Οργάνωση Υπολογιστών

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Οργάνωση Υπολογιστών"

Transcript

1 Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1

2 Άδειες Χρήσης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη Δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους. Ανάπτυξη Το παρόν εκπαιδευτικό υλικό αναπτύχθηκε στο Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών του Πανεπιστημίου Πατρών. 2

3 ΚΕΦΑΛΑΙΟ 3 ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ 3

4 AΣΚΗΣΗ 1 Ο παρακάτω πίνακας δείχνει τις τιμές των καταχωρητών $s0 και $s1 για δύο περιπτώσεις. Οι τιμές των καταχωρητών είναι σε δεκαεξαδική αναπαράσταση. $s0 $s1 Περίπτωση FFF FFFF Περίπτωση Για κάθε ένα από τα ακόλουθα ερωτήματα (A, B, Γ) εκτελέστε για κάθε περίπτωση (περιπτώσεις 1 και 2) τις αριθμητικές πράξεις, όπως αυτές περιγράφονται από τις αντίστοιχες ΜΙPS εντολές, και εξετάστε αν το αποτέλεσμα είναι σωστό ή αν υπάρχει υπερχείλιση. Α. add $t0, $s0, $s1 Β. sub $t0, $s0, $s1 Γ. add $t0, $s0, $s1 add $t0, $t0, $s0 ΛΥΣΗ Στον επεξεργαστή ΜΙPS οι αριθμοί είναι προσημασμένοι σε αναπαράσταση συμπληρώματος ως προς 2 (2 s complement). Στο συγκεκριμένο αριθμητικό σύστημα (συμπλήρωμα ως προς 2) ισχύει ότι το περισσότερο σημαντικό ψηφίο (MSB Most Significant Bit) είναι ίσο με MSB=0 για τους θετικούς αριθμούς και MSB=1 για τους αρνητικούς αριθμούς. Επίσης, σε αυτό το αριθμητικό σύστημα η πρόσθεση εκτελείται με το συμβατικό τρόπο αγνοώντας πάντα το κρατούμενο που τυχόν θα προκύψει. Αναφορικά με την υπερχείλιση για την περίπτωση της πρόσθεσης ισχύουν τα ακόλουθα: α) αν οι δύο αριθμοί είναι ετερόσημοι τότε δεν υπάρχει ποτέ υπερχείλιση και το αποτέλεσμα είναι πάντα σωστό, και β) αν οι αριθμοί είναι ομόσημοι και το αποτέλεσμα έχει διαφορετικό πρόσημο, τότε υπάρχει υπερχείλιση και το αποτέλεσμα είναι λάθος. Όσον αφορά την αφαίρεση ισχύουν τα παραπάνω αφού αυτή εκτελείται προσθέτοντας στον αφαιρετέο το συμπλήρωμα ως προς 2 του αφαιρέτη. Δηλαδή, X Y = X + ( Y +1), όπου η παρένθεση αντιστοιχεί στο συμπλήρωμα ως προς 2 του Υ, ενώ ο συμβολισμός Y αντιστοιχεί στο λογικό συμπλήρωμα του Υ. 4

5 Επομένως, με βάση τα παραπάνω έχουμε: Α. add $t0, $s0, $s1 Περίπτωση 1 Περίπτωση (θετικός) (θετικός) + 0FFF FFFF (θετικός) (θετικός) 7FFF FFFF (θετικός) (αρνητικός) Στην 1 η περίπτωση οι αριθμοί που προστίθενται είναι θετικοί και το αποτέλεσμα είναι θετικός αριθμός, άρα το αποτέλεσμα είναι σωστό και δεν υπάρχει υπερχείλιση. Στη 2 η περίπτωση, προσθέτουμε δύο θετικούς αριθμούς και το αποτέλεσμα είναι ένας αρνητικός αριθμός. Συνεπώς, υπάρχει υπερχείλιση και το αποτέλεσμα (δηλαδή, η λέξη) που αποθηκεύεται στον καταχωρητή $t0 είναι λάθος. Συγκεκριμένα, το πλήθος των ψηφίων του καταχωρητή $t0 δεν επαρκεί για να αποθηκευτεί το μέτρο (απόλυτη τιμή) και το πρόσημο του αποτελέσματος της πράξης. Αν είχαμε όμως ένα επιπλέον δυαδικό ψηφίο δηλαδή, 33 αντί 32 δυαδικά ψηφία για τον καταχωρητή $t0, τότε θα είχαμε Περίπτωση (θετικός) (θετικός) (θετικός) όπου με έντονη γραμματοσειρά είναι τα δεκαεξαδικά ψηφία (8χ4=32 δυαδικά ψηφία) και με κανονική γραμματοσειρά το 33 ο δυαδικό ψηφίο. Έτσι, βλέπουμε ότι αν το μήκος λέξης των καταχωρητών ήταν 33 ψηφία, τότε η πράξη θα εκτελούταν σωστά. Όμως, η αύξηση του μήκους λέξης δεν αποτελεί λύση για τη γενική περίπτωση. Αυτό συμβαίνει διότι πάντα θα υπάρχει πιθανότητα υπερχείλισης και πάντα θα απαιτείται αύξηση του μήκους λέξης των καταχωρητών. Συγκεκριμένα, στη γενική περίπτωση το αποτέλεσμα των πράξεων κυμαίνεται από - ως +, το οποίο επιβάλει διαρκώς μεγαλύτερο μήκος λέξης. Στη ουσία το μήκος λέξης πρέπει να είναι άπειρο για να καλύπτει οποιοδήποτε αποτέλεσμα. Β. sub $t0, $s0, $s1 Για να εκτελεστεί η αφαίρεση, πρέπει να υπολογιστεί το συμπλήρωμα ως προς 2 του αριθμού που υπάρχει στον καταχωρητή $s1. Αυτό μπορεί να υπολογιστεί αν πάρουμε 5

