην εικόνα φαίνεται το γράφημα του ηλεκτρικού δυναμικού στον κατακόρυφο άξονα για ένα θετικό φορτίο, το οποίο βρίσκεται στο επίπεδο xy. Η καφέ καμπύλη δείχνει ότι το δυναμικό είναι αντιστρόφως ανάλογο του r. Το ηλεκτρικό δυναμικό που οφείλεται σε πολλά φορτία Το συνολικό ηλεκτρικό δυναμικό λόγω πολλώνσημειακών φορτίων σε ένα σημείο Σ ισούται με το άθροισμα των δυναμικών των επιμέρους φορτίων. Ένα ακόμα παράδειγμα της αρχής της υπέρθεσης. Πρόκειται για αλγεβρικό άθροισμα. qi V ke i ri V = 0 στο r =. Ενότητα Η3.3 Ενότητα Η3.3 Το ηλεκτρικό δυναμικό ενός ηλεκτρικού διπόλου Στον κατακόρυφο άξονα y του γραφήματος απεικονίζεται το δυναμικό ενός ηλεκτρικού διπόλου. Η απότομη κλίση μεταξύ των φορτίων αντιπροσωπεύει το ισχυρό ηλεκτρικό πεδίο σε αυτή την περιοχή. Δυναμική ενέργεια πολλών φορτίων qq 1 2 Η δυναμική ενέργεια του συστήματος είναι U ke. r 12 Αν τα δύο φορτία είναι ομόσημα, τότε η δυναμική ενέργεια U είναι θετική και πρέπει να παραχθεί έργο για να πλησιάσουν τα φορτία το ένα στο άλλο. Αν τα δύο φορτία είναι ετερόσημα, τότε η δυναμική ενέργεια U είναι αρνητική και πρέπει να παραχθεί έργο για να μην πλησιάσουν τα φορτία το ένα στο άλλο. Ενότητα Η3.3 Ενότητα Η3.3 Δυναμική ενέργεια πολλών φορτίων (συνέχεια) Αν υπάρχουν περισσότερα από δύο φορτία, τότε βρίσκουμε τη δυναμική ενέργεια U για κάθε ζεύγος φορτίων και αθροίζουμε αλγεβρικά τους όρους. Για τρία φορτία: qq 1 2 q1q 3 q2q 3 U ke r12 r13 r23 Το αποτέλεσμα δεν εξαρτάται από τη σειρά πρόσθεσης των φορτίων. Υπολογισμός του ηλεκτρικού πεδίου E από το ηλεκτρικό δυναμικό V Αρχικά υποθέτουμε ότι το πεδίο έχει μόνο μια οριζόντια συνιστώσα x. dv Ex dx Μπορούμε να γράψουμε παρόμοιες σχέσεις και για τις συνιστώσες y και z. Οι ισοδυναμικές επιφάνειες πρέπει πάντα να είναι κάθετες στις γραμμές του ηλεκτρικού πεδίου που διέρχονται από αυτές. Ενότητα Η3.3 Ενότητα Η3.4 4

6 Τα E και V για ένα φορτισμένο φύλλο άπειρων διαστάσεων Οι ισοδυναμικές είναι οι διακεκομμένες μπλε γραμμές. Οι γραμμές του ηλεκτρικού πεδίου είναι οι καφέ γραμμές. Οι ισοδυναμικές είναι κάθετες σε κάθε σημείο των γραμμών του ηλεκτρικού πεδίου. Τα E και V για ένα σημειακό φορτίο Οι ισοδυναμικές είναι οι διακεκομμένες μπλε γραμμές. Οι γραμμές του ηλεκτρικού πεδίου είναι οι καφέ γραμμές. Οι γραμμές του ηλεκτρικού πεδίου έχουν ακτινική διεύθυνση. E r = dv / dr Οι ισοδυναμικές είναι κάθετες σε κάθε σημείο των γραμμών του ηλεκτρικού πεδίου. Ενότητα Η3.4 Ενότητα Η3.4 Τα E και V για ένα ηλεκτρικό δίπολο Οι ισοδυναμικές είναι οι διακεκομμένες μπλε γραμμές. Οι γραμμές του ηλεκτρικού πεδίου είναι οι καφέ γραμμές. Οι ισοδυναμικές είναι κάθετες σε κάθε σημείο των γραμμών του ηλεκτρικού πεδίου. Υπολογισμός του ηλεκτρικού πεδίου από το ηλεκτρικό δυναμικό Γενικά Γενικά, το ηλεκτρικό δυναμικό είναι συνάρτηση και των τριών χωρικών συντεταγμένων. Αν η συνάρτηση V εκφράζεται με βάση τις καρτεσιανές συντεταγμένες, τότε οι συνιστώσες E x, E y, και E z του ηλεκτρικού πεδίου προκύπτουν εύκολα από τις μερικές παραγώγους της V(x, y, z). V V V Ex Ey Ez x y z Ενότητα Η3.4 Ενότητα Η3.4 Ηλεκτρικό δυναμικό συνεχούς κατανομής φορτίου Μέθοδος 1: Η κατανομή φορτίου είναι γνωστή. Θεωρούμε ένα μικρό στοιχειώδες φορτίο dq. Εκλαμβάνουμε το φορτίο ως σημειακό. Το δυναμικό σε οποιοδήποτε σημείο λόγω αυτού του στοιχειώδους φορτίου είναι: Ηλεκτρικό δυναμικό συνεχούς κατανομής φορτίου (συνέχεια) Για να βρούμε το συνολικό δυναμικό, ολοκληρώνουμε την προηγούμενη εξίσωση ώστε να συμπεριλάβουμε τις συνεισφορές όλων των στοιχείων της κατανομής φορτίου. dq V ke r Σε αυτή τη σχέση για το V, το ηλεκτρικό δυναμικό θεωρείται ίσο με το μηδέν όταν το σημείο Σ βρίσκεται σε άπειρη απόσταση από την κατανομή φορτίου. dq dv ke r 5

