TΟ ΘΕΩΡΗΜΑ DARBOUX ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΤΟ ΛΥΚΕΙΟ.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "TΟ ΘΕΩΡΗΜΑ DARBOUX ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΤΟ ΛΥΚΕΙΟ."

Transcript

1 TΟ ΘΕΩΡΗΜΑ DARBOUX ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΤΟ ΛΥΚΕΙΟ. Αιμίλιος Βλάστος, Μαθηματικός MSc, στο Μουσικό Σχολείο Καρδίτσας Σκοτίδας Σωτήριος, Μαθηματικός, M.ed. Διδακτικής, 2ο ΓΕΛ Καρδίτσας, ΠΕΡΙΛΗΨΗ Στην εργασία αυτή γίνεται μια μελέτη εφαρμογών των συνεχών συναρτήσεων σε κλειστό διάστημα. Σε παραγώγους συναρτήσεις που είναι ασυνεχείς, με τη βοήθεια του θεωρήματος του Darboux, αναδεικνύεται αρχικά ότι η ασυνέχεια σ ένα σημείο x 0 είναι ιδιαίτερης περίπτωσης και δεν εμποδίζει την εφαρμογή του θεωρήματος των ενδιάμεσων τιμών. Στη συνέχεια της εργασίας το θεώρημα Darboux γίνεται σπουδαίο εργαλείο μελέτης προτάσεων του Διαφορικού Λογισμού. ABSTRACT This paper studies the use of continuous functions in closed intervals. In derivative functions, it is proved that the discontinuity at a point x 0 is of a special kind and does not hinder the use of the intermediate value theorem. In this paper the Darboux s theorem is seen as a significant way to study some propositions of the Differential calculus. ΕΙΣΑΓΩΓΗ Η Ανάλυση αποτελεί το πιο ισχυρό και τελείως απαραίτητο εργαλείο για κάθε σε βάθος εξέταση προβλημάτων που απασχολούν σήμερα εκτός από τα Μαθηματικά, τη Φυσική, τη Τεχνολογία, τη Βιολογία, την Ιατρική, την Οικονομία, τις Κοινωνικές Επιστήμες. (Παντελίδης, Γ., 1998). Όπως προκύπτει από πολλές διεθνείς έρευνες, οι περισσότεροι μαθητές τελειώνοντας τη δευτεροβάθμια εκπαίδευση παρουσιάζουν προβλήματα στην κατανόηση των εννοιών της Ανάλυσης που έχουν διδαχθεί. Πολλές

2 παρανοήσεις που έχουν σχετικά με τις έννοιες του ορίου, της συνέχειας κ.α. τους δημιουργούν σοβαρά εμπόδια στη συνέχεια των σπουδών τους στην τριτοβάθμια εκπαίδευση. Οι μαθητές αντιλαμβάνονται την Ανάλυση ως μια σειρά δεξιοτήτων που απαιτείται ώστε να μπορούν να λύσουν ασκήσεις χρησιμοποιώντας γνωστές μεθόδους. Σπάνια τους ζητείται να εμπλακούν με προβλήματα που δεν τους είναι εκ των προτέρων γνωστός ο τρόπος επίλυσης τους. Οι περισσότερες ασκήσεις των σχολικών βιβλίων μπορούν να αντιμετωπιστούν με επιφανειακές γνώσεις χωρίς να απαιτείται κάποια βαθύτερη εννοιολογική κατανόηση. (Calgeo, 2007). Σε αυτό το πλαίσιο, ίσως βοηθούσε τη διδακτική διαδικασία η παράθεση κάποιων προβληματισμών σχετικά με τη φαινομενική ασυνέπεια υποθέσεων συμπεράσματος, με χαρακτηριστικό παράδειγμα το Θεώρημα Darboux (ή αλλιώς Θεώρημα των Ενδιάμεσων Τιμών της Παραγώγου Συνάρτησης). ΤΟ ΘΕΩΡΗΜΑ DARBOUX Ας δούμε πως η προσπάθεια απόδειξης μιας πρότασης με χρήση γνωστών τεχνικών και θεωρημάτων της Ανάλυσης Λυκείου οδηγεί στην ανάδειξη του Θεωρήματος Darboux ως χρήσιμο εργαλείο. Πρόταση 1 Έστω συνάρτηση f παραγωγίσιμη και όχι γνησίως μονότονη σ ένα διάστημα Δ, τότε υπάρχει k Δ ώστε Διαισθητικά με προσέγγιση σχήματος, όπως και να ενώσει κανείς τα τρία σημεία Α, Β, Γ χρησιμοποιώντας παραγωγίσιμη και μη μονότονη συνάρτηση, εύκολα θα βρεθεί σημείο στο οποίο η εφαπτόμενη είναι παράλληλη στον x x. (σχήμα1)

3 Απόδειξη Αφού η f δεν είναι γνησίως μονότονη θα υπάρχουν α, β, γ Δ με α < γ < β ώστε f(γ)> f(β)> f(α). α τρόπος Η f στο [α, β] παρουσιάζει ΟΕ και ΟΜ. Επειδή όμως η τιμή f(γ) είναι μεγαλύτερη από τις f(α), f(β) τότε το ΟΜ η f δεν το παρουσιάζει στα άκρα α, β αλλά στο εσωτερικό του (α, β), έστω στο k. Τότε όμως η f παραγωγίσιμη στο εσωτερικό k, στο οποίο παρουσιάζει ακρότατο, άρα από το θεώρημα Fermat. β τρόπος Σύμφωνα με το Θεώρημα ενδιάμεσων τιμών επειδή η f συνεχής, το f(β) είναι ενδιάμεση τιμή των f(α), f(γ) τότε θα υπάρχει λ (α, β) ώστε f(λ)=f(β). Επίσης από το θεώρημα Rolle, επειδή η f είναι συνεχής στο διάστημα [α, λ], παραγωγίσιμη στο (α, λ) τότε θα υπάρχει k (α,λ) ώστε. γ τρόπος Ένας τρίτος τρόπος στηρίζεται στην ιδέα εφαρμογής του Θεωρήματος Μέσης Τιμής Διαφορικού Λογισμού στα διαστήματα [α, γ], [γ, β] : όπου δ, ε ανήκουν στα (α, γ), (γ, β) αντίστοιχα. Είναι, οπότε αν η ήταν συνεχής τότε από το θεώρημα Bolzano. Όμως τελικά δεν απαιτείται η συνέχεια της για να είναι έγκυρος αυτός ο τρόπος, όπως φαίνεται στις επόμενες δύο προτάσεις. Πρόταση 2 Αν η συνάρτηση f είναι παραγωγίσιμη στο [δ, ε] με, τότε υπάρχει k (δ, ε), ώστε

