ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ
|
|
- ῾Ερμιόνη Παπάζογλου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ Ενότητα 3 Φασματοσκοπία Μικροκυμάτων Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
2 Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J. De Paula (Atkins Physical Chemistry, 9 th Edition, 2010) Πανεπιστημιακές Εκδόσεις Κρήτης, ΣΤΟΙΧΕΙΩΔΗΣ ΚΒΑΝΤΙΚΗ ΦΥΣΙΚΗ Στέφανος Τραχανάς Πανεπιστημιακές Εκδόσεις Κρήτης, ΦΑΣΜΑΤΟΣΚΟΠΙΑ Φ. Νταής Ελληνικό Ανοικτό Πανεπιστήμιο, Πάτρα, PHYSICAL CHEMISTRY: A Molecular Approach D.A. McQuarrie, J.D. Simon University Science Books, Sausalito, California, PRINCIPLES OF PHYSICAL CHEMISTRY, 2 nd Edition H. Kuhn, H.-D. Forsterling, D.H. Waldeck John Wiley & Sons, Inc., 2000
3 3 Φασματοσκοπία Μικροκυμάτων
4 Εισαγωγή Στην ενότητα αυτή θα μελετηθεί η αλληλεπίδραση της ύλης με την περιοχή εκείνη της ακτινοβολίας, η οποία εκτείνεται στην περιοχή μηκών κύματος μεταξύ 1 mm 30 cm περίπου, η οποία προκαλεί ενεργειακές μεταβολές σε ένα μόριο λόγω της περιστροφής του. Image.url Η φασματοσκοπία περιστροφής επιτρέπει τον προσδιορισμό των ενδοατομικών αποστάσεων (μήκη δεσμών) με πολύ μεγάλη ακρίβεια, ιδιαιτέρως σε μικρά μόρια.
5 Εισαγωγή Ερώτηση: Έχουν όλα τα μόρια φάσματα περιστροφής; ΟΧΙ Το μόριο του μονοξειδίου του άνθρακα, CO, παρουσιάζει φάσμα περιστροφής Το μόριο του αζώτου, Ν 2, δεν παρουσιάζει φάσμα περιστροφής δ + δ - C O N N Ετεροατομικό μόριο Ομοατομικό μόριο Η ύπαρξη όμοιων ή ανόμοιων ατόμων στο μόριο επηρεάζει την κατανομή των ηλεκτρονίων που συμμετέχουν στο σχηματισμό του δεσμού του μορίου
6 Εισαγωγή Η κατανομή των ηλεκτρονίων στο άτομο του CO δεν είναι συμμετρική. Το άτομο του οξυγόνου είναι πιο ηλεκτραρνητικό από το άτομο του άνθρακα και επομένως έλκει περισσότερο προς το μέρος του το ζεύγος των ηλεκτρονίων του δεσμού. δ + δ - C O N N μ Ετεροατομικό μόριο Ομοατομικό μόριο Το μόριο του CO μοιάζει με ηλεκτρικό δίπολο και εμφανίζει μόνιμη ηλεκτρική ροπή: δ μ= δ ± r ± : κλασματικό φορτίο r : μήκος δεσμού
7 Εισαγωγή Το μόριο του αζώτου (και όλα τα διατομικά, ομοατομικά μόρια) δεν εμφανίζει διπολική ροπή, επειδή η κατανομή των ηλεκτρονίων είναι συμμετρική μεταξύ των δύο ομοίων ατόμων του. δ + δ - C O N N μ Ετεροατομικό μόριο Ομοατομικό μόριο ΓΕΝΙΚΟΣ ΚΑΝΟΝΑΣ ΕΠΙΛΟΓΗΣ Η ύπαρξη μόνιμης ηλεκτρικής διπολικής ροπής είναι μια απαραίτητη προϋπόθεση, ώστε ένα μόριο να εμφανίζει φάσμα περιστροφής.
8 Απορρόφηση ενέργειας Ερώτηση: Για ποιο λόγο τα μόρια, τα οποία έχουν μόνιμη ηλεκτρική διπολική ροπή, απορροφούν ενέργεια από την ηλεκτρομαγνητική ακτινοβολία; Η ηλεκτρομαγνητική ακτινοβολία αποτελείται από δύο παλλόμενα ηλεκτρικά πεδία, το μαγνητικό και το ηλεκτρικό πεδίο. Το διατομικό ετεροατομικό μόριο είναι ηλεκτρικό δίπολο Image.url Ηλεκτρικό πεδίο Μαγνητικό πεδίο Ευθύγραμμα πολωμένη μονοχρωματική ακτινοβολία
9 Απορρόφηση ενέργειας Η απορρόφηση της ηλεκτρομαγνητικής ακτινοβολίας είναι το αποτέλεσμα της αλληλεπίδρασης της ηλεκτρικής διπολικής ροπής του μορίου με το ηλεκτρικό πεδίο της ηλεκτρομαγνητικής ακτινοβολίας. Image.url Το παλλόμενο ηλεκτρικό πεδίο εξασκεί μια ροπή στρέψης στο μόριο και το εξαναγκάζει να περιστραφεί γύρω από έναν άξονα που περνά από το κέντρο μάζας του, έτσι ώστε η διπολική ροπή (το διάνυσμά της) να ευθυγραμμιστεί με το ηλεκτρικό πεδίο.