7 Ηλεκτρικό δυναμικό συνεχούς κατανομής φορτίου (τελική διαφάνεια) Μεθοδολογία επίλυσης προβλημάτων (1) Αν γνωρίζουμε ήδη το ηλεκτρικό πεδίο, τότε μπορούμε να υπολογίσουμε το ηλεκτρικό δυναμικό από την αρχική σχέση: B E A V d s Αν η κατανομή φορτίου χαρακτηρίζεται από επαρκή βαθμό συμμετρίας, τότε πρώτα υπολογίζουμε το ηλεκτρικό πεδίο με τον νόμο του Gauss και έπειτα τη διαφορά δυναμικού μεταξύ δύο τυχαίων σημείων. Επιλέγουμε V = 0 σε ένα κατάλληλο σημείο. Μοντελοποίηση Φανταστείτε τα επιμέρους φορτία ή την κατανομή φορτίου. Φανταστείτε τον τύπο του δυναμικού που δημιουργούν. Λάβετε υπόψη τη συμμετρία (αν υπάρχει) στη διάταξη των φορτίων. Κατηγοριοποίηση Πρόκειται για ένα σύνολο από μεμονωμένα φορτία ή για μια συνεχή κατανομή φορτίων; Η απάντηση σε αυτή την ερώτηση θα καθορίσει τη διαδικασία που θα ακολουθήσετε στο βήμα της Ανάλυσης. Μεθοδολογία επίλυσης προβλημάτων (2) Μεθοδολογία επίλυσης προβλημάτων (3) Ανάλυση Γενικά Το ηλεκτρικό δυναμικό είναι βαθμωτό μέγεθος, άρα δεν χρειάζεται να βρείτε συνιστώσες. Χρησιμοποιήστε την αρχή της υπέρθεσης και αθροίστε αλγεβρικά τα δυναμικά των επιμέρους φορτίων. Προσοχή στα πρόσημα. Μόνο οι μεταβολές του ηλεκτρικού δυναμικού έχουν σημασία. Θεωρήστε ότι V = 0 σε ένα σημείο που βρίσκεται πολύ μακριά από τα φορτία. Αν η κατανομή εκτείνεται ως το άπειρο, επιλέξτε κάποιο άλλο σημείο ως σημείο αναφοράς. Ανάλυση (συνέχεια) Αν δίνεται μια ομάδα μεμονωμένων φορτίων: Χρησιμοποιήστε την αρχή της υπέρθεσης και αθροίστε αλγεβρικά τα δυναμικά των επιμέρους φορτίων. Αν δίνεται μια συνεχής κατανομή φορτίου: Υπολογίστε το συνολικό δυναμικό σε κάποιο σημείο χρησιμοποιώντας ολοκληρώματα. Θεωρήστε κάθε στοιχειώδες τμήμα της κατανομής φορτίου ως σημειακό φορτίο. Αν δίνεται το ηλεκτρικό πεδίο: Ξεκινήστε από τον ορισμό του ηλεκτρικού δυναμικού. Αν χρειαστεί, υπολογίστε το πεδίο χρησιμοποιώντας τον νόμο του Gauss (ή κάποιον άλλο τρόπο). Μεθοδολογία επίλυσης προβλημάτων (4) Ηλεκτρικό δυναμικό ομοιόμορφα φορτισμένου δακτυλίου Ολοκλήρωση Βεβαιωθείτε ότι η σχέση του ηλεκτρικού δυναμικού που βρήκατε συμφωνεί με τη νοητική σας αναπαράσταση. Η τελική σχέση αντικατοπτρίζει την όποια συμμετρία υπάρχει; Μεταβάλλετε νοητικά παραμέτρους για να εξακριβώσετε αν το μαθηματικό αποτέλεσμα αλλάζει με εύλογο τρόπο. Το σημείο Σ βρίσκεται στον κάθετο κεντρικό άξονα του ομοιόμορφα φορτισμένου δακτυλίου. Με βάση τη συμμετρία της περίπτωσης, όλα τα φορτία του δακτυλίου ισαπέχουν από το σημείο Σ. Ο δακτύλιος έχει ακτίνα α και συνολικό φορτίο Q. Το δυναμικό και το πεδίο δίνονται από τις σχέσεις: dq kq e V ke r 2 2 α x Ex kx e Q 3/2 2 α x 2 6

8 Ηλεκτρικό δυναμικό ομοιόμορφα φορτισμένου δίσκου Ο δακτύλιος έχει ακτίνα R και επιφανειακή πυκνότητα φορτίου σ. Το σημείο Σ βρίσκεται στον κάθετο κεντρικό άξονα του ομοιόμορφα φορτισμένου δακτυλίου. Επειδή το σημείο Σ βρίσκεται επάνω στον κεντρικό άξονα του δίσκου, συνάγεται λόγω συμμετρίας ότι όλα τα σημεία κάθε δακτυλίου ισαπέχουν από το Σ. Το δυναμικό και το πεδίο δίνονται από τις σχέσεις: V 2πkeσ R x x x Ex 2πkeσ R x 1/2 Ηλεκτρικό δυναμικό πεπερασμένης φορτισμένης ευθείας Μια ράβδος μήκους l έχει συνολικό φορτίο Q και γραμμική πυκνότητα φορτίου λ. Δεν υπάρχει συμμετρία, αλλά η γεωμετρία του προβλήματος είναι απλή. 2 2 kq e α V ln α Ηλεκτρικό δυναμικό φορτισμένου αγωγού Θεωρούμε δύο σημεία επί της επιφάνειας του φορτισμένου αγωγού, όπως φαίνεται στην εικόνα. Το πεδίο E είναι πάντα κάθετο στη μετατόπιση ds. Άρα, Eds 0 Επομένως, η διαφορά δυναμικού μεταξύ των σημείων A και B είναι επίσης μηδενική. Ηλεκτρικό δυναμικό φορτισμένου αγωγού (συνέχεια) Σε κάθε σημείο της επιφάνειας ενός φορτισμένου αγωγού, ο οποίος βρίσκεται σε ισορροπία, V = σταθερό. ΔV = 0 μεταξύ οποιουδήποτε ζεύγους σημείων της επιφάνειας. Η επιφάνεια κάθε φορτισμένου αγωγού που βρίσκεται σε ηλεκτροστατική ισορροπία είναι ισοδυναμική. Κάθε σημείο της επιφάνειας ενός φορτισμένου αγωγού που είναι σε ισορροπία έχει το ίδιο ηλεκτρικό δυναμικό. Επειδή στο εσωτερικό του αγωγού το ηλεκτρικό πεδίο είναι ίσο με μηδέν, συμπεραίνουμε ότι το ηλεκτρικό δυναμικό παντού στο εσωτερικό του αγωγού είναι σταθερό και ίσο με την τιμή του στην επιφάνεια. Ενότητα Η3.6 Ενότητα Η3.6 Σώματα με ακανόνιστο σχήμα Κοιλότητα στο εσωτερικό ενός αγωγού Όπου η ακτίνα καμπυλότητας είναι μικρή, η πυκνότητα φορτίου είναι μεγάλη. Και όπου η ακτίνα καμπυλότητας είναι μεγάλη, η πυκνότητα φορτίου είναι μικρή. Το ηλεκτρικό πεδίο είναι ισχυρό κοντά σε κυρτά σημεία με μικρή ακτίνα καμπυλότητας και φτάνει σε πολύ μεγάλες τιμές σε αιχμηρά σημεία. Έστω ότι ένας αγωγός περιέχει μια κοιλότητα ακανόνιστου σχήματος. Υποθέτουμε ότι μέσα στην κοιλότητα δεν υπάρχουν φορτία. Το ηλεκτρικό πεδίο στο εσωτερικό του αγωγού πρέπει να είναι ίσο με μηδέν. Ενότητα Η3.6 Ενότητα Η3.6 7