4 Απόδειξη Έστω και, τότε για δ<x <δ+λ, λ>0 οσοδήποτε μικρό:, οπότε f(x) - f(δ) > 0 και για ε+λ<x < ε:, οπότε f(x) - f(ε) > 0. Έτσι για κάθε x [δ, ε] είναι f(x) και f(x). Λόγω των παραπάνω σχέσεων στο [δ,ε] η f δεν παρουσιάζει ολικό μέγιστο στα άκρα δ, ε, οπότε θα το παρουσιάζει στο εσωτερικό k, οπότε λόγω του Θεωρήματος Fermat θα είναι. Το Θεώρημα Darboux Έστω f συνάρτηση παραγωγίσιμη στο [α, β] και Αν είναι αριθμός ανάμεσα στις τιμές f (α), f (β) τότε υπάρχει τουλάχιστον ένας ξ (α,β) τέτοιος ώστε f (ξ) =. Απόδειξη Έστω f (α)< < f (β), τότε f (α) < 0 < f (β) -, δηλαδή h (α)<0<h (β), όπου h(x) = f(x) Πρόταση 2, υπάρχει ξ (α,β) τέτοιος ώστε h (ξ)=0, έτσι f (ξ)= x οπότε από την παραπάνω Ας δούμε τώρα σαν παράδειγμα μια άσκηση που αντιμετωπίζεται και με το θεώρημα Darboux Άσκηση 1 Έστω μια συνάρτηση f παραγωγίσιμη στο διάστημα 0,1, για την οποία ισχύουν: f (0)=0, f(1) = 1/2 και ξ τέτοιο, ώστε Διαδικασία προσέγγισης της λύσης. Να αποδείξετε ότι υπάρχει Θεωρούμε την φ(x)=f(x) - x 2 με παράγωγο φ (x) = f (x) - 2x και x ανήκει στο [0,1]. Τότε φ(0)=0, φ(1)= - ½, φ (0)=f (0) > 0, άρα το όριο του λόγου μεταβολής της φ είναι θετικό, οπότε φ(x)>0 κοντά στο 0, άρα υπάρχει k>0 (κοντά στο μηδέν ) ώστε φ(κ)>0

5 α τρόπος Είναι φ(0)=0, φ(κ)=λ>0, φ(1)= - ½, οπότε με 0<κ<1 είναι φ(1)<φ(0)<φ(κ), άρα η φ δεν είναι γνησίως μονότονη και βάσει της πρότασης 1 θα είναι φ (ξ)=0, ξ β τρόπος Έστω με Είναι, παίρνοντας ΘΜΤ στο [0,1]: και από το Θ. Darboux στο (0, x 0 ) υπάρχει ξ στο (0, x 0 ) ώστε φ (ξ)=0. Πρόταση 3 Αν ισχύει (διάστημα), τότε η είναι γνησίως μονότονη στο Δ. Απόδειξη Πράγματι, αρκεί η να διατηρεί σταθερό πρόσημο, κάτι το οποίο αληθεύει, αφού σε αντίθετη περίπτωση (αν δηλ. η παράγωγος έπαιρνε ετερόσημες τιμές) από το Θεώρημα Darboux η θα είχε ρίζα, άτοπο. Ακόμα, με το Θ. Darboux μπορεί να αποδειχθεί και το σπουδαίο Θεώρημα των Ενδιάμεσων Τιμών των Συνεχών Συναρτήσεων. Πράγματι, αν συνεχής στο [α,β] με και καθώς η έχει αρχική έστω την ( πρώτο Θεμελιώδες Θεώρημα του Ολοκληρωτικού Λογισμού), τότε από το Θ. Darboux η μεταξύ των θα παίρνει όλες τις ενδιάμεσες τιμές Ένα ερώτημα που μπορεί να τεθεί στο θεώρημα Darboux είναι πως η παράγωγος της f μπορεί να παίρνει τις ενδιάμεσες τιμές των f (α),f (β) χωρίς την προϋπόθεση η f να είναι συνεχής. Στο παρακάτω σχήμα 2, η μη συνεχής στο x ο συνάρτηση στο κλειστό διάστημα [α,β] παίρνει όλες τις ενδιάμεσες τιμές, ενώ στο σχήμα 3 δεν τις παίρνει.

6 σχήμα2 σχήμα3 Πως όμως εξηγείται η έλλειψη της φαινομενικά απαραίτητης συνθήκης της συνέχειας της παραγώγου συνάρτησης (για να έχουμε ισχύ του συμπεράσματος); Η απάντηση δίνεται στις παρακάτω προτάσεις, όπου και αιτιολογείται ότι δεν μπορεί οι παραπάνω γραφικές παραστάσεις να αντιστοιχούν σε παραγώγους συναρτήσεις. Πρώτα όμως ας δούμε κάποιους ορισμούς που αφορούν την ασυνέχεια συνάρτησης. Ορισμός 1 Η f έχει αιρούμενη ασυνέχεια στο x 0 όταν τα πλευρικά όρια στο x 0 είναι ίσα, και διαφορετικά από το f(x 0 ). Ορισμός 2 Η f έχει απλό είδος ή άλμα ασυνέχειας στο x 0, όταν τα πλευρικά όρια στο x 0 είναι διαφορετικοί πραγματικοί αριθμοί. Ορισμός 3 Η f έχει θεμελιώδη ασυνέχεια στο x 0, όταν ένα τουλάχιστον από τα πλευρικά όρια στο x 0 είναι άπειρο (α μορφή) ή όταν δεν υπάρχει ένα τουλάχιστο πλευρικό όριο στο x 0 (β μορφή).

7 Πρόταση 4 Αν η είναι παραγωγίσιμη στο ανοιχτό διάστημα A τότε η δεν μπορεί να έχει απλό είδος ασυνέχειας, ούτε αιρούμενη ασυνέχεια στο Α. Απόδειξη Έστω η φ (x) έχει απλό είδος ασυνέχειας στο κ είτε., τότε είτε Ας υποθέσουμε ότι, τότε υπάρχει αριθμός λ ώστε, τότε υπάρχει δ>0, οσοδήποτε μικρό ώστε, οπότε και σύμφωνα με το Θ. Darboux: υπάρχει ρ ώστε, άτοπο λόγω της (1). Πρόταση 5 Αν η φ(x) είναι παραγωγίσιμη στο ανοιχτό διάστημα A τότε η φ (x) δεν μπορεί να έχει το θεμελιώδες είδος ασυνέχειας α μορφής στο Α, όπου ένα τουλάχιστον από τα πλευρικά όρια είναι μη πεπερασμένο. Απόδειξη μεγάλος και δ>0 οσοδήποτε μικρός ώστε είτε. Ας υποθέσουμε ότι, τότε υπάρχει υπάρχει αριθμός λ οσοδήποτε. Οπότε αναγόμαστε στην προηγούμενη απόδειξη. για κάθε Πρόταση 6 Αν η φ(x) είναι παραγωγίσιμη στο ανοιχτό διάστημα A και η φ (x) είναι ασυνεχής στο x 0, τότε ένα τουλάχιστο από τα πλευρικά όρια στο x 0 δεν υπάρχει. Απόδειξη Άμεση συνέπεια των προτάσεων 4, 5 Βλέπουμε λοιπόν ότι αν η παράγωγος συνάρτηση μιας παραγωγίσιμης συνάρτησης είναι ασυνεχής σε ένα διάστημα, τότε δεν μπορεί να έχει

8 ασυνέχεια πρώτου είδους, καθώς τότε μπορεί να είχαμε ένα κενό στις τιμές Ορίζουμε τώρα την ιδιότητα Darboux. Ορισμός 4 Η συνάρτηση d ορισμένη στο ανοικτό διάστημα Δ έχει την ιδιότητα Darboux όταν για κάθε α,β Δ με α<β, αν d(α)<μ< d(β), τότε υπάρχει ξ με d(ξ)=μ. Αν μια συνάρτηση g είναι συνεχής στο Δ, τότε είναι φανερό ότι η g έχει την ιδιότητα Darboux, αφού ισχύει για αυτή το θεώρημα ενδιάμεσων τιμών. Επίσης η g ως συνεχής στο Δ έχει αρχική συνάρτηση. Υπάρχουν συναρτήσεις φ μη συνεχείς στο x 0 που έχουν την ιδιότητα Darboux, αλλά είναι αναγκαίο να έχουν αρχική Φ, δηλαδή φ=φ. Η ασυνέχεια στο x 0 όπως αναφέρθηκε παραπάνω πρέπει να είναι θεμελιώδης και ειδικότερα να μην υπάρχει κανένα από τα πλευρικά όρια στο x 0. Ένα παράδειγμα ασυνεχούς παραγώγου συνάρτησης με την ιδιότητα Darboux αφορά τη συνάρτηση φ(x)= x 2 ημ,. Η φ είναι παραγωγίσιμη στο R, αφού φ (x)=2xημ - συν και φ (0)= =0 Η φ δεν είναι συνεχής στο 0, αφού δεν υπάρχει το όριό της στο 0. Πράγματι αν υπήρχε και ήταν L τότε επειδή το όριο της f(x)=- 2xημ είναι μηδέν στο 0 τότε και το όριο στο 0 του αθροίσματος των φ και f(x) θα είναι L, δηλαδή η συνάρτηση h(x)= - συν θα έχει στο 0 όριο το L, άτοπο. Ας δούμε τώρα κάποιες ακόμα σημαντικές συνέπειες του Θ. Darboux Πρόταση 7 Αν η συνάρτηση f είναι παραγωγίσιμη σε ένα διάστημα που περιέχει το μηδέν και ισχύει τότε αναγκαστικά

