Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον και Μαθηματικά: Μια αλγοριθμική προσέγγιση του θεωρήματος Bolzano

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον και Μαθηματικά: Μια αλγοριθμική προσέγγιση του θεωρήματος Bolzano"

Transcript

1 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον και Μαθηματικά: Μια αλγοριθμική προσέγγιση του θεωρήματος Bolzano Πέρδος Αθανάσιος 1, Σαράφης Ιωάννης 2, Δουκάκης Σπυρίδων 3, Ντρίζος Δημήτριος 4 1 Δρ. Καθηγητής Πληροφορικής, Ελληνογαλλική Σχολή «Καλαμαρί», 2 Μαθηματικός, Ελληνογαλλική Σχολή «Καλαμαρί», 3 Υπ. Διδάκτορας, Πανεπιστήμιο Αιγαίου, 4 Σύμβουλος Μαθηματικών Τρικάλων - Καρδίτσας, Περίληψη Η εργασία παρουσιάζει μια διδακτική πρόταση η οποία αποσκοπεί στην ανάπτυξη αλγοριθμικών ικανοτήτων και προγραμματιστικών τεχνικών των μαθητών/τριών της Τεχνολογικής Κατεύθυνσης της τρίτης Λυκείου. Οι μαθητές έχουν έρθει σε επαφή από τα Μαθηματικά Κατεύθυνσης με το θεώρημα Bolzano, έχουν μελετήσει περιπτώσεις που εφαρμόζεται, αντί - παραδείγματα καθώς και τον ορισμό του ορίου (προσέγγιση τιμής). Έτσι καλούνται να εφαρμόσουν τις γνώσεις τους στη δομή επιλογής και επανάληψης από το μάθημα της Ανάπτυξης Εφαρμογών σε Προγραμματιστικό Περιβάλλον (ΑΕΠΠ) ώστε να επιλύσουν αλγοριθμικά, προβλήματα που ανάγονται στην επιτυχία ή όχι του θεωρήματος Bolzano να επιβεβαιώσει την ύπαρξη λύσης για συγκεκριμένες εξισώσεις. Λέξεις κλειδιά: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον, Μαθηματικά Γ Λυκείου, Θεώρημα Bolzano 1. Εισαγωγή Σύμφωνα με το βιβλίο καθηγητή το μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον (ΑΕΠΠ) [Βακάλη κ.α. (2010)] έχει ως γενικό σκοπό να αναπτύξουν οι μαθητές ικανότητες μεθοδολογικού χαρακτήρα, να αποκτήσουν δεξιότητες αλγοριθμικής προσέγγισης αλλά και να καταστούν ικανοί να υλοποιούν τις λύσεις απλών προβλημάτων με χρήση βασικών προγραμματιστικών τεχνικών. Ως ειδικοί σκοποί του μαθήματος αναφέρονται ότι να είναι ικανοί οι μαθητές να γράφουν έναν αλγόριθμο για ένα πρόβλημα που τους δίνεται, να γνωρίζουν και να επιλέγουν την κατάλληλη δομή για την επίλυση του προβλήματος και να αναπτύξουν ικανότητες αναζήτησης εναλλακτικών λύσεων. Ακόμη στο βιβλίο καθηγητή

2 3 rd Conference on Informatics in Education 361 αναφέρεται ότι η γενική μεθοδολογία διδασκαλίας του μαθήματος θα πρέπει να ενισχύει και να ενθαρρύνει τη δημιουργική δράση του μαθητή μέσω της ενεργοποίησης του και τη συνεργατική μάθηση σε ομαδικό περιβάλλον. Στην παρούσα εργασία παρουσιάζεται μία διδακτική πρόταση η οποία βασίζεται στο θεώρημα Bolzano, το οποίο οι μαθητές διδάσκονται στο πλαίσιο των Μαθηματικών Κατεύθυνσης της Γ Λυκείου [Ανδρεαδάκης κ.α. (2010)]. Η διδασκαλία του θεωρήματος είναι στοχευμένη και περιλαμβάνει παραδείγματα εφαρμογής του θεωρήματος, καθώς και αντιπαραδείγματα που αναδεικνύουν ότι οι προϋποθέσεις του θεωρήματος είναι ικανές όχι όμως και αναγκαίες. Στη συνέχεια οι μαθητές καλούνται να επιλύσουν αλγοριθμικά, κατάλληλες δραστηριότητες που μπορεί να εφαρμοστεί το θεώρημα και για αυτό τους παρέχεται ένα φύλλο εργασίας με έξι προτεινόμενα δραστηριότητες στα οποία υπάρχουν και οι γραφικές παραστάσεις των εξισώσεων προς μελέτη ώστε να αντιληφθούν καλύτερα το χώρο του προβλήματος. Η διδακτική πρόταση υλοποιείται στο εργαστήριο υπολογιστών του σχολείου με τη χρήση του εγκεκριμένου από το Παιδαγωγικό Ινστιτούτο (φορέας του Υπουργείου Παιδείας) λογισμικού «Διερμηνευτής της Γλώσσας» ενώ οι μαθητές χωρίζονται σε ομάδες των δύο ατόμων. 2. Υλοποίηση της Διδακτικής Πρότασης 2.1 Ορισμός του Ορίου και Σφάλμα Μηχανής Αρχικά ο εκπαιδευτικός διευκολύνει τους μαθητές να εξηγήσουν, να περιγράψουν και να κατονομάσουν τον ορισμό του μαθηματικού ορίου. Σκοπός είναι οι μαθητές να συσχετίσουν το σφάλμα μηχανής με την προσέγγιση τιμής. Επειδή όμως μέσα στο διδακτικό πακέτο δεν υπάρχει σαφή αναφορά στο σφάλμα μηχανής παρά μόνο ως ερώτηση κρίσης σε δύο δραστηριότητες του τετραδίου μαθητή [Βακάλη κ.α. (2010), σ. 96], παρουσιάζεται και επεξηγείται ένας αλγόριθμος εύρεσης του σφάλματος. Ο αλγόριθμος που δίνεται είναι ο εξής: ΠΡΟΓΡΑΜΜΑ Σφάλμα ΜΕΤΑΒΛΗΤΕΣ ΠΡΑΓΜΑΤΙΚΕΣ: β ΑΡΧΗ β <- 1 ΟΣΟ 1 + β <> 1 ΕΠΑΝΑΛΑΒΕ β <- β / 2 ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ ΓΡΑΨΕ 'το σφάλμα της μηχανής είναι', β * 2 ΤΕΛΟΣ_ΠΡΟΓΡΑΜΜΑΤΟΣ

3 362 Πέρδος Αθανάσιος, Σαράφης Ιωάννης, Δουκάκης Σπυρίδων, Ντρίζος Δημήτριος Η συνθήκη συνέχειας (1 + β <> 1) αρχικά οδηγεί τους μαθητές στην παρατήρηση ότι είναι πάντοτε αληθής οπότε η δομή επανάληψης δεν τερματίζεται ποτέ. Με την εκτέλεση όμως του προγράμματος διαπιστώνουν ότι υπάρχει μία συγκεκριμένη τιμή η ή 2,22 x η οποία αποτελεί τη μικρότερη τιμή που μπορεί να θεωρήσει ο υπολογιστής διάφορη του μηδέν σε μία πράξη πρόσθεσης. Έτσι συνειδητοποιούν ότι υπάρχει ένα όριο στις αριθμητικές τιμές που μπορεί να διαχειρισθεί ο υπολογιστής [Στεφανίδης κ.α. (1999)]. 2.2 Θεώρημα Bolzano Στη συνέχεια οι μαθητές/τριες καλούνται να εξηγήσουν και να περιγράψουν το θεώρημα, σύμφωνα με το οποίο: Αν μια συνάρτηση f ορισμένη στο διάστημα [α, β] είναι συνεχής στο [α, β] και ισχύει f(α) f(β) < 0 τότε υπάρχει τουλάχιστον ένα x 0, : f x0 0. Δηλαδή η εξίσωση f(x) = 0 έχει στο (α, β) μια τουλάχιστον λύση. Κατόπιν δίνεται στους μαθητές κατάλληλο φύλλο εργασίας με έξι δραστηριότητες κλιμακούμενης δυσκολίας μαζί με τις γραφικές παραστάσεις των εξισώσεων προς μελέτη [Καλομητσίνης (2001)]. 2.3 Φύλλο εργασίας Το φύλλο εργασίας, όπως ήδη αναφέρθηκε, περιλαμβάνει πέρα από τις δραστηριότητες και τις γραφικές παραστάσεις των εξισώσεων ώστε οι μαθητές να αντιληφθούν επαρκώς το χώρο του προβλήματος. Δραστηριότητα 1 Με βάση τη γενίκευση του θεωρήματος Bolzano, να γράψετε πρόγραμμα το οποίο να διαβάζει το κάτω και το άνω όριο ενός διαστήματος και να ελέγχει αν η συνάρτηση f(x) = x 4 4x 5 έχει στο συγκεκριμένο διάστημα τη ρίζα της, εμφανίζοντας κατάλληλο μήνυμα. Η συνάρτηση έχει μόνο μία ρίζα και είναι συνεχής στο R. Εικόνα 1. f(x) = x 4 4x 5 Ένας προτεινόμενος αλγόριθμος που επιλύει την δραστηριότητα 1 είναι ο ακόλουθος:

4 3 rd Conference on Informatics in Education 363 ΠΡΟΓΡΑΜΜΑ Bolzano1 ΜΕΤΑΒΛΗΤΕΣ ΠΡΑΓΜΑΤΙΚΕΣ: α, β ΑΡΧΗ ΓΡΑΨΕ 'δώσε το κάτω άκρο' ΔΙΑΒΑΣΕ α ΓΡΑΨΕ 'δώσε το πάνω άκρο' ΔΙΑΒΑΣΕ β ΑΝ (α^4 + 4*α - 5)*(β^4 + 4*β - 5) < 0 ΤΟΤΕ ΓΡΑΨΕ 'υπάρχει λύση στο διάστημα [', α, ',', β, ']' ΑΛΛΙΩΣ ΓΡΑΨΕ 'δεν υπάρχει λύση στο διάστημα [', α, ',', β, ']' ΤΕΛΟΣ_ΑΝ ΤΕΛΟΣ_ΠΡΟΓΡΑΜΜΑΤΟΣ Σκοπός της συγκεκριμένης δραστηριότητας είναι να επιδείξουν οι μαθητές τις γνώσεις τους στη δομή επιλογής αλλά και στην εφαρμογή του θεωρήματος Bolzano. Δραστηριότητα 2 Με βάση τη γενίκευση του θεωρήματος Bolzano, να γράψετε πρόγραμμα το οποίο να διαβάζει το κάτω και το άνω όριο ενός διαστήματος και να ελέγχει αν υπάρχουν δύο ρίζες της συνάρτησης f(x) = 4x 3 3x 2 8x + 6 στο συγκεκριμένο διάστημα. Το πρόγραμμα να σταματά το έλεγχο αν βρει δύο διαστήματα με ακρίβεια δεκάτου που υπάρχουν ρίζες, και στη συνέχεια να τα εμφανίζει με κατάλληλο μήνυμα. Διαφορετικά να εμφανίζει μήνυμα ότι δεν υπάρχουν δύο λύσεις στο αρχικό διάστημα. Η συνάρτηση είναι συνεχής στο R. Ένας προτεινόμενος αλγόριθμος που επιλύει την δραστηριότητα 2 είναι ο ακόλουθος: ΠΡΟΓΡΑΜΜΑ Bolzano2 ΜΕΤΑΒΛΗΤΕΣ ΠΡΑΓΜΑΤΙΚΕΣ: α, β, α1, α2, β1, β2, χ ΑΚΕΡΑΙΕΣ: π ΑΡΧΗ ΓΡΑΨΕ 'δώσε το κάτω άκρο' ΔΙΑΒΑΣΕ α ΓΡΑΨΕ 'δώσε το πάνω άκρο' ΔΙΑΒΑΣΕ β π <- 0 χ <- α ΟΣΟ π < 2 ΚΑΙ χ < β ΕΠΑΝΑΛΑΒΕ ΑΝ (4*χ^3-3*χ^2-8*χ + 6)*(4*(χ + 0.1)^3-3*(χ + 0.1)^2 & - 8*(χ + 0.1) + 6) < 0 ΤΟΤΕ π <- π + 1

5 364 Πέρδος Αθανάσιος, Σαράφης Ιωάννης, Δουκάκης Σπυρίδων, Ντρίζος Δημήτριος ΑΝ π = 1 ΤΟΤΕ α1 <- χ β1 <- χ ΑΛΛΙΩΣ_ΑΝ π = 2 ΤΟΤΕ α2 <- χ β2 <- χ ΤΕΛΟΣ_ΑΝ ΤΕΛΟΣ_ΑΝ χ <- χ ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ ΑΝ π = 2 ΤΟΤΕ ΓΡΑΨΕ 'υπάρχει μία λύση στο διάστημα [', α1, ',', β1, ']' ΓΡΑΨΕ 'υπάρχει δεύτερη λύση στο διάστημα [', α2, ',', β2, ']' ΑΛΛΙΩΣ ΓΡΑΨΕ 'δεν υπάρχουν δύο λύσεις στο διάστημα [', α, ',', β, ']' ΤΕΛΟΣ_ΑΝ ΤΕΛΟΣ_ΠΡΟΓΡΑΜΜΑΤΟΣ Με την δεύτερη δραστηριότητα ελέγχεται η ικανότητα των μαθητών να χρησιμοποιήσουν μία εντολή επανάληψης για άγνωστο αριθμό επαναλήψεων καθώς και η ικανότητα τους στη χρήση της δομής επιλογής. Η γραφική παράσταση που συνοδεύει την δραστηριότητα είναι η ακόλουθη: Δραστηριότητα 3 Εικόνα 2. f(x) = 4x 3 3x 2 8x + 6 Με βάση το θεώρημα Bolzano, να γράψετε πρόγραμμα το οποίο να ελέγχει αν υπάρχει ρίζα για τη συνάρτηση f(x) = x 3 4x 2 + x + 6 στο διάστημα [1, 4] εμφανίζοντας κατάλληλο μήνυμα. Στη συνέχεια για την παραπάνω συνάρτηση να γίνεται έλεγχος με βήμα 0,1 αν στο συγκεκριμένο διάστημα μηδενίζεται και να εμφανίζονται με κατάλληλο μήνυμα τυχόν τιμές του x που συμβαίνει αυτό. Η συνάρτηση είναι συνεχής στο R. Τι παρατηρείτε;

6 3 rd Conference on Informatics in Education 365 Εικόνα 3. f(x) = x 3 4x 2 + x + 6 Η συγκεκριμένη δραστηριότητα αποτελεί ένα αντιπαράδειγμα εφαρμογής του θεωρήματος Bolzano. Οι μαθητές καλούνται να εφαρμόσουν την εντολή επανάληψης Για από μέχρι με βήμα 0.1 ώστε να βρουν λύσεις της εξίσωσης στο διάστημα [1, 4] και να επαληθεύσουν ότι οι προϋποθέσεις του θεωρήματος είναι ικανές όχι όμως και αναγκαίες. Ίδιος είναι και ο διδακτικός στόχος της επόμενης δραστηριότητας. Απλά στην προηγούμενη το αντιπαράδειγμα σχετίζονταν με το πρόσημο του γινόμενου ενώ τώρα σχετίζεται με την ασυνέχεια της συνάρτησης. Δραστηριότητα 4 Να γράψετε πρόγραμμα το οποίο θα βρίσκει τις ρίζες της συνάρτησης 2 x -4 1 x 3 f x 1 στο διάστημα που ορίζεται δίνοντας στο x τιμές με x 1 3<x 6 2 βήμα 0.1. Τι παρατηρείτε; Εικόνα 4. Γραφική παράσταση τέταρτης δραστηριότητας