9 Κοιλότητα στο εσωτερικό ενός αγωγού (συνέχεια) Το ηλεκτρικό πεδίο στο εσωτερικό του αγωγού δεν εξαρτάται από την κατανομή φορτίου στην εξωτερική επιφάνεια του αγωγού. Για κάθε διαδρομή μεταξύ των σημείων A και B, B VB VA E d s 0 A Σε μια κοιλότητα η οποία περιβάλλεται από αγώγιμα τοιχώματα δεν υπάρχει πεδίο, υπό την προϋπόθεση ότι στο εσωτερικό της δεν υπάρχει φορτίο. Στεμματόμορφη εκκένωση Αν το ηλεκτρικό πεδίο στην περιοχή κοντά στον αγωγό είναι αρκετά ισχυρό, τα ηλεκτρόνια που προκύπτουν από τον τυχαίο ιοντισμό μορίων του αέρα κοντά στον αγωγό απομακρύνονται επιταχυνόμενα από τα μόρια από τα οποία προήλθαν. Αυτά τα ηλεκτρόνια μπορούν να ιοντίσουν και άλλα μόρια που βρίσκονται κοντά στον αγωγό. Έτσι δημιουργούνται κι άλλα ελεύθερα ηλεκτρόνια. Η λάμψη που παρατηρείται η στεμματόμορφη εκκένωση οφείλεται στην επανένωση αυτών των ελεύθερων ηλεκτρονίων με τα ιοντισμένα μόρια του αέρα. Η πιθανότητα να συμβεί ιοντισμός και στεμματόμορφη εκκένωση είναι μεγάλη σε αιχμηρά σημεία ή στις ακμές του αγωγού. Ενότητα Η3.6 Το πείραμα των σταγονιδίων λαδιού του Millikan Το πείραμα των σταγονιδίων λαδιού του Millikan Πειραματική διάταξη (1) Ο Robert Millikan μέτρησε το e, την τιμή του στοιχειώδους φορτίου του ηλεκτρονίου. Επίσης απέδειξε ότι το φορτίο αυτό είναι κβαντισμένο. Τα σταγονίδια λαδιού διέρχονται από μια μικρή οπή και φωτίζονται από μια φωτεινή πηγή. Ενότητα Η3.7 Ενότητα Η3.7 Το πείραμα των σταγονιδίων λαδιού του Millikan (2) Αν μεταξύ των πλακών δεν υπάρχει ηλεκτρικό πεδίο, τότε στο σταγονίδιο ασκούνται η βαρυτική δύναμη και η δύναμη τριβής. Το σταγονίδιο φτάνει στην οριακή του ταχύτητα όταν F mg D Το πείραμα των σταγονιδίων λαδιού του Millikan (3) Μεταξύ των πλακών δημιουργείται ένα ηλεκτρικό πεδίο. Η άνω πλάκα έχει υψηλότερο δυναμικό από την κάτω. Το σταγονίδιο φτάνει σε μια νέα οριακή ταχύτητα, όταν η ηλεκτρική δύναμη γίνει ίση με το άθροισμα της δύναμης αντίστασης του αέρα και της βαρυτικής δύναμης. Ενότητα Η3.7 Ενότητα Η3.7 8

10 Το πείραμα των σταγονιδίων λαδιού του Millikan (4) Ενεργοποιώντας και απενεργοποιώντας το ηλεκτρικό πεδίο μπορούμε να παρακολουθούμε το σταγονίδιο να ανυψώνεται και να πέφτει πολλές φορές. Μετά από πολλά πειράματα, ο Millikan προσδιόρισε τα εξής: q = ne όπου n = 0, 1, 2, 3, e = 1.60 x C Αυτό αποτελεί αδιάσειστη απόδειξη ότι το φορτίο είναι κβαντισμένο. Η ηλεκτροστατική γεννήτρια Van de Graaff Ένα ηλεκτρόδιο υψηλής τάσης τροφοδοτείται συνεχώς με φορτίο μέσω ενός κινούμενου ιμάντα από μονωτικό υλικό. Το ηλεκτρόδιο υψηλής τάσης είναι ένας κοίλος μεταλλικός θολωτός αγωγός, ο οποίος είναι τοποθετημένος επάνω σε μια μονωτική στήλη. Με τη συνεχή κίνηση του ιμάντα αναπτύσσεται υψηλή διαφορά δυναμικού μεταξύ της σφαίρας και της γης. Τα πρωτόνια που επιταχύνονται μέσα από τόσο μεγάλες διαφορές δυναμικού, προσλαμβάνουν επαρκή ενέργεια ώστε να μπορούν να προκαλέσουν πυρηνικές αντιδράσεις. Ενότητα Η3.7 Ενότητα Η3.8 Ο ηλεκτροστατικός διαχωριστής Ο ηλεκτροστατικός διαχωριστής αποτελεί μια σημαντική εφαρμογή της ηλεκτρικής εκκένωσης στα αέρια. Αφαιρεί τα σωματίδια ύλης από τα καυσαέρια. Ο αέρας που πρέπει να καθαριστεί εισέρχεται στον αεραγωγό και κινείται προς το σύρμα. Καθώς τα ηλεκτρόνια και τα αρνητικά ιόντα που δημιουργούνται από την εκκένωση επιταχύνονται εξαιτίας του ηλεκτρικού πεδίου προς το τοίχωμα του αγωγού, συγκρούονται και προσκολλώνται στα σωματίδια σκόνης του αέρα, προσδίδοντας τους φορτίο. Επειδή τα περισσότερα από τα φορτισμένα σωματίδια σκόνης είναι αρνητικά φορτισμένα, έλκονται λόγω του ηλεκτρικού πεδίου προς τα τοιχώματα του αεραγωγού. Ενότητα Η3.8 9

11 Τέλος Ηλεκτρικό δυναμικό

12 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. Ηλεκτρομαγνητισμός 3

13 Σημειώματα

14 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση 1.0. Ηλεκτρομαγνητισμός 5

15 Σημείωμα Αναφοράς Copyright Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών, Βαρουτάς Δημήτρης. «Ηλεκρομαγνητισμός - Οπτική - Σύγχρονη Φυσική. Ηλεκτρομαγνητισμός». Έκδοση: 1.0. Αθήνα Διαθέσιμο από τη δικτυακή διεύθυνση: Ηλεκτρομαγνητισμός 6

16 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. Ηλεκτρομαγνητισμός 7

17 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους. Ηλεκτρομαγνητισμός 8

Κεφάλαιο Η3. Ηλεκτρικό δυναµικό

Κεφάλαιο Η3. Ηλεκτρικό δυναµικό Κεφάλαιο Η3 Ηλεκτρικό δυναµικό Ηλεκτρικό δυναµικό Σε προηγούµενα κεφάλαια συνδέσαµε τη µελέτη του ηλεκτροµαγνητισµού µε τις προγενέστερες γνώσεις µας σχετικά µε τις δυνάµεις. Σε αυτό το κεφάλαιο, θα συνδέσουµε