9 Απόδειξη Έστω αντίθετα ότι, ας είναι. Τότε για κάθε ε>0 θα υπάρχει δ>0 ώστε για κάθε x με 0< x 0 <δ να ισχύει ε (1). Επιλέγουμε. Για η (1) δίνει β τρόπος: Αν. Έτσι από το Θ. Darboux υπάρχει ώστε. Αλλά από (1) έχουμε ε πρόταση 6 το όριο L δεν υπάρχει, άτοπο., άτοπο. τότε η f ασυνεχής στο xo οπότε σύμφωνα με τη Πρόταση 8 Αν η συνάρτηση είναι παραγωγίσιμη σε ένα διάστημα και η δεν είναι σταθερή, τότε το είναι διάστημα. Απόδειξη Αφού η δεν είναι σταθερή θα υπάρχουν ώστε και φυσικά. Προφανώς αρκεί να δείξουμε ότι για κάθε ξ μεταξύ των θα είναι ξ. Αλλά από Θ. Darboux υπάρχει α ώστε Συμπεράσματα Ο Απειροστικός λογισμός είναι το κυρίαρχο εργαλείο σκέψης και ανάπτυξης στα μαθηματικά, η συνέχεια δημιουργεί μια κλάση συναρτήσεων με παράστασή της στο χώρο της Ανάλυσης. Η ασυνέχεια μιας συνάρτησης δημιουργεί την αίσθηση του άλματος που ενδεχομένως κάνει η γραφική παράσταση με συνέπεια να μην ισχύουν βασικά θεωρήματα της Ανάλυσης όπως το θεώρημα των ενδιάμεσων τιμών. Όταν όμως η ασυνέχεια αφορά την παράγωγο της συνάρτησης, τότε τα πράγματα αλλάζουν δραματικά. Αυτό γιατί η παράγωγος μιας συνάρτησης μερικές φορές έχει ισχυρότερες ιδιότητες από την ίδια τη συνάρτηση. Η ασυνέχεια της παραγώγου μιας συνάρτησης σ ένα σημείο x 0 «τιθασεύεται» και γίνεται μιας συγκεκριμένης μορφής, επίσης δεν δημιουργεί εμπόδιο ώστε να

10 ισχύει για αυτήν το θεώρημα των ενδιάμεσων τιμών. Το θεώρημα Darboux στο οποίο στηρίζονται τα παραπάνω συμπεράσματα, είναι ένα ισχυρό εργαλείο για α) μια εννοιολογική εκγύμναση και κατανόηση εννοιών όπως το όριο και η συνέχεια συνάρτησης β) για την απόδειξη άλλων προτάσεων. Για τους παραπάνω λόγους θα μπορούσε το θεώρημα αυτό να χρησιμοποιείται περισσότερο στο χώρο της Ανάλυσης σε επίπεδο Λυκείου. Βιβλιογραφία Calgeo : «Διδασκαλία της Ανάλυσης με χρήση Εργαλείων Δυναμικής Γεωμετρίας» ( Lars Olsen,(2004) A New Proof of Darboux's Theorem, The American Mathematical Monthly, Vol. 111, No. 8 (Oct., 2004), pp Spivac M., Διαφορικός και Ολοκληρωτικός Λογισμός. Πανεπιστημιακές Εκδόσεις Κρήτης Νεγρεπόντης Σ., Γιωτόπουλος Σ., Γιαννακούλιας Ε. (1995). Απειροστικός Λογισμός, Εκδόσεις Αίθρα Ντούγιας, Σ.,(2007). Απειροστικός Λογισμός Ι. Εκδόσεις Leader Books Ντρίζος, Δ. (2016) Στοχεύοντας στην ανάπτυξη μιας «διερευνητικής τάξης» στο πλαίσιο της διδασκαλίας των μαθηματικών στο λύκειο, Ευκλείδης Γ τχ. 85 (Ιούλιος Αύγουστος 2016) Αθήνα: Έκδοση της ΕΜΕ Παντελίδης, Γ. (1998). Βιβλίο του διδάσκοντος για το μάθημα της Ανάλυσης Γ Λυκείου. Αθήνα: Εκδόσεις Ζήτη.

11

[ α π ο δ ε ί ξ ε ι ς ]

[ α π ο δ ε ί ξ ε ι ς ] Γ' Λυκείου Κατεύθυνση [ α π ο δ ε ί ξ ε ι ς ] ε ξ ε τ α σ τ έ α ς ύ λ η ς 7-8 Επιμέλεια Κόλλας Αντώνης Όριο πολυωνυμικής στο Αν P( = αν ν + αν ν +... + α + α είναι πολυώνυμο του και, τότε: P( P( P( =...

Διαβάστε περισσότερα

ΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012

ΗΡΑΚΛΕΙΤΟΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β') ΔΕΥΤΕΡΑ 28 ΜΑΪΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΘΕΜΑ

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ27 Μέρος Β του σχολικού βιβλίου] ΣΗΜΕΙΩΣΕΙΣ Εύρεση

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 4 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 4 Παράγωγος Συνάρτησης 4.1 Έννοια Παραγώγου Ορισμός f(x) f(x 0 ) Μια συνάρτηση f ονομάζεται παραγωγίσιμη στο x 0 Df αν υπάρχει

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ

ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση.

Διαβάστε περισσότερα

Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ 1 ο

Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ 1 ο Πολλά ψέματα λίγες αλήθειες. ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο ΕΚΦΩΝΗΣΕΙΣ Οι απαντήσεις βρίσκονται μετά τις εκφωνήσεις Εξετάστε αν είναι αληθείς ή ψευδείς οι παρακάτω προτάσεις και αιτιολογήστε.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ & ΑΠΟΔΕΙΞΕΙΣ Επιμέλεια: Βασίλης Κράνιας wwwe-mathsgr ΑΝΑΛΥΣΗ Τι ονομάζουμε πραγματική συνάρτηση Έστω Α ένα υποσύνολο

Διαβάστε περισσότερα

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0.