6 τη δυαδική αναπαράσταση του αριθμού, έστω Υ, και εργαστούμε με το γνωστό τρόπο. Δηλαδή, σ ( Y ) 2 = ( Y + 1), όπου σ (Y ) 2 το συμπλήρωμα ως προς 2 του αριθμού Υ. Όμως η διαδικασία αυτή είναι επίπονη και επιρρεπής σε λάθη όταν ο αριθμός έχει πολλά δυαδικά ψηφία. Για το λόγο αυτό είναι προτιμότερο να εργαστούμε απευθείας στο δεκαεξαδικό αριθμητικό σύστημα. Άρα, πρέπει να υπολογίσουμε το συμπλήρωμα ως προς 16 του Υ. Ο υπολογισμός του συμπληρώματος, σ (Y ) r, ενός αριθμού Υ = y n-1,, y 0 (n ψηφίων) ως προς τη βάση r ενός αριθμητικού συστήματος, δίνεται από τον παρακάτω τύπο: [ ( r 1) y ), ( r 1) y ),..., ( r 1) y ) ] 1 σ ( Y ) 2 0 r = n 1 n + δηλαδή, σε κάθε ψηφίο y i εκτελούμε την πράξη (r-1) y i και στην νέα λέξη που προκύπτει προσθέτουμε το 1. Έτσι, για την 1 η περίπτωση έχουμε $s1=υ=0fffffff επομένως, [ ( F 0), ( F F ), ( F F ),..., ( F F ) ] + 1= F σ( Y ) 16 = = F Ομοίως, για την 2 η περίπτωση έχουμε $s1=υ= επομένως, [ ( F 4), ( F 0), ( F 0),..., ( F 0) ] + 1= BFFFFFFF σ( Y ) 16 = = C Τώρα, που έχουμε υπολογίσει τα συμπληρώματα ως προς 16 του Υ για τις δύο περιπτώσεις, αντί για αφαίρεση εκτελούμε πρόσθεση χρησιμοποιώντας τα συμπληρώματα, όπως δείχνεται στη συνέχεια. Περίπτωση 1 Περίπτωση (θετικός) (θετικός) + F (αρνητικός) + C (αρνητικός) 1) (αρνητικός) 1) (θετικός) Και στις δύο περιπτώσεις υπάρχει κρατούμενο που αγνοείται. Για παράδειγμα στην 1 η περίπτωση για το περισσότερο σημαντικό ψηφίο έχουμε (7+F) = (7+15) 10 = = Όσον αφορά την υπερχείλιση και στις δύο περιπτώσεις προσθέτουμε ετερόσημους αριθμούς. Επομένως, το αποτέλεσμα είναι πάντα σωστό και δεν υπάρχει υπερχείλιση... Γ. add $t0, $s0, $s1 add $t0, $t0, $s0 6

7 Εδώ έχουμε δύο διαδοχικές προσθέσεις όπου το αποτέλεσμα της 1 ης ($t0) χρησιμοποιείται στη 2 η. Έτσι, εκτελώντας διαδοχικά τις προσθέσεις έχουμε: add $t0, $s0, $s1 Περίπτωση 1 Περίπτωση (θετικός) (θετικός) + 0FFF FFFF (θετικός) (θετικός) 7FFF FFFF (θετικός) (αρνητικός) Σύμφωνα με τα παραπάνω στη 2 η περίπτωση έχουμε υπερχείλιση και λάθος αποτέλεσμα. Αυτό σημαίνει ότι τα ψηφία του $t0 δεν αρκούν για να αναπαραστήσουν σωστά το αποτέλεσμα. Επειδή και η επόμενη πράξη είναι επίσης πρόσθεση, η υπερχείλιση θα εξακολουθήσει να υπάρχει. Επομένως, για τη 2 η περίπτωση το τελικό αποτέλεσμα που αποθηκεύεται στον $t0 μετά την εκτέλεση των δύο εντολών θα είναι λάθος, άρα θα υπάρχει υπερχείλιση. add $t0, $t0, $s0 Περίπτωση 1 Περίπτωση 2 7FFF FFFF (θετικός) (θετικός) EFFF FFFF (αρνητικός) C Παρατηρούμε ότι στην 1 η περίπτωση προσθέτουμε δύο θετικούς αριθμούς και το αποτέλεσμα είναι αρνητικός. Επομένως, έχουμε υπερχείλιση. Άρα, και για τις δύο περιπτώσεις (περιπτώσεις 1 και 2) έχουμε υπερχείλιση. 7