Διαβάστε περισσότερα

Κεφάλαιο Η2. Ο νόµος του Gauss

Κεφάλαιο Η2. Ο νόµος του Gauss Κεφάλαιο Η2 Ο νόµος του Gauss Ο νόµος του Gauss Ο νόµος του Gauss µπορεί να χρησιµοποιηθεί ως ένας εναλλακτικός τρόπος υπολογισµού του ηλεκτρικού πεδίου. Ο νόµος του Gauss βασίζεται στο γεγονός ότι η ηλεκτρική

Διαβάστε περισσότερα

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014 Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού Ιωάννης Γκιάλας 14 Μαρτίου 2014 Έργο ηλεκτροστατικής δύναμης W F Δl W N i i1 F Δl i Η μετατόπιση Δl περιγράφεται από ένα διάνυσμα που

Διαβάστε περισσότερα

Κεφάλαιο 23 Ηλεκτρικό Δυναµικό. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 23 Ηλεκτρικό Δυναµικό. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 23 Ηλεκτρικό Δυναµικό Διαφορά Δυναµικού-Δυναµική Ενέργεια Σχέση Ηλεκτρικού Πεδίου και Ηλεκτρικού Δυναµικού Ηλεκτρικό Δυναµικό Σηµειακών Φορτίων Δυναµικό Κατανοµής Φορτίων Ισοδυναµικές Επιφάνειες

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ Υποθέστε ότι έχουμε μερικά ακίνητα φορτισμένα σώματα (σχ.). Τα σώματα αυτά δημιουργούν γύρω τους ηλεκτρικό πεδίο. Αν σε κάποιο σημείο Α του ηλεκτρικού πεδίου τοποθετήσουμε ένα

Διαβάστε περισσότερα

Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου

Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου Θεοδωρίδης Προκόπης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

(E) Κώδικας. Το περιεχόμενο. Προγράμματος. διαφορετικά

(E) Κώδικας. Το περιεχόμενο. Προγράμματος. διαφορετικά Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ηλεκτροτεχνία, ηλ. μηχανές & εγκαταστάσεις πλοίου (E) Ενότητα 1: Ο Νόμος του ΟΗΜ και ο Χρωματικός Κώδικας Δημήτριος Νικόλαος Παγώνης Τμήμα

Διαβάστε περισσότερα

Επαναληπτικές Σημειώσεις για τη Φυσική Γενικής Παιδείας Β Λυκείου Κεφάλαιο 3.1 Δυνάμεις μεταξύ ηλεκτρικών φορτίων

Επαναληπτικές Σημειώσεις για τη Φυσική Γενικής Παιδείας Β Λυκείου Κεφάλαιο 3.1 Δυνάμεις μεταξύ ηλεκτρικών φορτίων Επαναληπτικές Σημειώσεις για τη Φυσική Γενικής Παιδείας Β Λυκείου Κεφάλαιο 3.1 Δυνάμεις μεταξύ ηλεκτρικών φορτίων 3.1.1 Ο Νόμος του Coulomb Στη φύση εμφανίζονται δύο ειδών φορτία. Θετικό (+) και αρνητικό

Διαβάστε περισσότερα

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος

Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ Πεδίο, ονομάζεται μια περιοχή του χώρου, όπου σε κάθε σημείο της ένα ορισμένο φυσικό μέγεθος παίρνει καθορισμένη τιμή. Ηλεκτρικό πεδίο Ηλεκτρικό πεδίο ονομάζεται ο χώρος, που σε κάθε σημείο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ ΕΡΩΤΗΣΕΙΣ

ΚΕΦΑΛΑΙΟ 1 ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ ΕΡΩΤΗΣΕΙΣ ΚΕΦΑΛΑΙΟ 1 ο ΔΥΝΑΜΕΙΣ ΜΕΤΑΞΥ ΗΛΕΚΤΡΙΚΩΝ ΦΟΡΤΙΩΝ ΕΡΩΤΗΣΕΙΣ 1. Κατά την ηλέκτριση με τριβή μεταφέρονται από το ένα σώμα στο άλλο i. πρωτόνια. ii. ηλεκτρόνια iii iν. νετρόνια ιόντα. 2. Το σχήμα απεικονίζει

Διαβάστε περισσότερα

Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας

Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας Εργαστήριο Ανάλυσης Συστημάτων Ηλεκτρικής Ενέργειας Ενότητα: Άσκηση 6: Αντιστάθμιση γραμμών μεταφοράς με σύγχρονους αντισταθμιστές Νικόλαος Βοβός, Γαβριήλ Γιαννακόπουλος, Παναγής Βοβός Τμήμα Ηλεκτρολόγων

Διαβάστε περισσότερα

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου

Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Εισαγωγικές έννοιες θεωρίας Συστημάτων Αυτομάτου Ελέγχου Ενότητα 4 η : ΕΥΣΤΑΘΕΙΑ ΤΩΝ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Επ. Καθηγητής Γαύρος Κωνσταντίνος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΕ Άδειες Χρήσης

Διαβάστε περισσότερα

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Ενημέρωση Η διδασκαλία του μαθήματος, πολλά από τα σχήματα και όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή Φυσική» του Hugh Young των Εκδόσεων Παπαζήση, οι οποίες μας επέτρεψαν τη χρήση

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 6: Εφαρμογές Γραμμικού Προγραμματισμού (2 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Η δυναμική ενέργεια ανήκει στο σύστημα των δύο φορτίων και δίνεται από τη σχέση:

ΘΕΜΑ 1 ο. ΘΕΜΑ 2 ο. Η δυναμική ενέργεια ανήκει στο σύστημα των δύο φορτίων και δίνεται από τη σχέση: ΑΠΑΝΤΗΣΕΕΙΙΣ ΣΤΟ ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΒΒ ΛΥΥΚΚΕΕΙΙΟΥΥ 1133 33 001111 ΘΕΜΑ 1 ο 1. β. γ 3. α 4. β 5. α ΘΕΜΑ ο 1. α. Σωστό Η δυναμική ενέργεια του συστήματος των δύο φορτίων δίνεται από

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 2: Γραφήματα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης

Διαβάστε περισσότερα

Επιδημιολογία καρκίνου του πνεύμονα Ενότητα 1: Ογκολογία Πνεύμονα. Κυριάκος Καρκούλιας, Επίκουρος Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής

Επιδημιολογία καρκίνου του πνεύμονα Ενότητα 1: Ογκολογία Πνεύμονα. Κυριάκος Καρκούλιας, Επίκουρος Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Επιδημιολογία καρκίνου του πνεύμονα Ενότητα 1: Ογκολογία Πνεύμονα Κυριάκος Καρκούλιας, Επίκουρος Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Επιδημιολογικά στοιχεία καρκίνου του πνεύμονα Ο καρκίνος