7 366 Πέρδος Αθανάσιος, Σαράφης Ιωάννης, Δουκάκης Σπυρίδων, Ντρίζος Δημήτριος Η περίπτωση ασυνεχούς συνάρτησης η οποία έχει όμως λύση σε συγκεκριμένο διάστημα μελετάται και στην δραστηριότητα 5. Δραστηριότητα 5 Να γράψετε πρόγραμμα το οποίο θα βρίσκει τις ρίζες της συνάρτησης ln x 0.4 x 2 f x στο διάστημα που ορίζεται δίνοντας στο x τιμές με x/2 e 4 2<x 3.6 βήμα 0.2 Σε περίπτωση που δεν βρεθεί ρίζα σε κάποια από τους δύο τύπους της συνάρτησης να βρείτε σε ποιο από τα διαστήματα πλάτους 0.2 υπάρχει λύση, εφαρμόζοντας το θεώρημα του Bolzano. Τι παρατηρείτε; Τέλος η έκτη δραστηριότητα καλεί τους μαθητές να αναπτύξουν αλγόριθμο ο οποίος θα βρίσκει μία προσεγγιστική λύση για μία δεδομένη εξίσωση. Η δραστηριότητα προτρέπει τους μαθητές και τις μαθήτριες να λάβουν υπόψη το σφάλμα μηχανής στην ανάπτυξη του αλγορίθμου ώστε να αποφύγουν τυχόν λάθη που οφείλονται σε αυτό. Δίνει επίσης το έναυσμα για μία συζήτηση σχετικά με την αναπαράσταση των αριθμών και την κωδικοποίηση τους από την υπολογιστή. Βέβαια η συζήτηση ξεφεύγει από την προβλεπόμενη διδακτέα ύλη αλλά είναι χρήσιμη για την καλύτερη κατανόηση του αλγορίθμου. Δραστηριότητα 6 Έστω η συνάρτηση 1 3 f( x) x x 2. Εικόνα 5. Γραφική παράσταση έκτης δραστηριότητας Όπως φαίνεται από τη γραφική της παράσταση υπάρχει ρίζα της f μεταξύ του 3 και του 4, διάστημα στο οποίο η συνάρτηση είναι συνεχής. Να γράψετε πρόγραμμα στη ΓΛΩΣΣΑ το οποίο θα εφαρμόζει το θεώρημα Bolzano ώστε να βρίσκει την καλύτερη δυνατή προσεγγιστικά τιμή του x για την οποία η συνάρτηση μηδενίζεται. Το πρόγραμμα ξεκινώντας από το αρχικό διάστημα, να το διαιρεί σε 10 μικρότερα και να βρίσκει ποιο από αυτά ικανοποιεί τη συνθήκη του θεωρήματος εμφανίζοντας το μήνυμα «υπάρχει λύση στο [α, β]» όπου α και β οι τιμές των άκρων του διαστήματος.

8 3 rd Conference on Informatics in Education 367 Η παραπάνω διαδικασία να ακολουθείται μέχρι να βρεθεί η καλύτερη δυνατή προσεγγιστικά λύση. Για την εύρεση της λύσης επειδή για τιμές μικρότερες του σφάλματος μηχανής δεν είναι δυνατόν να υπάρξουν αριθμητικές πράξεις να ληφθούν υπόψη τα εξής: Να ελέγχεται το πρόσημο των f(α) και f(β) αν είναι διαφορετικό κάθε φορά και όχι αν το γινόμενο τους είναι αρνητικό. Να θεωρηθεί ως καλύτερη δυνατή προσεγγιστικά λύση η τιμή του x για την οποία ο διερμηνευτής θεωρεί τις τιμές των f(α) και f(β) πρακτικά ίσες. Να τροποποιήσετε το πρόγραμμα σας, ελέγχοντας αν το γινόμενο των f(α) και f(β) είναι αρνητικό με βάση το θεώρημα Bolzano και όχι αν το πρόσημο τους είναι διαφορετικό. Τι παρατηρείτε και πως το εξηγείτε; Η τελευταία τροποποίηση της δραστηριότητας ζητείται με σκοπό να γίνει η σχετική συζήτηση για την αναπαράσταση των αριθμών σε επίπεδο γλώσσας μηχανής. Επιπλέον οι μαθητές διαπιστώνουν ότι αν ένας αριθμός είναι μικρότερος από το σφάλμα μηχανής (στη συγκεκριμένη περίπτωση το γινόμενο f(α) f(β)) δεν μπορεί να χρησιμοποιηθεί αφού πρακτικά θεωρείται μηδέν. Ένα άλλο σημείο που πρέπει να αναφερθεί είναι ότι η εύρεση της προσεγγιστικής λύσης θα μπορούσε να γίνει με τη μέθοδο της διχοτόμησης. Όμως επειδή η συγκεκριμένη μέθοδος δεν συμπεριλαμβάνεται στην ύλη της ΑΕΠΠ [Βακάλη κ.α. (2010)] προτιμήθηκε η αρχική μεθοδολογία. Μπορεί όμως ο εκπαιδευτικός που θα εντάξει τη διδακτική πρόταση στη διδασκαλία του, να τροποποιήσει την δραστηριότητα χρησιμοποιώντας τη μέθοδο της διχοτόμησης. Μία ενδεικτική αλγοριθμική λύση της παραπάνω δραστηριότητας που υλοποιήθηκε στο Διερμηνευτή της γλώσσας είναι η εξής: ΠΡΟΓΡΑΜΜΑ Bolzano6 ΜΕΤΑΒΛΗΤΕΣ ΠΡΑΓΜΑΤΙΚΕΣ: fa, fb, χ_αρ, χ_δ, δχ ΛΟΓΙΚΕΣ: βρέθηκε, πα, πβ ΑΡΧΗ ΓΡΑΨΕ 'λύση της εξίσωσης f(χ) = χ - χ^(1/3) - 2 = 0' χ_αρ <- 3 βρέθηκε <- ΨΕΥΔΗΣ δχ <- 0.1 ΟΣΟ βρέθηκε = ΨΕΥΔΗΣ ΕΠΑΝΑΛΑΒΕ χ_δ <- χ_αρ + δχ fa <- χ_αρ - χ_αρ^(1/3) - 2 fb <- χ_δ - χ_δ^(1/3) - 2 πα <- fa > 0 πβ <- fb > 0 ΑΝ πα <> πβ ΤΟΤΕ

9 368 Πέρδος Αθανάσιος, Σαράφης Ιωάννης, Δουκάκης Σπυρίδων, Ντρίζος Δημήτριος ΓΡΑΨΕ 'υπάρχει λύση στο [', χ_αρ, ',', χ_δ, ']' δχ <- (χ_δ - χ_αρ)/ 10 ΑΛΛΙΩΣ_ΑΝ fa = fb ΤΟΤΕ ΓΡΑΨΕ 'καλύτερη δυνατόν προσεγγιστική λύση η ', χ_δ βρέθηκε <- ΑΛΗΘΗΣ ΑΛΛΙΩΣ χ_αρ <- χ_δ ΤΕΛΟΣ_ΑΝ ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ ΔΙΑΒΑΣΕ δχ!απλά για να διακοπεί η εκτέλεση ΤΕΛΟΣ_ΠΡΟΓΡΑΜΜΑΤΟΣ Στην οθόνη εκτέλεσης εμφανίζονται τα εξής: λύση της εξίσωσης f(χ) = χ - χ^(1/3) - 2 = 0 υπάρχει λύση στο [ , ] υπάρχει λύση στο [ , ] υπάρχει λύση στο [ , ] υπάρχει λύση στο [ , ] υπάρχει λύση στο [ , ] υπάρχει λύση στο [ , ] υπάρχει λύση στο [ , ] υπάρχει λύση στο [ , ] υπάρχει λύση στο [ , ] υπάρχει λύση στο [ , ] υπάρχει λύση στο [ , ] υπάρχει λύση στο [ , ] υπάρχει λύση στο [ , ] υπάρχει λύση στο [ , ] υπάρχει λύση στο [ , ] καλύτερη δυνατόν προσεγγιστική λύση η Εικόνα 6.Οθόνη εκτέλεσης της έκτης δραστηριότητας

10 3 rd Conference on Informatics in Education 369 Πέρα όμως από την οθόνη εκτέλεσης οι μαθητές στην οθόνη παρακολούθησης των μεταβλητών παρατηρούν ότι η καλύτερη προσεγγιστική λύση προκύπτει όταν οι τιμές γίνονται μικρότερες ή ίσες του σφάλματος μηχανής. 3.Μελλοντική Εργασία Εικόνα 7. Οθόνη παρακολούθησης των μεταβλητών Η συγκεκριμένη διδακτική πρόταση θα υλοποιηθεί και την τρέχουσα σχολική χρονιά με τη συνεργασία του καθηγητή των μαθηματικών και της πληροφορικής. Είναι θετικό ότι η επεξεργασία του θεωρήματος Bolzano στο μάθημα των μαθηματικών συμπίπτει με την ολοκλήρωση της παρουσίασης των δομών επιλογής και επανάληψης στο μάθημα ΑΕΠΠ. Επίσης θα δοθεί ένα ερωτηματολόγιο στους μαθητές ώστε να αξιολογηθεί η πρόταση και ο στόχος της ο οποίος είναι να εμπλέξει τους μαθητές σε μία δημιουργική διαδικασία μάθησης και ανάπτυξης αναπαραστάσεων για τα μαθήματα ΑΕΠΠ και Μαθηματικών Κατεύθυνσης. Έτσι η διεπιστημονικότητα που προάγεται με την πρόταση, δείχνει στους μαθητές/τριες το λόγο της αξιοποίησης των υπολογιστών από την επιστήμη των Μαθηματικών και αναδεικνύει το βαθμό αλληλεξάρτησης των δύο επιστήμων. Αναφορές 1. Ανδρεαδάκης Σ., Κατσαργύρης Β., Μέτης Σ., Μπρουχούτας Κ., Παπασταυρίδης Σ. & Πολύζος Γ. (2010), Μαθηματικά Γ Τάξης Γενικού Λυκείου, ΟΕΔΒ, Αθήνα. 2. Βακάλη Α., Γιαννόπουλος Η., Ιωαννίδης Χ., Κοίλιας Χ., Μάλαμας Κ., Μανωλόπουλος Ι. & Πολίτης Π. (2010), Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον, ΟΕΔΒ, Αθήνα.

11 370 Πέρδος Αθανάσιος, Σαράφης Ιωάννης, Δουκάκης Σπυρίδων, Ντρίζος Δημήτριος 3. Καλομητσίνης Σ. (2001), Επιλογή Ασκήσεων από τη διεθνή βιβλιογραφία Μαθηματικά Γ Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης, Εκδόσεις Ελληνικά Γράμματα, Αθήνα. 4. Στεφανίδης Γ. & Σαμαράς Ν. (1999), Υπολογιστικές Μέθοδοι με το MATLAB, Εκδόσεις Ζυγός, Θεσσαλονίκη. Abstract This paper presents a teaching proposal for the course 'Application Development in Programming Environment' that aims to help students of third class in Greek Lyceum to develop algorithmic skills and programming techniques. The proposal is based on the theorem of Bolzano. The students have been taught this theorem in the mathematics classroom and are asked to explore equations so as to apply the theorem in a programming environment. Keywords: Algorithms, Mathematics, Bolzano Theorem.

ΘΕΩΡΗΜΑ BOLZANO: ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΣΤΗ ΒΑΣΗ ΤΗΣ ΑΛΛΗΛΕΠΙΔΡΑΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ

ΘΕΩΡΗΜΑ BOLZANO: ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΣΤΗ ΒΑΣΗ ΤΗΣ ΑΛΛΗΛΕΠΙΔΡΑΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΘΕΩΡΗΜΑ BOLZANO: ΜΙΑ ΔΙΔΑΚΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΣΤΗ ΒΑΣΗ ΤΗΣ ΑΛΛΗΛΕΠΙΔΡΑΣΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ Σαράφης Ιωάννης 1, Πέρδος Αθανάσιος, Ντρίζος Δημήτριος 3, Δουκάκης Σπυρίδων 4 1 Μαθηματικός,

Διαβάστε περισσότερα

ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ

ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ Η ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΟ ΛΥΚΕΙΟ Εισαγωγή Η μεγάλη ανάπτυξη και ο ρόλος που

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano»

«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» «Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» Ιορδανίδης Ι. Φώτιος Καθηγητής Μαθηματικών, 2 ο Γενικό Λύκειο Πτολεμαΐδας fjordaneap@gmail.com ΠΕΡΙΛΗΨΗ Το θεώρημα του Bolzano

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ 1. ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦ.

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ 1. ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦ. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ Καράκιζα Τσαμπίκα 1. ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦ. 2ο-8ο:ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ Εισαγωγή στην εντολή «για» (2.4.5, 8.2.3) 2. ΤΑΞΗ: Γ Γενικού Λυκείου (τεχνολογική

Διαβάστε περισσότερα

Τo πρόγραμμα «Διάγραμμα Ροής» και η διδακτική του αξιοποίηση στην Διδασκαλία του προγραμματισμού

Τo πρόγραμμα «Διάγραμμα Ροής» και η διδακτική του αξιοποίηση στην Διδασκαλία του προγραμματισμού Τo πρόγραμμα «Διάγραμμα Ροής» και η διδακτική του αξιοποίηση στην Διδασκαλία του προγραμματισμού Α. Βρακόπουλος 1, Θ.Καρτσιώτης 2 1 Καθηγητής Πληροφορικής Δευτεροβάθμιας Εκπαίδευσης Vraa8@sch.gr 2 Σχολικός

Διαβάστε περισσότερα

Σχεδίαση Εκπαιδευτικού Λογισμικού. Εργασία 2 - Α' φάση. Σενάριο/Σχέδιο μαθήματος. Σταματία Κορρέ Μ1430

Σχεδίαση Εκπαιδευτικού Λογισμικού. Εργασία 2 - Α' φάση. Σενάριο/Σχέδιο μαθήματος. Σταματία Κορρέ Μ1430 Σχεδίαση Εκπαιδευτικού Λογισμικού Εργασία 2 - Α' φάση Σενάριο/Σχέδιο μαθήματος Σταματία Κορρέ Μ1430 2 Περιεχόμενα Τίτλος... 2 Γνωστικό αντικείμενο... 2 Βαθμίδα εκπαίδευσης... 3 Διδακτικοί στόχοι... 3 Αναμενόμενα

Διαβάστε περισσότερα

Μαθηματικά και Πληροφορική. Διδακτική Αξιοποίηση του Διαδικτύου για τη Μελέτη και την Αυτο-αξιολόγηση των Μαθητών.

Μαθηματικά και Πληροφορική. Διδακτική Αξιοποίηση του Διαδικτύου για τη Μελέτη και την Αυτο-αξιολόγηση των Μαθητών. Μαθηματικά και Πληροφορική. Διδακτική Αξιοποίηση του Διαδικτύου για τη Μελέτη και την Αυτο-αξιολόγηση των Μαθητών. Α. Πέρδος 1, I. Σαράφης, Χ. Τίκβα 3 1 Ελληνογαλλική Σχολή Καλαμαρί perdos@kalamari.gr

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα

ΠΡΟΣ: Τηλέφωνο: 210-3443422 Ινστιτούτο Εκπαιδευτικής Πολιτικής ΚΟΙΝ.:

ΠΡΟΣ: Τηλέφωνο: 210-3443422 Ινστιτούτο Εκπαιδευτικής Πολιτικής ΚΟΙΝ.: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ,

Διαβάστε περισσότερα

Παράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε "Ναι" Τέλος Α2

Παράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε Ναι Τέλος Α2 Διδακτική πρόταση ΕΝΟΤΗΤΑ 2η, Θέματα Θεωρητικής Επιστήμης των Υπολογιστών Κεφάλαιο 2.2. Παράγραφος 2.2.7.4 Εντολές Όσο επανάλαβε και Μέχρις_ότου Η διαπραγμάτευση των εντολών επανάληψης είναι σημαντικό

Διαβάστε περισσότερα

Διδακτικές Προσεγγίσεις στην Εύρεση Συχνοτήτων Εμφάνισης των Περιεχομένων ενός Πίνακα

Διδακτικές Προσεγγίσεις στην Εύρεση Συχνοτήτων Εμφάνισης των Περιεχομένων ενός Πίνακα Διδακτικές Προσεγγίσεις στην Εύρεση Συχνοτήτων Εμφάνισης των Περιεχομένων ενός Πίνακα Ευάγγελος Κανίδης 1, Ιωάννης Κούλας 2 1 Σχολικός Σύμβουλος Πληροφορικής Γ' Αθήνας, vkanidis@sch.gr 2 Προϊστάμενος Ακαδημαϊκού

Διαβάστε περισσότερα

Τμήμα Πληροφορικής & Τηλεπικοινωνιών Μεταπτυχιακό Πρόγραμμα Σπουδών Ακαδημαϊκό Έτος 2013-14. ΠΜΣ ΚΑΤΕΥΘΥΝΣΗ 6 η

Τμήμα Πληροφορικής & Τηλεπικοινωνιών Μεταπτυχιακό Πρόγραμμα Σπουδών Ακαδημαϊκό Έτος 2013-14. ΠΜΣ ΚΑΤΕΥΘΥΝΣΗ 6 η Τμήμα Πληροφορικής & Τηλεπικοινωνιών Μεταπτυχιακό Πρόγραμμα Σπουδών Ακαδημαϊκό Έτος 2013-14 ΠΜΣ ΚΑΤΕΥΘΥΝΣΗ 6 η Νέες Τεχνολογίες Πληροφορικής και Τηλεπικοινωνιών Εργασία στο Μαθήμα Σχεδίαση Εκπαιδευτικού

Διαβάστε περισσότερα

ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ

ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 ο Α. Δίνεται η εντολή εκχώρησης: τ κ < λ Ποιες από τις παρακάτω προτάσεις είναι σωστές και ποιες λάθος. Να δικαιολογήσετε

Διαβάστε περισσότερα

«Η διδασκαλία των μονοδιάστατων πινάκων στο μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον»

«Η διδασκαλία των μονοδιάστατων πινάκων στο μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον» «Η διδασκαλία των μονοδιάστατων πινάκων στο μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον» Σαρημπαλίδης Ιωάννης 1, Μιχαηλίδης Νίκος 2, Μισαηλίδης Άνθιμος 3 1 Καθηγητής Πληροφορικής, Γενικό Λύκειο

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Γ τάξη Τεχνολογικής Κατεύθυνσης Ενιαίου Λυκείου ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. ΔΟΜΗ ΕΠΙΛΟΓΗΣ Διδάσκων: ΔΟΥΡΒΑΣ ΙΩΑΝΝΗΣ

Γ τάξη Τεχνολογικής Κατεύθυνσης Ενιαίου Λυκείου ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. ΔΟΜΗ ΕΠΙΛΟΓΗΣ Διδάσκων: ΔΟΥΡΒΑΣ ΙΩΑΝΝΗΣ Γ τάξη Τεχνολογικής Κατεύθυνσης Ενιαίου Λυκείου ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΟΜΗ ΕΠΙΛΟΓΗΣ Διδάσκων: ΔΟΥΡΒΑΣ ΙΩΑΝΝΗΣ Κεφάλαιο 2 : Δομή Επιλογής Εντολές επιλογής Εντολή ΑΝ. Εντολές

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος. Λύσεις των ασκήσεων

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος. Λύσεις των ασκήσεων ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Μαθηματικά Β μέρος Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας & Πληροφορικής Λύσεις

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Α2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών Α3. Ο αλγόριθμος

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης ΠΕΡΙΕΧΟΜΕΝΑ Εντολές επιλογής Εντολές επανάληψης Εισαγωγή Στο προηγούμενο κεφάλαιο αναπτύξαμε προγράμματα, τα οποία ήταν πολύ απλά και οι εντολές των οποίων εκτελούνται η μία μετά την άλλη. Αυτή η σειριακή

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ 2 5 +32 17 2= 1156 Μαθηματικά Β μέρος 8 9 15 Δ=2 δ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας

Διαβάστε περισσότερα

Αναγκαιότητα χρήσης της δομής δεδομένων του πίνακα και η μη δυνατότητα χρήσης πινάκων

Αναγκαιότητα χρήσης της δομής δεδομένων του πίνακα και η μη δυνατότητα χρήσης πινάκων Αναγκαιότητα χρήσης της δομής δεδομένων του πίνακα και η μη δυνατότητα χρήσης πινάκων Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Πληροφορική Δημιουργός: ΣΠΥΡΙΔΩΝ ΔΟΥΚΑΚΗΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Γώγουλος Γ., Κοτσιφάκης Γ., Κυριακάκη Γ., Παπαγιάννης Α., Φραγκονικολάκης Μ., Χίνου Π. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση Μία διδακτική προσέγγιση ΣΕΝΑΡΙΟ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Τίτλος σεναρίου: Διερεύνηση Θεωρήματος Bolzano (Θ.Β.)

Διαβάστε περισσότερα

Βασικές έννοιες προγραμματισμού

Βασικές έννοιες προγραμματισμού Κεφάλαιο 7 Βασικές έννοιες προγραμματισμού 7.1 Γενικός διδακτικός σκοπός Ο γενικός σκοπός του κεφαλαίου είναι να καταστούν ικανοί οι μαθητές να συντάσσουν και να εκτελούν σε δομημένη γλώσσα προγραμματισμού

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr

ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ. pagioti@sch.gr ΕΚΠΑΙΔΕΥΤΙΚΟ ΣΕΝΑΡΙΟ Αγιώτης Πέτρος pagioti@sch.gr Εκπαιδευτικός Πληροφορικής Τίτλος διδακτικού σεναρίου Η έννοια των σταθερών και της καταχώρησης στη Visual Basic Εμπλεκόμενες γνωστικές περιοχές Στοιχεία

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 27 ΜΑΪΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Η ΣΗΜΑΣΙΑ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ΚΑΙ ΤΑ ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΤΗΣ ΑΛΓΟΡΙΘΜΙΚΗΣ ΕΠΙΛΥΣΗΣ ΣΤΟ ΜΑΘΗΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Η ΣΗΜΑΣΙΑ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ΚΑΙ ΤΑ ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΤΗΣ ΑΛΓΟΡΙΘΜΙΚΗΣ ΕΠΙΛΥΣΗΣ ΣΤΟ ΜΑΘΗΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 742 Η ΣΗΜΑΣΙΑ ΤΟΥ ΑΛΓΟΡΙΘΜΟΥ ΚΑΙ ΤΑ ΠΛΕΟΝΕΚΤΗΜΑΤΑ ΤΗΣ ΑΛΓΟΡΙΘΜΙΚΗΣ ΕΠΙΛΥΣΗΣ ΣΤΟ ΜΑΘΗΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Κοίλιας Χρήστος Επίκουρος Καθηγητής ΤΕΙ Αθήνας, Τμήμα Πληροφορικής

Διαβάστε περισσότερα

Πληροφορική ΙΙ. Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα

Πληροφορική ΙΙ. Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα Πληροφορική ΙΙ Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα Στέργιος Παλαμάς, Υλικό Μαθήματος «Πληροφορική ΙΙ», 2015-2016 Μάθημα 1: Εισαγωγή στους Αλγόριθμους Αλγόριθμος είναι μια πεπερασμένη

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ )

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ ) Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ. 25 48) Τι είναι αλγόριθμος; Γ ΛΥΚΕΙΟΥ Αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρονικό διάστημα,

Διαβάστε περισσότερα

Σενάριο Διδασκαλίας: Σειριακή Αναζήτηση (Sequential searching) στοιχείου σε πίνακα

Σενάριο Διδασκαλίας: Σειριακή Αναζήτηση (Sequential searching) στοιχείου σε πίνακα Σενάριο Διδασκαλίας: Σειριακή Αναζήτηση (Sequential searching) στοιχείου σε πίνακα Νικολέττα Σούλα nsoula@sch.gr Καθηγήτρια Πληροφορικής, Med Περίληψη Στην εργασία αυτή θα επιχειρηθεί να παρουσιαστεί η

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ HM/NIA: 21/2/2016

ΔΙΑΓΩΝΙΣΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ HM/NIA: 21/2/2016 ΔΙΑΓΩΝΙΣΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ: Γ ΛΥΚΕΙΟΥ HM/NIA: 21/2/2016 ΘΕΜΑ A (Α1) Να σημειώσετε με κατάλληλο τρόπο ανάλογα με το αν θεωρείτε σωστή ή λανθασμένη κάθε μία από τις

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΤΜΗΜΑ Β Τηλ: 210 344 2478 FAX:

Διαβάστε περισσότερα

Α2. Να αναφέρετε ονομαστικά τις βασικές λειτουργίες που εκτελεί ένας υπολογιστής (Μονάδες 3)

Α2. Να αναφέρετε ονομαστικά τις βασικές λειτουργίες που εκτελεί ένας υπολογιστής (Μονάδες 3) Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΘΕΜΑ Α Α1. Να χαρακτηρίσετε σωστή (Σ) ή λανθασμένη (Λ) καθεμία από τις παρακάτω προτάσεις: 1. Ένα επιλύσιμο πρόβλημα είναι και δομημένο. 2. Ένας από τους

Διαβάστε περισσότερα

ÔÏÕËÁ ÓÁÑÑÇ ÊÏÌÏÔÇÍÇ

ÔÏÕËÁ ÓÁÑÑÇ ÊÏÌÏÔÇÍÇ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Παρασκευή 25 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

Εκπαιδευτικό Σενάριο για την Διδασκαλία των Δομών Επανάληψης

Εκπαιδευτικό Σενάριο για την Διδασκαλία των Δομών Επανάληψης ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Εκπαιδευτικό Σενάριο για την Διδασκαλία των Δομών Επανάληψης Παπαδημητρίου Ηλίας Σιψά Γρηγορία Καλαμάτα 20/06/2013 Εκπαιδευτικό Σενάριο Για Την Διδασκαλία

Διαβάστε περισσότερα

Τάξη: Γ Λυκείου Κατεύθυνση: Τεχνολογική Μάθημα: Ανάπτυξη Εφαρμογών σε Προγ/κό Περιβάλλον Είδος Εξέτασης: Διαγώνισμα Ημερομηνία Εξέτασης:

Τάξη: Γ Λυκείου Κατεύθυνση: Τεχνολογική Μάθημα: Ανάπτυξη Εφαρμογών σε Προγ/κό Περιβάλλον Είδος Εξέτασης: Διαγώνισμα Ημερομηνία Εξέτασης: Τάξη: Γ Λυκείου Κατεύθυνση: Τεχνολογική Μάθημα: Ανάπτυξη Εφαρμογών σε Προγ/κό Περιβάλλον Είδος Εξέτασης: Διαγώνισμα Ημερομηνία Εξέτασης: Ονοματεπώνυμο: Βαθμός: Θέμα 1 ο - (0) Α. Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΛΥΣΕΙΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: 7 Α1. Κάθε σωστή απάντηση

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 27 ΜΑΪΟΥ 2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

Διδακτική της Πληροφορικής ΙΙ

Διδακτική της Πληροφορικής ΙΙ Διδακτική της Πληροφορικής ΙΙ Ομάδα Γ Βότσης Ευστάθιος Γιαζιτσής Παντελής Σπαής Αλέξανδρος Τάτσης Γεώργιος Προβλήματα που αντιμετωπίζουν οι αρχάριοι προγραμματιστές Εισαγωγή Προβλήματα Δυσκολίες Διδακτικό

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Θετικής-Τεχνολογικής Κατεύθυνσης

ΝΙΚΟΣ ΤΑΣΟΣ. Θετικής-Τεχνολογικής Κατεύθυνσης ΝΙΚΟΣ ΤΑΣΟΣ Mα θ η μ α τ ι κ ά Γ Λυ κ ε ί ο υ Θετικής-Τεχνολογικής Κατεύθυνσης Β Τό μ ο ς στον Αλέξη, το Σπύρο, τον Ηλία και το Λούη, στην παντοτινή φιλία Πρό λ ο γ ο ς Το βιβλίο αυτό έχει σκοπό και στόχο

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 3 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 3 Συνέχεια Συναρτήσεων 3.1 Όρισμός Συνεχούς Συνάρτησης Ορισμός Μια συνάρτηση f ονομάζεται συνεχής στο x 0 Df αν υπάρχει το πραγματικός

Διαβάστε περισσότερα

Άλκης Γεωργόπουλος Εκπαιδευτικός ΠΕ19 Το µάθηµα «Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον» δεν έχει ως

Άλκης Γεωργόπουλος Εκπαιδευτικός ΠΕ19 Το µάθηµα «Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον» δεν έχει ως 324 2 η Πανελλήνια ιηµερίδα µε διεθνή συµµετοχή «ιδακτική της Πληροφορικής» ιδασκαλία δοµών επανάληψης µε τη χρήση του µεταγλωττιστή ιερµηνευτής της ΓΛΩΣΣΑΣ στα πλαίσια του µαθήµατος «Ανάπτυξη Εφαρµογών

Διαβάστε περισσότερα

Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ Β ΓΕΛ και Β ΕΠΑΛ

Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ Β ΓΕΛ και Β ΕΠΑΛ Εισαγωγή στις Αρχές της Επιστήμης των Η/Υ Β ΓΕΛ και Β ΕΠΑΛ Διαδικτυακό σεμινάριο του Σχολικού Συμβούλου Πληροφορικής Βασίλη Εφόπουλου με χρήση (?) της πλατφόρμας Bigmarker https://www.bigmarker.com/vassilis-efopoulos/computer-science

Διαβάστε περισσότερα

Από το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β

Από το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β Από το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β. 2011. σελ. 15 σελ. 16 σελ. 17 έως 21 σελ. 23 σελ. 24 Όλα ορισμός έντονα

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

Διδάσκοντας το μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον 1

Διδάσκοντας το μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον 1 Διδάσκοντας το μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον 1 Π. Κ. Γιαννοπούλου Εκπαιδευτικός ΠΕ19, Λεόντειο Λύκειο Πατησίων nagia@math.ntua.gr Σ. Γ. Δουκάκης Εκπαιδευτικός ΠΕ19, Αμερικανικό

Διαβάστε περισσότερα

Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Τεχνολογικής Κατεύθυνσης Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ

Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Τεχνολογικής Κατεύθυνσης Γ Λυκείου 2001 ΕΚΦΩΝΗΣΕΙΣ Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Τεχνολογικής Κατεύθυνσης Γ Λυκείου 2001 Ζήτηµα 1ο ΕΚΦΩΝΗΣΕΙΣ Α. Να µεταφέρετε στο τετράδιό σας και να συµπληρώσετε τον παρακάτω πίνακα αλήθειας δύο προτάσεων

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 24 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα.

Πιο συγκεκριμένα, η χρήση του MATLAB προσφέρει τα ακόλουθα πλεονεκτήματα. i Π Ρ Ο Λ Ο Γ Ο Σ Το βιβλίο αυτό αποτελεί μια εισαγωγή στα βασικά προβλήματα των αριθμητικών μεθόδων της υπολογιστικής γραμμικής άλγεβρας (computational linear algebra) και της αριθμητικής ανάλυσης (numerical

Διαβάστε περισσότερα

1. Ποιους μαθησιακούς στόχους θα προσδιορίζατε στα πλαίσια της διδακτικής δραστηριότητας;

1. Ποιους μαθησιακούς στόχους θα προσδιορίζατε στα πλαίσια της διδακτικής δραστηριότητας; Σας έχει ανατεθεί η διδασκαλία της μετα-ελεγχόμενης επανάληψης (εντολή «όσο») στα πλαίσια μιας διδακτικής ώρας της Γ λυκείου. Οι μαθητές έχουν πραγματοποιήσει ένα εισαγωγικό μάθημα για τους προκαθορισμένους

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ 10/4/2016

ΘΕΜΑΤΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ 10/4/2016 ΘΕΜΑΤΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ 10/4/2016 ΘΕΜΑ 1ο Α. Να γράψετε τον αριθμό κάθε πρότασης και δίπλα αν είναι Σωστή(Σ) ή Λανθασμένη(Λ). 1. Το αντικείμενο

Διαβάστε περισσότερα

Παραδόσεις 4. Μαθήματα Γενικής Υποδομής Υποχρεωτικά. Δεν υφίστανται απαιτήσεις. Ελληνική/Αγγλική ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ

Παραδόσεις 4. Μαθήματα Γενικής Υποδομής Υποχρεωτικά. Δεν υφίστανται απαιτήσεις. Ελληνική/Αγγλική ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ DP1021 ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ Πρώτο ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Μαθηματικά ΑΥΤΟΤΕΛΕΙΣ ΔΙΔΑΚΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ σε

Διαβάστε περισσότερα

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 18/02/2013 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 18/02/2013 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 18/02/2013 ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α1. α. Παραβιάζει τα κριτήρια της καθοριστικότητας και της περατότητας β. Αιτιολόγηση: ο αλγόριθμος παραβιάζει το κριτήριο

Διαβάστε περισσότερα

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ .8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ - ΟΡΙΣΜΟΣ Όταν θέλουμε να εξετάσουμε ως προς τη συνέχεια μια συνάρτηση πολλαπλού τύπου, εργαζόμαστε ως εξής

Διαβάστε περισσότερα

Μια στατιστική έρευνα των παραµέτρων διδασκαλίας του µαθήµατος "Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον"

Μια στατιστική έρευνα των παραµέτρων διδασκαλίας του µαθήµατος Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον 106 2 η Πανελλήνια ιηµερίδα µε διεθνή συµµετοχή «ιδακτική της Πληροφορικής» Μια στατιστική έρευνα των παραµέτρων διδασκαλίας του µαθήµατος "Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον" Χρήστος Κοίλιας

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ Κύριο ΜΕΤΑΒΛΗΤΕΣ ΑΚΕΡΑΙΕΣ: Α, Β, Γ ΑΡΧΗ ΙΑΒΑΣΕ Α, Β, Γ ΚΑΛΕΣΕ ιαδ1(α, Β, Γ) ΓΡΑΨΕ Α, Β, Γ ΤΕΛΟΣ_ΠΡΟΓΡΑΜΜΑΤΟΣ

ΠΡΟΓΡΑΜΜΑ Κύριο ΜΕΤΑΒΛΗΤΕΣ ΑΚΕΡΑΙΕΣ: Α, Β, Γ ΑΡΧΗ ΙΑΒΑΣΕ Α, Β, Γ ΚΑΛΕΣΕ ιαδ1(α, Β, Γ) ΓΡΑΨΕ Α, Β, Γ ΤΕΛΟΣ_ΠΡΟΓΡΑΜΜΑΤΟΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 MAΪΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / Γ ΛΥΚΕΙΟΥ-ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 09/09/2012

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / Γ ΛΥΚΕΙΟΥ-ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 09/09/2012 ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / Γ ΛΥΚΕΙΟΥ-ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 09/09/2012 ΘΕΜΑ Α Α1. Δίνονται τα παρακάτω τμήματα αλγορίθμου σε φυσική γλώσσα. 1. Αν το ποσό των αγορών(ποσο_αγορων) ενός πελάτη είναι μεγαλύτερο

Διαβάστε περισσότερα

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου

Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr

Διαβάστε περισσότερα

Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης

Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Τίτλος σεναρίου: Διερεύνηση Θεωρήματος Bolzano (Θ.Β.) και Ενδιάμεσων Τιμών (Θ.Ε.Τ.) Τάξη : Γ Λυκείου Θετικής και Τεχνολογικής

Διαβάστε περισσότερα

Π Η ΤΕΤΡΑΔΙΟ ΜΑΘΗΤΗ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ : - & Γ' ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ (Τεχνολογικής Κατεύθυνσης)

Π Η ΤΕΤΡΑΔΙΟ ΜΑΘΗΤΗ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ : - & Γ' ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ (Τεχνολογικής Κατεύθυνσης) ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ...Ι 1 1 π ^^ΗΒ Η ι ι Π Η ρ. _ J -I ""Τ!*^ '!! : - & Λ> ΤΕΤΡΑΔΙΟ ΜΑΘΗΤΗ Γ' ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ (Τεχνολογικής Κατεύθυνσης) ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ Κύριο ΜΕΤΑΒΛΗΤΕΣ ΑΚΕΡΑΙΕΣ: Α, Β, Γ ΑΡΧΗ ΙΑΒΑΣΕ Α, Β, Γ ΚΑΛΕΣΕ ιαδ1(α, Β, Γ) ΓΡΑΨΕ Α, Β, Γ ΤΕΛΟΣ_ΠΡΟΓΡΑΜΜΑΤΟΣ

ΠΡΟΓΡΑΜΜΑ Κύριο ΜΕΤΑΒΛΗΤΕΣ ΑΚΕΡΑΙΕΣ: Α, Β, Γ ΑΡΧΗ ΙΑΒΑΣΕ Α, Β, Γ ΚΑΛΕΣΕ ιαδ1(α, Β, Γ) ΓΡΑΨΕ Α, Β, Γ ΤΕΛΟΣ_ΠΡΟΓΡΑΜΜΑΤΟΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 30 MAΪΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ

ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ ΣΕΝΑΡΙΟ του Κύπρου Κυπρίδηµου, µαθηµατικού ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ Περίληψη Στη δραστηριότητα αυτή οι µαθητές καλούνται να διερευνήσουν το πρόσηµο του τριωνύµου φ(x) = αx 2 + βx + γ. Προτείνεται να διδαχθεί

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ. (Α) Να απαντήσετε στη παρακάτω ερώτηση : Τι είναι ένα υποπρόγραμμα; Τι γνωρίζετε για τα χαρακτηριστικά του; (10 Μονάδες)

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ. (Α) Να απαντήσετε στη παρακάτω ερώτηση : Τι είναι ένα υποπρόγραμμα; Τι γνωρίζετε για τα χαρακτηριστικά του; (10 Μονάδες) ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΑΕΠΠ ΘΕΜΑ 1 ο (Α) Να απαντήσετε στη παρακάτω ερώτηση : Τι είναι ένα υποπρόγραμμα; Τι γνωρίζετε για τα χαρακτηριστικά του; (10 Μονάδες) (Β) Να σημειώσετε με κατάλληλο τρόπο ανάλογα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. Γ' Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση

ΜΑΘΗΜΑΤΙΚΑ. Γ' Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση ΜΑΘΗΜΑΤΙΚΑ Γ' Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Μέτης Στέφανος Μπρουχούτας Κων/νος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Καθηγητής

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ 2005

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ 2005 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ 2005 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. 1. Να αναφέρετε ονοµαστικά τα κριτήρια που πρέπει απαραίτητα

Διαβάστε περισσότερα

Φάσμα. προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.