10 Απορρόφηση ενέργειας Όταν το πεδίο και η ηλεκτρική ροπή ευθυγραμμιστούν, τότε το μόριο απορροφά ενέργεια από την ακτινοβολία. Image.url Στην περίπτωση των πολυατομικών μορίων, η μόνιμη διπολική ροπή είναι η συνισταμένη των ηλεκτρικών διπολικών ροπών όλων των δεσμών του μορίου.
11 Απορρόφηση ενέργειας Η ηλεκτρική διπολική ροπή του γραμμικού τριατομικού μορίου CO 2 είναι μηδέν Οι δεσμοί C=O και C=S δεν είναι ισοδύναμοι, με αποτέλεσμα η συνισταμένη διπολική ροπή να είναι διάφορη του μηδενός. Το μόριο του νερού δεν είναι ευθύγραμμο και έχει δύο ισοδύναμους δεσμούς Ο-Η, οι οποίοι σχηματίζουν γωνία 104,7 ο. Οι αντίστοιχες διπολικές ροπές δεν αλληλοεξουδετερώνονται. μ=0 μ 0 μ 0 Ηλεκτρική διπολική ροπή των μορίων CO 2, OCS, και H 2 O
12 Απορρόφηση ενέργειας Γενικά, τα περισσότερα συμμετρικά μόρια δεν έχουν μόνιμη ηλεκτρική διπολική ροπή και, επομένως, δεν απορροφούν ενέργεια και δεν δίνουν αμιγή φάσματα περιστροφής. Επίπεδα τριγωνικά μόρια τύπου ΑΧ 3 (π.χ. BCl 3, BF 3 ) Επίπεδα τετραγωνικά μόρια τύπου ΑΧ 4 (π.χ. PtCl 4 2- ) Τετραεδρικά μόρια τύπου ΑΧ 4 (π.χ. CH 4, SiH 4 ) Οκταεδρικά μόρια τύπου ΑΧ 6 (π.χ. SF 6 ) Image.url Image.url Image.url
13 Παράδειγμα Έχει το μόριο NH 3 διπολική ροπή; Η δομή του μορίου της αμμωνίας αντιστοιχεί σε τριγωνική πυραμίδα με γωνία δεσμών 107 ο περίπου. Image.url Οι δεσμοί των τριών ισοδύναμων δεσμών Ν-Η δεν αλληλοεξουδετερώνονται. Η συνισταμένη διπολική ροπή δεν είναι μηδέν και μάλιστα ενισχύεται από το μονήρες ζεύγος των ηλεκτρονίων του αζώτου.
14 Παράδειγμα Παρουσιάζει το μόριο του μεθανίου, CH 4 φάσμα περιστροφής; Το μόριο CH 4 έχει τετραεδρική δομή με γωνία δεσμών 109,5 ο. Όλοι οι δεσμοί είναι ισοδύναμοι. Image.url Μπορεί να αποδειχθεί γεωμετρικά ότι η συνισταμένη διπολική ροπή των τεσσάρων δεσμών είναι ίση με μηδέν. Επομένως, το μεθάνιο δεν παρουσιάζει φάσμα περιστροφής.
15 Φάσματα περιστροφής διατομικών μορίων Τα διατομικά μόρια μπορεί να εξομοιωθούν με αλτήρα του οποίου οι σφαίρες έχουν μάζες και ακτίνες αντίστοιχα ίσες προς τις μάζες και τις ακτίνες των ατόμων που συνιστούν το μόριο. Ο άκαμπτος σταθερού μήκους άξονας που συνδέει τις σφαίρες αντιστοιχεί στο δεσμό του μορίου. Η ενέργεια περιστροφής του μορίου αντιστοιχεί στην ενέργεια του περιστρεφόμενου αλτήρα. Image.url Περιγραφή διατομικού μορίου ως άκαμπτου αλτήρα
16 Ροπή αδράνειας Ροπή αδράνειας είναι η αντίσταση που προβάλλει ένα σώμα στην προσπάθεια μεταβολής της περιστροφικής του κατάστασης. Για ένα υλικό σημείο που περιστρέφεται γύρω από ένα άξονα z: I mr 2 r m Για ένα μόριο, η ροπή αδράνειας είναι ίση με το άθροισμα των ροπών αδράνειας όλων των ατόμων που το συνιστούν, ως προς τον άξονα περιστροφής. I m r i 2 i i
17 Ροπή αδράνειας διατομικού μορίου Ένα διατομικό μόριο μπορεί να περιστραφεί γύρω από το κέντρο μάζας του (κέντρο ισορροπίας), το οποίο ορίζεται από τη σχέση: m r m r Κατά την περιστροφική κίνηση, η θέση του κέντρου μάζας δε μεταβάλλεται. Επομένως: Όλοι οι άξονες περιστροφής διέρχονται από το κέντρο μάζας του μορίου. Image.url r2 r1 m2 m1 Για ένα διατομικό μόριο υπάρχουν τρεις κύριοι άξονες περιστροφής
18 Παράδειγμα Να εξαχθούν οι εξισώσεις των ροπών αδράνειας διατομικού μορίου ως προς τους τρεις κύριους άξονες περιστροφής. Ως προς τον άξονα x: Ως προς τον άξονα y: I m r m r x y I m r m r m2 r2 r1 m1 Ως προς τον άξονα z: Iz 0 1. Στα διατομικά μόρια, οι δύο άξονες περιστροφής είναι ισοδύναμοι (I x = I y ). 2. Η ροπή αδράνειας ως προς τον άξονα περιστροφής που συμπίπτει με τον δεσμό του μορίου είναι ίση με μηδέν. 3. Η σταθερά περιστροφής και η ενέργεια περιστροφής (βλ. παρακάτω) είναι η ίδια για τις δύο ισοδύναμες περιστροφές (εκφυλισμένες ενεργειακές στάθμες).