[ ] [ ] ΘΕΜΑ 1o A. Για x x 0 έχουµε: παραγωγίσιµη στο χ 0 ) άρα η f είναι συνεχής στο χ 0. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΙΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑΪΟΥ 23 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1o A. Για x x έχουµε: f (

Διαβάστε περισσότερα

Προτεινόμενες λύσεις. f (x) f (x ) f (x) f (x ) f (x) f (x ) (x x ). f (x) f (x ) lim[f (x) f (x )] lim (x x ) lim[f (x) f (x )] 0 lim f (x) f (x ),

Προτεινόμενες λύσεις. f (x) f (x ) f (x) f (x ) f (x) f (x ) (x x ). f (x) f (x ) lim[f (x) f (x )] lim (x x ) lim[f (x) f (x )] 0 lim f (x) f (x ), Πανελλαδικές Εξετάσεις 8 Μαθηματικά Προσανατολισμού /6/8 ΘΕΜΑ Α Προτεινόμενες λύσεις Α Αφού η f είναι παραγωγίσιμη στο σημείο του πεδίου ορισμού της, ισχύει ότι: Για κάθε έχουμε: Επομένως ισχύει ότι: Δηλαδή:

Διαβάστε περισσότερα

Πέµπτη, 29 Μαΐου 2003 ΘΕΤΙΚΗ και ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ

Πέµπτη, 29 Μαΐου 2003 ΘΕΤΙΚΗ και ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Πέµπτη, 9 Μαΐου ΘΕΤΙΚΗ και ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο

Διαβάστε περισσότερα

ΝΙΚΟΣ ΤΑΣΟΣ. Θετικής-Τεχνολογικής Κατεύθυνσης

ΝΙΚΟΣ ΤΑΣΟΣ. Θετικής-Τεχνολογικής Κατεύθυνσης ΝΙΚΟΣ ΤΑΣΟΣ Mα θ η μ α τ ι κ ά Γ Λυ κ ε ί ο υ Θετικής-Τεχνολογικής Κατεύθυνσης Β Τό μ ο ς στον Αλέξη, το Σπύρο, τον Ηλία και το Λούη, στην παντοτινή φιλία Πρό λ ο γ ο ς Το βιβλίο αυτό έχει σκοπό και στόχο

Διαβάστε περισσότερα

Πες το με μία γραφική παράσταση

Πες το με μία γραφική παράσταση Πες το με μία γραφική παράσταση Μαθηματικά Κατεύθυνσης Γ Λυκείου www askisopolisgr ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Να γράψετε και να σχεδιάσετε γραφικές παραστάσεις (ορισμένες σε διάστημα ή σε ένωση διαστημάτων):

Διαβάστε περισσότερα

ΜΑΘΗΜΑ ΣΥΝΕΠΕΙΕΣ ΤΟΥ Θ.Μ.Τ Μονοτονία συνάρτησης Ασκήσεις Εξισώσεις Θεωρητικές Συνέχεια του µαθήµατος 31. e 3 = 0. e + e 3, x R.

ΜΑΘΗΜΑ ΣΥΝΕΠΕΙΕΣ ΤΟΥ Θ.Μ.Τ Μονοτονία συνάρτησης Ασκήσεις Εξισώσεις Θεωρητικές Συνέχεια του µαθήµατος 31. e 3 = 0. e + e 3, x R. ΜΑΘΗΜΑ.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ Θ.Μ.Τ Μονοτονία συνάρτησης Ασκήσεις Εξισώσεις Θεωρητικές Συνέχεια του µαθήµατος ΑΣΚΗΣΕΙΣ. Να λύσετε την εξίσωση Η εξίσωση γράφεται e + e e 0 Προφανής ρίζα Θεωρούµε τη συνάρτηση f()

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΥΛΗ ΔΙΑΓΩΝΙΣΜΑΤΟΣ:ΠΑΡΑΓΩΓΟΙ ΘΕΜΑ Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί σε κάθε

Διαβάστε περισσότερα

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A

5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Θέμα A 5ο Επαναληπτικό διαγώνισμα στα Μαθηματικά κατεύθυνσης της Γ Λυκείου 7-8 Θέμα A A Έστω μια συνάρτηση f παραγωγίσιμη σ ένα διάστημα στο οποίο όμως η f είναι συνεχής Αν η f διατηρεί πρόσημο στο α,,β ότι το

Διαβάστε περισσότερα

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com.

Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. Καθηγητήσ Μαθηματικών: Κωτςάκησ Γεώργιοσ e-mail: kotsakis @ windowslive. com. A. Οι κανόνες De L Hospital και η αρχική συνάρτηση κάνουν πιο εύκολη τη λύση των προβλημάτων με το Θ. Rolle. B. Η αλγεβρική

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα:

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:. -. (Προτείνεται να διατεθούν 5 διδακτικές ώρες).3 (Προτείνεται να διατεθούν

Διαβάστε περισσότερα

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β ΑΙΓΑΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Το 1ο Θέμα στις πανελλαδικές εξετάσεις Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Το ο Θέμα στις πανελλαδικές εξετάσεις Ερωτήσεις+Απαντήσεις

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών

Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων. Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Πανελλήνιες Εξετάσεις Ημερήσιων Γενικών Λυκείων Εξεταζόμενο Μάθημα: Μαθηματικά Προσανατολισμού, Θετικών & Οικονομικών Σπουδών Ημερομηνία: Ιουνίου 08 Απαντήσεις Θεμάτων Θέμα Α Α.. Θεωρία σχολικού βιβλίου,

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003

ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ 2003 ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΜΑ o A. Να αποδείξετε ότι, αν µία συνάρτηση f είναι παραγωγίσιµη σ ένα σηµείο x, τότε είναι και συνεχής στο σηµείο αυτό. Β. Τι

Διαβάστε περισσότερα

Ερωτήσεις-Απαντήσεις Θεωρίας

Ερωτήσεις-Απαντήσεις Θεωρίας 1 ΓΙΑΝΝΗΣ ΚΑΡΑΓΙΑΝΝΗΣ Σχολικός Σύμβουλος Μαθηματικών ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΡΟΣ Β 2 ΕΡΩΤΗΣΕΙΣ-ΑΠΑΝΤΗΣΕΙΣ

Διαβάστε περισσότερα

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ Του Δημητρίου Α. Ντρίζου Σχολικού Συμβούλου Μαθηματικών Στο κείμενο που ακολουθεί διατυπώνουμε μια σειρά προτάσεων, καθεμιά από τις ο- ποίες, αφού

Διαβάστε περισσότερα

Από το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β

Από το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β Από το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β. 2011. σελ. 15 σελ. 16 σελ. 17 έως 21 σελ. 23 σελ. 24 Όλα ορισμός έντονα

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2019 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΛΥΣΕΙΣ ΣΤΟ ο ΠΡΟΣΟΜΟΙΩΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 9 ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 5/4/9 ΘΕΜΑ Α Α. Θεωρία-Ορισμός,σχολικού

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου].

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ.2.6 Μέρος Β του σχολικού βιβλίου]. ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 8: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ [Ενότητα Μονοτονία Συνάρτησης του κεφ..6 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα 1. ΘΕΜΑ Β Να μελετηθούν ως προς την μονοτονία

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o?

ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ. Ερώτηση 1. Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f. στο x = x o? ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση 1 Αν το x o δεν ανήκει στο πεδίο ορισμού μιας συνάρτησης f, έχει νόημα να μιλάμε για παράγωγο της f στο x = x o? Δεν έχει νόημα Ερώτηση 2 Αν μία συνάρτηση f είναι συνεχής στο

Διαβάστε περισσότερα

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

********* Β ομάδα Κυρτότητα Σημεία καμπής********* ********* Β ομάδα Κυρτότητα Σημεία καμπής********* 5 Για την δύο φορές παραγωγίσιμη στο R συνάρτηση ισχύει: e για κάθε R. Να αποδείξετε ότι η γραφική παράσταση της δεν παρουσιάζει σημείο καμπής. Υποθέτουμε

Διαβάστε περισσότερα

Φίλε μαθητή, Το βιβλίο αυτό, που κρατάς στα χέρια σου προέκυψε τελικά μέσα από την εμπειρία και διδακτική διαδικασία πολλών χρόνων στον Εκπαιδευτικό Όμιλο Άλφα. Είναι το αποτέλεσμα συγγραφής πολλών καθηγητών

Διαβάστε περισσότερα

Μέθοδος Α. Β 3. Η γραφική παράσταση της f τέμνει τον άξονα των xx σε ένα σημείο με τετμημένη ξ [α,β],

Μέθοδος Α. Β 3. Η γραφική παράσταση της f τέμνει τον άξονα των xx σε ένα σημείο με τετμημένη ξ [α,β], Θωμάς Ραϊκόφτσαλης ΣΥΝΕΧΕΙΑ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ Μέθοδος Α Αν μας ζητείτε να αποδείξουμε ότι ισχύει ένα από τα εξής: Α. Η εξίσωση f() έχει μια τουλάχιστον ρίζα ξ (α,β), Α. Υπάρχει ξ (α,β) έτσι ώστε f(ξ),

Διαβάστε περισσότερα

Α1. Θεωρία Σελίδες Σχολικού Βιβλίου ΜΑΘΗΜΑΤΙΚΑ Θετικής& Τεχνολογικής κατεύθυνσης Γ ΛΥΚΕΙΟΥ, ΕΚΔΟΣΗ 2014

Α1. Θεωρία Σελίδες Σχολικού Βιβλίου ΜΑΘΗΜΑΤΙΚΑ Θετικής& Τεχνολογικής κατεύθυνσης Γ ΛΥΚΕΙΟΥ, ΕΚΔΟΣΗ 2014 ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΠΡΟΣΟΜΟΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ ΜΑΡΤΗ ΘΕΜΑ Α Α Θεωρία Σελίδες 33-33 Σχολικού Βιβλίου ΜΑΘΗΜΑΤΙΚΑ Θετικής& Τεχνολογικής κατεύθυνσης Γ ΛΥΚΕΙΟΥ, ΕΚΔΟΣΗ ΑΘεωρία

Διαβάστε περισσότερα

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017

Διαγώνισμα Προσομοίωσης Εξετάσεων 2017 Ένα διαγώνισμα προετοιμασίας για τους μαθητές της Γ Λυκείου στα Μαθηματικά Προσανατολισμού Διαγώνισμα Προσομοίωσης Εξετάσεων 7 Μαθηματικά Προσανατολισμού Γ Λυκείου Κων/νος Παπασταματίου Μαθηματικός Φροντιστήριο

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΣΤΟ ΘΕΩΡΗΜΑ BOLZANO ΚΑΙ ΣΤΑ ΑΛΛΑ ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ

ΕΦΑΡΜΟΓΕΣ ΣΤΟ ΘΕΩΡΗΜΑ BOLZANO ΚΑΙ ΣΤΑ ΑΛΛΑ ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Λ Υ Κ Ε Ι Ο Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο ΕΠΙΜΕΛΕΙΑ : Π. Δ. ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Θετική Τεχνολογική Κατεύθυνση ασκήσεις (ΝΑ ΛΥΘΟΥΝ ΜΕΤΑ ΑΠΟ ΤΙΣ ΑΝΤΙΣΤΟΙΧΕΣ ΤΟΥ ΒΙΒΛΙΟΥ) ΘΕΩΡΗΜΑ BOLZANO ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ

Διαβάστε περισσότερα

ΥΠΑΡΞΗ ΣΕ ΙΣΟΤΗΤΑ Ή ΑΝΙΣΟΤΗΤΑ

ΥΠΑΡΞΗ ΣΕ ΙΣΟΤΗΤΑ Ή ΑΝΙΣΟΤΗΤΑ ΥΠΑΡΞΗ ΣΕ ΙΣΟΤΗΤΑ Ή ΑΝΙΣΟΤΗΤΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: Πρακτικές και καινοτομίες στην εκπαίδευση και στην έρευνα. Χρόνης Χ. Παναγιώτης pachronis@gmail.com Περίληψη Στόχος της εργασίας αυτής είναι να καταδείξει

Διαβάστε περισσότερα

52 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.:

52 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.: 5 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 6 και Φιλολάου : Τηλ.: 107601470-107600179 ΔΙΑΓΩΝΙΣΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 01 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ 1 ο Α. i) Θεωρία, σχολικό

Διαβάστε περισσότερα

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ 11 ΙΟΥΝΙΟΥ 2018 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 8 ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σελίδα από Φάνης Μαργαρώνης Φροντιστήρια Ρούλα Μακρή Τομέας μαθηματικών ΘΕΜΑ

Διαβάστε περισσότερα

f κυρτή στο [1,5] f x x f η Επαναληπτική f [ 2,10], επιπλέον για την f ισχύουν lim 2 x f 8 1,0 και

f κυρτή στο [1,5] f x x f η Επαναληπτική f [ 2,10], επιπλέον για την f ισχύουν lim 2 x f 8 1,0 και 13η Επαναληπτική Δίνεται η συνάρτηση, δύο φορές παραγωγίσιμη στο [1,] [,1], επιπλέον για την ισχύουν 8 lim στο [1,] Να αποδείξετε ότι ε1 ε Υπάρχουν, με, ώστε στο οποίο η η, έχει σημείο καμπής ε3 Υπάρχει

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΗΡΑΚΛΕΙΤΟΣ ΚΩΛΕΤΤΗ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ ΙΟΥΝΙΟΥ 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ε Ν Δ Ε Ι Κ Τ Ι Κ Ε Σ Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν ΘΕΜΑ Α Α. Θεώρημα σχολικό βιβλίο

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ Διατύπωση: Αν μια συνάρτηση είναι: συνεχής στο κλειστό διάστημα [ α β] και παραγωγίσιμη στο ανοικτό διάστημα ( α β) τότε υπάρχει ένα τουλάχιστον ξ ( α β) τέτοιο ώστε: ( ( β) ( α) β α Γεωμετρικά αυτό σημαίνει

Διαβάστε περισσότερα

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ].

Διαγώνισμα (Μονάδες 2) β. Μια συνάρτηση f μπορεί να μην είναι συνεχής στα άκρα ακαι β αλλά να είναι συνεχής στο [ α, β ]. ΘΕΜΑ Α Διαγώνισμα 1 A 1. Έστω μια συνάρτηση f, η οποία είναι συνεχής σε ένα διάστημα Δ. Αν f () > σε κάθε εσωτερικό σημείο του Δ, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα σε όλο το Δ. (Μονάδες

Διαβάστε περισσότερα

9 ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

9 ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου 9 ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου 7-8 ΘΕΜΑ Α (α) Δίνεται η συνάρτηση, συνεχής στο διάστημα [ ].Αν η G είναι μια παράγουσα της στο [ ], τότε να αποδείξετε ότι : d

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β Παράδειγμα. Να εξετάσετε από τις παρακάτω συναρτήσεις ποιές ικανοποιούν

Διαβάστε περισσότερα

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές

θ. Bolzano θ. Ενδιάμεσων τιμών θ. Μεγίστου Ελαχίστου και Εφαρμογές Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ (Τεύχος 35) θ Bolzano θ Ενδιάμεσων τιμών θ Μεγίστου Ελαχίστου και Εφαρμογές Στο άρθρο αυτό επιχειρείται μια προσέγγιση των βασικών αυτών θεωρημάτων με εφαρμογές έ- τσι ώστε να

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Τρίτη 3 Ιανουαρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 8//06 έως τις 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη Ιανουαρίου 07 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Α Έστω η συνάρτηση ()

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ ΚΟΡΩΝΑΚΗΣ. ΑΛΛΑΓΗ ΜΕΤΑΒΛΗΤΗΣ ΣΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Διδακτική προσέγγιση