Φάσμα. προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. σύγχρονο Φάσμα προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. μαθητικό φροντιστήριο 25ης Μαρτίου 111 - ΠΕΤΡΟΥΠΟΛΗ - 210 50 20 990-210 50 27 990 25ης Μαρτίου 74 - ΠΕΤΡΟΥΠΟΛΗ - 210 50 50 658-210 50 60 845 Γραβιάς 85 -

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2013-2014 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Θέμα Α A1. 1 δ 2 γ 3 α

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

4.3 Δραστηριότητα: Θεώρημα Fermat

4.3 Δραστηριότητα: Θεώρημα Fermat 4.3 Δραστηριότητα: Θεώρημα Fermat Θέμα της δραστηριότητας Η δραστηριότητα αυτή εισάγει το Θεώρημα Fermat και στη συνέχεια την απόδειξή του. Ακολούθως εξετάζεται η χρήση του στον εντοπισμό πιθανών τοπικών

Διαβάστε περισσότερα

α=5, β=7, γ=20, δ=αληθής

α=5, β=7, γ=20, δ=αληθής γραπτή εξέταση στo μάθημα ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ' ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α A Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

Η ΑΕΠΠ IN A GLANCE! ΦΡΟΝΤΙΣΤΗΡΙΑ ΠΟΛΥΜΕΝΗ

Η ΑΕΠΠ IN A GLANCE! ΦΡΟΝΤΙΣΤΗΡΙΑ ΠΟΛΥΜΕΝΗ Η ΑΕΠΠ IN A GLANCE! Κατανομή μονάδων: 40 μονάδες το 1 ο Θέμα, από 20 τα υπόλοιπα τρία. Μην χαίρεστε όμως γιατί η «καθαρή» θεωρία περιορίζεται συνήθως- σε 5 ερωτήσεις σωστού ή λάθους και σε 1-2 ερωτήσεις

Διαβάστε περισσότερα

ΘΕΜΑ Α / Η λογική έκφραση Χ KAI (ΟΧΙ Χ) είναι πάντα ψευδής κάθε τιμή της λογικής μεταβλητής Χ.

ΘΕΜΑ Α / Η λογική έκφραση Χ KAI (ΟΧΙ Χ) είναι πάντα ψευδής κάθε τιμή της λογικής μεταβλητής Χ. Μάθημα: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Τάξη Γ Λυκείου, Πληροφορική Οικονομικών Καθηγητής : Σιαφάκας Γιώργος Ημερομηνία : 9/10/2016 Διάρκεια: 3 ώρες ΘΕΜΑ Α /40 (Α1) Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Μία διδακτική πρόταση για τη χρήση της Δομής Επιλογής στο Περιβάλλον Προγραμματισμού MicroWorlds Pro της Logo

Μία διδακτική πρόταση για τη χρήση της Δομής Επιλογής στο Περιβάλλον Προγραμματισμού MicroWorlds Pro της Logo Μία διδακτική πρόταση για τη χρήση της Δομής Επιλογής στο Περιβάλλον Προγραμματισμού MicroWorlds Pro της Logo Μ. Εφραιμίδου Διεύθυνση Δευτεροβάθμιας Εκπαίδευσης Ανατ. Θεσσαλονίκης melina@melfos.gr Περίληψη

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση

ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση Μία διδακτική προσέγγιση ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ (4-2ωρα) Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ 1 ο 2ωρο Μπέρναρντ Μπολζάνο (1781-1848) (Πηγή: http://en.wikipedia.org/wiki/bernard_bolzano ) www.commonmaths.weebly.com Σελίδα

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ 1. Τι καλείται ψευδοκώδικας; 2. Τι καλείται λογικό διάγραμμα; 3. Για ποιο λόγο είναι απαραίτητη η τυποποίηση του αλγόριθμου; 4. Ποιες είναι οι βασικές αλγοριθμικές δομές; 5. Να περιγράψετε τις

Διαβάστε περισσότερα

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Ιωάννης Λιακόπουλος 1, Χαράλαμπος Λυπηρίδης 2 1 Μαθητής B Λυκείου, Εκπαιδευτήρια «Ο Απόστολος Παύλος» liakopoulosjohn0@gmail.com, 2 Μαθητής

Διαβάστε περισσότερα

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Στο Σημείωμα αυτό διατυπώνουμε μια σειρά μαθηματικών προτάσεων, καθεμιά

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ 20-03-2012 Α. ίνεται το παρακάτω τμήμα αλγόριθμου: Ψευδής Αν Ε mod 4 = 0 τότε Αληθής Αν Ε mod 100 = 0 τότε Ψευδής Αν Ε

Διαβάστε περισσότερα

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση:

Θεώρημα Βolzano. Κατηγορία 1 η. 11.1 Δίνεται η συνάρτηση: Κατηγορία η Θεώρημα Βolzano Τρόπος αντιμετώπισης:. Όταν μας ζητούν να εξετάσουμε αν ισχύει το θεώρημα Bolzano για μια συνάρτηση f σε ένα διάστημα [, ] τότε: Εξετάζουμε την συνέχεια της f στο [, ] (αν η

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΣΧΧ.. ΕΕΤΤΟΟΣΣ 22001100-22001111 Επιμέλεια : Ομάδα Διαγωνισμάτων από Το στέκι των πληροφορικών Θέμα Α Α1. Δίνονται οι παρακάτω

Διαβάστε περισσότερα

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β ΑΙΓΑΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Πληροφορικής της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιμέλεια: Ομάδα Πληροφορικής της Ώθησης ΑΠΑΝΤΗΣΕΙΣ Επιμέλεια: Ομάδα Πληροφορικής της Ώθησης 1 Τετάρτη, 27 Μα ου 2015 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών τεχνολογικής κατεύθυνσης

Ανάπτυξη Εφαρμογών τεχνολογικής κατεύθυνσης Ανάπτυξη Εφαρμογών τεχνολογικής κατεύθυνσης ΘΕΜΑ Α Α1. Αναφέρετε ποια είναι τα στάδια επίλυσης ενός προβλήματος. Α2. Τι ονομάζουμε δομή ενός προβλήματος και ποια είναι τα πλεονεκτήματα από την εύρεση της

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. ΗρώωνΠολυτεχνείου 13, Τηλ / Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ ΒΡΙΛΗΣΣΙΑ

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. ΗρώωνΠολυτεχνείου 13, Τηλ / Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ ΒΡΙΛΗΣΣΙΑ Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Α.Ε.Π.Π. ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. ΗρώωνΠολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής Ημερομηνία

Διαβάστε περισσότερα

ΘΕΜΑ 1ο. Μονάδες 10. Β. ίνεται το παρακάτω τμήμα αλγορίθμου: Όσο Ι < 10 επανάλαβε Εμφάνισε Ι Ι Ι + 3 Τέλος_επανάληψης ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΘΕΜΑ 1ο. Μονάδες 10. Β. ίνεται το παρακάτω τμήμα αλγορίθμου: Όσο Ι < 10 επανάλαβε Εμφάνισε Ι Ι Ι + 3 Τέλος_επανάληψης ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 4 ΙΟΥΛΙΟΥ 2007 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Γκύζη 14-Αθήνα Τηλ :

Γκύζη 14-Αθήνα Τηλ : ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ)

Διαβάστε περισσότερα

Τ και τιµή του Β θετική µετατρέπεται ισοδύναµα στην εντολή Όσο ως εξής:

Τ και τιµή του Β θετική µετατρέπεται ισοδύναµα στην εντολή Όσο ως εξής: ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 12 ΙΑΝΟΥΑΡΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Διάρκεια 3 ώρες. Όνομα... Επώνυμο... Βαθμός...

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Διάρκεια 3 ώρες. Όνομα... Επώνυμο... Βαθμός... 1 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Διάρκεια 3 ώρες Στοιχεία Μαθητή: Όνομα... Επώνυμο... Βαθμός... 2 Θεμα Α (30%) Α1 ΣΩΣΤΟ - ΛΑΘΟΣ 1. Ένα υποπρόγραμμα δεν μπορεί να κληθεί περισσότερες

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 (Α) Σημειώστε δίπλα σε κάθε πρόταση «Σ» ή «Λ» εφόσον είναι σωστή ή λανθασμένη αντίστοιχα. 1. Τα συντακτικά λάθη ενός προγράμματος

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΊΑ ΠΙΘΑΝΟΤΉΤΩΝ Α τάξης Γενικού Λυκείου Η συγγραφή και η επιμέλεια του βιβλίου πραγματοποιήθηκε υπό την αιγίδα του Παιδαγωγικού

Διαβάστε περισσότερα

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19 ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ Κοκκαλάρα Μαρία ΠΕ19 ΠΕΡΙΓΡΑΜΜΑ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγικά στοιχεία 2. Ένταξη του διδακτικού σεναρίου στο πρόγραμμα σπουδών 3. Οργάνωση της τάξης

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 03-11-2013 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-4 και δίπλα τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη

Διαβάστε περισσότερα