Διαβάστε περισσότερα

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Ο Να επιλέξετε τη σωστή απάντηση σε κάθε μία από τις ερωτήσεις - που ακολουθούν: Η ενεργός ταχύτητα των μορίων ορισμένης ποσότητας

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Στατικός Ηλεκτρισμός

ΚΕΦΑΛΑΙΟ 1: Στατικός Ηλεκτρισμός ΚΕΦΑΛΑΙΟ 1: Στατικός Ηλεκτρισμός Βασίλης Γαργανουράκης Φυσική Γ Γυμνασίου http://users.sch.gr/vgargan g g Φυσική Γ Γυμνασίου Κεφάλαιο 1: Στατικός Ηλεκτρισμός - http://vgargan.gr Τι είναι ο Στατικός Ηλεκτρισμός;

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενόςισοπλεύρου τριγώνου ΑΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σηµειακά ηλεκτρικά φορτία q 1 =2µC και q 2 αντίστοιχα.

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο

ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο Βασίλης Γαργανουράκης Φυσική ήγ Γυμνασίου Εισαγωγή Στο προηγούμενο κεφάλαιο μελετήσαμε τις αλληλεπιδράσεις των στατικών (ακίνητων) ηλεκτρικών φορτίων. Σε αυτό το κεφάλαιο

Διαβάστε περισσότερα

ΥΔΡΟΧΗΜΕΙΑ. Ενότητα 11: Ιοανταλλαγή. Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογία

ΥΔΡΟΧΗΜΕΙΑ. Ενότητα 11: Ιοανταλλαγή. Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογία ΥΔΡΟΧΗΜΕΙΑ Ενότητα 11: Ιοανταλλαγή Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογία Σκοποί ενότητας Κατανόηση του φαινομένου της ιοντικής ανταλλαγής Περιεχόμενα ενότητας 1) Ρόφηση 2) Απορρόφηση

Διαβάστε περισσότερα

(E) Το περιεχόμενο. Προγράμματος. διαφορετικά

(E) Το περιεχόμενο. Προγράμματος. διαφορετικά Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Ηλεκτροτεχνία, ηλ. μηχανές & εγκαταστάσεις πλοίου (E) Ενότητα 12: Ηλεκτρικός Ισολογισμόςς Πλοίου Δημήτριος Νικόλαος Παγώνης Τμήμα Ναυπηγών

Διαβάστε περισσότερα

φυσική Βꞌ Λυκείου γενικής παιδείας 1 ο Κεφάλαιο

φυσική Βꞌ Λυκείου γενικής παιδείας 1 ο Κεφάλαιο φυσική Βꞌ Λυκείου γενικής παιδείας ο Κεφάλαιο ΗΛΕΚΤΡΟΣΤΑΤΙΚΕΣ ΑΛΛΗΛΕΠΙΔΡΑΣΕΙΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΗΛΕΚΤΡΟΣΤΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ. Η προέλευση της ονομασίας ηλεκτρισμός Τον 6 ο αιώνα π.χ. οι αρχαίοι Έλληνες ανακάλυψαν

Διαβάστε περισσότερα

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 10: ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΕ ΑΠΑΓΟΡΕΥΤΙΚΟ ΑΡΙΘΜΟ ΠΕΡΙΠΤΩΣΕΩΝ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια 1 ΘΕΜΑ 1 ο Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ 1. οχείο σταθερού όγκου περιέχει ορισµένη ποσότητα ιδανικού αερίου. Αν θερµάνουµε το αέριο µέχρι να τετραπλασιαστεί η απόλυτη θερµοκρασία

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

Απαντήσεις στις ερωτήσεις του σχολικού βιβλίου

Απαντήσεις στις ερωτήσεις του σχολικού βιβλίου Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 Απαντήσεις στις ερωτήσεις του σχολικού βιβλίου Χρησιμοποίησε και εφάρμοσε τις έννοιες που έμαθες

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς

Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και. του θεωρήματος μεταβολής της κινητικής ενέργειας. με τη διάταξη της αεροτροχιάς Εργαστηριακή Άσκηση 4 Μελέτη ευθύγραμμης ομαλά επιταχυνόμενης κίνησης και του θεωρήματος μεταβολής της κινητικής ενέργειας με τη διάταξη της αεροτροχιάς Βαρσάμης Χρήστος Στόχος: Μελέτη της ευθύγραμμης

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων Β' τάξη Γενικού Λυκείου Κεφάλαιο 1 Κινητική θεωρία αερίων Κεφάλαιο 1 Κινητική θεωρία αερίων Χιωτέλης Ιωάννης Γενικό Λύκειο Πελοπίου 1.1 Ποιο από τα παρακάτω διαγράμματα αντιστοιχεί σε ισοβαρή μεταβολή;

Διαβάστε περισσότερα

ΦΥΕ14, 2009-2010-Εργασιά 6 η Ημερομηνία παράδοσης 28/6/2010

ΦΥΕ14, 2009-2010-Εργασιά 6 η Ημερομηνία παράδοσης 28/6/2010 ΦΥΕ4, 9--Εργασιά 6 η Ημερομηνία παράδοσης 8/6/ Άσκηση A) Μια ράβδος μήκους είναι ομοιόμορφα φορτισμένη θετικά με συνολικό ηλεκτρικό φορτίο Q και βρίσκεται κατά μήκος του θετικού άξονα x από το σημείο x

Διαβάστε περισσότερα

ημήτρης Μαμούρας Γ' γυµνασίου ðìïðïéèíûîè õåöòýá ùíûîá ðáòáäåýçíáôá òöôüóåé õåöòýá Íìùôå áóëüóåé ðáîôüóåé åòöôüóåöî óøïìéëïà âéâìýïù

ημήτρης Μαμούρας Γ' γυµνασίου ðìïðïéèíûîè õåöòýá ùíûîá ðáòáäåýçíáôá òöôüóåé õåöòýá Íìùôå áóëüóåé ðáîôüóåé åòöôüóåöî óøïìéëïà âéâìýïù ημήτρης Μαμούρας Γ' γυµνασίου ðìïðïéèíûîè õåöòýá ùíûîá ðáòáäåýçíáôá òöôüóåé õåöòýá Íìùôå áóëüóåé ðáîôüóåé åòöôüóåöî óøïìéëïà âéâìýïù www.ziti.gr Πρόλογος Το βιβλίο που κρατάτε στα χέρια σας είναι γραμμένο

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

ΔΙΑΚΡΟΤΗΜΑ - Τα Καλύτερα Φροντιστήρια της Πόλης!