8 AΣΚΗΣΗ 2 Οι παρακάτω αριθμοί και πράξεις αφορούν το πρότυπο (ΙΕΕΕ 754) κινητής υποδιαστολής απλής ακρίβειας. Α. Βρείτε το δεκαδικό αριθμό που αντιστοιχεί στη δυαδική λέξη Β. Βρείτε την αναπαράσταση του δεκαδικού αριθμού 6,75. Γ. Βρείτε το μεγαλύτερο και μικρότερο δεκαδικό αριθμό που μπορούν να αναπαρασταθούν σε αυτό το πρότυπο. Δ. Για τους δεκαδικούς αριθμούς A = +1,32 και Β = -0,5, δώστε την αναπαράστασής τους στο παραπάνω πρότυπο. Ποια είναι η δεκαδική τιμή της αναπαράστασής τους; Ε. Εκτελέστε την πράξη Α+Β παρουσιάζοντας όλα τα βήματα της διαδικασίας της άθροισης. ΛΥΣΗ Α. Στο πρότυπο κινητής υποδιαστολής απλής ακρίβειας η αναπαράσταση του αριθμού είναι: Πρόσημο Πολωμένος εκθέτης (Π.Ε) Κλάσμα 1 bit 8 bits 23 bits Λαμβάνοντας υπόψη την κανονικοποίηση που επιβάλει το πρότυπο δηλαδή, ότι υπονοείται το ψηφίο «1» αριστερά της υποδιαστολής, ο αντίστοιχος δεκαδικός αριθμός είναι: (πρόσημο) (1 + κλάσμα) 2 Ε. Επίσης, είναι γνωστό ότι Εκθέτης (Ε) = Πολωμένος εκθέτης (ΠΕ) πόλωση δηλαδή, Ε=ΠΕ Επομένως, για τον αριθμό 1( ) έχουμε: Πρόσημο: 1 δηλαδή, αρνητικός Πολωμένος εκθέτης: = =135. Άρα, Εκθέτης = = 8. Κλάσμα: = 0, Άρα, ο δεκαδικός αριθμός είναι: (1,171875) χ 2 8. Β. Ο δεκαδικός αριθμός είναι 5,75. Επομένως, έχουμε: 8

9 Πρόσημο: 0 (ο αριθμός είναι θετικός) Η αναπαράσταση του 6,75 στο δυαδικό σύστημα είναι: (6,75) 10 = (110.11) 2 = (110.11) Όμως, λόγω της κανονικοποίησης που επιβάλει το πρότυπο, η υποδιαστολή πρέπει να μεταφερθεί 2 θέσεις αριστερά. Αυτό σημαίνει ότι διαιρούμε τον αριθμό δύο φορές με το 2 (μία φορά με το 4). Για να μην αλλάξει όμως η τιμή του αριθμού, πρέπει να πολλαπλασιάσουμε τον αριθμό με το 4 δηλαδή, να αυξήσουμε τον εκθέτη κατά 2. Επομένως, έχουμε: 5,75 = = Εφόσον, ο εκθέτης (Ε) είναι 2, τότε ο πολωμένος εκθέτης (ΠΕ) είναι ΠΕ = Ε +πόλωση δηλαδή, ΠΕ = =129. Η δυαδική αναπαράσταση του 129 είναι Άρα, Πρόσημο (1 bit) Π.Ε (8 bits) Κλάσμα (23 bits) Γ. Όσον αφορά το μεγαλύτερο θετικό αριθμό έχουμε: Πρόσημο: 0 (ο αριθμός είναι θετικός). Κλάσμα = 11 1 (23 ψηφία όλα «1»). ΠΕ: (ο μέγιστος αριθμός με 8 δυαδικά ψηφία). Όμως, ο ΠΕ = 255 είναι δεσμευμένος από το πρότυπο και χρησιμοποιείται ως ΠΕ για την αναπαράσταση του NaN (Not-a-Number). Άρα, ο μέγιστος αποδεκτός ΠΕ είναι ο αμέσως μικρότερος δηλαδή, ΠΕ = = 254. Εφόσον, ΠΕ =254 Ε = ΠΕ πόλωση = =127. Άρα, Ε = 127. Συνεπώς, με βάση τα παραπάνω έχουμε: Μέγιστος θετικός = χ χ = Ομοίως, εργαζόμαστε για το μικρότερο αρνητικό αριθμό, όπου το μόνο που αλλάζει είναι η τιμή του προσήμου. Επομένως, Μικρότερος αρνητικός = χ χ = Δ. Ο αριθμός Α = +1,32 έχει την ακόλουθη δυαδική αναπαράσταση με 23 δυαδικά ψηφία στο κλασματικό μέρος. Α = + 1, χ

10 Πρέπει να σημειωθεί ότι αν γίνουν αναλυτικά οι πράξεις της μετατροπής του αριθμού από το δεκαδικό στο δυαδικό σύστημα, προκύπτει ότι δεν επαρκούν 23 δυαδικά ψηφία στο κλασματικό μέρος για την ακριβή αναπαράσταση του αριθμού. Η παραπάνω αναπαράσταση είναι ήδη κανονικοποιημένη. Επομένως, έχουμε: Πρόσημο: 0. Εκθέτης: 0. Άρα, ΠΕ = = 127. Κλάσμα: Άρα, η αναπαράσταση του Α στο πρότυπο ΙΕΕΕ 754 απλής ακρίβειας είναι: Πρόσημο (1 bit) Π.Ε (8 bits) Κλάσμα (23 bits) Μετατρέποντας, την παραπάνω αναπαράσταση σε δεκαδική μορφή βρίσκουμε ότι Α=1, Παρατηρούμε η τιμή του Α δεν είναι ακριβώς ίση με 1,32, το οποίο οφείλεται στο γεγονός ότι δεν επαρκούν 23 δυαδικά ψηφία στο κλασματικό μέρος για την ακριβή αναπαράσταση του αριθμού. Ομοίως έχουμε: Β = 0,5 = 0,1 2 0, ο οποίος μετά την κανονικοποίηση γίνεται: Β = 0,5 = 0,1 2 0 = 1, Για την αναπαράσταση του Β στο πρότυπο έχουμε: Πρόσημο: 1. Εκθέτης: -1. Άρα, ΠΕ = = 126 = Κλάσμα: Άρα, η αναπαράσταση του Β στο πρότυπο ΙΕΕΕ 754 με απλή ακρίβεια είναι: Πρόσημο (1 bit) Π.Ε (8 bits) Κλάσμα (23 bits) Στην περίπτωση αυτή καθώς τα 23 δυαδικά ψηφία στο κλασματικό μέρος επαρκούν για την ακριβή αναπαράσταση του αριθμού. Η τιμή που προκύπτει μετά την μετατροπή από την ΙΕΕΕ 754 αναπαράσταση σε δεκαδική αναπαράσταση δίνει αποτέλεσμα Β = 0,5. 10

11 E. Για να προσθέσουμε του αριθμούς, πρέπει: α) αυτοί να έχουν τον ίδιο εκθέτη, β) να προσθέσουμε τα κλάσματα και γ) να κανονικοποιήσουμε το αποτέλεσμα αν χρειάζεται. Όσον αφορά το 1 ο βήμα, αυτό έχει γίνει στο προηγούμενο ερώτημα. Δηλαδή, Α = + 1, χ 2 0 και Β = 0, χ 2 0. Όμως καθώς ο Β είναι αρνητικός, αντί για πρόσθεση στην ουσία εκτελούμε αφαίρεση. Έτσι, έχουμε: 1, χ 2 0 0, χ 2 0 0, χ 2 0 Το αποτέλεσμα δεν είναι σε κανονική μορφή, οπότε η υποδιαστολή μεταφέρεται μία θέση δεξιά και ο εκθέτης μειώνεται κατά 1. Άρα, Α +Β = 1, χ

12 AΣΚΗΣΗ 3 Α. Δίνεται ο αριθμός Ν1 = (C ) 16. Σε ποιον δεκαδικό αριθμό αντιστοιχεί σύμφωνα με το πρότυπο κινητής υποδιαστολής (ΙΕΕΕ 754) απλής ακρίβειας; Β. Δώστε την αναπαράσταση του Ν2 = στο παραπάνω πρότυπο. Γ. Εκτελέστε την πράξη Ν3 = Ν1 Ν2 χρησιμοποιώντας τις αναπαραστάσεις κινητής υποδιαστολής και συγκρίνετε το αποτέλεσμα της πράξης με το δεκαδικό ισοδύναμο. ΛΥΣΗ Α. Όπως είναι γνωστό, στο πρότυπο κινητής υποδιαστολής απλής ακρίβειας ΙΕΕΕ 754 η αναπαράσταση του αριθμού είναι: Πρόσημο Πολωμένος εκθέτης (Π.Ε) Κλάσμα 1 bit 8 bits 23 bits Λαμβάνοντας υπόψη την κανονικοποίηση που επιβάλει το πρότυπο δηλαδή, ότι υπονοείται το ψηφίο 1 αριστερά της υποδιαστολής, ο αντίστοιχος δεκαδικός αριθμός είναι: (πρόσημο) (1 + κλάσμα) 2 Ε. Επίσης, είναι γνωστό ότι Εκθέτης (Ε) = Πολωμένος εκθέτης (ΠΕ) πόλωση δηλαδή, Ε=ΠΕ Έτσι, έχουμε: Ν1 = ( ) 2. Άρα, Πρόσημο: 1 δηλαδή, ο αριθμός είναι αρνητικός. Πολωμένος εκθέτης : Άρα, ΠΕ = = Άρα, Ε = = Κλάσμα: Άρα, ο αντίστοιχος δεκαδικός αριθμός είναι: Ν1 = ( 1) (1.0) 2 4 = Β. Το 64 είναι = (2 6 ) 10, δηλαδή, Ν2 = (1) (1.0) 2 6. Άρα, ο Π.Ε. = = Άρα, έχουμε: Πρόσημο (1 bit) Π.Ε (8 bits) Κλάσμα (23 bits) Γ. Για την εκτέλεσης της πράξης Ν3 = Ν1 Ν2, όπως είναι γνωστό από τη θεωρία: α) πολλαπλασιάζουμε τα πρόσημα και θέτουμε το ψηφίο προσήμου αντίστοιχα, β) 12

13 πολλαπλασιάζουμε το κλασματικά μέρη, γ) προσθέτουμε τους πολωμένους εκθέτες και αφαιρούμε μία φορά την πόλωση, και δ) εκτελούμε κανονικοποίηση, αν χρειάζεται. Ο πολ/μός των δύο προσήμων δίνει αποτέλεσμα: προσ Ν1 προσ Ν2 = ( 1) 1 = Άρα, σύμφωνα με το πρότυπο έχουμε προσ Ν3 = 1 2 (αρνητικός αριθμός). Ο πολλαπλασιασμός των δύο κλασματικών μερών δίνει αποτέλεσμα (23 bits) και δε χρειάζεται κανονικοποίηση. Η πρόσθεση των πολωμένων εκθετών δίνει αποτέλεσμα = και μετά την αφαίρεση της πόλωσης ( =137) έχουμε ότι εκθέτης είναι ίσος με Ε = Άρα, με βάση τα παραπάνω η αναπαράσταση του Ν3 είναι: Πρόσημο (1 bit) Π.Ε (8 bits) Κλάσμα (23 bits) Για τον έλεγχο του αποτελέσματος, έχουμε: Πρόσημο: 1 δηλαδή, ο αριθμός είναι αρνητικός. Πολωμένος εκθέτης : Άρα, ΠΕ = Άρα, Ε = = Κλάσμα: Δηλαδή, Ν3 = ( 1) (1.0) 2 10 = (2 10 ) 10, το οποίο είναι και σωστό αποτέλεσμα καθώς Ν1 Ν2 = ( 16 10) (64 10) = = (2 10 )

14 AΣΚΗΣΗ 4 Θεωρείστε τους παρακάτω αριθμούς σε αναπαράσταση κινητής υποδιαστολής απλής ακρίβειας: Κ = (4B ) 16, L = (3D ) 16, και M = (CB ) 16. Εκτελέστε τις πράξεις Ν1 = L + (K + M) και Ν2 = (L + K) + M σύμφωνα με το πρότυπο κινητής υποδιαστολής. Τι παρατηρείτε; ΛΥΣΗ Όπως είναι γνωστό ο αλγόριθμος της πρόσθεσης επιβάλει να: α) αναπαραστήσουμε τους αριθμούς στο πρότυπο β) να κάνουμε τους πολωμένους εκθέτες ίσους ολισθαίνοντας κατάλληλα τον έναν από τους δύο αριθμούς γ) να προσθέσουμε τα κλασματικά μέρη δ) να εφαρμόσουμε κανονικοποίηση στο αποτέλεσμα, αν χρειάζεται. Η μετατροπή του Κ σε δυαδική αναπαράσταση είναι η ακόλουθη: Κ = Επομένως, Πρόσημο: 0 δηλαδή, ο αριθμός είναι θετικός. Πολωμένος εκθέτης : Άρα, ΠΕ = Κλάσμα: (23 ψηφία). Ομοίως, για τους αριθμούς L και Μ έχουμε: L = Επομένως, Πρόσημο: 0 δηλαδή, ο αριθμός είναι θετικός. Πολωμένος εκθέτης : Άρα, ΠΕ = Κλάσμα: (23 ψηφία). Μ = Επομένως, Πρόσημο: 1 δηλαδή, ο αριθμός είναι αρνητικός. Πολωμένος εκθέτης : Άρα, ΠΕ =

15 Κλάσμα: (23 ψηφία). Εξετάζοντας τις παραπάνω αναπαραστάσεις συμπεραίνουμε ότι Κ = Μ. Επομένως, Ν1 = L +(K + M) είναι ίσο με Ν1 = L. Για το υπολογισμό της έκφρασης Ν2 = (L + K) + M πρέπει να εκτελέσουμε πρώτα την πράξη της παρένθεσης. Παρατηρούμε ότι οι πολωμένοι εκθέτες αυτών είναι: ΠΕ L = 122 και ΠΕ Κ = 150. Όμως, σύμφωνα με τον αλγόριθμο της πρόσθεσης, οι πολωμένοι εκθέτες πρέπει να γίνουν ίσοι. Για να κάνουμε τον ΠΕ L ίσο 150 πρέπει να τον αυξήσουμε κατά 28 (122+28= 150). Όμως, για να διατηρήσουμε τη τιμή του L πρέπει επίσης να ολισθήσουμε τα ψηφία του 1 και κλασματικού μέρους του κατά 28 θέσεις δεξιά. Δηλαδή, έχουμε: L = (1) ( ) x = (1) ( ) Άρα, L = 0. Επομένως, Ν2 = (L + K) + M = (0 + Κ) + Μ = Κ+ Μ. Όμως, Κ = Μ άρα, Ν2 =0. Άρα, ενώ αλγεβρικά οι εκφράσεις των Ν1 και Ν2 είναι ισοδύναμες λόγω της προσεταιριστικής ιδιότητας, παρατηρούμε ότι τα αποτελέσματα είναι διαφορετικά. Αυτό οφείλεται σε εγγενή αδυναμία του προτύπου κινητής υποδιαστολής. Συγκεκριμένα, το μήκος λέξης είναι περιορισμένο (32 ψηφία) αφού τα πεδία Πολωμένος Εκθέτης και Κλάσμα έχουν περιορισμένο εύρος 8 και 23 ψηφία, αντίστοιχα και έχουμε και ένα ψηφίο για το πρόσημο. Επομένως, αν ο αριθμός απαιτεί περισσότερα ψηφία για ένα πεδίο για παράδειγμα το κλάσμα, η αναπαράσταση δεν είναι ακριβής. Στη συγκεκριμένη περίπτωση προσθέσαμε δύο μεγάλους αριθμούς (L, K) το αποτέλεσμα των οποίων απαιτεί περισσότερα από 23 ψηφία για κλασματικό μέρος, τα οποία δεν είναι διαθέσιμα. Δηλαδή, το αποτέλεσμα της πρόσθεσης L + K είναι ένας πολύ μεγάλος αριθμός που δε μπορεί να αναπαρασταθεί με πλήρη ακρίβεια σε αναπαράσταση κινητής υποδιαστολής με 32 ψηφία. Θα μπορούσαμε να λύσουμε το πρόβλημα αν χρησιμοποιούσαμε αναπαράσταση κινητής υποδιαστολής διπλής ακρίβειας. Όμως και στην περίπτωση αυτή μπορούν να παρουσιαστούν παρόμοια φαινόμενα. 15

16 Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Πατρών, Γεώργιος Θεοδωρίδης, Οδυσσέας Κουφοπαύλου, «Οργάνωση Υπολογιστών» Έκδοση: 1.0 Πάτρα 2015 Διαθέσιμο στη διαδικτυακή διεύθυνση: https://eclass.upatras.gr/courses/ee893/ Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Πατρών» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 16

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Εισαγωγή στην Πληροφορική Αριθμητικά Συστήματα ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Συντήρησης Πολιτισμικής Κληρονομιάς Βασικές Έννοιες Ένα Αριθμητικό Σύστημα αποτελείται από ένα

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών

Οργάνωση Υπολογιστών Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό

Διαβάστε περισσότερα

Οργάνωση Υπολογιστών

Οργάνωση Υπολογιστών Οργάνωση Υπολογιστών Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών 1 Άδειες Χρήσης Το παρόν υλικό

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό

Εισαγωγή στην Πληροφορική & τον Προγραμματισμό ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Εισαγωγή στην Πληροφορική & τον Προγραμματισμό Ενότητα 3 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Χ. Κυτάγιας Τμήμα

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται θέματα

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Αριθμητική του Υπολογιστή, Αριθμητικά Συστήματα Μετατροπές, 2ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 3: Δυαδικά Συστήματα Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής

Πληροφορική. Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων. Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Πληροφορική Ενότητα 4 η : Κωδικοποίηση & Παράσταση Δεδομένων Ι. Ψαρομήλιγκος Τμήμα Λογιστικής & Χρηματοοικονομικής Άδειες Χρήσης

Διαβάστε περισσότερα

Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II

Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II Επιμέλεια: Βασίλης Παλιουράς, Αναπληρωτής Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας 1 Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών. ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών - Μηχανικών Υπολογιστών ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ Νεκτάριος Κοζύρης ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Ψηφιακή Λογική Σχεδίαση

Ψηφιακή Λογική Σχεδίαση Ψηφιακή Λογική Σχεδίαση Επιμέλεια: Γεώργιος Θεοδωρίδης, Επίκουρος Καθηγητής Ανδρέας Εμερετλής, Υποψήφιος Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν

Διαβάστε περισσότερα

Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II

Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II 3 η Εργαστηριακή Άσκηση Σχεδίαση και Υλοποίηση μίας ALU δύο εισόδων VHDL Εργαστήριο_2 2012-2013 1 Άδειες Χρήσης Το παρόν υλικό διατίθεται με τους όρους της άδειας

Διαβάστε περισσότερα

Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II

Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II 2 η Εργαστηριακή Άσκηση Περιγραφή Κυκλωμάτων με Συντρέχουσες Εντολές Άδειες Χρήσης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ.

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα. Δρ. Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 3 : Αναπαράσταση αριθμών στο δυαδικό σύστημα Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα 9: Ψηφιακή Αριθμητική Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Ψηφιακή Αριθμητική Σκοποί ενότητας 2 Περιεχόμενα ενότητας

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II

Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II Σχεδιασμός Ολοκληρωμένων Κυκλωμάτων VLSI II 4 η Εργαστηριακή Άσκηση Περιγραφή Κυκλωμάτων με Ακολουθιακές Εντολές Άδειες Χρήσης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1

Συστήματα αρίθμησης. = α n-1 *b n-1 + a n-2 *b n-2 + +a 1 b 1 + a 0 όπου τα 0 a i b-1 Συστήματα αρίθμησης Δεκαδικό σύστημα αρίθμησης 1402 = 1000 + 400 +2 =1*10 3 + 4*10 2 + 0*10 1 + 2*10 0 Γενικά σε ένα σύστημα αρίθμησης με βάση το b N, ένας ακέραιος αριθμός με n ψηφία παριστάνεται ως:

Διαβάστε περισσότερα

Ενότητα. Εισαγωγή στις βάσεις δεδομένων

Ενότητα. Εισαγωγή στις βάσεις δεδομένων Ενότητα 1 Εισαγωγή στις βάσεις δεδομένων 2 1.1 Βάσεις Δεδομένων Ένα βασικό στοιχείο των υπολογιστών είναι ότι έχουν τη δυνατότητα να επεξεργάζονται εύκολα και γρήγορα μεγάλο πλήθος δεδομένων και πληροφοριών.

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Προγραμματισμός Ηλεκτρονικών Υπολογιστών 2 - Εργαστήριο Ενότητα 2: Δημιουργία και Επεξεργασία διανυσμάτων και πινάκων μέσω του Matlab Διδάσκουσα: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών ΤΕ Άδειες

Διαβάστε περισσότερα

Μηχανολογικό Σχέδιο Ι

Μηχανολογικό Σχέδιο Ι ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Βάσεις Δεδομένων. Ενότητα 5: ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ. Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών

Βάσεις Δεδομένων. Ενότητα 5: ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ. Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών Βάσεις Δεδομένων Ενότητα 5: ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 4 : Πράξεις με bits. Δρ. Γκόγκος Χρήστος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική Ι. Ενότητα 4 : Πράξεις με bits. Δρ. Γκόγκος Χρήστος Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική Ι Ενότητα 4 : Πράξεις με bits Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra

Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra Εισαγωγή στους Αλγορίθμους Ενότητα 1η Άσκηση Αλγόριθμος Dijkra Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upara.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit!

! Εάν ο αριθμός διαθέτει περισσότερα bits, χρησιμοποιούμε μεγαλύτερες δυνάμεις του 2. ! Προσοχή στη θέση του περισσότερο σημαντικού bit! Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές ) http://di.ionio.gr/~mistral/tp/csintro/ Αριθμοί Πράξεις με δυαδικούς αριθμούς

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα

Διαβάστε περισσότερα

Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενότητα 1: Εισαγωγή Βασικές Έννοιες Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΦΡΑΓΚΙΣΚΟΣ ΚΟΥΤΕΛΙΕΡΗΣ Εισαγωγή 2 Περιεχόμενα 1. Εισαγωγή 2. Αριθμητική παραγώγιση

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 23: Υπολογισμοί σε Κβαντικά Κυκλώματα ΙΙ Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Υπολογισμοί

Διαβάστε περισσότερα

Πράξεις με δυαδικούς αριθμούς

Πράξεις με δυαδικούς αριθμούς Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 25-6 Πράξεις με δυαδικούς αριθμούς (αριθμητικές πράξεις) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Πράξεις με δυαδικούς

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal

Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskal Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Kruskl Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,

Διαβάστε περισσότερα

Δυαδικό Σύστημα Αρίθμησης

Δυαδικό Σύστημα Αρίθμησης Δυαδικό Σύστημα Αρίθμησης Το δυαδικό σύστημα αρίθμησης χρησιμοποιεί δύο ψηφία. Το 0 και το 1. Τα ψηφία ενός αριθμού στο δυαδικό σύστημα αρίθμησης αντιστοιχίζονται σε δυνάμεις του 2. Μονάδες, δυάδες, τετράδες,

Διαβάστε περισσότερα

Βάσεις Δεδομένων. Ενότητα 1: Εισαγωγή στις Βάσεις δεδομένων. Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών

Βάσεις Δεδομένων. Ενότητα 1: Εισαγωγή στις Βάσεις δεδομένων. Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών Βάσεις Δεδομένων Ενότητα 1: Εισαγωγή στις Βάσεις δεδομένων Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στην Επιστήμη των Υπολογιστών

Εισαγωγή στην Επιστήμη των Υπολογιστών Εισαγωγή στην Επιστήμη των Υπολογιστών Ενότητα 2: Αποθήκευση Δεδομένων: Κώδικες, 1ΔΩ Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Θεόδωρος Τσιλιγκιρίδης Μαθησιακοί Στόχοι Η Ενότητα 2 διαπραγματεύεται

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα

ΠΛΗΡΟΦΟΡΙΚΗ I. 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ - ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΣΑΓΩΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗ I 4 η ΔΙΑΛΕΞΗ Αριθμητικά Συστήματα ΧΑΣΑΝΗΣ ΒΑΣΙΛΕΙΟΣ

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.

Διαβάστε περισσότερα

Τεχνικό Σχέδιο - CAD

Τεχνικό Σχέδιο - CAD Τεχνικό Σχέδιο - CAD Προσθήκη Διαστάσεων & Κειμένου ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Εντολές προσθήκης διαστάσεων & κειμένου Στο βασική (Home)

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 11: Θεωρία Οργάνωσης & Διοίκησης Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...

Διαβάστε περισσότερα

Ιστορία της μετάφρασης

Ιστορία της μετάφρασης ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Αρχιτεκτονική-Ι. Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Αρχιτεκτονική-Ι. Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχιτεκτονική-Ι Ενότητα 1: Εισαγωγή στην Αρχιτεκτονική -Ι Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 2: Οργάνωση και Διοίκηση Εισαγωγή Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής

Διδακτική της Πληροφορικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 14: Διδακτικές Προσεγγίσεις για τον Προγραμματισμό Σταύρος Δημητριάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας

Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Ενότητα 8: Αξιολόγηση και επιλογή αγορών στόχων από ελληνική εταιρία στον κλάδο παραγωγής και εμπορίας έτοιμου γυναικείου Καθ. Αλεξανδρίδης Αναστάσιος Δρ. Αντωνιάδης

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 3: Κλασικά Υποδείγματα της Διεθνούς Οικονομικής Θεωρίας (Heckscher-Ohlin model) Γρηγόριος

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ

ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ ΑΡΙΘΜΗΤΙΚΗ ΓΙΑ ΥΠΟΛΟΓΙΣΤΕΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch t / / h 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα 8: Ψηφιακή Αριθμητική Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Γιατί μας ενδιαφέρει το δυαδικό Αριθμητικές

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνων

Ψηφιακή Επεξεργασία Εικόνων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι

Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Ενότητα: Επαναληπτικές Ασκήσεις Ενότητας 4 Όνομα Καθηγητή: Γεωργά Σταυρούλα Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Εφαρμοσμένη Βελτιστοποίηση

Εφαρμοσμένη Βελτιστοποίηση Εφαρμοσμένη Βελτιστοποίηση Ενότητα 3: Αναλυτικές μέθοδοι βελτιστοποίησης για συναρτήσεις μιας μεταβλητής Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 6: ΜΕΓΕΘΟΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 3: Στατιστική Ι (3/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός 1/8 Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.05: Ολοκλήρωση Ρητών Συναρτήσεων Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση

Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Αγροτικής Οικονομίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Μέθοδοι ς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο

Διαβάστε περισσότερα

Ηλεκτρικά Κινητήρια Συστήματα

Ηλεκτρικά Κινητήρια Συστήματα Ηλεκτρικά Κινητήρια Συστήματα Ενότητα 7:Περιγραφή Κινητήρων Σ.Ρ. με χονδρικά διαγράμματα Επαμεινώνδας Μητρονίκας Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Δομές Δεδομένων Ενότητα 1

Δομές Δεδομένων Ενότητα 1 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Εισαγωγή Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Εισαγωγή στην Διοίκηση Επιχειρήσεων Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 4: Στρατηγικοί προσανατολισμοί Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Διδακτική Πληροφορικής

Διδακτική Πληροφορικής Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διδακτική Πληροφορικής Ενότητα 4: Διδακτικός μετασχηματισμός βασικών εννοιών πληροφορικής Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Εργαστήριο 2 Καθηγητές: Αβούρης Νικόλαος, Παλιουράς Βασίλης, Κουκιάς Μιχαήλ, Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άσκηση 2 ου εργαστηρίου

Διαβάστε περισσότερα

Βάσεις Περιβαλλοντικών Δεδομένων

Βάσεις Περιβαλλοντικών Δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 2: Εισαγωγή Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ

ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΥΠΟΛΟΓΙΣΤΩΝ - ΑΡΙΘΜΗΤΙΚΕΣ ΠΡΑΞΕΙΣ ΣΗΜΜΥ, 5 Ο ΕΞΑΜΗΝΟ http://www.cslab.ece.ntua.gr/courses/comparch 1 ΑΡΙΘΜΟΙ Decimal Eύκολο για τον άνθρωπο Ιδιαίτερα για την εκτέλεση αριθμητικών πράξεων

Διαβάστε περισσότερα

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων

Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα 7: Universal motor Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης

Διαβάστε περισσότερα

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 9: Άσκηση εμπορικής πολιτικής Παράδειγμα άσκησης εμπορικής πολιτικής Γρηγόριος Ζαρωτιάδης

Διαβάστε περισσότερα

Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου

Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου Διαφήμιση και Δημόσιες Σχέσεις Ενότητα 9: Σχέσεις διαφημιστή-διαφημιζόμενου Θεοδωρίδης Προκόπης Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση

Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Ενότητα: Εργασίες Διδάσκων: Βασίλης Κόμης, Καθηγητής komis@upatras.gr www.ecedu.upatras.gr/komis/ Τμήμα Επιστημών

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων.

Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων. Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Ελίνα Μακρή

Ελίνα Μακρή Ελίνα Μακρή elmak@unipi.gr Μετατροπή Αριθμητικών Συστημάτων Πράξεις στα Αριθμητικά Συστήματα Σχεδίαση Ψηφιακών Κυκλωμάτων με Logism Άλγεβρα Boole Λογικές Πύλες (AND, OR, NOT, NAND, XOR) Flip Flops (D,

Διαβάστε περισσότερα

Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία

Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία Παιδαγωγικό Τμήμα Νηπιαγωγών Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία Ενότητα # 9: Ψηφιακός Ήχος - Audacity Θαρρενός Μπράτιτσης Παιδαγωγικό Τμήμα Νηπιαγωγών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 7η: Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 6: Διαπεριφερειακές διαφορές Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 12: Αρχή ελαχίστου του Pontryagin Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα 7: Ψηφιακή Αριθμητική Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Ψηφιακή Αριθμητική Σκοποί ενότητας 2 Περιεχόμενα ενότητας

Διαβάστε περισσότερα

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Ενότητα 4: Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία ΚΛΑΣΜΑ ΚΑΙ ΚΛΑΣΜΑΤΙΚΟΣ ΑΡΙΘΜΟΣ ΤΙ ΕΙΝΑΙ ΤΟ ΚΛΑΣΜΑ

Διαβάστε περισσότερα