ΓΙΩΡΓΟΣ ΚΟΡΩΝΑΚΗΣ. ΑΛΛΑΓΗ ΜΕΤΑΒΛΗΤΗΣ ΣΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Διδακτική προσέγγιση ΓΙΩΡΓΟΣ ΚΟΡΩΝΑΚΗΣ ΑΛΛΑΓΗ ΜΕΤΑΒΛΗΤΗΣ ΣΤΟ ΟΡΙΣΜΕΝΟ ΟΛΟΚΛΗΡΩΜΑ Διδακτική προσέγγιση Αφορμή γι αυτή τη σύντομη εργασία έδωσε μια ημερίδα διδασκαλίας των Μαθηματικών, η οποία οργανώθηκε από το Σχολικό Σύμβουλο

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #16: Βασικά Θεωρήματα του Διαφορικού Λογισμού Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής

Διαβάστε περισσότερα

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική

x x = e, x > 0 έχει ακριβώς δυο Γ4. Να βρείτε το εμβαδόν του χωρίου που περικλείεται από τη γραφική ΘΕΜΑΤΑ ΘΕΜΑ Γ. Δίνεται η συνάρτηση f() ( )ln, >. Γ. Να αποδείξετε ότι η συνάρτηση f είναι γνησίως φθίνουσα στο διάστημα Δ (, ] και γνησίως αύξουσα στο διάστημα Δ [, ). Στη συνέχεια να βρείτε το σύνολο

Διαβάστε περισσότερα

Εφαρμογές παραγώγων. Διαφορικός Λογισμός μιας μεταβλητής Ι

Εφαρμογές παραγώγων. Διαφορικός Λογισμός μιας μεταβλητής Ι Εφαρμογές παραγώγων Διαφορικός Λογισμός μιας μεταβλητής Ι Ακρότατα Α Θα δούμε πώς οι παράγωγοι βοηθούν στην αναζήτηση ακρότατων (μέγιστα και ελάχιστα) μιας συνάρτησης ώστε να αντιλαμβανόμαστε πώς εξελίσσεται

Διαβάστε περισσότερα

Η ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΟΙ ΑΝΙΣΟΤΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΕΔΡΙΟ Ε.Μ.Ε. ΤΕΤΑΡΤΗ

Η ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΟΙ ΑΝΙΣΟΤΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΕΔΡΙΟ Ε.Μ.Ε. ΤΕΤΑΡΤΗ Η ΒΟΗΘΗΤΙΚΗ ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΟΙ ΑΝΙΣΟΤΙΚΕΣ ΣΧΕΣΕΙΣ ΣΥΝΕΔΡΙΟ Ε.Μ.Ε. ΤΕΤΑΡΤΗ 7 007 ΑΤΜΑΤΖΙΔΗΣ ΑΘΑΝΑΣΙΟΣ ΚΑΘΗΓΗΤΗΣ Μ.Ε. Όλα ξεκίνησαν όταν μαθητές της Γ Λυκείου Κατεύθυνσης με ρώτησαν με πόσους τρόπους μπορούν

Διαβάστε περισσότερα

Η συμβολή του Θεωρήματος Rolle, του Θ.Μ.Τ. και Μαθηματικών Λογισμικών στην Επίλυση Εκθετικών Εξισώσεων-Ανισώσεων

Η συμβολή του Θεωρήματος Rolle, του Θ.Μ.Τ. και Μαθηματικών Λογισμικών στην Επίλυση Εκθετικών Εξισώσεων-Ανισώσεων Εισήγηση στην 9η Μαθηματική Εβδομάδα της Θεσσαλονίκης (5-9 Μαρτίου 07) Η συμβολή του Θεωρήματος Rolle, του Θ.Μ.Τ. και Μαθηματικών Λογισμικών στην Επίλυση Εκθετικών Εξισώσεων-Ανισώσεων Πρόδρομος Π. Ελευθερίου

Διαβάστε περισσότερα

Κεφάλαιο 4: Διαφορικός Λογισμός

Κεφάλαιο 4: Διαφορικός Λογισμός ΣΥΓΧΡΟΝΗ ΠΑΙΔΕΙΑ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Κεφάλαιο 4: Διαφορικός Λογισμός Μονοτονία Συνάρτησης Tζουβάλης Αθανάσιος Κεφάλαιο 4: Διαφορικός Λογισμός Περιεχόμενα Μονοτονία συνάρτησης... Λυμένα παραδείγματα...

Διαβάστε περισσότερα

x, x (, x ], επειδή η f είναι γνησίως αύξουσα στο (, x0]

x, x (, x ], επειδή η f είναι γνησίως αύξουσα στο (, x0] Απαντήσεις στο ο Διαγώνισμα Μαθηματικών Κατεύθυνσης Γ Λυκείου Θέμα ο Α Έστω ότι f( ), για κάθε (, ) (, ) Επειδή η f είναι συνεχής στο θα είναι γνησίως αύξουσα σε κάθε ένα από τα διαστήματα (, ] και [,

Διαβάστε περισσότερα

Σημειώσεις Μαθηματικών 2

Σημειώσεις Μαθηματικών 2 Σημειώσεις Μαθηματικών 2 Συναρτήσεις - 3 Ραφαήλ Φάνης Μαθηματικός 1 Κεφάλαιο 3 Συνέχεια Συναρτήσεων 3.1 Όρισμός Συνεχούς Συνάρτησης Ορισμός Μια συνάρτηση f ονομάζεται συνεχής στο x 0 Df αν υπάρχει το πραγματικός

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x =

ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β. Να μελετήσετε ως προς τη μονοτονία και τα ακρότατα τις παρακάτω συναρτήσεις: f (x) = 0 x(2ln x + 1) = 0 ln x = x = e x = ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 0: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει τo κεφάλαιο αυτό θα πρέπει να είναι σε θέση:. Να μπορεί να βρίσκει απο τη γραφική παράσταση μιας συνάρτησης το πεδίο ορισμού της το σύνολο τιμών της την τιμή της σε ένα σημείο..

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 28 ΜΑΪΟΥ 2012 ΑΠΑΝΤΗΣΕΙΣ. y R, η σχέση (1) γράφεται ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 8 ΜΑΪΟΥ 0 ΑΠΑΝΤΗΣΕΙΣ Α. Θεωρία, σελ. 53, σχολικού βιβλίου. Α. Θεωρία, σελ. 9, σχολικού βιβλίου. Α3. Θεωρία, σελ. 58, σχολικού βιβλίου. Α4. α) Σ, β) Σ,

Διαβάστε περισσότερα

ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΣΥΝΕΧΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ

ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΣΥΝΕΧΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ ΒΑΣΙΚΑ ΘΕΩΡΗΜΑΤΑ ΣΥΝΕΧΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΠΟΥ ΟΡΙΖΟΝΤΑΙ ΣΕ ΚΛΕΙΣΤΟ ΔΙΑΣΤΗΜΑ Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ σχολικού συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας drizosdim@yahoo.gr Εισαγωγή Σύντομη ιστορική αναδρομή Το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ. Παύλος Βασιλείου ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Παύλος Βασιλείου Σε όλους αυτούς που παλεύουν για έναν καλύτερο κόσμο ΣΥΝΑΡΤΗΣΕΙΣ-ΟΡΙΟ-ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΕΙΣ -ΟΡΙΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2012 ΕΚΦΩΝΗΣΕΙΣ. β α ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 0 ΕΚΦΩΝΗΣΕΙΣ A. Έστω µια συνάρτηση f η οποία είναι συνεχής σε ένα διάστηµα. Αν f () > 0 σε κάθε εσωτερικό σηµείο του, τότε να αποδείξετε ότι η f είναι γνησίως αύξουσα σε όλο

Διαβάστε περισσότερα

ΟΙ ΑΝΙΣΟΤΗΤΕΣ ΩΣ ΔΕΔΟΜΕΝΟ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΥΣΗΣ

ΟΙ ΑΝΙΣΟΤΗΤΕΣ ΩΣ ΔΕΔΟΜΕΝΟ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΥΣΗΣ ΟΙ ΑΝΙΣΟΤΗΤΕΣ ΩΣ ΔΕΔΟΜΕΝΟ ΣΕ ΠΡΟΒΛΗΜΑΤΑ ΑΝΑΛΥΣΗΣ Είναι γνωστό ότι η απόδειξη ανισοτήτων είναι ένα ζήτημα που παρουσιάζει ιδιαίτερες δυσκολίες για τους μαθητές. Οι δυσκολίες αυτές συνδέονται τόσο με το

Διαβάστε περισσότερα

Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ).