ΔΙΑΚΡΟΤΗΜΑ - Τα Καλύτερα Φροντιστήρια της Πόλης! ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΗΝΙΩΝ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΗΜΕΡΟΜΗΝΙΑ:... /... / 01, ΤΜΗΜΑ :... ΒΑΘΜΟΣ:... ΘΕΜΑ 1 Να επιλέξετε τη σωστή απάντηση στις παρακάτω

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 8: ΤΟΠΟΣ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Βρογχοσκόπηση. Ενότητα 3: Διαγνωστικές εξετάσεις. Κυριάκος Καρκούλιας, Επίκουρος Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής

Βρογχοσκόπηση. Ενότητα 3: Διαγνωστικές εξετάσεις. Κυριάκος Καρκούλιας, Επίκουρος Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Βρογχοσκόπηση Ενότητα 3: Διαγνωστικές εξετάσεις Κυριάκος Καρκούλιας, Επίκουρος Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Βρογχοσκόπηση (καλωσόρισμα) Εύκαμπτο βρογχοσκόπιο Επιθεώρηση βρογχικού δέντρου

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2009 ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 9 Μάθημα: ΦΥΣΙΚΗ 4ωρο Τ.Σ. Ημερομηνία και ώρα εξέτασης: Τρίτη Ιουνίου 9 11. 14. ΤΟ

Διαβάστε περισσότερα

Τεχνολογία και Καινοτομία - Οικονομική Επιστήμη και Επιχειρηματικότητα

Τεχνολογία και Καινοτομία - Οικονομική Επιστήμη και Επιχειρηματικότητα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνολογία και Καινοτομία - Οικονομική Επιστήμη και Επιχειρηματικότητα Ενότητα: Παραχώρηση (Franchising) Αν. Καθηγητής Μπακούρος Ιωάννης e-mail: ylb@uowm.gr,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ. Ενότητα 5: ΟΙ ΝΟΜΟΙ ΤΗΣ ΚΙΝΗΣΗΣ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

ΦΥΣΙΚΗ. Ενότητα 5: ΟΙ ΝΟΜΟΙ ΤΗΣ ΚΙΝΗΣΗΣ. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΦΥΣΙΚΗ Ενότητα 5: ΟΙ ΝΟΜΟΙ ΤΗΣ ΚΙΝΗΣΗΣ Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

EΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΡΩΝ Ενότητα : Ιξωδομετρία

EΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΡΩΝ Ενότητα : Ιξωδομετρία EΡΓΑΣΤΗΡΙΟ ΠΟΛΥΜΕΡΩΝ Ενότητα : Ιξωδομετρία Διδάσκων : Κων/νος Τσιτσιλιάνης, Καθηγητής Ουρανία Κούλη, Ε.ΔΙ.Π. Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών 1 Σκοπός Η εξοικείωση των φοιτητών με την πειραματική

Διαβάστε περισσότερα

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του;

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Άσκηση Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Απάντηση Έστω R n η ακτίνα του κύκλου. Αφού η κίνηση είναι

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 έως Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 9η Ολυμπιάδα Φυσικής Γ Λυκείου (Β φάση) Κυριακή 9 Μαρτίου 01 Ώρα:.00-1.00 ΟΔΗΓΙΕΣ: 1. Το δοκιμιο αποτελειται απο εννεα (9) σελιδες και επτα (7) θεματα.. Να απαντησετε σε ολα τα θεματα του δοκιμιου.. Μαζι

Διαβάστε περισσότερα

Υγιεινή. Πρωτεΐνες. Λεοτσινίδης Μιχάλης Καθηγητής Υγιεινής Ιατρική Σχολή Πανεπιστήμιο Πατρών

Υγιεινή. Πρωτεΐνες. Λεοτσινίδης Μιχάλης Καθηγητής Υγιεινής Ιατρική Σχολή Πανεπιστήμιο Πατρών Υγιεινή Πρωτεΐνες Λεοτσινίδης Μιχάλης Καθηγητής Υγιεινής Ιατρική Σχολή Πανεπιστήμιο Πατρών Αποτελούνται από αμινοξέα ενωμένα με πεπτιδικούς δεσμούς. Μέση σύσταση: Ν: 16 % C: 50 % H: 7 % O: 22 % S: 0,5-3%

Διαβάστε περισσότερα

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1 H θέση ενός κινητού που κινείται σε ένα επίπεδο, προσδιορίζεται κάθε στιγμή αν: Είναι γνωστές οι συντεταγμένες του κινητού (x,y) ως συναρτήσεις του χρόνου Είναι γνωστό

Διαβάστε περισσότερα

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής.

ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ. Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. ΠΡΟΩΘΗΣΗ ΠΥΡΑΥΛΩΝ Η προώθηση των πυραύλων στηρίζεται στην αρχή διατήρησης της ορμής. Ο πύραυλος καίει τα καύσιμα που αρχικά βρίσκονται μέσα του και εκτοξεύει τα καυσαέρια προς τα πίσω. Τα καυσαέρια δέχονται

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Στο κεφάλαιο των κινήσεων ασχοληθήκαμε με τη μελέτη της κίνησης χωρίς να μας απασχολούν τα αίτια που προκαλούν την κίνηση

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ Ο Ρ Ο Σ Η Μ Ο. Για το κενό ή αέρα στο SI: N m. , Μονάδα στο S.I. 1. Πως βρίσκουμε τη συνισταμένη δύο ή περισσοτέρων δυνάμεων:

ΤΥΠΟΛΟΓΙΟ Ο Ρ Ο Σ Η Μ Ο. Για το κενό ή αέρα στο SI: N m. , Μονάδα στο S.I. 1. Πως βρίσκουμε τη συνισταμένη δύο ή περισσοτέρων δυνάμεων: ΤΥΠΟΛΟΓΙΟ Φυσική της Λυκείου Γενικής Παιδείας Στατικός Ηλεκτρισμός Τύποι που ισχύουν Νόμος του Coulomb Πως βρίσκουμε τη συνισταμένη δύο ή περισσοτέρων δυνάμεων: α. Χρησιμοποιούμε τη μέθοδο του παραλλογράμμου

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 2: Βασικές αρχές λειτουργίας και χρήσης του υπολογιστή Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

m A m B Δ4) Να υπολογιστεί το ποσό θερμικής ενέργειας (θερμότητας) που ελευθερώνεται εξ αιτίας της κρούσης των δύο σωμάτων.

m A m B Δ4) Να υπολογιστεί το ποσό θερμικής ενέργειας (θερμότητας) που ελευθερώνεται εξ αιτίας της κρούσης των δύο σωμάτων. Το σώμα Α μάζας m A = 1 kg κινείται με ταχύτητα u 0 = 8 m/s σε λείο οριζόντιο δάπεδο και συγκρούεται μετωπικά με το σώμα Β, που έχει μάζα m B = 3 kg και βρίσκεται στο άκρο αβαρούς και μη εκτατού (που δεν

Διαβάστε περισσότερα

Πολυμεσικές Εφαρμογές

Πολυμεσικές Εφαρμογές Πολυμεσικές Εφαρμογές Ενότητα 7: ΒΙΝΤΕΟ Γεώργιος Στυλιαράς Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών ΕΙΣΑΓΩΓΙΚΑ Αναλογικό και ψηφιακό

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Γ Γυμνασίου >> Αρχική σελίδα ΗΛΕΚΤΡΙΙΚΗ ΔΥΝΑΜΗ ΚΑΙΙ ΦΟΡΤΙΙΟ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. 1) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμεε ααππααννττήήσσεει

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

Ο νόμος των Biot - Savart

Ο νόμος των Biot - Savart ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ - ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΜΑΘΗΜΑ : HΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι (Υποχρεωτικό 3 ου Εξαμήνου) Διδάσκων: Δ.Σκαρλάτος Προβλήματα Σειρά # 7: Το Στατικό Μαγνητικό πεδίο στο κενό Αντιστοιχεί στα Κεφάλαια (α)

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης 1 ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Θετ.- τεχ. κατεύθυνσης ΘΕΜΑ 1 ο : Σε κάθε μια από τις παρακάτω προτάσεις να βρείτε τη μια σωστή απάντηση: 1. Μια ποσότητα ιδανικού αέριου εκτονώνεται ισόθερμα μέχρι τετραπλασιασμού

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1η ΗΛΕΚΤΡΙΣΜΟΣ

ΕΝΟΤΗΤΑ 1η ΗΛΕΚΤΡΙΣΜΟΣ 2012 - \ ΕΝΟΤΗΤΑ 1η ΗΛΕΚΤΡΙΣΜΟΣ ΚΕΦΑΛΑΙΟ 1 «Ηλεκτρικές αλληλεπιδράσεις - Ηλεκτρικό φορτίο» ΚΕΦΑΛΑΙΟ 2 ο «Απλά ηλεκτρικά κυκλώματα» ΚΕΦΑΛΑΙΟ 3 ο «Ηλεκτρική ενέργεια» ΒΡΕΝΤΖΟΥ ΤΙΝΑ ΚΕΦΑΛΑΙΟ 1ο ΗΛΕΚΤΡΙΚΕΣ

Διαβάστε περισσότερα

Διοίκηση Τουριστικών Μονάδων

Διοίκηση Τουριστικών Μονάδων Διοίκηση Τουριστικών Μονάδων Ενότητα 4: Ξενοδοχειακή Βιομηχανία. Γιανναράκης Γρηγόρης ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΓΡΕΒΕΝΑ) ΔΙΟΙΚΗΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Τεχνικό Σχέδιο. Ενότητα 1: Μηχανολογικό Σχέδιο - Εισαγωγή

Τεχνικό Σχέδιο. Ενότητα 1: Μηχανολογικό Σχέδιο - Εισαγωγή Τεχνικό Σχέδιο Ενότητα 1: Μηχανολογικό Σχέδιο - Εισαγωγή Διάλεξη 1η Παναγής Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών ΤΕΧΝΙΚΟ ΣΧΕΔΙΟ Εισαγωγή Τμήμα Ηλεκτρολόγων Μηχανικών

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μακροοικονομική. Ενότητα : Εισαγωγή βασικές οικονομικές έννοιες. Καραμάνης Κωνσταντίνος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μακροοικονομική. Ενότητα : Εισαγωγή βασικές οικονομικές έννοιες. Καραμάνης Κωνσταντίνος Μακροοικονομική, Χρηματοοικονομική Ενότητα των Επιχειρήσεων, :Εισαγωγή Ενότητα βασικές : έννοιες, Βέλτιστη ΤΜΗΜΑ Κεφαλαιακή ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Δομή, ΤΜΗΜΑ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΉΣ ΚΑΙ ΛΟΓΙΣΤΙΚΗΣ, ΤΕΙ ΗΠΕΙΡΟΥ-Ανοικτά

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΣΤΟΙΧΕΔΙΑ ΦΥΣΙΚΗΣ

ΒΑΣΙΚΑ ΣΤΟΙΧΕΔΙΑ ΦΥΣΙΚΗΣ ΒΑΣΙΚΑ ΣΤΟΙΧΕΔΙΑ ΦΥΣΙΚΗΣ ΥΛΗ Οτιδήποτε έχει μάζα και καταλαμβάνει χώρο Μάζα είναι η ποσότητα αδράνειας ενός σώματος, μονάδα kilogram (kg) (σύνδεση( δύναμης & επιτάχυνσης) F=m*γ Καταστάσεις της ύλης Στερεά,

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

Q=Ne. Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου. Q ολ(πριν) = Q ολ(μετά) Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.

Q=Ne. Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου. Q ολ(πριν) = Q ολ(μετά) Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno. Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Φυσικής Γ Γυμνασίου Κβάντωση ηλεκτρικού φορτίου ( q ) Q=Ne Ολικό

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Φυσική Κατεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ κ ΙΑΓΩΝΙΣΜΑ Β Θέµα ο Να επιλέξετε τη σωστή απάντηση σε κάθε µία από τις παρακάτω ερωτήσεις: Σε ισόχωρη αντιστρεπτή θέρµανση ιδανικού αερίου, η

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 014 Ε_3.ΦλΓΑΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ & ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 7 Απριλίου 014 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ

Διαβάστε περισσότερα

Ιστορία των Θετικών Επιστημών

Ιστορία των Θετικών Επιστημών Ιστορία των Θετικών Επιστημών Ενότητα 13: Η Επιστημολογία από το 1800 έως το 1950 Ευθύμιος Ντάλλας Πανεπιστήμιο Θεσσαλίας Τμήμα: Ιστορίας, Αρχαιολογίας, Κοινωνικής Ανθρωπολογίας Σκοποί Ενότητας Η γνώση

Διαβάστε περισσότερα

ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ

ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ ΟΙ ΚΙΝΗΣΕΙΣ ΤΩΝ ΣΤΕΡΕΩΝ ΣΩΜΑΤΩΝ Σε όλες τις κινήσεις που μελετούσαμε μέχρι τώρα, προκειμένου να απλοποιηθεί η μελέτη τους, θεωρούσαμε τα σώματα ως υλικά σημεία. Το υλικό σημείο ορίζεται ως σώμα που έχει

Διαβάστε περισσότερα

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ

Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα. Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Αντώνης Πουλιάσης Φυσικός M.Sc. 12 ο ΓΥΜΝΑΣΙΟ ΠΕΡΙΣΤΕΡΙΟΥ Πουλιάσης Αντώνης Φυσικός M.Sc. 2 Ανάκλαση Είδωλα σε κοίλα και κυρτά σφαιρικά κάτοπτρα Γεωμετρική

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ

ΚΕΦΑΛΑΙΟ 2Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ Ο : Η ΕΥΘΕΙΑ ΣΤΟ ΕΠΙΠΕΔΟ ΒΑΣΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ. Ένα σημείο Μ(x,y) ανήκει σε μια γραμμή C αν και μόνο αν επαληθεύει την εξίσωσή της. Π.χ. :

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται

Διαβάστε περισσότερα

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΘΕΣΗ ΤΡΟΧΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΙ ΔΙΑΣΤΗΜΑ. Παρατηρώντας τις εικόνες προσπαθήστε να ορίσετε τις θέσεις των διαφόρων ηρώων των κινουμένων σχεδίων. Ερώτηση: Πότε ένα σώμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Στις ερωτήσεις Α1 Α4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ ΘΕΜΑ 1 ο 17/4/2015 Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

Πυελική μάζα. Ενότητα 3: Πύελος Παθολογία πυέλου

Πυελική μάζα. Ενότητα 3: Πύελος Παθολογία πυέλου Πυελική μάζα Ενότητα 3: Πύελος Παθολογία πυέλου Γεώργιος Α. Ανδρουτσόπουλος Επίκουρος Καθηγητής Ιατρική Σχολή Μαιευτικής - Γυναικολογίας Πανεπιστημίου Πατρών Σκοποί ενότητας Παρουσίαση Πυελικής Μάζας Πρόπτωση

Διαβάστε περισσότερα

Κίνηση σε μια διάσταση

Κίνηση σε μια διάσταση Κίνηση σε μια διάσταση Θεωρούμε κίνηση κατά μήκος μιας ευθύγραμμης διαδρομής. Η απόσταση x του κινούμενου σώματος από ένα σημείο του άξονα της κίνησης που παραμένει ακίνητο χρησιμοποιείται ως συντεταγμένη.

Διαβάστε περισσότερα

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΕΡΩΤΗΣΕΩΝ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ

Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΕΡΩΤΗΣΕΩΝ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd Email : stvrentzou@gmail.com 1 ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΕΡΩΤΗΣΕΩΝ ΤΟΥ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ Χρησιμοποίησε και εφάρμοσε τις έννοιες που έμαθες:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις

ΚΕΦΑΛΑΙΟ 3. ιατηρητικές δυνάµεις ΚΕΦΑΛΑΙΟ 3 ιατηρητικές δυνάµεις Στο υποκεφάλαιο.4 είδαµε ότι, για µονοδιάστατες κινήσεις στον άξονα x, όλες οι δυνάµεις της µορφής F F(x) είναι διατηρητικές. Για κίνηση λοιπόν στις τρεις διαστάσεις, µπορούµε

Διαβάστε περισσότερα

τα μεταλλικά Μια στρώμα. Για την έννοια πως αν και νανοσωματίδια (με εξάχνωση Al). πρέπει κανείς να τοποθετήσει τα μερικές δεκάδες nm πράγμα

τα μεταλλικά Μια στρώμα. Για την έννοια πως αν και νανοσωματίδια (με εξάχνωση Al). πρέπει κανείς να τοποθετήσει τα μερικές δεκάδες nm πράγμα Φραγή Coulomb σε διατάξεις που περιέχουν νανοσωματίδια. Ι. Φραγή Coulomb σε διατάξεις που περιέχουν μεταλλικά νανοσωματίδια 1. Περιγραφή των διατάξεων Μια διάταξη που περιέχει νανοσωματίδια μπορεί να αναπτυχθεί

Διαβάστε περισσότερα

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη

Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Μηχανικό Στερεό. Μια εργασία για την Επανάληψη Απλές προτάσεις Για τον έλεγχο της κατανόησης και εφαρμογής των εννοιών Δογραματζάκης Γιάννης 9/5/2013 Απλές προτάσεις για τον έλεγχο της κατανόησης και εφαρμογής

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) Θέµα 1 ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) 1.1 Πολλαπλής επιλογής A. Ελαστική ονοµάζεται η κρούση στην οποία: α. οι ταχύτητες των σωµάτων πριν και µετά την κρούση

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά)

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά) ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 31/05/2010 ΤΑΞΗ: Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΧΡΟΝΟΣ: 07:30 10:00 π.μ. ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΤΜΗΜΑ:...

Διαβάστε περισσότερα

Πρόχειρες Σημειώσεις

Πρόχειρες Σημειώσεις Πρόχειρες Σημειώσεις ΛΕΠΤΟΤΟΙΧΑ ΔΟΧΕΙΑ ΠΙΕΣΗΣ Τα λεπτότοιχα δοχεία πίεσης μπορεί να είναι κυλινδρικά, σφαιρικά ή κωνικά και υπόκεινται σε εσωτερική ή εξωτερική πίεση από αέριο ή υγρό. Θα ασχοληθούμε μόνο

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μικροοικονομική. Ενότητα 2:Οικονομική σκέψη Καραμάνης Κωνσταντίνος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Μικροοικονομική. Ενότητα 2:Οικονομική σκέψη Καραμάνης Κωνσταντίνος Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Μικροοικονομική Ενότητα 2:Οικονομική σκέψη Καραμάνης Κωνσταντίνος 1 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Λογιστικής και χρηματοοικονομικής

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση B' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΖΗΤΗΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ μονόμετρα. διανυσματικά Η μάζα ενός σώματος αποτελεί το μέτρο της αδράνειάς του, πυκνότητα ενός υλικού d = m/v

ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ μονόμετρα. διανυσματικά Η μάζα ενός σώματος αποτελεί το μέτρο της αδράνειάς του, πυκνότητα ενός υλικού d = m/v ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ Υπάρχουν φυσικά μεγέθη που ορίζονται πλήρως, όταν δοθεί η αριθμητική τιμή τους και λέγονται μονόμετρα.. Μονόμετρα μεγέθη είναι ο χρόνος, η μάζα, η θερμοκρασία, η πυκνότητα, η ενέργεια,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10

ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 18/11/2011 ΚΕΦ. 10 ΚΕΦΑΛΑΙΟ 10 ΥΝΑΜΙΚΗ ΤΗΣ ΠΕΡΙΣΤΡΟΦΙΚΗΣ ΚΙΝΗΣΗΣ 1 ΕΞΩΤΕΡΙΚΟ ΓΙΝΟΜΕΝΟ (ΕΠΑΝΑΛΗΨΗ) Μέτρο εξωτερικού γινομένου 2 C A B C ABsin διανυσμάτων A και B Ιδιότητες εξωτερικού γινομένου A B B A εν είναι αντιμεταθετικό.

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς από τις παρακάτω προτάσεις Α1 έως Α3 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση: Α1. Το μέτρο της

Διαβάστε περισσότερα

w w w.k z a c h a r i a d i s.g r

w w w.k z a c h a r i a d i s.g r Πως εφαρμόζουμε την αρχή διατήρησης της μηχανικής ενέργειας στα στερεά σώματα Πριν δούμε την μεθοδολογία, ας θυμηθούμε ότι : Για να εφαρμόσουμε την αρχή διατήρησης της μηχανικής ενέργειας (Α.Δ.Μ.Ε.) για

Διαβάστε περισσότερα