19 Παράδειγμα 4. Επειδή I z = 0, η σταθερά Β γίνεται άπειρη για περιστροφή γύρω από τον άξονα δεσμού του μορίου, και επομένως δεν υπάρχει αντίστοιχη ενέργεια περιστροφής. Κατά την περιστροφή αυτή, το μόριο δεν αλληλεπιδρά με την ηλεκτρομαγνητική ακτινοβολία και δεν απορροφά ενέργεια. m2 r2 r1 m1 (Δεν μεταβάλλεται η διπολική ροπή) 5. Για περιστροφή γύρω από τους δύο ισοδύναμους άξονες του μορίου ισχύει: I I I x y 2 I r r r1 r2 ( ) mm 1 2 ή m m m m I m r m r x y I m r m r Iz
20 Ενεργειακά επίπεδα Από τη λύση της εξίσωσης του Schrödinger για περιστρεφόμενο σωματίδιο προκύπτει ότι η ενέργεια περιστροφής είναι κβαντωμένη. Οι επιτρεπτές τιμές της ενέργειας, E, δίνονται από την εξίσωση: E 2 J J 1 J 0,1, 2,... 2 I Στη μοριακή φασματοσκοπία, ο κβαντικός αριθμός περιστροφής συμβολίζεται με J. Η ενέργεια συνήθως εκφράζεται συναρτήσει της σταθεράς περιστροφής, Β, του μορίου: hcb 2 2I δηλαδή B 1 ( cm ) h 2 8 ci ή B( Hz) h 2 8 I Αντικαθιστώντας, προκύπτει ότι: E hcbj J 1
21 Ενεργειακά επίπεδα Αν η ενέργεια Ε διαιρεθεί με hc, τα ενεργειακά επίπεδα περιστροφής εκφράζονται συναρτήσει του περιστροφικού όρου F(J), ο οποίος έχει (όπως και η σταθερά περιστροφής Β) διαστάσεις κυματαριθμού (cm -1 ): F( J) BJ J 1 J 0,1, 2,... Κανόνας επιλογής: (επιτρεπτές μεταπτώσεις) J 1 Αντικαθιστώντας, προκύπτει ότι: E hcbj J 1
22 Κυματαριθμοί απορρόφησης Αν η ενέργεια Ε διαιρεθεί με hc, τα ενεργειακά επίπεδα περιστροφής εκφράζονται συναρτήσει του περιστροφικού όρου F(J), ο οποίος έχει (όπως και η σταθερά περιστροφής Β) διαστάσεις κυματαριθμού (cm -1 ): F( J) BJ J 1 J 0,1, 2,... Κανόνας επιλογής: (επιτρεπτές μεταπτώσεις) J 1 Από την εφαρμογή του κανόνα επιλογής προκύπτει ότι οι κυματαριθμοί των επιτρεπτών μεταβάσεων απορρόφησης J J 1, είναι: F( J) F( J 1) BJ( J 1) B( J 1) J 2BJ Επομένως, ο κυματαριθμός απορρόφησης για κάθε μια επιτρεπτή περιστροφική μετάπτωση είναι ακέραιο πολλαπλάσιο της ποσότητας 2Β.
23 Φάσμα περιστροφής E hcbj J 1 2BJ Στάθμη Ενέργεια (J) Μετάπτωση ΔE (cm -1 ) J= J= 1 2hcB J= 2 6hcB J= 3 12hcB J= 4 20hcB J= 5 30hcB J= 6 42hcB J= 1 J= 0 2B J= 2 J= 1 4B J= 3 J= 2 6B J= 4 J= 3 8B J= 5 J= 4 10B J= 6 J= 5 12B Β 4Β 6Β 8Β 10Β 12Β 2 1 0
24 Φάσμα περιστροφής Η ενεργειακή διαφορά (απόσταση) μεταξύ δύο διαδοχικών κορυφών στο φάσμα περιστροφής είναι σταθερή και ίση με ΔΕ= 2B (cm -1 ). J= J= 1 2hcB J= 2 6hcB J= 3 12hcB J= 4 20hcB J= 5 30hcB J= 6 42hcB J= 1 J= 0 2B J= 2 J= 1 4B J= 3 J= 2 6B J= 4 J= 3 8B J= 5 J= 4 10B J= 6 J= 5 12B B 2B 2B 2B 2B 0 2Β 4Β 6Β 8Β 10Β 12Β 2 1 0
25 Φάσμα περιστροφής Η ενεργειακή διαφορά (απόσταση) μεταξύ δύο διαδοχικών κορυφών στο φάσμα περιστροφής είναι σταθερή και ίση με ΔΕ= 2B (cm -1 ). H θέση και η απόσταση των κορυφών στο φάσμα καθορίζονται από τη σταθερά περιστροφής: 2BJ Η σταθερά περιστροφής μπορεί να υπολογιστεί από τα φασματικά δεδομένα. 6 5 Η σταθερά περιστροφής δίνεται συνήθως σε cm -1 αλλά μπορεί να εκφραστεί και σε μονάδες συχνότητας (Hz). Υπενθυμίζεται η σχέση μεταξύ συχνότητας και κυματαριθμού: c
26 Το φάσμα περιστροφής του CO Το φάσμα περιστροφής του CO, στο οποίο φαίνονται οι μεταπτώσεις J= 4 3 (15,38 cm -1 ) έως J= 10 9 (38,41 cm -1 ) [J. Infrared Phys. 14 (1974) 277]
27 Προσδιορισμός μήκους δεσμού Η φασματοσκοπία μικροκυμάτων μπορεί να χρησιμοποιηθεί για τον υπολογισμό του μήκους δεσμού ενός μορίου. Για διατομικά μόρια, η διαδικασία συνοψίζεται στα εξής βήματα: 1. Λήψη του φάσματος περιστροφής του μορίου 2Β 2. Προσδιορισμός της σταθεράς Β από το φάσμα B h 8 ci 3. Υπολογισμός της ροπής αδράνειας, Ι 2 4. Υπολογισμός της ανηγμένης μάζας του μορίου, μ mm 1 2 m m Υπολογισμός του μήκους του δεσμού, r I r 2
28 Παράδειγμα: Το μόριο του CO Intensity Να προσδιοριστεί το μήκος δεσμού του μορίου του CO από τα παρακάτω φασματικά δεδομένα. Το φάσμα περιστροφής του CO Συχνότητες ενεργειακών μεταπτώσεων στο μόριο CO CO ν (GHz) 115, , , , ,355 ΔE (x10-22 J/μόριο) 0,7638 1,5276 2,2914 3,0552 3,8190 Frequency (GHz) Η σταθερά περιστροφής μπορεί να υπολογιστεί εύκολα από την απόσταση (2Β) δύο διαδοχικών κορυφών στο φάσμα.
29 Παράδειγμα: Το μόριο του CO Από τα δεδομένα του Πίνακα, προκύπτει ότι: 2Β= 115,271 GHz Β= 57,6355 GHz ή Β=1,9212 cm -1 Η ροπή αδράνειας υπολογίζεται στη συνέχεια από την εξίσωση: h h B I ci 8 cb Συχνότητες ενεργειακών μεταπτώσεων στο μόριο CO ν (GHz) 115, , , , , Js I 8 3,14 2, , cm s cm ΔE (x10-22 J/μόριο) 0,7638 1,5276 2,2914 3,0552 3,8190 I 14, kg m J= 1 kg m 2 s -2
30 Παράδειγμα: Το μόριο του CO Η ανηγμένη μάζα του μορίου, μ, υπολογίζεται από την εξίσωση: mm C O m m C O 12, , , ,9949 6,8562 amu Ατομικές μάζες 12 C: 12,0000 amu 16 O: 15,9949 amu 1 amu= 1,6605x10-27 kg 6,8562 1, kg 11, kg Το μήκος του δεσμού του μορίου του CO υπολογίζεται από την εξίσωση: I r 2 I 14, kg m 47 2 I r ο 10 1, m r 1,1319 A 27 11, kg
31 Σύνοψη - Μορφή περιστροφικών φασμάτων Εφαρμογή των κανόνων επιλογής στα ενεργειακά επίπεδα ενός άκαμπτου στροφέα δείχνει ότι οι κυματαριθμοί των επιτρεπτών μεταβάσεων απορρόφησης, J+1 J, είναι: 2 BJ ( 1) J = 0, 1, 2, Το φάσμα αποτελείται από μια ακολουθία γραμμών με κυματαριθμούς 2Β, 4Β, 6Β, και, επομένως, απόσταση 2Β μεταξύ τους. Το επίπεδο με τον μέγιστο πληθυσμό σε γραμμικό μόριο αντιστοιχεί σε J ίσο με J max 1/ 2 kt 1 2hcB 2 Η τιμή του J που αντιστοιχεί στην πιο έντονη γραμμή δεν είναι αυτή του J max, γιατί η παρατηρούμενη απορρόφηση περιλαμβάνει την εξαναγκασμένη εκπομπή.
32 Άσκηση 1 Να υπολογιστεί η συχνότητα στην οποία θα εμφανιστεί η μετάπτωση J= 4J=3 στο φάσμα περιστροφής του 14 Ν 16 Ο. Το μήκος δεσμού του μορίου είναι 115 pm. Οι περιστροφικές στάθμες ενέργειας δίνονται από τη σχέση: F( J) BJ( J 1) B 4cI 34 1, J s = 4 2, m s 1, kg m B 170, m 1 I m r eff , kg m 2 I 1, kg m 46 2 m eff = mm N O m m N O 14,003 15,995 = amu 1, kg amu 14,003 15, m eff 26 1, kg
33 Άσκηση 1 Να υπολογιστεί η συχνότητα στην οποία θα εμφανιστεί η μετάπτωση J= 4J=3 στο φάσμα περιστροφής του 14 Ν 16 Ο. Το μήκος δεσμού του μορίου είναι 115 pm. Οι περιστροφικές στάθμες ενέργειας δίνονται από τη σχέση: F( J) BJ( J 1) ,707 cm 4 F( J) F( J 1) BJ( J 1) B( J 1) J 2BJ 43 13,6 cm c 13,65 cm 2, cm s 4,09 10 Hz B 170,7 m 1 I 1, kg m 46 2 m eff 26 1, kg
34 Άσκηση 2 Frequency (MHz) Το φάσμα περιστροφής της γραμμικής ρίζας FeCO δίνει τις ακόλουθες μεταπτώσεις J+1J: (α) Να υπολογιστεί η σταθερά περιστροφής Β του μορίου (β) Να εκτιμηθεί η τιμή του J για το περιστροφικό επίπεδο με το μεγαλύτερο πληθυσμό στους 298 και τους 100 Κ. J / MHz BJ ( 1) c 2 Bc ( J 1) y= 8592,2 * x 2Bc 8592,2 MHz 8592,2 10 s B 2 2, m B 14,38 m J+1
35 Άσκηση 2 Το φάσμα περιστροφής της γραμμικής ρίζας FeCO δίνει τις ακόλουθες μεταπτώσεις J+1J: (α) Να υπολογιστεί η σταθερά περιστροφής Β του μορίου (β) Να εκτιμηθεί η τιμή του J για το περιστροφικό επίπεδο με το μεγαλύτερο πληθυσμό στους 298 και τους 100 Κ. J / MHz J max kt 2hcB 1/ J K K 6, J s8592, 210 s 1, Τ= 298 Κ Jmax J max / 2 Τ= 100 Κ Jmax 15 2 Bc 8592, MHz B 14,38 m 1
36 Ασκήσεις Η περιστροφική µετάπτωση µορίων µιας ουσίας, J=4J=3, παρατηρήθηκε στη συχνότητα 173,691 GHz. Σε ποια συχνότητα θα παρατηρηθεί η µετάπτωση J=1J= 0; Η συχνότητα της µετάπτωσης J=2J=1 του µορίου NF 3 παρατηρείται στα 42723,84 MHz. Να υπολογιστεί η ροπή αδράνειας του µορίου. Συχνά υποθέτουμε ότι το μήκος ενός δεσμού δε μεταβάλλεται σημαντικά μετά από αντικατάσταση ενός ατόμου με το ισότοπό του. Δείξτε αν κάτι τέτοιο ισχύει για τα μόρια 1 ΗCl και 2 ΗCl. Οι κυματάριθμοι των μεταπτώσεων περιστροφής J=10 για το 1 ΗCl και το 2 ΗCl είναι 20,8784 cm -1 και 10,7840 cm -1, αντίστοιχα. Δίνονται: m( 1 Η)=1, amu, m( 2 Η)=2,0140 amu, m( 35 Cl)= 34,96885 amu. Η σταθερά περιστροφής του CO στη θεμελιώδη και την πρώτη διεγερμένη δονητική κατάσταση είναι 1,9314 cm -1 και 1,6116 cm -1, αντίστοιχα. Πόσο τοις εκατό μεταβάλλεται το μήκος του δεσμού σαν αποτέλεσμα αυτής της μετάπτωσης;
37 Τέλος Ενότητας
38 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιο του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.
39 Σημείωμα Ιστορικού εκδόσεων έργου Το παρόν έργο αποτελεί την έκδοση
40 Σημείωμα αναφοράς Copyright Πανεπιστήμιο Πατρών. Αναπληρωτής Καθηγητής, Δημήτρης Κονταρίδης. «Μοριακή Φασματοσκοπία». Έκδοση: 1.0. Πάτρα Διαθέσιμο από τη δικτυακή διεύθυνση:
41 Σημείωμα αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 12 Μοριακά Φάσματα Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Προσδιορισμός μήκους δεσμού Η φασματοσκοπία μικροκυμάτων μπορεί να
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ Ενότητα 4 Φάσματα περιστροφής πολυατομικών μορίων Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 12 Μοριακά Φάσματα Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 12 Μοριακά Φάσματα Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J. De Paula (Atkins
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 11 Διατομικά Μόρια Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 11 Διατομικά Μόρια Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J. De Paula (Atkins
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ Ενότητα 7 Συμμετρία Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J. De Paula (Atkins Physical
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J. De Paula (Atkins
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ Ενότητα 2 Ένταση και πλάτος φασματικών γραμμών Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ Ενότητα 11 Laser Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J. De Paula (Atkins
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 4 Αρχές της Κβαντικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J.
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 9 Πολυηλεκτρονιακά Άτομα Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 Να προσδιοριστούν τα επίπεδα, τα οποία μπορεί να προκύψουν
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ Ενότητα 5 Φασματοσκοπία υπερύθρου διατομικών μορίων Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ Ενότητα 9 Ηλεκτρονική Φασματοσκοπία Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins,
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 10 Μοριακή Δομή Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 (α) Να υπολογιστεί το ολικό πλάτος του κανονικοποιημένου δεσμικού
Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος
Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Δυναμικής Άκαμπτου Σώματος... 4 1.1 Ερώτηση 1... 4 1.2 Ερώτηση 2... 4 1.3 Ερώτηση
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 Να υπολογιστεί η πιθανότερη ακτίνα, *, στην οποία θα βρίσκεται
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα Αδυναμίες της Κλασικής Μηχανικής Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 Ο Σείριος, ένα από τα θερμότερα γνωστά άστρα
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ Ενότητα 10 Ηλεκτρονικά φάσματα Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins, J.
1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10
Γενική Φυσική Ενότητα: Ταλαντώσεις
Γενική Φυσική Ενότητα: Ταλαντώσεις Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Ταλαντώσεων... 4 1.1 Ερώτηση 1... 4 2. Ασκήσεις Ταλαντώσεων... 4 2.1 Άσκηση 1... 4 2.2 Άσκηση
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...
Κβαντική Φυσική Ι. Ενότητα 2: Σύστημα δύο σωματιδίων-αρχή της αντιστοιχίας. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 2: Σύστημα δύο σωματιδίων-αρχή της αντιστοιχίας Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι η σύντομη παρουσίαση μελέτης της
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 7: Μοριακή γεωμετρία. Τόλης Ευάγγελος
Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 7: Μοριακή γεωμετρία Τόλης Ευάγγελος e-mail: etolis@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 11: Μεταπτώσεις πρώτης και δεύτερης τάξης. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 11: Μεταπτώσεις πρώτης και δεύτερης τάξης Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η εισαγωγή του παράγοντα της
Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Φυσική ΙΙΙ Ενότητα 4: Ηλεκτρικά Κυκλώματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Ασκήσεις ΦΙΙΙ Ασκήσεις κυκλωμάτων συνεχούς ρεύματος. Κανόνες Kirchhoff. Γ. Βούλγαρης 2 Ο Νόμος των Ρευμάτων
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 7: Κανονικότητες, συμμετρίες και μετασχηματισμοί στο χώρο Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Σύγxρονη Φυσική II. Μοριακή Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Σύγxρονη Φυσική Μοριακή Δομή ΙΙ Διδάσκων : Επίκ. Καθ. Μ. Μπενής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Ceative Coons. Για
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ Ενότητα 8 Φασματοσκοπία υπερύθρου πολυατομικών μορίων Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ
Εργαστήριο Φυσικοχημείας Ι
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εργαστήριο Φυσικοχημείας Ι Ενότητα: Χαρακτηρισμος Laser και φωτοεκπομπου ως προς την πολωση Στρατηγάκης Νικόλαος Πανεπιστήμιο Κρήτης Χαρακτηρισμος Laser και φωτοεκπομπου
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 1 Εισαγωγή στη Φυσικοχημεία Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ενότητα 1 Εισαγωγή στη Φυσικοχημεία Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ύλη μαθήματος Μέρος 1 ο. Αδυναμίες της Κλασικής Μηχανικής Μέρος ο.
Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Φυσική ΙΙΙ Ενότητα 4: Ηλεκτρικά Κυκλώματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Ασκήσεις ΦΙΙΙ Γ. Βούλγαρης 2 Ταχύτητα ολίσθησης σε σύρμα από χαλκό. Διάμετρος δ=1,6 mm Ρεύμα 10 Α Πυκνότητα
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης
Μοριακή Φασματοσκοπία I. Παραδόσεις μαθήματος Θ. Λαζαρίδης
Μοριακή Φασματοσκοπία I Παραδόσεις μαθήματος Θ. Λαζαρίδης 2 Τι μελετά η μοριακή φασματοσκοπία; Η μοριακή φασματοσκοπία μελετά την αλληλεπίδραση των μορίων με την ηλεκτρομαγνητική ακτινοβολία Από τη μελέτη
ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ Ενότητα # (10): Φασματοσκοπία Ακρίβος Περικλής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Μάθημα ασκήσεων 1: Ηλεκτρικά χαρακτηριστικά γραμμών μεταφοράς Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Δούκας
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανολόγων Μηχανικών. Χημεία. Ενότητα 9: Υβριδισμός. Τόλης Ευάγγελος
Τμήμα Μηχανολόγων Μηχανικών Χημεία Ενότητα 9: Υβριδισμός Τόλης Ευάγγελος e-mail: etolis@uowm.gr Τμήμα Μηχανολόγων Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται
ΥΔΡΟΧΗΜΕΙΑ. Ενότητα 6 : Διάσταση των ουσιών σε υδατικά διαλύματα. Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογίας
ΥΔΡΟΧΗΜΕΙΑ Ενότητα 6 : Διάσταση των ουσιών σε υδατικά διαλύματα Ζαγγανά Ελένη Σχολή : Θετικών Επιστημών Τμήμα : Γεωλογίας Σκοποί ενότητας Κατανόηση της αυτοδιάστασης του νερού και της διάλυσης των αερίων
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 6: Γεωμετρικά σχήματα και μεγέθη δύο και τριών διαστάσεων Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί
Φυσική Ι. Ενότητα 9: Στροφορμή. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Φυσική Ι Ενότητα 9: Στροφορμή Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Εισαγωγή στην έννοια της στροφορμής Διαφοροποίηση υλικού σημείου από στερεό σώμα Εναλλακτικοί
ATKINS. Κεφ 12: Περιστροφικά και δονητικά φάσματα
ATKINS Κεφ 12: Περιστροφικά και δονητικά φάσματα Η προέλευση των φασματικών γραμμών στη μοριακή φασματοσκοπία είναι η απορρόφηση, εκπομπή ή σκέδαση ενός φωτονίου, όταν η ενέργεια του μορίου αλλάζει. Η
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Κλασική Ηλεκτροδυναμική
Κλασική Ηλεκτροδυναμική Ενότητα 17: Μαγνητοστατική σε υλικά Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει τα στοιχεία θεωρίας που αφορούν
ΠΙΝΑΚΕΣ. Θερμοδυναμική 2012 Σελίδα 292
ΠΙΝΑΚΕΣ 2012 Σελίδα 292 Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες: Ιδανικά αέρια Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc.
Προηγμένος έλεγχος ηλεκτρικών μηχανών
Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 9: Άμεσος Διανυσματικός Έλεγχος Ασύγχρονων Μηχανών με προσανατολισμό στην μαγνητική ροή του δρομέα Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 2: Θερμοδυναμικές συναρτήσεις. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 2: Θερμοδυναμικές συναρτήσεις Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η εισαγωγή νέων θερμοδυναμικών συναρτήσεων
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ
ΜΟΡΙΑΚΗ ΦΑΣΜΑΤΟΣΚΟΠΙΑ Ενότητα 1 Εισαγωγή στη Φασματοσκοπία Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενδεικτική βιβλιογραφία 1. ATKINS, ΦΥΣΙΚΟΧΗΜΕΙΑ P.W. Atkins,
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Προσχολική Παιδαγωγική Ενότητα 2: Οργάνωση χρόνου και χώρου στα νηπιαγωγεία
Προσχολική Παιδαγωγική Ενότητα 2: Οργάνωση χρόνου και χώρου στα νηπιαγωγεία Διδάσκουσα: Μαρία Καμπεζά Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική Ηλικία Σκοποί ενότητας Περιγραφή των
Κβαντική Φυσική Ι. Ενότητα 1: Ανασκόπηση Σύγχρονης Φυσικής. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 1: Ανασκόπηση Σύγχρονης Φυσικής Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να επαναληφθούν βασικές έννοιες της Σύγχρονης Φυσικής,
Προηγμένος έλεγχος ηλεκτρικών μηχανών
Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 1: Έλεγχος Μηχανών Συνεχούς Ρεύματος με ξένη διέγερση Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα : Περιγραφή Δυναμικών Συστημάτων Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Εργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 3: Θεωρία του Ligand Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 8: Εφαρμογές παραγώγων Μελέτη και βελτιστοποίηση συναρτήσεων μιας μεταβλητής (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 9: Ολοκληρώματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Ηλεκτρικές Μηχανές ΙΙ
Ηλεκτρικές Μηχανές ΙΙ Ενότητα 2: Σ.Μ με Κυλινδρικό Δρομέα Υπολογισμός Η/Μ Ροπής Επ. Καθηγήτρια Τζόγια Χ. Καππάτου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 12: Αρχή ελαχίστου του Pontryagin Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το
Προστασία Σ.Η.Ε. Ενότητα 3: Ηλεκτρονόμοι απόστασης. Νικόλαος Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Προστασία Σ.Η.Ε Ενότητα 3: Ηλεκτρονόμοι απόστασης Νικόλαος Βοβός Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους
Ηλεκτρικά Κινητήρια Συστήματα
Ηλεκτρικά Κινητήρια Συστήματα Ενότητα 3: Μεταφορά Ισχύος Επαμεινώνδας Μητρονίκας Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται
Κβαντική Φυσική Ι. Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι μια πρώτη επαφή με την έννοια των τετραγωνικών
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 3: Μηδενικός Νόμος - Έργο. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 3: Μηδενικός Νόμος - Έργο Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η περιγραφή των ορισμών και των θεμελιωδών
Κβαντική Φυσική Ι. Ενότητα 8: Ολοκλήρωση μελέτης απειρόβαθου πηγαδιού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 8: Ολοκλήρωση μελέτης απειρόβαθου πηγαδιού Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρωθεί η μελέτη που αφορά το
Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών
Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το
Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Ενότητα 1: Εισαγωγή Βασικές Έννοιες Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΦΡΑΓΚΙΣΚΟΣ ΚΟΥΤΕΛΙΕΡΗΣ Εισαγωγή 2 Περιεχόμενα 1. Εισαγωγή 2. Αριθμητική παραγώγιση
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Ενότητα #5: Δομές επιλογής Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Δομές επιλογής MATLAB Programming Α. Καλαμπούνιας Η δομή επιλογής if Η δομή if στο
Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης
Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙΙ Μάθημα ασκήσεων 8: Καλώδια Λαμπρίδης Δημήτρης Ανδρέου Γεώργιος Δούκας Δημήτριος Τμήμα Ηλεκτρολόγων Μηχανικών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Άσκηση 1 Ενότητα : Υλοποίηση Λεξικών µε
ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 5
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ Ι Ενότητα 5: Ενισχυτές με FET Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχ. Υπολογιστών Άδειες Χρήσης Το παρόν
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 5: Ακολουθίες, όρια, σειρές (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Προηγμένος έλεγχος ηλεκτρικών μηχανών
Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 8: Άμεσος Διανυσματικός Έλεγχος Ασύγχρονων Μηχανών με προσανατολισμό στην μαγνητική ροή του στάτη Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική
Διατομικά μόρια- Περιστροφική ενέργεια δονητικά - περιστροφικά φάσματα
Διατομικά μόρια- Περιστροφική ενέργεια δονητικά - περιστροφικά φάσματα Πολυατομικά μόρια περιστροφική ενέργεια περιστροφικά φάσματα Σκέδαση φασματοσκοπία n συνεισφορά του πυρηνικού σπιν Δονητικά περιστροφικά
Μηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Προηγμένος έλεγχος ηλεκτρικών μηχανών
Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 4: Διπολικό Μοντέλο Ασύχρονης Μηχανής Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών
Προηγμένος έλεγχος ηλεκτρικών μηχανών
Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 2: Έλεγχος Μηχανών Συνεχούς Ρεύματος με διέγερση σε σειρά Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών &
Ηλεκτρικά Κινητήρια Συστήματα
Ηλεκτρικά Κινητήρια Συστήματα Ενότητα 2:Συγκρότηση ενός Ηλεκτρικού Κινητήριου Συστήματος είδη φορτίων Επαμεινώνδας Μητρονίκας Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Σημείωμα
Προηγμένος έλεγχος ηλεκτρικών μηχανών
Προηγμένος έλεγχος ηλεκτρικών μηχανών Ενότητα 5: Εκτίμηση συνιστωσών μαγνητικής ροής με χρήση του μοντέλου τάσης Επαμεινώνδας Μητρονίκας - Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 10: Συστήματα γραμμικών εξισώσεων (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,
ΦΥΣΙΚΗ ΙΙΙ. Ενότητα: Ηλεκτροστατική ΜΑΪΝΤΑΣ ΞΑΝΘΟΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ
ΦΥΣΙΚΗ ΙΙΙ Ενότητα: Ηλεκτροστατική ΜΑΪΝΤΑΣ ΞΑΝΘΟΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Σελίδα 2 ΑΣΚΗΣΕΙΣ... 4 Σελίδα 3 ΑΣΚΗΣΕΙΣ Ηλεκτροστατική 1. Στις κορυφές κανονικού n-πλεύρου τοποθετούνται ίδια φορτία q. Να δειχθεί ότι η
Μάρκετινγκ Αγροτικών Προϊόντων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μάρκετινγκ Αγροτικών Προϊόντων Ενότητα 4 η : Οι Παραγωγοί Αγροτικών Προϊόντων Χρίστος Καμενίδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 23: Υπολογισμοί σε Κβαντικά Κυκλώματα ΙΙ Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Υπολογισμοί