Γ1. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (0, + ). ΘΕΜΑΤΑ ΘΕΜΑ Γ. ίνεται η συνάρτηση f(),. Γ. Να μελετήσετε την f ως προς τη μονοτονία και να αποδείξετε ότι το σύνολο τιμών της είναι το διάστημα (, ). Γ. Να αποδείξετε ότι η εξίσωση f( ( )) έχει στο σύνολο

Διαβάστε περισσότερα

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ

ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ ΠΡΟΤΑΣΕΙΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΙ ΣΤΟ ΚΕΦΑΛΑΙΟ ΤΩΝ ΠΑΡΑΓΩΓΩΝ Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Στο Σημείωμα αυτό διατυπώνουμε μια σειρά μαθηματικών προτάσεων, καθεμιά

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ

ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ.2.5 Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 5: ΘΕΩΡΗΜΑ ROLLE [Θεώρημα Rolle του κεφ..5 Μέρος Β του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ MICHEL ROLLE Μία μορφή του θεωρήματος Rolle δόθηκε από τον Ινδό αστρονόμο Bhaskara

Διαβάστε περισσότερα

Συνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ).

Συνέχεια συνάρτησης σε διάστημα. Η θεωρία και τι προσέχουμε. x, ισχύει: lim f (x) f ( ). Κεφάλαιο 4 Συνέχεια συνάρτησης σε διάστημα 411 Ερώτηση θεωρίας 1 Η θεωρία και τι προσέχουμε Πότε μια συνάρτηση f θα λέμε ότι είναι συνεχής σε ένα ανοικτό διάστημα (, ) αβ; Απάντηση Μια συνάρτηση f θα λέμε

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΑ, Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΑ, Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΜΑΘΗΜΑΤΙΚΑ, Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ Tο παρόν Πρόγραμμα Σπουδών των Μαθηματικών της Γ τάξης Γενικού Λυκείου περιλαμβάνει τις θεματικές της Ανάλυσης και των Στοχαστικών Μαθηματικών,

Διαβάστε περισσότερα

1. Υπολογίστε, όπου αυτές υπάρχουν, τις παραγώγους των συναρτήσεων:

1. Υπολογίστε, όπου αυτές υπάρχουν, τις παραγώγους των συναρτήσεων: Υπολογίστε, όπου αυτές υπάρχουν, τις παραγώγους των συναρτήσεων:, g, h Απάντηση: Η με έχει παράγωγο 4 Μπορούμε όμως να εργαστούμε ως εξής: Είναι άρα 4 Η g με g έχει παράγωγο : g Η συνάρτηση h με h έχει

Διαβάστε περισσότερα

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΩΝ ΟΜΑΔΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΒΑΣΙΚΕΣ ΙΔΙΟΤΗΤΕΣ, ΟΡΙΟ, ΣΥΝΕΧΕΙΑ ΚΑΙ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1o. ΘΕΜΑ 2o

ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ 1o. ΘΕΜΑ 2o ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ o α. Θεωρία: Θεώρηµα σελ. 7 σχολικού βιβλίου β. Θεωρία: Η απάντηση βρίσκεται στη σελ. 7 του σχολικού βιβλίου γ. α-σ β-σ γ-σ δ-λ ε-λ ΘΕΜΑ o α. Είναι: w z iz + ( α + βi i( α βi + α + βi αi

Διαβάστε περισσότερα

Θεµατικές διαδροµές στην Ανάλυση

Θεµατικές διαδροµές στην Ανάλυση Θεµατικές διαδροµές στην Ανάλυση Μια πορεία από τον ιαφορικό στον Ολοκληρωτικό Λογισµό Γιάννης Λουριδάς, ηµήτρης Ντρίζος Τα θέµατα του παρόντος άρθρου εντάσσονται στην ύλη του ιαφορικού και Ολοκληρωτικού

Διαβάστε περισσότερα

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ

2η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΑΠΟ 3//7 ΕΩΣ 5//8 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Παρασκευή 5 Ιανουαρίου 8 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ Α Α. Αν μία συνάρτηση f είναι

Διαβάστε περισσότερα

Α3. Σχολικό βιβλίο σελ. 142 Γεωμετρική ερμηνεία του θ. Fermat: Στο σημείο (x o, f(x o )) η εφαπτομένη της C f είναι οριζόντια.

Α3. Σχολικό βιβλίο σελ. 142 Γεωμετρική ερμηνεία του θ. Fermat: Στο σημείο (x o, f(x o )) η εφαπτομένη της C f είναι οριζόντια. ΑΠΑΝΤΗΣΕΙΣ ΠΡΟΣΟΜΟΙΗΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 8 ΜΑΡΤΙΟΥ 08 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α Α. Σχολικό βιβλίο σελ. 76 Α. α. Ψ β. Σχολικό

Διαβάστε περισσότερα

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΘΕΩΡΗΜΑ ΜΕΣΗΣ ΤΙΜΗΣ Έστω συνάρτηση f για την οποία ισύουν είναι συνεής στο κλειστό [α,β] είναι παραγωγίσιμη στο (α,β) Τότε υπάρει τουλάιστον ένα σημείο ξ του (α,β), τέτοιο ώστε να είναι : f (ξ) = ΑΠΟΔΕΙΞΗ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2010 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 3ο : Δίνεται η συνάρτηση f :(,) R με f() η οποία για κάθε (,

Διαβάστε περισσότερα

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2

0x2 = 2. = = δηλαδή η f δεν. = 2. Άρα η συνάρτηση f δεν είναι συνεχής στο [0,3]. Συνεπώς δεν. x 2. lim f (x) = lim (2x 1) = 3 και x 2 x 2 ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 8: ΘΕΩΡΗΜΑ BOLZANO - ΠΡΟΣΗΜΟ ΣΥΝΑΡΤΗΣΗΣ - ΘΕΩΡΗΜΑ ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ - ΘΕΩΡΗΜΑ ΜΕΓΙΣΤΗΣ ΚΑΙ ΕΛΑΧΙΣΤΗΣ ΤΙΜΗΣ - ΣΥΝΟΛΟ ΤΙΜΩΝ ΣΥΝΕΧΟΥΣ ΣΥΝΑΡΤΗΣΗΣ

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ. Υπεύθυνοι τάξης: Δ. Αργυράκης, Ν. Αντωνόπουλος, Κ. Βακαλόπουλος, Ι. Λουριδάς

Γ ΛΥΚΕΙΟΥ. Υπεύθυνοι τάξης: Δ. Αργυράκης, Ν. Αντωνόπουλος, Κ. Βακαλόπουλος, Ι. Λουριδάς Γ ΛΥΚΕΙΟΥ Υπεύθυνοι τάξης: Δ. Αργυράκης, Ν. Αντωνόπουλος, Κ. Βακαλόπουλος, Ι. Λουριδάς Θεματικές διαδρομές στην Ανάλυση Μια πορεία από τον Διαφορικό στον Ολοκληρωτικό Λογισμό Γιάννης Λουριδάς, Δημήτρης

Διαβάστε περισσότερα

13 Μονοτονία Ακρότατα συνάρτησης

13 Μονοτονία Ακρότατα συνάρτησης 3 Μονοτονία Ακρότατα συνάρτησης Α. ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Θεώρημα Αν μια συνάρτηση f είναι συνεχής σ ένα διάστημα Δ, τότε: Αν f ( ) > 0για κάθε εσωτερικό του Δ, η f είναι γνησίως αύξουσα στο Δ. Αν

Διαβάστε περισσότερα

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ. f ( x) 0 0 2x 0 x 0 ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ ΑΠΑΝΤΗΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΚΑΙ ΟΙΚΟΝΟΜΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 8 ΜΑΪΟΥ 6 ΘΕΜΑ Α Α. Θεωρία, βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 A ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Σάββατο 13 Ιανουαρίου 18 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α1. Απόδειξη

Διαβάστε περισσότερα

35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης

35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης 4 5 35 Χρήσιμες Προτάσεις με αποδείξεις Γ Λυκείου Μαθηματικά Κατεύθυνσης Περίληψη: Στο ένθετο αυτό περιλαμβάνονται 35 βασικές προτάσεις, μικρά λήμματα χρήσιμα για τις εξετάσεις. Μας βοηθούν να «ξεκλειδώνουμε»

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

1,2,3,7. i. f(x) = x x, x [1, 3] ii. f(x) = { x2 + 2x + 3, x < 1. iii. f(x) = x x. iv. f(x) = { x ln(x), 0 < x 1. cx 2 + 4x + 4, 0 x 1. Rolle.

1,2,3,7. i. f(x) = x x, x [1, 3] ii. f(x) = { x2 + 2x + 3, x < 1. iii. f(x) = x x. iv. f(x) = { x ln(x), 0 < x 1. cx 2 + 4x + 4, 0 x 1. Rolle. Πράξεις και ιδιότητες πραγματικών αριθμών. 1 Εισαγωγή - Οδηγίες Οι ασκήσεις είναι κατηγοριοποιημένες ανάλογα με το βαθμό δυσκολίας τους. Μία άσκηση που δεν είναι επισημασμένη είναι μία απλή εφαρμογή της

Διαβάστε περισσότερα

ΜΕΡΟΣ Β ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΕΡΟΣ Β ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕΡΟΣ Β ΑΠΑΝΤΗΣΕΙΣ-ΥΠΟΔΕΙΞΕΙΣ ΚΑΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΟΥ ΒΙΒΛΙΟΥ ΕΠΑΝΑΛΗΨΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ η Έκδοση, Ιανουάριος 7 Γιάννης Καραγιάννης

Διαβάστε περισσότερα

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις)

( ) f( x ) ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Επώνυμο: Όνομα: Τμήμα: Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. (ενδεικτικές λύσεις) Επώνυμο: Όνομα: Τμήμα: ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ ΤΗΛ : 777 594 ΑΡΤΑΚΗΣ Κ. ΤΟΥΜΠΑ ΤΗΛ : 99 9494 www.sygrono.gr Ημερομηνία: Α Βαθ. Β Βαθ. Μ.Ο. ΔΙΑΓΩΝΙΣΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ενδεικτικές

Διαβάστε περισσότερα

Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης

Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων Θεολόγης Καρκαλέτσης Αναλυτικές λύσεις όλων των θεμάτων στα Μαθηματικά των Πανελλαδικών εξετάσεων και των Επαναληπτικών εξετάσεων 9 Θεολόγης Καρκαλέτσης Μαθηματικός teomail@schgr Πρόλογος Στο βιβλίο αυτό περιέχονται όλα τα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7 Ε_3.Μλ3ΘΟ(ε) ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ / ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ Ηµεροµηνία: Τετάρτη 9 Απριλίου 7 ιάρκεια Εξέτασης: 3 ώρες

Διαβάστε περισσότερα

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών

Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών Φ ρ ο ν τ ι σ τ ή ρ ι α δ υ α δ ι κ ό ΦΡΟΝΤΙΣΤΗΡΙΑ δυαδικό Γ ε ν ι κ έ ς εξ ε τ ά σ ε ι ς 6 Μαθηματικά Γ λυκείου Θ ε τ ι κ ών και οικονομικών σπουδών Τα θέματα επεξεργάστηκαν οι καθηγητές των Φροντιστηρίων

Διαβάστε περισσότερα

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου

4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου 4ο Επαναληπτικό διαγώνισμα στα Μαθηματικά προσανατολισμού της Γ Λυκείου 8-9 Θέμα A A Αν οι συναρτήσεις,g είναι παραγωγίσιμες στο, να αποδείξετε ότι η συνάρτηση και ισχύει: g g παραγωγίσιμη στο μονάδες

Διαβάστε περισσότερα

τότε για κάθε αριθμό ξ μεταξύ των f(α) και f(β) υπάρχει τουλάχιστον ένας x0 (α, β) τέτοιος ώστε να ισχύει f(x0)=ξ. Μονάδες 15

τότε για κάθε αριθμό ξ μεταξύ των f(α) και f(β) υπάρχει τουλάχιστον ένας x0 (α, β) τέτοιος ώστε να ισχύει f(x0)=ξ. Μονάδες 15 ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΟΡΙΑ ΚΑΙ ΣΤΗ ΣΥΝΕΧΕΙΑ ΘΕΜΑ o Α Να αποδείξετε ότι, αν μία συνάρτηση f είναι συνεχής στο κλειστό διάστημα [α, β] και f(α)f(β), τότε για κάθε αριθμό ξ μεταξύ των f(α) και f(β) υπάρχει τουλάχιστον

Διαβάστε περισσότερα

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ]

, να αποδείξετε ότι και η συνάρτηση f+g είναι παραγωγίσιμη στο x. και ισχύει. Μονάδες 9 Α2. Έστω μια συνάρτηση f με πεδίο ορισμού το Α και [, ] ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 6-7 ΜΑΘΗΜΑ / ΤΑΞΗ : ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Μαθηματικά Προσανατολισμού Γ' Λυκείου Θέμα Α Α. Αν οι συναρτήσεις, g είναι παραγωγίσιμες στο, να αποδείξετε ότι και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 5 ΧΡΟΝΙΑ ΕΜΠΕΙΡΙΑ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α A. Έστω μια συνάρτηση f, η οποία είναι ορισμένη σε ένα κλειστό διάστημα [α,β]. Αν η f είναι συνεχής στο [α,β]

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 3 Ιανουαρίου 2019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 3 Ιανουαρίου 2019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 3 Ιανουαρίου 019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΘΕΜΑΤΑ Α1 Αν μια συνάρτηση f είναι παραγωγίσιμη στο σημείο x 0, να αποδείξετε ότι

Διαβάστε περισσότερα

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016

Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 2016 Λύσεις των θεμάτων των Πανελλαδικών Εξετάσεων στα Μαθηματικά Προσανατολισμού 16 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 12: Ακρότατα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής

Μαθηματικά. Ενότητα 12: Ακρότατα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Μαθηματικά Ενότητα 12: Ακρότατα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά)

ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ (1 η σειρά) 9 ΘΕΡΙΝΑ ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ( η σειρά) ΘΕΜΑ ο Α. Έστω η συνάρτηση f με f() ημ. Να αποδείξετε ότι η f είναι παραγωγίσιμη στο και ισχύει f () συν Β. Πότε μια συνάρτηση f λέμε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης της f; Μονάδες 5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης της f; Μονάδες 5 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΓΕΝΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΕΤΟΣ 216 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα