ΘΕΜΑ Δ Δύο σφαίρες ίδιας μάζας, m = 0,2 kg, κινούνται ευθύγραμμα και ομαλά σε λείο οριζόντιο επίπεδο σε αντίθετες κατευθύνσεις και με ταχύτητες

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΜΑ Δ Δύο σφαίρες ίδιας μάζας, m = 0,2 kg, κινούνται ευθύγραμμα και ομαλά σε λείο οριζόντιο επίπεδο σε αντίθετες κατευθύνσεις και με ταχύτητες"

Transcript

1 Δύο σφαίρες ίδιας μάζας, m = 0,2 kg, κινούνται ευθύγραμμα και ομαλά σε λείο οριζόντιο επίπεδο σε αντίθετες κατευθύνσεις και με ταχύτητες μέτρων υ 1 = 6 m s -1, υ 2 = 2 m s -1 αντίστοιχα, ώστε να πλησιάζουν η μια την άλλη. Τη χρονική στιγμή t = 0 οι σφαίρες απέχουν μεταξύ τους 4 m. Η κρούση τους είναι πλαστική και η χρονική της διάρκεια θεωρείται αμελητέα. Δ1) Σχεδιάστε τις σφαίρες τη χρονική στιγμή t = 0 και υπολογίστε τα μέτρα των ορμών τους. Δ2) Ποια χρονική στιγμή θα γίνει η κρούση ; Δ3) Ποιο το μέτρο της ταχύτητας του συσσωματώματος αμέσως μετά την κρούση ; Δ4) Σχεδιάστε (σε κοινό διάγραμμα) τις γραφικές παραστάσεις για τις τιμές των ταχυτήτων των δύο σφαιρών και του συσσωματάματος σε συνάρτηση με το χρόνο, για το χρονικό διάστημα από 0 μέχρι 1 s. Να θεωρήσετε ως θετική την αρχική φορά κίνησης της σφαίρας με ταχύτητα υ 1.

2 Ποσότητα αερίου υδρογόνου βρίσκεται στην ίδια θερμοκρασία με ποσότητα αερίου οξυγόνου (και τα δύο αέρια θεωρούνται ιδανικά). Δ1) Ποιος είναι ο λόγος των μέσων μεταφορικών κινητικών ενεργειών των μορίων των δύο αερίων; u 2 Δ2) Ποιος είναι ο λόγος των ενεργών ταχυτήτων των μορίων των δύο αερίων ; u Στη συνέχεια χωρίς να μεταβληθεί η ποσότητα του υδρογόνου, συμπιέζεται ο όγκος του αερίου στο μισό (σε σχέση με τον αρχικό όγκο). Ποιος είναι ο λόγος των ενεργών ταχυτήτων των μορίων του υδρογόνου, πριν και μετά τη μεταβολή του όγκου του όταν αυτή η μεταβολή συντελείται: Δ3) υπό σταθερή θερμοκρασία; Δ4) υπό σταθερή πίεση; Δίνεται οι γραμμομοριακές μάζες του υδρογόνου, Μ Η2 = kg/mοl, και του οξυγόνου Μ Ο2 = kg/mοl. 2

3 Δύο σώματα με μάζες m 1 = 0,4 kg και m 2 = 0,6 kg κινούνται πάνω σε οριζόντιο επίπεδο με συντελεστή τριβής ολίσθησης μ = 0,2. Τα σώματα κινούνται σε αντίθετες κατευθύνσεις και συγκρούονται πλαστικά, έχοντας ακριβώς πριν τη στιγμή της σύγκρουσης ταχύτητες μέτρων υ 1 = 20 m/s και υ 2 = 5 m/s αντίστοιχα. Δ1) Να υπολογίσετε και να σχεδιάσετε τις ορμές των δύο σωμάτων ακριβώς πριν την κρούση. Δ2) Να υπολογίσετε την ταχύτητα του συσσωματώματος αμέσως μετά την κρούση. Δ3) Να υπολογίσετε το χρονικό διάστημα για το οποίο το συσσωμάτωμα θα κινηθεί μετά την κρούση. Δ4) Να υπολογίσετε την αύξηση της θερμικής ενέργειας μετά την κρούση των σωμάτων λόγω της τριβής στο τραχύ δάπεδο. Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10 m/s 2

4 Ποσότητα ιδανικού αέριου ίση με 2/R mol, βρίσκεται αρχικά σε κατάσταση ισορροπίας στην οποία έχει πίεση N/m 2 και θερμοκρασία 100 Κ. Το αέριο υφίσταται τις παρακάτω αντιστρεπτές μεταβολές: Θερμαίνεται ισοβαρώς μέχρι ο όγκος του να γίνει m 3. Ακολούθως ψύχεται ισόχωρα μέχρι να αποκτήσει θερμοκρασία ίδια με την αρχική. Τέλος το αέριο συμπιέζεται ισόθερμα μέχρι να βρεθεί στην αρχική του κατάσταση. Δ1) Να κατασκευάσετε το διαγράμματα p V σε βαθμολογημένους άξονες. Δ2) Να κατασκευάσετε τα διαγράμματα p Τ και V - T σε βαθμολογημένους άξονες. Μονάδες 8 Δ3) Υπολογίστε τη θερμότητα που αποβάλλει το αέριο συνολικά κατά την κυκλική μεταβολή. Μονάδες 5 Δ4) Υπολογίστε τη μεταβολή της εσωτερικής ενέργειας του αερίου σε κάθε μεταβολή ξεχωριστά. Δίνεται ότι στα ιδανικά μονοατομικά αέρια C v = και ότι ln 5 1.6

5 Ορισμένη ποσότητα ιδανικού αερίου υφίσταται αντιστρεπτή κυκλική μεταβολή, η οποία αποτελείται από τις παρακάτω αντιστρεπτές μεταβολές: Αρχικά ισόχωρη μεταβολή κατά την οποία προσφέρεται στο αέριο θερμότητα 200 J, στη συνέχεια ισόθερμη μεταβολή κατά την οποία το αέριο παράγει έργο 150 J και τελικά επιστρέφει στην αρχική κατάσταση μέσω μιας ισοβαρούς μεταβολής αποδίδοντας στο περιβάλλον θερμότητα 250 J. Δ1) Να κατασκευάσετε ποιοτικά διαγράμματα (δηλαδή χωρίς αριθμούς) p V και V - T Δ2) Υπολογίστε το συνολικό μηχανικό έργο που αποδίδει το αέριο σε αυτή την κυκλική μεταβολή. Δ3) Υπολογίστε το συνολικό ποσό θερμότητας που αποβάλει το αέριο στο περιβάλλον σε αυτή την κυκλική μεταβολή. Δ4) Υπολογίστε το συντελεστή απόδοσης μιας θερμικής μηχανής η οποία θα λειτουργούσε με βάση τον παραπάνω αντιστρεπτό κύκλο.

6 Μπαλάκι του τένις, μάζας m, αφήνεται να πέσει από ύψος h 1 από την επιφάνεια του εδάφους. Αφού χτυπήσει στο έδαφος αναπηδά και φτάνει σε ύψος h 2 από την επιφάνεια του εδάφους. Να υπολογίσετε : Δ1) το μέτρο της ταχύτητας που έχει το μπαλάκι ακριβώς πριν προσκρούσει στο έδαφος, Μονάδες 5 Δ2) τη μεταβολή της ορμής του (μέτρο και κατεύθυνση) κατά τη διάρκεια της πρόσκρουσης του στο έδαφος. Δ3) Αν η μέση συνισταμένη δύναμη που ασκείται στο μπαλάκι κατά τη διάρκεια της πρόσκρουσης έχει μέτρο 6Ν να υπολογιστεί η χρονική διάρκεια της πρόσκρουσης. Στη συνέχεια το μπαλάκι αναπηδά στο έδαφος για δεύτερη φορά. Δ4 Εάν γνωρίζετε ότι κατά τη διάρκεια της δεύτερης αυτής πρόσκρουσης χάνεται στο περιβάλλον το 50% της ενέργειας που είχε το μπαλάκι πριν την πρόσκρουση, να υπολογίσετε το νέο μέγιστο ύψος από το έδαφος,h 3, στο οποίο θα ανέβει. Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10 m/s 2, m =100 g, h 1 = 80 cm, h 2 = 20 cm. Η αντίσταση του αέρα θεωρείται αμελητέα.

7 Ορισμένη ποσότητα μονατομικού ιδανικού αερίου που βρίσκεται στην κατάσταση θερμοδυναμικής ισορροπίας Α (p 0, V 0, T 0 ), υπόκειται στην παρακάτω αντιστρεπτή κυκλική μεταβολή: ΑΒ-ισοβαρής εκτόνωση μέχρι να διπλασιάσει τον όγκο του, ΒΓ-ισόθερμη θέρμανση μέχρι να διπλασιάσει τον όγκο που έχει στην κατάσταση Β, ΓΔ-ισόχωρη ψύξη μέχρι το αέριο να αποκτήσει τη θερμοκρασία που είχε στην κατάσταση θερμοδυναμικής ισορροπίας Α, ΔΑ-ισόθερμη συμπίεση ώστε να επανέλθει στην κατάσταση θερμοδυναμικής ισορροπίας Α. Δ1) Να γίνει η γραφική παράσταση των μεταβολών σε άξονες p-v, όπου θα φαίνονται οι τιμές της πίεσης, του όγκου και της θερμοκρασίας του αερίου στις καταστάσεις Α, Β, Γ και Δ, συναρτήσει των p 0, V 0, T 0. (Οι τιμές της θερμοκρασίας θα σημειωθούν πάνω στις ισόθερμες καμπύλες.) Δ2) Να υπολογίσετε τις μεταβολές της εσωτερικής ενέργειας του αερίου ΔU ΑΒ, ΔU ΓΔ και ΔU ΔΑ που αντιστοιχούν στις μεταβολές ΑΒ, ΓΔ και ΔΑ. Μονάδες 5 Δ3) Να υπολογίσετε τη θερμότητα και το έργο που ανταλλάσσει το αέριο με το περιβάλλον του σε έναν κύκλο. Δ4) Να υπολογίσετε την απόδοση μηχανής Carnot που λειτουργεί μεταξύ των ισόθερμων του παραπάνω κύκλου καθώς και την απόδοση θερμικής μηχανής που λειτουργεί σύμφωνα με την παραπάνω αντιστρεπτή κυκλική μεταβολή. Δίνονται η γραμμομοριακή ειδική θερμότητα του αερίου υπό σταθερό όγκο C v = 3R/2 και ln2=0,7.

8 Δύο σφαιρίδια Σ 1 και Σ 2 με μάζες m 1 = 4 kg και m 2 = 6 kg αντίστοιχα μπορούν να κινούνται στο εσωτερικό κυκλικού δακτυλίου ακτίνας R = 2 m που είναι ακλόνητα στερεωμένος σε λείο οριζόντιο τραπέζι (κάτοψη του οποίου εικονίζεται στο σχήμα). Οι τριβές μεταξύ των σφαιριδίων και του κυκλικού δακτυλίου θεωρούνται αμελητέες, όπως και οι διαστάσεις τους. Αρχικά το σφαιρίδιο Σ 2 είναι ακίνητο, ενώ το Σ 1 εκτελεί ομαλή κυκλική κίνηση με φορά αντίθετη εκείνης των δεικτών του ρολογιού με ταχύτητα, μέτρου υ 1 = 5 m/s. Αν τα σφαιρίδια Σ 1 και Σ 2 συγκρουστούν πλαστικά, να υπολογίσετε : m 2 υ 1 m 2 m 1 Δ1) Το μέτρο της ταχύτητας του συσσωματώματος μετά την κρούση καθώς και την περίοδο της κίνησης του. Δ2) Την απώλεια της μηχανικής ενέργειας κατά την διάρκεια της πλαστικής κρούσης. Μονάδες 5 Δ3) Σε κάποια άλλη περίπτωση, αλλάζοντας το υλικό των σφαιριδίων, αλλά διατηρώντας τις μάζες τους, τα σφαιρίδια συγκρούονται χωρίς να δημιουργηθεί συσσωμάτωμα. Αν η ταχύτητα της σφαίρας m 2 αμέσως μετά την κρούση είναι 4 m/s, να υπολογίσετε την ταχύτητα της σφαίρας m 1 αμέσως μετά την κρούση. Να ελέγξετε αν στην κρούση αυτή διατηρείται η μηχανική ενέργεια του συστήματος των δύο σφαιρών. Μονάδες 8 Δ4) Ποιο είναι το μήκος του τόξου που διανύει το κάθε ένα από τα δύο σώματα μέχρι την επόμενη σύγκρουσή τους;

9 υ 1 Σε οριζόντιο επίπεδο βρίσκεται ακίνητο ένα μήλο μάζας Μ = 200 g. Ένα μικρό βέλος μάζας m = 40 g κινείται οριζόντια με ταχύτητα μέτρου, υ 1 = 10 m/s, χτυπά το μήλο με αποτέλεσμα να το διαπεράσει. Αν γνωρίζετε ότι η χρονική διάρκεια της διάτρησης είναι Δt = 0,1 s και ότι το βέλος εξέρχεται από μήλο με ταχύτητα, μέτρου υ 2 = 2 m/s, να υπολογίσετε : Δ1) το μέτρο της ορμής του μήλου ακριβώς μετά την έξοδο του βέλους από αυτό, Μονάδες 5 Δ2) τη μεταβολή της ορμής του βέλους εξαιτίας της διάτρησης, Δ3) τη μέση δύναμη που ασκείται από το βέλος στο μήλο κατά τη χρονική διάρκεια της διάτρησης καθώς και τη μέση δύναμη που ασκείται από το μήλο στο βέλος στην ίδια χρονική διάρκεια, Δ4) Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης. Για την επίλυση του προβλήματος θεωρήστε το βέλος αλλά και το μήλο ως υλικά σημεία..

10 V (L) 4 Γ B 2 Δ A T 1 4 T 1 T(K) Μία θερμική μηχανή που χρησιμοποιεί ιδανικό αέριο λειτουργεί με τον αντιστρεπτό κύκλο που φαίνεται στο διάγραμμα. Στην αρχική κατάσταση Α η πίεση του ιδανικού αερίου είναι ίση με p A = N/m 2. Δ1) Να υπολογίσετε την απόδοση μίας θερμικής μηχανής Carnot που λειτουργεί μεταξύ των ίδιων ισόθερμων, με αυτές στις οποίες λειτουργεί η θερμική μηχανή που σας δίνεται. Μονάδες 5 Δ2) Να σχεδιάσετε το διάγραμμα P-V της κυκλικής μεταβολής σε βαθμολογημένο σύστημα αξόνων. Δ3) Να υπολογίσετε το ωφέλιμο έργο που αποδίδει η μηχανή σε κάθε κύκλο λειτουργίας της. Δ4) Να υπολογίσετε το συντελεστή απόδοσης της θερμικής μηχανής. Δίνονται: ln2 = 0,7 και C V = 3R/2

11 Β Α R 1 R 2 Δίσκος (1) Δίσκος (2) Στο σχήμα φαίνονται δύο δίσκοι με ακτίνες R 1 = 0,2 m και R 2 = 0,4 m αντίστοιχα, οι οποίοι συνδέονται μεταξύ τους με μη ελαστικό λουρί. Οι δίσκοι περιστρέφονται γύρω από σταθερούς άξονες που διέρχονται από το κέντρο τους και είναι κάθετοι στο επίπεδο τους. Αν η περίοδος περιστροφής του δίσκου (2) είναι σταθερή και ίση με Τ 2 = 0,05π s, να υπολογίσετε : Δ1) το μέτρο της ταχύτητας των σημείων Α και Β της περιφέρειας των δίσκων, Δ2) το μέτρο της γωνιακής ταχύτητας του δίσκου (1), Δ3) το λόγο των μέτρων των κεντρομόλων επιταχύνσεων των σημείων Α και Β :, Μονάδες 5 Δ4) τον αριθμό των περιστροφών που έχει εκτελέσει ο δίσκος (1), όταν ο δίσκος (2) έχει εκτελέσει 10 περιστροφές.

12 Μια βόμβα μάζας m = 3 kg βρίσκεται στιγμιαία ακίνητη σε ύψος H = 500 m από την επιφάνεια της Γης. Τη στιγμή εκείνη εκρήγνυται σε δύο κομμάτια. Το πρώτο κομμάτι έχει μάζα m 1 = 2 kg και εκτοξεύεται οριζόντια με αρχική ταχύτητα υ 1 = 40 m/s. Δ1) Να υπολογίσετε με πόση ταχύτητα εκτοξεύεται το δεύτερο κομμάτι. Μονάδες 5 Δ2) Να υπολογίσετε την ταχύτητα, σε μέτρο και κατεύθυνση, του δεύτερου κομματιού, 6 s μετά από την έκρηξη. Δ3) Ποια χρονική στιγμή φτάνει το κάθε κομμάτι στο έδαφος; Σχολιάστε το αποτέλεσμα. +2 Δ4) Εάν το πρώτο κομμάτι φτάνει στο έδαφος στο σημείο Α και το άλλο στο σημείο Β να υπολογίσετε την απόσταση ΑΒ. Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10 m/s 2. Η αντίσταση του αέρα θεωρείται αμελητέα.

13 Ιδανικό μονοατομικό αέριο ποσότητας 1/R mol (το R είναι αριθμητικά ίσο με τη σταθερά των J ιδανικών αερίων εκφρασμένη σε ) και θερμοκρασίας 27 C βρίσκεται σε κυλινδρικό δοχείο mol K η πάνω επιφάνεια του οποίου φράσσεται από έμβολο μάζας m = 300 kg και επιφάνειας, εμβαδού Α = 100 cm 2. Το έμβολο μπορεί να μετακινείται χωρίς τριβές και αρχικά ισορροπεί. Δ1) Να υπολογίσετε την αρχική πίεση του αερίου. Στη συνέχεια το αέριο θερμαίνεται αντιστρεπτά έως τη θερμοκρασία των 127 C. Δ2). Να υπολογίσετε τον τελικό όγκο του αερίου. Δ3) Πόσο ανυψώθηκε το έμβολο ; Δ4) Το έμβολο ακινητοποιείται (ασφαλίζεται) στη νέα αυτή θέση και το αέριο ψύχεται στην αρχική του θερμοκρασία. Να υπολογίσετε πόση θερμότητα ανταλλάσσεται μεταξύ αερίου και περιβάλλοντος. Δίνεται η ατμοσφαιρική πίεση στην περιοχή που βρίσκεται το δοχείο p atm = 10 5 Ν/m 2, η επιτάχυνση της βαρύτητας στην επιφάνεια της Γής g = 10 m/s 2 και C v = 3 R/2.

14 Ανεμογεννήτρια οριζοντίου άξονα περιστροφής έχει τα εξής χαρακτηριστικά: Ύψος πύργου H = 18 m (δηλαδή απόσταση από το έδαφος μέχρι το κέντρο της κυκλικής τροχιάς), ακτίνα έλικας R = 2 m, ενώ πραγματοποιεί 60 περιστροφές ανά λεπτό. Δ1) Να υπολογίσετε τη γωνιακή ταχύτητα περιστροφής της έλικας. Μονάδες 5 Στην άκρη της έλικας έχει κολλήσει ένα (σημειακό) κομμάτι λάσπης. Δ2) Να υπολογίσετε τη γραμμική ταχύτητα και την κεντρομόλο επιτάχυνση του κομματιού της λάσπης. Μονάδες 8 Τη στιγμή που η λάσπη περνάει από το ανώτερο σημείο της τροχιάς της ξεκολλάει κι εγκαταλείπει την έλικα. Δ3) Τι είδους κίνηση θα εκτελέσει; Μονάδες 3 Δ4) Μετά από πόσο χρόνο θα φτάσει στο έδαφος και με τι ταχύτητα; Μονάδες 9 Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10 m/s 2. Θεωρήστε π Επίσης θεωρήστε αμελητέα την αντίσταση του αέρα.

15 Τη χρονική στιγμή t o = 0 σώμα μάζας m 1 = 0,4 kg βάλλεται οριζόντια με ταχύτητα μέτρου υ 1 = 30 m/s από ύψος 160 m από το έδαφος. Ταυτόχρονα από το έδαφος βάλλεται κατακόρυφα προς τα επάνω ένα δεύτερο σώμα μάζας m 2 = 0,1 kg με ταχύτητα μέτρου υ 2 = 40 m/s. Όταν το m 2 φτάσει στο μέγιστο ύψος της τροχιάς του, τα δύο σώματα συγκρούονται πλαστικά. Να υπολογίσετε: Δ1) To μέγιστo ύψος που φτάνει το m 2 και τη χρονική στιγμή t 1 της κρούσης. Δ2) Την ταχύτητα του σώματος m 1 (σε μέτρο και κατεύθυνση, υπολογίζοντας τη γωνία που σχηματίζει το διάνυσμα της ταχύτητας του σώματος m 1 με τον οριζόντιο άξονα) τη χρονική στιγμή t 1. Δ3) Να αποδείξετε ότι τη χρονική στιγμή που το σώμα μάζας m 2 φτάνει στο μέγιστο ύψος του, το σώμα m 1 βρίσκεται επίσης στο ίδιο ύψος. Δ4) Την ταχύτητα του συσσωματώματος (σε μέτρο και κατεύθυνση, υπολογίζοντας τη γωνία που σχηματίζει το διάνυσμα της ταχύτητας του συσσωματώματος με τον οριζόντιο άξονα) αμέσως μετά την κρούση. Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της γης g = 10 m/s 2. Η αντίσταση του αέρα θεωρείται αμελητέα.

16 Σώμα μάζας m 1 = 2 kg αφήνεται από κάποιο ύψος και μετά από 3 s χτυπάει με ταχύτητα μέτρου υ 1 στο έδαφος. Το σώμα αναπηδά με ταχύτητα μέτρου υ 2 = 20 m/s. Καθώς ανεβαίνει και σε ύψος 15 m από το έδαφος, συγκρούεται πλαστικά με άλλο σώμα μάζας m 2 = 3 kg που συγκρατείται ακίνητο στο ύψος αυτό, και τη στιγμή της κρούσης απελευθερώνεται. Να υπολογίσετε: Δ1) την ταχύτητα υ 1 καθώς και το αρχικό ύψος από το οποίο αφέθηκε το σώμα m 1, Δ2) τη μέση συνισταμένη δύναμη που δέχτηκε το σώμα μάζας m 1 κατά την κρούση του με το έδαφος, εάν ο χρόνος επαφής με αυτό ήταν 0,1 s, Δ3) την ταχύτητα του συσσωματώματος αμέσως μετά την κρούση, Δ4) το μέγιστο ύψος από το έδαφος που θα φθάσει το συσσωμάτωμα, Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της γης g = 10 m/s 2. Η αντίσταση του αέρα θεωρείται αμελητέα.

17 Σώμα μάζας m 1 = 2 kg είναι δεμένο στο άκρο Α νήματος μήκους l = 1,25 m. Το σώμα αφήνεται από το σημείο Α, με το νήμα οριζόντιο, και διαγράφει το τεταρτοκύκλιο που φαίνεται στο σχήμα. Διερχόμενο από το κατώτερο σημείο της τροχιάς του B, όπου η ταχύτητά του έχει μέτρο υ 1, συγκρούεται πλαστικά με σώμα υ 2 υ 1 Β μάζας m 2 = 3 kg που κινείται με ταχύτητα υ 2 αντίθετης κατεύθυνσης από την υ 1. Το συσσωμάτωμα που δημιουργείται κινείται με ταχύτητα μέτρου V = 4 m/s, με κατεύθυνση ίδια με την κατεύθυνση της ταχύτητας υ 2. Να υπολογίσετε: Δ1) Το μέτρο της ταχύτητας υ 1. Δ2) Την τάση του νήματος καθώς το σώμα m 1 διέρχεται από το σημείο Β. Δ3) Το μέτρο της ταχύτητας υ 2. Δ4) Την αύξηση της θερμικής ενέργειας κατά την κρούση. Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της γης g = 10 m/s 2. Η αντίσταση του αέρα θεωρείται αμελητέα.

18 Ένας ξύλινος στόχος μάζας M 5 kg βρίσκεται ακίνητος σε λείο οριζόντιο δάπεδο. Βλήμα μάζας m 0,1 kg λίγο πριν την κρούση με το στόχο, έχει οριζόντια προς τα δεξιά ταχύτητα με μέτρο 200 m/s. Το βλήμα διαπερνά το στόχο και εξέρχεται από αυτόν με οριζόντια ταχύτητα μέτρου 100 m/s, ομόρροπη της αρχικής του ταχύτητας. Δ1) Να βρεθεί η ταχύτητα την οποία αποκτά ο στόχος αμέσως μετά τη σύγκρουση. Δ2) Να βρεθεί το ποσό της κινητικής ενέργειας που μετατράπηκε σε θερμότητα εξ αιτίας της συγκρούσεως. Υποθέτουμε ότι οι δυνάμεις που αναπτύσσονται μεταξύ του στόχου και του βλήματος, όταν το βλήμα διαπερνά το στόχο, είναι χρονικά σταθερές. Δ3) Αν ο χρόνος που χρειάστηκε το βλήμα να διαπεράσει το στόχο είναι t 0,01 s, να βρείτε το μέτρο της δύναμης που ασκείται από το βλήμα στο στόχο. Δ4) Ο στόχος βρίσκεται στην άκρη ενός τραπεζιού, οπότε μετά την κρούση εκτελεί οριζόντια βολή. Όταν ο στόχος πέφτει στο δάπεδο, τότε το μέτρο της ταχύτητάς του είναι διπλάσιο από το μέτρο της ταχύτητας που έχει αμέσως μετά τη σύγκρουσή του με το βλήμα. Να βρεθεί το ύψος του τραπεζιού. m Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της γης g 10. s 2

19 Ορισμένη ποσότητα ιδανικού αερίου υφίσταται τις παρακάτω αντιστρεπτές μεταβολές: Α Β ισόθερμη εκτόνωση, Β Γ ισοβαρής συμπίεση και Γ Α ισόχωρη θέρμανση. Δίνονται για τις καταστάσεις θερμοδυναμικής ισορροπίας Α και Β: 3 3 V Α 2 10 m, 3 3 V Β 4 10 m. 5 2 p Α 4 10 N/m, p Α Γ Β Δ1) Να βρείτε το έργο που ανταλλάσσεται μεταξύ αερίου και περιβάλλοντος για κάθε μία από τις παραπάνω αντιστρεπτές μεταβολές. Δ2) Για κάθε μία μεταβολή να βρείτε τη μεταβολή της εσωτερικής ενέργειας του αερίου και το ποσό θερμότητας που ανταλλάσσεται μεταξύ αερίου και περιβάλλοντος. Μονάδες 9 Δ3) Εάν μια μηχανή λειτουργεί με το ιδανικό αέριο που εκτελεί τον παραπάνω κύκλο, να βρείτε την απόδοση αυτής της μηχανής. Μονάδες 5 Δ4) Να βρεθεί η απόδοση μιας ιδανικής μηχανής Carnot η οποία λειτουργεί μεταξύ των ίδιων ακραίων θερμοκρασιών. Δίνονται: Για το ιδανικό αέριο η γραμμοριακή ειδική θερμότητα υπό σταθερό όγκο ln 2 0,7. V Μονάδες 5 3 C V R και 2

20 Ένα τρενάκι αποτελείται από δύο μικρά βαγόνια και μπορεί να κινείται με ομαλή κυκλική κίνηση 2 σε κυκλικές ράγες ακτίνας r m με περίοδο T 2 s. Δ1) Να υπολογίσετε το μέτρο της γραμμικής ταχύτητας περιστροφής του αντικειμένου. Κάποια χρονική στιγμή το τρένο υφίσταται μια μικρή έκρηξη και τα δύο βαγόνια αποχωρίζονται μεταξύ τους, ενώ συνεχίζουν να κινούνται στις κυκλικές ράγες. Η μάζα και των δύο μαζί είναι m 3 kg ενώ η μάζα του μπροστινού βαγονιού είναι m1 1 kg. Το μπροστινό βαγόνι μετά την m έκρηξη κινείται με ταχύτητα μέτρου 1 12 στην ίδια κατεύθυνση με την κατεύθυνση κίνησης s του τρένου. Δ2) Να υπολογίσετε την τιμή της ταχύτητας του άλλου βαγονιού. Δ3) Να βρείτε το ποσό της ενέργειας που ελευθερώνεται κατά την έκρηξη. Δ4) Πόση γωνία θα έχει διαγράψει το κάθε βαγόνι μέχρι να συναντηθούν για πρώτη φορά, μετά την έκρηξη; Στην επίλυση του προβλήματος θεωρούμε τα βαγόνια ως υλικά σημεία.

21 Ένα βλήμα μάζας m m 0,1 kg κινείται με οριζόντια ταχύτητα μέτρου 100 και προσκρούει s σε ακίνητο στόχο μάζας Δ1) Την ταχύτητα του συσσωματώματος. M 4,9 kg οπότε και δημιουργείται συσσωμάτωμα. Να βρείτε: Δ2) Τη θερμότητα η οποία ελευθερώθηκε λόγω της σύγκρουσης. Δ3) Το μέτρο της μεταβολής της ορμής για κάθε σώμα ξεχωριστά κατά τη διάρκεια της σύγκρουσης. Δ4) Το βλήμα διανύει μέσα στο στόχο απόσταση 1 m. Να βρεθεί η μέση δύναμη που ασκείται από το στόχο στο βλήμα κατά της διάρκεια της ενσωμάτωσής του, αν υποτεθεί ότι το βλήμα και ο στόχος εκτελούν ευθύγραμμες ομαλά μεταβαλλόμενες κινήσεις κατά τη χρονική διάρκεια της σύγκρουσης.

22 Δύο σώματα με μάζες m1 1 kg και m2 2 kg κινούνται το ένα προς το άλλο, σε λείο οριζόντιο επίπεδο με ταχύτητες μέτρου m 4 s και m 3 s και σε αντίθετες κατευθύνσεις. Τα σώματα κουβαλούν μικροποσότητες εκρηκτικών, τα οποία ενδέχεται να εκραγούν κατά τη μεταξύ τους σύγκρουση. Παρατηρούμε ότι μετά τη σύγκρουσή τους η ταχύτητα του σώματος 1 έχει μέτρο και κατεύθυνση αντίθετη από την αρχική κατεύθυνση κίνησης του σώματος 1. Να βρείτε: Δ1) Την ταχύτητα του σώματος 2 μετά τη σύγκρουση. Δ2) Τη μεταβολή της ορμής κατά μέτρο για κάθε σώμα ξεχωριστά. m 8 s Δ3) Τη μέση δύναμη που ασκεί το κάθε σώμα στο άλλο, αν η σύγκρουση διαρκεί t 0,01 s. Δ4) Κατά τη σύγκρουση εξερράγη κάποια ποσότητα εκρηκτικού ή απλώς παράχθηκε κάποιο ποσό θερμικής ενέργειας λόγω της σύγκρουσης; Μονάδες 1 Να προσδιορίσετε το ποσό της θερμότητας που παράχθηκε λόγω της σύγκρουσης ή της ελάχιστης ενέργειας που ελευθερώθηκε από το εκρηκτικό, με βάση την απάντησή σας στο προηγούμενο ερώτημα.

23 Δίνονται στο παρακάτω σχήμα κάποιες αντιστρεπτές μεταβολές τις οποίες υφίσταται ποσότητα ιδανικού, μονοατομικού αερίου. Δίνεται επίσης ότι η μεταβολή ΓΔ είναι αδιαβατική, ότι η πίεση στην κατάσταση θερμοδυναμικής ισορροπίας Δ είναι ίδια με την πίεση στις καταστάσεις θερμοδυναμικής ισορροπίας Α και Β (όπως φαίνεται και από το σχήμα). N p m 2 4 Γ 1 Α Β Δ V ( m 3 ) Να υπολογιστούν: Δ1) Ο όγκος του αερίου στην κατάσταση ισορροπίας Δ. Δ2) Το έργο που ανταλλάσσει το αέριο με το περιβάλλον για κάθε μία μεταβολή ξεχωριστά. Δ3) Η μεταβολή της εσωτερικής ενέργειας του αερίου σε κάθε μία από τις μεταβολές. Δ4) Η θερμότητα που ανταλλάσσεται μεταξύ αερίου και περιβάλλοντος σε κάθε μία από τις μεταβολές. 5 Δίδεται ότι για τα ιδανικά μονοατομικά αέρια ισχύει:. Επίσης θεωρήστε ότι ,3.

24 Σώμα βρίσκεται στην οριζόντια ταράτσα ουρανοξύστη και εκτελεί ομαλή κυκλική κίνηση σε κύκλο 5 1 ακτίνας r m με περίοδο T s. Να βρείτε: 2 Δ1) Το μέτρο της γραμμικής ταχύτητας του σώματος. Κάποια χρονική στιγμή το σκοινί το οποίο κρατάει το σώμα στην κυκλική τροχιά κόβεται, με αποτέλεσμα αυτό να διαφύγει εκτελώντας οριζόντια βολή. Να βρείτε: Δ2) Την ταχύτητα του σώματος κατά μέτρο και κατεύθυνση 2 s αφού εγκαταλείψει την οροφή της πολυκατοικίας. Δ3) Την απόσταση από το σημείο που διέφυγε από την ταράτσα μέχρι το σημείο που βρίσκεται τη χρονική στιγμή που περιγράφεται στο ερώτημα Δ2. Δ4) Παρατηρούμε ότι το σώμα πέφτει στο οριζόντιο έδαφος με γωνία ως προς αυτό για την οποία ισχύει: εφ 2. Να βρείτε το πηλίκο της κατακόρυφης απόστασης του σημείου βολής από το έδαφος προς τη μέγιστη οριζόντια μετατόπιση (βεληνεκές) του σώματος. m Δίδεται η επιτάχυνση της βαρύτητας στη επιφάνειας της γης g 10, και ότι κάθε είδους τριβή s 2 όπως και η αντίσταση από τον αέρα θεωρούνται αμελητέες.

25 Ορισμένη ποσότητα ιδανικού αερίου υφίσταται τις παρακάτω αντιστρεπτές μεταβολές: Α Β: αδιαβατική εκτόνωση από την κατάσταση θερμοδυναμικής ισορροπίας Α όγκου V 10 3 m 3 στην κατάσταση ισορροπίας Β όγκου 3 3 V 2 10 m και πίεσης p N/m 2. Β Γ: ισόχωρη ψύξη, μέχρι την κατάσταση θερμοδυναμικής ισορροπίας Γ για την οποία p 10 5 N/m 2. Γ Δ: αδιαβατική συμπίεση, μέχρι την κατάσταση θερμοδυναμικής ισορροπίας Δ η οποία έχει όγκο ίσο με V Α. Δ Α: ισόχωρη θέρμανση μέχρι την αρχική κατάσταση Α. Δ1) Να υπολογίσετε την πίεση του αερίου στις καταστάσεις θερμοδυναμικής ισορροπίας Α και Δ. Δ2) Να βρείτε το έργο που παράγει το αέριο σε κάθε αδιαβατική μεταβολή. Δ3) Να βρείτε την απόδοση μιας μηχανής που θα λειτουργούσε με το συγκεκριμένο κύκλο. Δ4) Να βρείτε την απόδοση μιας μηχανής Carnot που θα λειτουργούσε μεταξύ των ίδιων ακραίων θερμοκρασιών, όπως η μηχανή του προηγούμενου ερωτήματος. 3 Δίνονται: Για το ιδανικό αέριo η γραμμομοριακή ειδική θερμότητα υπό σταθερό όγκο C V R και 2 ότι: 3,

26 Ποσότητα μονατομικού ιδανικού αερίου βρίσκεται στην κατάσταση θερμοδυναμικής ισορροπίας Α (p 0, V 0, T 0 ). Το αέριο εκτελεί αρχικά ισόθερμη αντιστρεπτή μεταβολή έως την κατάσταση θερμοδυναμικής ισορροπίας Β (p Β, 3 V 0, T Β ). Ακολούθως συμπιέζεται ισοβαρώς ως την κατάσταση θερμοδυναμικής ισορροπίας Γ (p Γ, V Γ, T Γ ), ώστε κατόπιν εκτελώντας ισόχωρη αντιστρεπτή μεταβολή να επανέλθει στην κατάσταση Α. Δ1) Να βρεθούν η πίεση p Β και η θερμοκρασία Τ Γ συναρτήσει των p 0 και Τ 0, με εφαρμογή των αντίστοιχων νόμων. Μονάδες 4 Δ2) Να γίνει η γραφική παράσταση των μεταβολών σε άξονες p-v, όπου θα φαίνονται οι τιμές της πίεσης, του όγκου και της θερμοκρασίας του αερίου στις καταστάσεις Α, Β και Γ, συναρτήσει των p 0, V 0, T 0. (Οι τιμές της θερμοκρασίας θα σημειωθούν πάνω στις ισόθερμες καμπύλες που διέρχονται από τα Α, Β και Γ). Δ3) Να υπολογιστεί ο λόγος των μεταβολών της εσωτερικής ενέργειας ΔU ΓΑ /ΔU ΒΓ του αερίου κατά τις μεταβολές ΓΑ και ΒΓ. Δ4) Να υπολογιστεί το ολικό έργο του αερίου κατά την κυκλική μεταβολή, αν δίνεται ότι p 0 = Ν/m 2, V 0 = 10-3 m 3 και ln3 = 1,1. Μονάδες 8

27 m Ο καθηγητής της φυσικής μιας σχολής υ Μ αξιωματικών του στρατού θέτει ένα πρόβλημα σχετικά με το πώς οι φοιτητές, αξιοποιώντας τις γνώσεις τους από το h μάθημα, θα μπορούσαν να υπολογίσουν την ταχύτητα υ του βλήματος ενός πιστολιού. Ο καθηγητής υποδεικνύει στους φοιτητές την παρακάτω διαδικασία: Το βλήμα μάζας m x εκτοξεύεται οριζόντια και σφηνώνεται σε ένα κομμάτι ξύλου, μάζας Μ, που ισορροπεί ελεύθερο στην κορυφή ενός στύλου ύψους h. Οι μάζες m και Μ μετρώνται με ζύγιση και το ύψος h μετράται με μετροταινία. Το συσσωμάτωμα αμέσως μετά την κρούση εκτελεί οριζόντια βολή και χτυπάει στο έδαφος σε οριζόντια απόσταση x από τη βάση του στύλου, αφήνοντας ένα σημάδι στο χώμα ώστε να είναι δυνατή η μέτρηση αυτής της απόστασης x. Οι φοιτητές έκαναν τη διαδικασία και τις μετρήσεις που τους υπέδειξε ο καθηγητής τους και βρήκαν τις τιμές m = 0,1 kg, M = 1,9 kg, h = 5 m και x = 10 m. Λαμβάνοντας υπόψη τις προηγούμενες τιμές των μεγεθών που μετρήθηκαν από τους φοιτητές, και θεωρώντας την αντίσταση του αέρα αμελητέα,να υπολογίσετε: Δ1) Το χρονικό διάστημα που πέρασε από την στιγμή της κρούσης μέχρι το συσσωμάτωμα να αγγίξει το έδαφος. Δ2) Το μέτρο της οριζόντιας ταχύτητας V την οποία απέκτησε το συσσωμάτωμα αμέσως μετά την κρούση. Δ3) Το μέτρο της ταχύτητας υ του βλήματος πριν σφηνωθεί στο ξύλο. Δ4) Την απώλεια της μηχανικής ενέργειας του συστήματος βλήμα-ξύλο κατά την κρούση. Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γής g = 10m/s 2.

28 Μία οβίδα μάζας 3 kg εκτοξεύεται από το σημείο Α του οριζόντιου εδάφους κατακόρυφα προς τα πάνω. Όταν φθάνει στο ανώτερο σημείο O της τροχιάς της, δηλαδή έχει στιγμιαία ταχύτητα μηδέν, σπάει ακαριαία, λόγω εσωτερικής έκρηξης, σε δύο κομμάτια με μάζες m 1 = 1 kg και m 2 = 2 kg. Το σημείο Ο βρίσκεται σε ύψος 20 m από το έδαφος. Το κομμάτι μάζας m 1 αποκτά αμέσως μετά την έκρηξη οριζόντια ταχύτητα μέτρου 10m/s με φορά προς τα δεξιά ενός παρατηρητή. Τα κομμάτια m 1 και m 2 κινούνται και πέφτουν στο έδαφος στα σημεία Κ και Λ αντιστοίχως. Να υπολογίσετε: Δ1) Το μέτρο και την κατεύθυνση της ταχύτητας που αποκτά το κομμάτι μάζας m 2 αμέσως μετά την έκρηξη. Δ2) Το χρονικό διάστημα που κινείται κάθε κομμάτι από τη στιγμή της έκρηξης μέχρι να αγγίξει το έδαφος. Δ3) Την απόσταση ΚΛ. Δ4) Το μέτρο της ταχύτητας του κομματιού μάζας m 1 ακριβώς πριν ακουμπήσει στο σημείο Κ του εδάφους. Μονάδες 5 Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γής g= 10m/s 2, και ότι η αντίσταση του αέρα θεωρείται αμελητέα.

29 Ορισμένη ποσότητα μονοατομικού ιδανικού αερίου βρίσκεται στην κατάσταση θερμοδυναμικής ισορροπίας Α, όπου οι τιμές της πίεσης, του όγκου και της απόλυτης θερμοκρασίας του είναι αντίστοιχα p o = Ν/m 2, V o = 10-3 m 3 και T o = 300 Κ. Στην συνέχεια το αέριο εκτελεί ισόθερμη αντιστρεπτή μεταβολή έως την κατάσταση θερμοδυναμικής ισορροπίας Β, όπου καταλαμβάνει όγκο 2V o. Ακολούθως θερμαίνεται ισόχωρα ως την κατάσταση Γ, όπου η πίεση είναι 2p o. Δ1) Να υπολογιστούν η πίεση στην κατάσταση θερμοδυναμικής ισορροπίας Β και η απόλυτη θερμοκρασία στην κατάσταση θερμοδυναμικής ισορροπίας Γ. Δ2) Να γίνει η γραφική παράσταση των αντιστρεπτών μεταβολών ΑΒ και ΒΓ σε βαθμολογημένους άξονες πίεσης όγκου καθώς και σε άξονες όγκου - απόλυτης θερμοκρασίας. Δ3) Να βρεθεί το έργο που παράγει το αέριο στη διάρκεια της συνολικής μεταβολής από την κατάσταση θερμοδυναμικής ισορροπίας Α έως την κατάσταση θερμοδυναμικής ισορροπίας Γ. Δ4) Να βρεθεί η θερμότητα που προσφέρθηκε στο αέριο κατά τη διάρκεια της συνολικής μεταβολής από την κατάσταση θερμοδυναμικής ισορροπίας Α έως την κατάσταση θερμοδυναμικής ισορροπίας Γ. Δίνεται ln2=0,7.

30 Μικρή σφαίρα μάζας 0,1 kg αφήνεται από ύψος h να πέσει ελεύθερα πάνω σε οριζόντιο δάπεδο. Η σφαίρα προσκρούει στο δάπεδο με ταχύτητα μέτρου υ 1 = 5 m/s και αναπηδά κατακόρυφα έχοντας αμέσως μόλις χάσει την επαφή της με το δάπεδο, ταχύτητα μέτρου υ 2 = 2 m/s. Η χρονική διάρκεια της επαφής της σφαίρας με το δάπεδο είναι 0,1 s. Να υπολογιστούν: Δ1) Η μεταβολή της ορμής της σφαίρας (κατά μέτρο και κατεύθυνση) κατά την κρούση της με το δάπεδο. Δ2) Η μέση τιμή της δύναμης που ασκήθηκε από το δάπεδο στη σφαίρα κατά την κρούση. Δ3) Το ύψος h από το οποίο αφέθηκε η σφαίρα. Δ4) Το % ποσοστό της αρχικής μηχανικής ενέργειας της σφαίρας που μεταφέρθηκε στο περιβάλλον κατά την κρούση. Δίνονται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10 m/s 2 και ότι η αντίσταση του αέρα θεωρείται αμελητέα. Θεωρήστε ως επίπεδο δυναμικής ενέργειας μηδέν, το επίπεδο του δαπέδου.

31 Ένας ξύλινος κύβος μάζας Μ = 1 kg m υ 1 M ισορροπεί στην άκρη της ταράτσας στο σημείο Ο ενός κτηρίου Κ1 ύψους 40 m. Κάποια στιγμή, που τη θεωρούμε ως O αρχή μέτρησης του χρόνου t = 0, ένα βλήμα μάζας m = 0,1 kg, το οποίο 40m Κ1 A κινείται με οριζόντια ταχύτητα μέτρου υ 1 = 200 m/s, διαπερνά ακαριαία τον κύβο και εξέρχεται από αυτόν με Κ2 20m 20m οριζόντια ταχύτητα μέτρου υ 2, ενώ ο κύβος αποκτά οριζόντια ταχύτητα μέτρου V. Ο κύβος εκτελεί στη συνέχεια οριζόντια βολή και καθώς κινείται συναντά ένα κτήριο Κ2 ύψους 20m, οπότε προσκρούει στο σημείο Α της ταράτσας, που είναι το πλησιέστερο σημείο της στο κτήριο Κ1. Τα κτήρια απέχουν 20m, όπως φαίνεται στο σχήμα. Να υπολογιστούν: Δ1) η χρονική στιγμή της πρόσκρουσης του κύβου στο σημείο Α, Δ2) το μέτρο V της ταχύτητας του κύβου αμέσως μετά τη διέλευση του βλήματος, Δ3) το μέτρο της ταχύτητας του κύβου πριν ακριβώς προσκρούσει στο σημείο Α, Δ4) η απώλεια της μηχανικής ενέργειας του συστήματος βλήμα-κύβος κατά τη διέλευση του βλήματος από τον κύβο. Δίνονται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10m/s 2 και ότι η αντίσταση του αέρα θεωρείται αμελητέα.

32 Ορισμένη ποσότητα ιδανικού μονοατομικού αερίου βρίσκεται στην κατάσταση θερμοδυναμικής ισορροπίας Α, όπου η πίεσή του είναι p A = 2 atm, ο όγκος του είναι V A = 5 L και η απόλυτη θερμοκρασία του είναι Τ Α = 600 Κ. Το αέριο υποβάλλεται σε αντιστρεπτή κυκλική μεταβολή, η οποία αποτελείται από τις εξής επιμέρους αντιστρεπτές μεταβολές: Α Β: ισοβαρής ψύξη μέχρι να υποδιπλασιαστεί η απόλυτη θερμοκρασία του. Β Γ: ισόθερμη εκτόνωση. Γ Α: ισόχωρη θέρμανση μέχρι την αρχική του θερμοκρασία. Δ1) Να υπολογίσετε, σε mol, την ποσότητα του ιδανικού αερίου. Μονάδες 4 Δ2) Να υπολογίσετε τον όγκο και την πίεση του αερίου στην κατάσταση Γ. Μονάδες 2+4 Δ3) Να σχεδιάσετε τη κυκλική μεταβολή σε διάγραμμα p-v με βαθμολογημένους άξονες. Δ4) Να υπολογίσετε το συνολικό ποσό θερμότητας που αντάλλαξε το αέριο με το περιβάλλον του κατά τη παραπάνω κυκλική μεταβολή. Μονάδες 8 Δίνονται: N 5 1 atm = 10, 1 L = 10-3 m 3 και ln 2 0,7 m 2,η σταθερά των ιδανικών αερίων 25 J R 3 mol K C V 3 R. 2 και η γραμμομοριακή ειδική θερμότητα του αερίου υπό σταθερό όγκο

33 Μια ποσότητα ιδανικού αερίου εκτελεί την αντιστρεπτή κυκλική μεταβολή ΑΒΓΔΑ που φαίνεται στο παρακάτω διάγραμμα p V. p (atm) 4 A Δ T Δ 2 B Γ T Γ T A = 400 K V (L) Δ1) Να χαρακτηρίσετε τις επιμέρους αντιστρεπτές μεταβολές από τις οποίες αποτελείται η κυκλική μεταβολή ΑΒΓΔΑ. Μονάδες 4 Δ2) Να υπολογίσετε την απόλυτη θερμοκρασία του αερίου στις καταστάσεις θερμοδυναμικής ισορροπίας Γ και Δ. Δ3) Να βρείτε σε ποιες επιμέρους μεταβολές του παραπάνω κύκλου το αέριο απορροφά θερμότητα από το περιβάλλον και να υπολογίσετε την τιμή της θερμότητας που απορροφάται. Μονάδες 8 Δ4) Να υπολογίσετε το συνολικό έργο του αερίου κατά την κυκλική μεταβολή ΑΒΓΔΑ. 5 N Δίνονται: 1atm 10 και ln 2 0,7. m 2 Οι γραμμομοριακές ειδικές θερμότητες του αερίου υπό σταθερό όγκο C V 3 R 2 και υπό σταθερή πίεση 5 C P R. 2

34 Ένα ξύλινο κιβώτιο μάζας M = 20 kg βρίσκεται ακίνητο στην άκρη της ταράτσας ενός ουρανοξύστη η οποία βρίσκεται σε ύψος Η = 80 m πάνω από το οριζόντιο έδαφος, όπως φαίνεται στο παρακάτω σχήμα. Ένα βλήμα μάζας m = 500 g, που κινείται με οριζόντια ταχύτητα μέτρου υ = 200 m s, συγκρούεται με το ακίνητο κιβώτιο, το διαπερνά και εξέρχεται απ αυτό με ταχύτητα υ1 που έχει μέτρο υποδιπλάσιο της ταχύτητας υ. Αμέσως μετά τη κρούση και τα δύο σώματα (ξύλινο κιβώτιο και βλήμα), εκτελούν οριζόντια βολή. m υ Μ Η Οριζόντιο έδαφος Δ1) Να υπολογίσετε την ταχύτητα του κιβωτίου αμέσως μετά την κρούση. Δ2) Να υπολογίσετε τη θερμότητα που απελευθερώθηκε στο περιβάλλον λόγω της κρούσης του βλήματος με το κιβώτιο. Δ3) Αν υποθέσετε ότι η χρονική διάρκεια της κίνησης του βλήματος μέσα στο κιβώτιο είναι Δt= 0,1 s, να υπολογίσετε τη μέση δύναμη F, που δέχθηκε το βλήμα από το κιβώτιο. Το κιβώτιο αλλά και το βλήμα μετά την οριζόντια βολή που εκτελούν, πέφτουν στο έδαφος στα σημεία Α και Β αντίστοιχα. Δ4) Να υπολογίσετε την απόσταση ΑΒ. m Δίνονται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g= 10 και ότι κατά τις κινήσεις 2 s των σωμάτων θεωρούμε μηδενική την αντίσταση του αέρα.

35 Ένα κιβώτιο μάζας Μ = 970 g βρίσκεται ακίνητο πάνω σε οριζόντιο δάπεδο με το οποίο εμφανίζει συντελεστή τριβής ολίσθησης μ = 0,2. Βλήμα μάζας m = 30 g κινείται με οριζόντια ταχύτητα m μέτρου υ = 200, συγκρούεται με το ακίνητο κιβώτιο και σφηνώνεται σ αυτό, οπότε s δημιουργείται συσσωμάτωμα. m υ Μ Δ1) Να υπολογίσετε το μέτρο της ταχύτητας με την οποία ξεκινά να κινείται το συσσωμάτωμα. Δ2) Να βρείτε το μέτρο της μέσης δύναμης F που ασκείται από το βλήμα στο κιβώτιο, αν το βλήμα ακινητοποιήθηκε μέσα στο κιβώτιο σε χρονικό διάστημα Δt = 0,01 s. Δ3) Να υπολογίσετε την απώλεια της κινητικής ενέργειας του συστήματος κιβώτιο-βλήμα λόγω της κρούσης. Δ4) Να βρείτε το διάστημα που θα διανύσει το συσσωμάτωμα, αμέσως μετά την κρούση, μέχρι να σταματήσει. m Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10. s 2

36 Μια ποσότητα n = 2 R mol ιδανικού αερίου (το R είναι αριθμητικά ίσο με τη σταθερά των ιδανικών J αερίων εκφρασμένη σε ) βρίσκεται στην κατάσταση θερμοδυναμικής ισορροπίας Α, όπου η mol K πίεσή του είναι p A = 3 atm, ο όγκος του V A και η απόλυτη θερμοκρασία Τ Α = 300 Κ. Το αέριο υποβάλλεται στις παρακάτω αντιστρεπτές μεταβολές: Α Β: ισοβαρή θέρμανση μέχρι να διπλασιαστεί η απόλυτη θερμοκρασία του. Β Γ: ισόχωρη ψύξη μέχρι να υποτριπλασιαστεί η απόλυτη θερμοκρασία του. Δ1) Να υπολογίσετε τον όγκο του αερίου στην αρχική του κατάσταση. Δ2) Να υπολογίσετε την πίεση του αερίου στην τελική του κατάσταση. Δ3) Να υπολογίσετε το έργο του αερίου κατά την συνολική μεταβολή Α Β Γ. Δ4) Να σχεδιάσετε τις μεταβολές σε διάγραμμα p-v με βαθμολογημένους άξονες. 5 N Δίνεται ότι 1 atm = 10. m 2 Μονάδες 5 Μονάδες 8

37 Ένα ξύλινο κιβώτιο μάζας M = 1,95 kg βρίσκεται ακίνητο στην άκρη κατακόρυφης χαράδρας η οποία βρίσκεται σε ύψος Η = 45 m, πάνω από την επιφάνεια της θάλασσας, όπως φαίνεται στο παρακάτω σχήμα. Βλήμα μάζας m = 50 g, που κινείται με οριζόντια ταχύτητα υ = 100 m s, συγκρούεται με το ακίνητο κιβώτιο και σφηνώνεται σ αυτό. Στη συνέχεια, το συσσωμάτωμα κιβώτιο-βλήμα που δημιουργείται, εκτελεί οριζόντια βολή με την ταχύτητα που απέκτησε και πέφτει προς την θάλασσα αμέσως μετά την κρούση. Να υπολογίσετε: υ Μ m Η Θάλασσα Δ1) Την ταχύτητα V Σ του συσσωματώματος κιβώτιο-βλήμα αμέσως μετά την κρούση. Δ2) Την απώλεια της κινητικής ενέργειας του συστήματος κιβώτιο-βλήμα λόγω της κρούσης. Δ3) Το χρόνο που διαρκεί η κάθοδος του συσσωματώματος, μέχρι αυτό να φτάσει στην επιφάνεια της θάλασσας. Δ4) Την μέγιστη οριζόντια απόσταση s, που θα διανύσει το συσσωμάτωμα (βεληνεκές), φτάνοντας στην επιφάνεια της θάλασσας. m Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γής g = 10 και ότι κατά την κίνηση 2 s του συσσωματώματος κιβώτιο-βλήμα θεωρούμε την αντίσταση από τον αέρα μηδενική.

38 Ποσότητα ιδανικού αερίου βρίσκεται σε θερμοδυναμική ισορροπία στην κατάσταση Α μέσα σε κατακόρυφο κυλινδρικό δοχείο. Ο όγκος του αερίου είναι V A = 4 L και η πίεση του p A = 1 atm. Το δοχείο έχει διαθερμικά τοιχώματα, είναι σκεπασμένο με αεροστεγές έμβολο εμβαδού Α = 40 cm 2 και βρίσκεται σε λουτρό θερμότητας με θερμοκρασία Τ = 300 Κ. Από την κατάσταση Α συμπιέζουμε το έμβολο και με μία αντιστρεπτή μεταβολή φέρνουμε το αέριο στην κατάσταση Β όπου p Β = 2 atm. Αφαιρούμε το δοχείο από το λουτρό θερμότητας και κρατώντας σταθερή την πίεση του αερίου το θερμαίνουμε μέχρι να φτάσει σε μια κατάσταση Γ. Στην κατάσταση Γ στερεώνουμε το έμβολο ώστε να μην μπορεί να κινηθεί και ψύχουμε το δοχείο. Με αυτή την αντιστρεπτή μεταβολή το αέριο επανέρχεται στην αρχική του κατάσταση Α. Κατά την μεταβολή ΓΑ η μεταβολή της εσωτερικής ενέργειας του αερίου είναι J. Δ1) Να υπολογίσετε πόσο θα μετακινηθεί το έμβολο ώστε το αέριο από την κατάσταση Α να μεταβεί στην κατάσταση Β. Μονάδες 5 Δ2) Να υπολογίσετε τον λόγο όπου υ ενα και υ ενγ οι ενεργές ταχύτητες των μορίων του αερίου στην κατάσταση Α και Γ αντίστοιχα. Δ3) Να υπολογίσετε το συντελεστή γ του αερίου. Δ4) Να υπολογίσετε το συνολικό έργο της κυκλικής μεταβολής. Δίνεται ότι 1atm=10 5 και ln2=0,7

39 Η ταράτσα ενός κτιρίου βρίσκεται σε ύψος H = 20 m από το έδαφος. Ένα κουτί Α μάζας m 1 = 3 kg είναι δεμένο σε σχοινί μήκους L και κάνει ομαλή κυκλική κίνηση κινούμενο πάνω στην επιφάνεια της ταράτσας (βλ. σχήμα 1). To κουτί κινείται με ταχύτητα υ = 20 m/s και κάνει μία πλήρη περιστροφή σε χρόνο 0,2 π s. Στην κατάλληλη θέση το σχοινί κόβεται ώστε το κουτί Α αφού ολισθήσει να συγκρουστεί πλαστικά με ένα άλλο κουτί Β μάζας m 2 = 1 kg που βρίσκεται στην άκρη της ταράτσας. Αμέσως μετά την σύγκρουση το συσσωμάτωμα εγκαταλείπει την ταράτσα με οριζόντια ταχύτητα μέτρου υ 0. Δ1) Να υπολογίσετε το μήκος του σχοινιού που είναι δεμένο το κουτί Α. Μονάδες 4 Δ2) Να υπολογίσετε την ταχύτητα υ 0 με την οποία το συσσωμάτωμα εγκαταλείπει την ταράτσα καθώς και πόσο μακριά από το κτίριο το συσσωμάτωμα χτυπά το έδαφος. Μονάδες 8 Δ3) Να υπολογίσετε την ταχύτητα με την οποία το συσσωμάτωμα χτυπά το έδαφος (μέτρο και κατεύθυνση). Δ4) Έστω ότι σε απόσταση d = 15 m από την βάση του κτιρίου βρίσκεται στύλος ύψους h = 6 m (Σχήμα 2). Ο στύλος βρίσκεται στο ίδιο επίπεδο με την τροχιά του συσσωματώματος. Να αιτιολογήσετε αν το συσσωμάτωμα θα χτυπήσει στο στύλο ή αν θα περάσει πάνω από αυτόν. Να θεωρήσετε την αντίσταση του αέρα αμελητέα και να αγνοήσετε την τριβή για όλη την κίνηση του κουτιού Α πάνω στην ταράτσα. Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g=10 m/s 2. L A υ B υ 0 Η Η d h Σχήμα 1. Σχήμα 2.

40 Ιδανικό μονατομικό αέριο πραγματοποιεί την ακόλουθη κυκλική αντιστρεπτή μεταβολή. Από την κατάσταση θερμοδυναμικής ισορροπίας Α, όπου p A = Ν/m 2, V A = m 3 και Τ Α = 600 Κ εκτονώνεται ισόθερμα στην κατάσταση Β. Στη συνέχεια ψύχεται ισόχωρα μέχρι την κατάσταση Γ, στην οποία η πίεση είναι p Γ = 10 5 Ν/m 2, και τέλος συμπιέζεται αδιαβατικά μέχρι την αρχική κατάσταση. Δ1) Να σχεδιάσετε σε διάγραμμα p-v ποιοτικά (χωρίς αριθμούς) την κυκλική μεταβολή. Μονάδες 4 Δ2) Να υπολογίσετε την πίεση, τον όγκο και την θερμοκρασία του αερίου στις καταστάσεις Γ και Β. Μονάδες 10 Δ3) Να υπολογίσετε την μεταβολή της εσωτερικής ενέργειας του αερίου κατά την ισόχωρη ψύξη. Μονάδες 4 Δ4) Να υπολογίσετε τη θερμότητα κατά την κυκλική μεταβολή, και να αιτιολογήσετε αν αυτή την απορροφά το αέριο ή αν την αποδίδει στο περιβάλλον. Δίνεται η γραμμομοριακή ειδική θερμότητα υπο σταθερό όγκο C V =, ln2 = 0,7 και ότι

41 Ποσότητα ιδανικού αερίου υφίσταται την παρακάτω κυκλική αντιστρεπτή μεταβολή: Από την κατάσταση θερμοδυναμικής ισορροπίας Α θερμαίνεται ισοβαρώς στην κατάσταση θερμοδυναμικής ισορροπίας Β όπου διπλασιάζεται η απόλυτη θερμοκρασία του (Τ Β = 2Τ Α ) και ο όγκος του γίνεται V B = 2, m 3. Από την κατάσταση θερμοδυναμικής ισορροπίας Β υφίσταται αντιστρεπτή μεταβολή στην κατάσταση θερμοδυναμικής ισορροπίας Γ, κατά την διάρκεια της οποίας διατηρείται σταθερή η εσωτερική ενέργεια του αερίου, και η πίεση του είναι p Γ = 10 5 Ν/m 2. Από την κατάσταση θερμοδυναμικής ισορροπίας Γ ψύχεται ισόχωρα μέχρι την κατάσταση θερμοδυναμικής ισορροπίας Δ όπου Τ Δ = 300 Κ και V Δ = 4, m 3. Τέλος από την κατάσταση θερμοδυναμικής ισορροπίας Δ επιστρέφει ισόθερμα στην αρχική κατάσταση Α. Δ1) Να υπολογίσετε τον όγκο του αερίου στην κατάσταση Γ και τη θερμοκρασία του σε όλες τις καταστάσεις. Δ2) Να υπολογίσετε τον όγκο του αερίου στην κατάσταση Α και την πίεση του σε όλες τις καταστάσεις. Δ3) Να υπολογίσετε τη θερμότητα που ανταλλάσσει το αέριο με το περιβάλλον κατά την ισόχωρη ψύξη και κατά την ισόθερμη συμπίεση. Μονάδες 5 Δ4) Να υπολογίσετε την μεταβολή της εσωτερικής ενέργειας του αερίου κατά την ισοβαρή θέρμανση και να σχεδιάσετε σε διάγραμμα P-V την κυκλική μεταβολή. Δίνονται η γραμμομοριακή ειδική θερμότητα υπό σταθερό όγκο C V = και ln2=0,7. Μονάδες 8

42 Σε κινηματογραφική ταινία ένα Μπόϊγκ 777 μετά από διαδοχικές βλάβες πέφτει κατακόρυφα κάνοντας ελεύθερη πτώση (οι κινητήρες του αεροπλάνου δεν λειτουργούν). Στην ταινία αυτή ένας υπερήρωας σταματάει το αεροπλάνο ασκώντας του κατακόρυφη δύναμη προς τα επάνω (βλ. φωτογραφία). Το αεροπλάνο έχει μάζα kg και όταν ο υπερήρωας αρχίζει να του ασκεί δύναμη έχει ταχύτητα 270 m/s. Το αεροπλάνο σταματά σε 30 s. Να υπολογίσετε : Δ1) το μέτρο της μεταβολής της ορμής του αεροπλάνου από τη στιγμή που δέχεται τη δύναμη από τον υπερήρωα μέχρι να σταματήσει, Μονάδες5 Δ2) τη μέση δύναμη που δέχεται το αεροπλάνο στο χρονικό διάστημα των 30 s, Μονάδες6 Δ3) τη μέση δύναμη που ασκείται στο αεροπλάνο από τον υπερήρωα, Μονάδες7 Δ4) την απόσταση που κινήθηκε το αεροπλάνο από τη στιγμή που δέχθηκε τη δύναμη μέχρι να σταματήσει. Μονάδες7 Δίνεται η επιτάχυνση της βαρύτητας g= 10 m/s 2 και ότι η αντίσταση του αέρα είναι αμελητέα.

43 Το 2014 η τεννίστρια Sabine Lisicki έκανε ένα σερβίς στο οποίο η μπάλα έφυγε από την ρακέτα με ταχύτητα υ 0 = 58 m/s. Η ταχύτητα αυτή είναι η μεγαλύτερη καταγεγραμμένη ταχύτητα για τις γυναίκες τενίστριες.το μπαλάκι υ 0 h 1 h 2 του τένις ζυγίζει 60 g και ο χρόνος επαφής του με την ρακέτα ήταν 5 ms. Θεωρούμε ότι πριν χτυπήσει η ρακέτα το μπαλάκι του τένις είχε στιγμιαία ταχύτητα μηδέν και ότι η τελική του ταχύτητα ήταν οριζόντια. Να υπολογίσετε: Δ1) τη μεταβολή της ορμής στο μπαλάκι, Μονάδες5 Δ2) τη μέση δύναμη που δέχτηκε το μπαλάκι από την ρακέτα, Μονάδες6 Δ3) την εφαπτομένη της γωνίας που σχηματίζει η ταχύτητα της μπάλας με την κατακόρυφο όταν η μπάλα χτυπάει στο έδαφος, Μονάδες7 Όταν η τενίστρια χτύπησε το μπαλάκι απείχε από το δίχτυ απόσταση d= 17,4 m και το ύψος από το οποίο ξεκίνησε την κίνησή του το μπαλάκι ήταν h 1 = 2 m. Το δίχτυ έχει ύψος h 2 = 1 m. Δ4) Να υπολογίσετε σε πόσο ύψος πάνω από το δίχτυ πέρασε το μπαλάκι. Μονάδες7 Για τους υπολογισμούς να θεωρήσετε ότι η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης είναι g= 10 m/s 2 και. d

44 Η σφαίρα του σχήματος ξεκίνησε την ομαλή κυκλική κίνησή της σε κύκλο ακτίνας ΟΑ = 2 m από τη θέση Α με σταθερoύ μέτρου γραμμική ταχύτητα υ 1. Το έντομο ξεκίνησε την ευθύγραμμη ομαλή κίνησή του από το σημείο Γ, που βρίσκεται Κ στην ίδια κατακόρυφη με την ακτίνα OA και σε απόσταση Λ ΑΓ = 0,5m κάτω από το Α, με ταχύτητα, μέτρου υ 2 = 0,1 m/s. Η έναρξη των κινήσεων ήταν ταυτόχρονη. Το στιγμιότυπο της κίνησης που φαίνεται στο σχήμα αντιστοιχεί σε χρόνο 25 s μετά την έναρξη των κινήσεων. Στο στιγμιότυπο οι θέσεις των κινητών και το κέντρο του κύκλου είναι στην ίδια ευθεία την ΟΚΛ. Δ1) Πόση είναι απόσταση ΓΛ που διένυσε το έντομο μέχρι τη θέση που φαίνεται στο στιγμιότυπο του σχήματος; Μονάδες 5 Δ2) Ποια είναι η επίκεντρη γωνία ΓΟΛ που διέγραψε η σφαίρα; Μονάδες 8 Δ3) Πόση είναι η περίοδος, η γωνιακή ταχύτητα και η γραμμική ταχύτητα της σφαίρας; Δ4) Πόση είναι η κεντρομόλος επιτάχυνση της σφαίρας; Να θεωρήσετε για την άσκηση ότι π 2 = 10.

45 Δύο σφαίρες με μάζες m 1 = 6 kg και m 2 = 4 kg κινούνται σε οριζόντιο δάπεδο με αντίθετη φορά και συγκρούονται πλαστικά. Τη στιγμή της σύγκρουσης τα μέτρα των ταχυτήτων των σφαιρών ήταν υ 1 = 20 m/s και υ 2 = 10 m/s. Δ1) Να βρεθεί η ταχύτητα του συσσωματώματος αμέσως μετά την κρούση. Μονάδες 5 Δ2) Να βρεθεί η απώλεια της μηχανικής ενέργειας του συστήματος των δύο σφαιρών κατά την πλαστική κρούση. Μονάδες 5 Δ3) Αν η κρούση διαρκεί 0,1 s, να βρεθεί το μέτρο της μέσης δύναμης που ασκεί το ένα σώμα στο άλλο. Δ4) Να βρεθεί το διάστημα για το οποίο κινήθηκε το συσσωμάτωμα μετά την κρούση. Θεωρείστε ότι κατά τη διάρκεια της κρούσης η μετατόπιση του συσσωματώματος είναι αμελητέα, ενώ ο συντελεστής τριβή συσσωματώματος δαπέδου είναι μ = 0,32. Μονάδες 8 Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10 m/s 2.

46 Ένα πουλί και ένα έντομο διέρχονται ταυτόχρονα από το σημείο επαφής των δύο εφαπτόμενων κύκλων του σχήματος. Το πουλί διαγραφεί ομαλά την τροχιά του κύκλου σε χρονικό διάστημα 2 s. Το έντομο διαγράφει τον άλλο κύκλο ομαλά σε χρονικό διάστημα 3 s. Δ1) Να υπολογίσετε τον λόγο της συχνότητας του πουλιού, προς τη συχνότητα του εντόμου. Μονάδες 5 Δ2) Να υπολογίσετε τον λόγο της γραμμικής ταχύτητας του πουλιού προς τη γραμμική ταχύτητα του εντόμου, αν ο λόγος των αντίστοιχων ακτίνων κίνησης πουλιού - εντόμου είναι R πουλ /R εντ. = 3/2. Δ3) Υπολογίστε πόσους κύκλους θα έχει κάνει το πουλί και πόσους το έντομο μέχρι να ξανασυναντηθούν για πρώτη φόρα, μετά από τη στιγμή που διήλθαν ταυτόχρονα, από το σημείο επαφής. Δ4) Σε πόσο χρόνο θα ξανασυναντηθούν για δεύτερη φορά;

47 Σε σώμα μάζας m που κινείται με ταχύτητα μέτρου υ 0, σε λείο οριζόντιο δάπεδο, δρα δύναμη σταθερού μέτρου F, με κατεύθυνση αντίθετη της 0. Θεωρούμε θετική την κατεύθυνση της 0. Όταν η μεταβολή της ορμής του σώματος είναι -3 m υ 0 να υπολογιστούν: Δ1) Η ταχύτητα του σώματος. Δ2) Η χρονική διάρκεια κατά την οποία προκλήθηκε η προηγούμενη μεταβολή ορμής. Δ3) Το έργο της δύναμης F για την μετατόπιση κατά την οποία η δύναμη F είναι ομόρροπη με την ταχύτητα του σώματος. Δ4) Το μέτρο της μετατόπισης που αντιστοιχεί στο έργο που υπολογίσατε στο ερώτημα Δ3. Οα απαντήσεις σας θα πρέπει να είναι εκφράσεις των m, F, και υ 0.

48 Στις παρακάτω γραφικές παραστάσεις φαίνονται οι θέσεις δύο σωμάτων, A και Β που συγκρούονται στη θέση x = 4 m, σε συνάρτηση με το χρόνο. Η μάζα του σώματος Α είναι m A = 1 kg και η μάζα του σώματος Β είναι m B = 3 kg. Δ1) Να μεταφέρετε στο απαντητικό σας φύλλο και να συμπληρώσετε τον πίνακα που ακολουθεί. Ταχύτητα Ορμή Κινητική Ενέργεια Πριν την Κρούση Μετά την κρούση Α Β Α Β Μονάδες 12 Δ2) Με βάση τον προηγούμενο πίνακα, να εξηγήσετε ποιες αρχές διατήρησης ισχύουν στη συγκεκριμένη κρούση. Μονάδες 3 Δ3) Αν η χρονική διάρκεια του φαινομένου της κρούσης είναι Δt = 0,01 s, (που είναι τόσο μικρό ώστε δεν μπορεί να παρασταθεί στην κλίμακα του χρόνου που έχουμε διαλέξει για τα διαγράμματα θέσης χρόνου) να βρεθεί η δύναμη που άσκησε το σώμα Α στο σώμα Β κατά τη διάρκεια της κρούσης. Μονάδες 5 Δ4) Να βρεθεί το ποσοστό της κινητικής ενέργεια του κινούμενου σώματος που μεταφέρθηκε στο ακίνητο ως αποτέλεσμα της κρούσης. Μονάδες 5

49 Δύο σώματα κινούνται με σταθερές ταχύτητες στην ίδια οριζόντια ευθεία. Στον πίνακα, φαίνονται οι θέσεις από τις οποίες διέρχονται τα σώματα Α και Β κάθε δευτερόλεπτο. ΣΩΜΑ (Α) ΣΩΜΑ (Β) ΧΡΟΝΟΣ (s) ΘΕΣΗ (m) ΘΕΣΗ (m) Δ1) Σε ποια θέση συγκρούονται τα σώματα; Μονάδες 3 Δ2) Ποιες είναι οι ταχύτητες των σωμάτων πριν και μετά τη σύγκρουσή τους; Μονάδες 10 Δ3) Να βρείτε τη σχέση που ικανοποιούν οι μάζες των δύο σωμάτων. Δ4) Να ελέγξετε αν διατηρείται η μηχανική ενέργεια του συστήματος. Μονάδες 5

50 Τα καρότσια που φαίνονται στην πιο κάτω εικόνα βρίσκονται ακίνητα πάνω στην οριζόντια επιφάνεια του πάγκου στο εργαστήριο Φυσικών Επιστημών, και συνδέονται μεταξύ τους με νήμα. Ένα ελατήριο ελάχιστης μάζας, το οποίο είναι σταθερά συνδεδεμένο στο καρότσι Α, βρίσκεται συμπιεσμένο ανάμεσά τους. Κάποια στιγμή καίμε το νήμα που συνδέει τα δύο καρότσια, τα καρότσια απελευθερώνονται, κινούνται αντίθετα και φτάνουν ταυτόχρονα στις άκρες του πάγκου. Αν αγνοήσουμε τις τριβές κατά την κίνηση των καροτσιών, να υπολογίσετε: Δ1) Το λόγο του μέτρου της ταχύτητα του Α προς το μέτρο της ταχύτητας του Β, υ Α /υ Β, κατά τη διάρκεια της κίνησης των καροτσιών. Μονάδες 3 Δ2) Το λόγο των μαζών τους, m A / m B καθώς και το λόγο των μέτρων των ορμών τους p A / p B των καροτσιών Α και Β. Μονάδες 8 Δ3) Το λόγο των μέσων τιμών των δυνάμεων F A / F B που αναπτύχθηκαν στα καρότσια αμέσως μετά την καύση του νήματος και για όσο χρονικό διάστημα τα καρότσια ήταν σε επαφή με το ελατήριο. Δ4) Το λόγο των κινητικών ενεργειών Κ Α /Κ Β, που απέκτησαν τα καρότσια. Μονάδες 8

51 Ορισμένη ποσότητα ιδανικού αερίου μιας θερμικής μηχανής Μ, υποβάλλεται στην αντιστρεπτή κυκλική μεταβολή Το αέριο ξεκινά από την κατάσταση θερμοδυναμικής ισορροπίας 1, όπου V 1 = 2 L και p 1 = N/m 2, Τ 1 = 600 Κ, ακολουθεί μια ισόθερμη εκτόνωση 1 2 μέχρι ο όγκος να γίνει V 2 = 8 L, και στην συνέχεια υφίσταται μια ισόχωρη ψύξη 2 3 μέχρι τη θερμοκρασία T 3 = 300 Κ. Η επόμενη μεταβολή είναι μια ισόθερμη συμπίεση 3 4, μέχρι ο όγκος να γίνει V 1, και ο κύκλος ολοκληρώνεται με μια ισόχωρη θέρμανση μέχρι την αρχική κατάσταση 1. Δ1) Να υπολογιστεί η πίεση του αερίου στις καταστάσεις 4 και 2. Μονάδες 5 Δ2) Να σχεδιαστεί σε διάγραμμα p V η κυκλική μεταβολή λαμβάνοντας υπόψη τις τιμές των μεγεθών p και V που υπολογίσατε. Δ3) Να υπολογιστεί το ποσό της θερμότητας που μεταφέρθηκε από το περιβάλλον στο αέριο στην ισόχωρη μεταβολή 4 1. Δ4) Να υπολογιστεί ο συντελεστής απόδοσης της ιδανικής θερμικής μηχανής Carnot που λειτουργεί μεταξύ των θερμοκρασιών Τ 1 και Τ 3. Χωρίς να υπολογίσετε την απόδοση της μηχανής Μ, να εξηγήσετε αν είναι μικρότερη ή μεγαλύτερη από την απόδοση της προηγούμενης μηχανής Carnot. Δίνονται C V = 3R/2 και ότι 1 L = 10-3 m 3.

52 α. φ = 45 ο, β. φ < 45 ο, γ. φ > 45 ο Μονάδες 8 ΘΕΜΑ Δ Ένας μικρός ξύλινος κύβος μάζας Μ = 30 g ηρεμεί αρχικά στο άκρο Α του πάγκου του σχολικού εργαστηρίου, που έχει ύψος h = 0,8 m από το οριζόντιο δάπεδο. Εκτοξεύουμε ένα κομμάτι πλαστελίνης μάζας m = 10 g ώστε να συγκρουστεί με οριζόντια ταχύτητα u π με τον ξύλινο κύβο. Η κρούση είναι πλαστική και αμέσως μετά το συσσωμάτωμα εκτελεί οριζόντια βολή. To συσσωμάτωμα έπεσε στο πάτωμα σε οριζόντια απόσταση S = 0,8 m από το σημείο βολής. Δ1) Να υπολογίσετε την οριζόντια ταχύτητα του συσσωματώματος αμέσως μετά την κρούση. Δ2) Ποια η ταχύτητα u π με την οποία συγκρούστηκε η πλαστελίνη με το ξύλινο σώμα; Μονάδες 5 Δ3) Να υπολογίσετε την απώλεια κινητικής ενέργειας για το σύστημα πλαστελίνη-ξύλινος κύβος λόγω της κρούσης. Δ4) Ένας συμμαθητής σας ισχυρίζεται, πως «είδε» ότι το συσσωμάτωμα έπεσε υπό γωνία φ = 45 ο ως προς το πάτωμα. Όμως είναι πολύ δύσκολο να μετρηθεί άμεσα η γωνία αυτή για να ελεγχθεί ο ισχυρισμός του. Με τα δεδομένα που έχετε, να αναπτύξτε κάποια άλλη μέθοδο για να ελέγξετε τον παραπάνω ισχυρισμό. Ποιο από τα επόμενα συμπεράσματα είναι αυτό στο οποίο καταλήγετε; Να θεωρήσετε αμελητέες οποιεσδήποτε αντιστάσεις ή τριβές και ότι η επιτάχυνση της βαρύτητας έχει τιμή g = 10 m/s 2. Επιπλέον δίνεται ότι εφ45 0 = 1

53 Συμπαγής ελαστική μπάλα μάζας m = 0,5 kg αφήνεται ελεύθερη από ύψος h = 1,25 m πάνω από οριζόντιο μαρμάρινο δάπεδο. Αν μετά από την πρώτη αναπήδηση η μπάλα φτάνει στην ίδια θέση απ όπου αφέθηκε μετά από χρόνο 1,1 s, τότε : Δ1) Να υπολογιστεί η ορμή της μπάλας αμέσως πριν και αμέσως μετά την κρούση με το δάπεδο, Μονάδες 8 Δ2) Να σχεδιαστούν τα διανύσματα: της αρχικής και τελικής ορμής καθώς και της μεταβολής της ορμής. Να υπολογιστεί το μέτρο της μεταβολής της ορμής της μπάλας κατά την κρούση, Μονάδες 8 Δ3) Να σχεδιαστούν ποιοτικά τα διανύσματα των δυνάμεων που ασκούνται στη μπάλα κατά τη διάρκεια της κρούσης και να βρεθεί η μέση δύναμη που δέχεται το δάπεδο κατά τη διάρκεια της σύγκρουσης μπάλας και δαπέδου. Μονάδες 9 Θεωρήστε ότι δεν υπάρχει αντίσταση του αέρα και ότι η επιτάχυνση της βαρύτητας είναι g = 10 m/s 2

Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης.

Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης. Σε οριζόντιο επίπεδο βρίσκεται ακίνητο ένα μήλο μάζας Μ = 200 g. Ένα μικρό βέλος μάζας m = 40 g κινείται οριζόντια με ταχύτητα μέτρου, υ 1 = 10 m / s, χτυπά το μήλο με αποτέλεσμα να το διαπεράσει. Αν γνωρίζετε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ ΘΕΜΑ 1 ο 17/4/2015 Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

8 2.ΘΕΜΑ B 2-16138 Β.1

8 2.ΘΕΜΑ B 2-16138 Β.1 1 ΘΕΜΑ B Καταστατική εξίσωση των ιδανικών αερίων 1.ΘΕΜΑ Β 2-16146 Β.1 Μια ποσότητα ιδανικού αερίου βρίσκεται σε κατάσταση θερμοδυναμικής ισορροπίας, καταλαμβάνει όγκο V, έχει απόλυτη θερμοκρασία Τ, ενώ

Διαβάστε περισσότερα

m A m B Δ4) Να υπολογιστεί το ποσό θερμικής ενέργειας (θερμότητας) που ελευθερώνεται εξ αιτίας της κρούσης των δύο σωμάτων.

m A m B Δ4) Να υπολογιστεί το ποσό θερμικής ενέργειας (θερμότητας) που ελευθερώνεται εξ αιτίας της κρούσης των δύο σωμάτων. Το σώμα Α μάζας m A = 1 kg κινείται με ταχύτητα u 0 = 8 m/s σε λείο οριζόντιο δάπεδο και συγκρούεται μετωπικά με το σώμα Β, που έχει μάζα m B = 3 kg και βρίσκεται στο άκρο αβαρούς και μη εκτατού (που δεν

Διαβάστε περισσότερα

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ . ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ 1. Σε µια ισόθερµη µεταβολή : α) Το αέριο µεταβάλλεται µε σταθερή θερµότητα β) Η µεταβολή της εσωτερικής ενέργειας είναι µηδέν V W = PV ln V γ) Το έργο που παράγεται δίνεται

Διαβάστε περισσότερα

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 8 αυτοκίνητα σταθμευμένα ένα μετά το άλλο κάτω από μια οριζόντια πλατφόρμα. Το κάθε αυτοκίνητο έχει μήκος d = 3 m και ύψος h = 1,2 m. Τo

Διαβάστε περισσότερα

2. Κιβώτιο μάζας Μ = 995 g κρέμεται ακίνητο στη μια άκρη αβαρούς μη εκτατού νήματος μήκους l = 1 m από το κλαδί ενός δέντρου.

2. Κιβώτιο μάζας Μ = 995 g κρέμεται ακίνητο στη μια άκρη αβαρούς μη εκτατού νήματος μήκους l = 1 m από το κλαδί ενός δέντρου. 1. Ο μπάρμαν σπρώχνει ένα ποτήρι μπίρας πάνω στον πάγκο του μπαρ, το ο- ποίο γλιστράει και πέφτει στο πάτωμα σε απόσταση d = 1,4m από τη βάση του πάγκου. Αν το ύψος του πάγκου είναι h = 0,8m, να υπολογίσετε:

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Β ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΑΤΟΛΙΣΜΟΥ Διαγωνίσματα 2014-2015 1 ο Διαγώνισμα Θεματικό πεδίο: Επαναληπτικό (Οριζόντια ολή Κυκλική Κίνηση Κρούσεις) Ημερομηνία 16 οεμβρίου 2014 Διάρκεια Επιμέλεια 2 Ώρες ΘΕΜΑ 1 25

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια 1 ΘΕΜΑ 1 ο Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ 1. οχείο σταθερού όγκου περιέχει ορισµένη ποσότητα ιδανικού αερίου. Αν θερµάνουµε το αέριο µέχρι να τετραπλασιαστεί η απόλυτη θερµοκρασία

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 Α4 και δίπλα το γράμμα

Διαβάστε περισσότερα

2. Ασκήσεις Θερμοδυναμικής. Ομάδα Γ.

2. Ασκήσεις Θερμοδυναμικής. Ομάδα Γ. . σκήσεις ς. Ομάδα..1. Ισοβαρής θέρμανση και έργο. Ένα αέριο θερμαίνεται ισοβαρώς από θερμοκρασία Τ 1 σε θερμοκρασία Τ, είτε κατά την μεταβολή, είτε κατά την μεταβολή Δ. i) Σε ποια μεταβολή παράγεται περισσότερο

Διαβάστε περισσότερα

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου;

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου; E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ 1. Β2.25 Θερµική µηχανή είναι, α) το τρόλεϊ; β) ο φούρνος; γ) το ποδήλατο; δ) ο κινητήρας του αεροπλάνου; Επιλέξτε τη σωστή απάντηση. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση B' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΖΗΤΗΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Ο Να επιλέξετε τη σωστή απάντηση σε κάθε μία από τις ερωτήσεις - που ακολουθούν: Η ενεργός ταχύτητα των μορίων ορισμένης ποσότητας

Διαβάστε περισσότερα

Επαναληπτικό Χριστουγέννων Β Λυκείου

Επαναληπτικό Χριστουγέννων Β Λυκείου Επαναληπτικό Χριστουγέννων Β Λυκείου 1.Ποιά από τις παρακάτω προτάσεις είναι σωστή ; Σύµφωνα µε τον 1ο θερµοδυναµικό νόµο το ποσό της θερµότητας που απορροφά η αποβάλει ένα θερµοδυναµικό σύστηµα είναι

Διαβάστε περισσότερα

Οριζόντια βολή κυκλική κίνηση Ορμή-Κρούσεις

Οριζόντια βολή κυκλική κίνηση Ορμή-Κρούσεις 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Οριζόντια βολή κυκλική κίνηση Ορμή-Κρούσεις ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Ευθύγραμμη ομαλή κίνηση: Είναι κάθε ευθύγραμμη κίνηση στην οποία το διάνυσμα

Διαβάστε περισσότερα

(ΙΙ) τα πάνω με σταθερή επιτάχυνση μέτρου α = 2g, όπου g η επιτάχυνση της βαρύτητας.

(ΙΙ) τα πάνω με σταθερή επιτάχυνση μέτρου α = 2g, όπου g η επιτάχυνση της βαρύτητας. ΘΕΜΑ Β Β 1. Μικρή σφαίρα αφήνεται να πέσει από αρχικό μικρό ύψος H, πάνω από το έδαφος και εκτελώντας ελεύθερη πτώση πέφτει στο έδαφος. K (Ι) K (ΙΙ) K (ΙΙΙ) 0 Η y 0 H y 0 H y Α) Να επιλέξετε την σωστή

Διαβάστε περισσότερα

β) το αυτοκίνητο τη χρονική στιγμή t = 2 s έχει ταχύτητα μέτρου υ 4. s γ) στο αυτοκίνητο ασκείται σταθερή συνισταμένη δύναμη μέτρου 1 Ν.

β) το αυτοκίνητο τη χρονική στιγμή t = 2 s έχει ταχύτητα μέτρου υ 4. s γ) στο αυτοκίνητο ασκείται σταθερή συνισταμένη δύναμη μέτρου 1 Ν. ΘΕΜΑ Β Β 1. Ένα παιγνίδι - αυτοκινητάκι μάζας 1 Kg είναι ακίνητο στη θέση x = 0 m. Την χρονική στιγμή t = 0 s ξεκινά να κινείται ευθύγραμμα. Στον παρακάτω πίνακα φαίνονται οι τιμές της θέσης του αυτοκινήτου

Διαβάστε περισσότερα

Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση

Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση 1. Mόλις τεθεί σε κίνηση µε σταθερή ταχύτητα, ο µάζας 1000 kg ανελκυστήρας Α ανεβαίνει µε ρυθµό έναν όροφο (3 m) το δευτερόλεπτο.

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 έως Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 15 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 1 Μαΐου 15 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

ΘΕΜΑ Β. διπλανό διάγραμμα. Αν t 2 =2 t 1 και t 3 =3 t 1 τότε -F

ΘΕΜΑ Β. διπλανό διάγραμμα. Αν t 2 =2 t 1 και t 3 =3 t 1 τότε -F ΘΕΜΑ Β Β 1. Ένας μικρός μεταλλικός κύβος βρίσκεται αρχικά ακίνητος σε λείο οριζόντιο δάπεδο. Στον κύβο ασκείται την χρονική στιγμή t= 0 s οριζόντια δύναμη της οποίας η τιμή σε συνάρτηση με το χρόνο παριστάνεται

Διαβάστε περισσότερα

Β1) Ένα σώμα κινείται σε οριζόντιο δάπεδο με σταθερή ταχύτητα μέτρου 4 m/s με την επίδραση οριζόντιας σταθερής δύναμης μέτρου ίσου με 40 N.

Β1) Ένα σώμα κινείται σε οριζόντιο δάπεδο με σταθερή ταχύτητα μέτρου 4 m/s με την επίδραση οριζόντιας σταθερής δύναμης μέτρου ίσου με 40 N. ΘΕΜΑ Β Β1) Ένα σώμα κινείται σε οριζόντιο δάπεδο με σταθερή ταχύτητα μέτρου 4 m/s με την επίδραση οριζόντιας σταθερής δύναμης μέτρου ίσου με 40 N. Α) Να επιλέξετε τη σωστή πρόταση. Ο ρυθμός με τον οποίο

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Θέμα 1o A Λυκείου 22 Μαρτίου 28 Στις ερωτήσεις Α,Β,Γ,Δ,E μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 9η Ολυμπιάδα Φυσικής Γ Λυκείου (Β φάση) Κυριακή 9 Μαρτίου 01 Ώρα:.00-1.00 ΟΔΗΓΙΕΣ: 1. Το δοκιμιο αποτελειται απο εννεα (9) σελιδες και επτα (7) θεματα.. Να απαντησετε σε ολα τα θεματα του δοκιμιου.. Μαζι

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε

ΔΙΑΓΩΝΙΣΜΑ Α. και d B οι πυκνότητα του αερίου στις καταστάσεις Α και Β αντίστοιχα, τότε ΔΙΑΓΩΝΙΣΜΑ Α Θέµα ο Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση Σύµφωνα µε την κινητική θεωρία των ιδανικών αερίων, η πίεση

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Δ.

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Δ. 1.1. Μηχανικές. Ομάδα Δ. 1.1.51. Συνάντηση σωμάτων που ταλαντώνονται. Τα σώματα Α και Β του σχήματος έχουν ίσες μάζες m 1 =m 2 =m=1kg. Τα δύο σώματα ισορροπούν πάνω στο λείο οριζόντιο δάπεδο, με τα ελατήρια

Διαβάστε περισσότερα

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί η σωστή απάντηση. Ένας ακίνητος τρoχός δέχεται σταθερή συνιστάμενη ροπή ως προς άξονα διερχόμενο

Διαβάστε περισσότερα

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου

Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Φυσική Α Λυκείου Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Φυσική Α Λυκείου Στο παρών παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 2 ο, 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 23/4/2009

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 23/4/2009 ΕΠΩΝΥΜΟ:........................ ΟΝΟΜΑ:........................... ΤΜΗΜΑ:........................... ΤΣΙΜΙΣΚΗ & ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ : 7077 594 ΑΡΤΑΚΗΣ 1 Κ. ΤΟΥΜΠΑ THΛ : 919113 9494 www.syghrono.gr ΗΜΕΡΟΜΗΝΙΑ:.....................

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:...

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:... ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: Φυσική ΤΑΞΗ: Α ΗΜΕΡΟΜΗΝΊΑ: 27 Μαίου 2011 ΧΡΟΝΟΣ: 2 ώρες ΩΡΑ: 11.00 1.00 ΒΑΘΜΟΣ: Αριθμητικά:... Ολογράφως:...

Διαβάστε περισσότερα

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ 1 Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 50. Σε ένα σώμα μάζας m=2kg που ηρεμεί σε λείο επίπεδο ενεργεί οριζόντια δύναμη F=10Ν για χρόνο t=20s. Να βρεθεί πόσο διάστημα διανύει το σώμα σε χρόνο 25s και να γίνει γραφική παράσταση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ B' ΛΥΚΕΙΟΥ 16/11/2014

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ B' ΛΥΚΕΙΟΥ 16/11/2014 ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... www.syghrono.gr ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ B' ΛΥΚΕΙΟΥ 16/11/2014

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΗ ΛΥΕΙΟΥ ΘΕΤΙΗΣ Ι ΤΕΧ/ΗΣ ΤΕΥΘΥΝΣΗΣ ΘΕΜ : Στις ερωτήσεις - να γράψετε στο φύλλο απαντήσεων τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Στις ερωτήσεις -5 να γράψετε

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Απριλίου, 2014 Ώρα: 10:00-13:00 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση. Γενικές οδηγίες: 1.

Διαβάστε περισσότερα

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α)

Α. ΝΟΜΟΙ ΑΕΡΙΩΝ. 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) Α. ΝΟΜΟΙ ΑΕΡΙΩΝ 1. Β1.3 Να αντιστοιχίσετε τις µεταβολές της αριστερής στήλης σε σχέσεις τις δεξιάς στήλης. 1) Ισόθερµη µεταβολή α) P = σταθ. V P 2) Ισόχωρη µεταβολή β) = σταθ. 3) Ισοβαρής µεταβολή γ) V

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ Φυσική Κατεύθυνσης Β Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ κ ΙΑΓΩΝΙΣΜΑ Β Θέµα ο Να επιλέξετε τη σωστή απάντηση σε κάθε µία από τις παρακάτω ερωτήσεις: Σε ισόχωρη αντιστρεπτή θέρµανση ιδανικού αερίου, η

Διαβάστε περισσότερα

ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ- ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ- ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΕΡΩΤΗΣΕΙΣ- ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ 1. Ποιες από τις επόµενες προτάσεις που αναφέρονται στο έργο αερίου, είναι σωστές; α. Όταν το αέριο εκτονώνεται, το έργο του είναι θετικό.

Διαβάστε περισσότερα

Μονάδες 5 1.3 β. Μονάδες 5 1.4 Μονάδες 5

Μονάδες 5 1.3 β. Μονάδες 5 1.4 Μονάδες 5 ΘΕΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 29 ΜΑΪΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ (7) Για τις ημιτελείς

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά)

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. Επιτρεπόμενη διάρκεια γραπτού 2,5 ώρες (150 λεπτά) ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Β ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2009-2010 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 31/05/2010 ΤΑΞΗ: Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΧΡΟΝΟΣ: 07:30 10:00 π.μ. ΟΝΟΜΑΤΕΠΩΝΥΜΟ:... ΤΜΗΜΑ:...

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση

Κεφάλαιο 1.1 Ευθύγραμμη κίνηση Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1 H θέση ενός κινητού που κινείται σε ένα επίπεδο, προσδιορίζεται κάθε στιγμή αν: Είναι γνωστές οι συντεταγμένες του κινητού (x,y) ως συναρτήσεις του χρόνου Είναι γνωστό

Διαβάστε περισσότερα

Κεφάλαιο 8 Διατήρηση της Ενέργειας

Κεφάλαιο 8 Διατήρηση της Ενέργειας Κεφάλαιο 8 Διατήρηση της Ενέργειας ΔΥΝΑΜΗ ΕΡΓΟ ΕΝΕΡΓΕΙΑ µηχανική, χηµική, θερµότητα, βαρυτική, ηλεκτρική, µαγνητική, πυρηνική, ραδιοενέργεια, τριβής, κινητική, δυναµική Περιεχόµενα Κεφαλαίου 8 Συντηρητικές

Διαβάστε περισσότερα

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac;

: Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση. 1. Ποιο από τα παρακάτω διαγράμματα παριστάνει γραφικά το νόμο του Gay-Lussac; Τάξη : Β ΛΥΚΕΙΟΥ Μάθημα : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Εξεταστέα Ύλη : Μιγαδικοί Συναρτήσεις έως και αντίστροφη συνάρτηση Καθηγητής : Mάρθα Μπαμπαλιούτα Ημερομηνία : 14/10/2012 ΘΕΜΑ 1 ο 1. Ποιο από τα παρακάτω διαγράμματα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 014 Ε_3.ΦλΓΑΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ & ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 7 Απριλίου 014 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Στι ερωτήσει - 4 να γράψετε στο τετράδιό σα τον αριθµό των ερώτηση και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τροχό κυλίεται πάνω σε οριζόντιο

Διαβάστε περισσότερα

ΕΠΙΜΕΛΕΙΑ: ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ

ΕΠΙΜΕΛΕΙΑ: ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις 1-4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί η σωστή απάντηση 1. Δίσκος κυλίεται χωρίς να ολισθαίνει με την επίδραση σταθερής οριζόντιας

Διαβάστε περισσότερα

3. Ποια είναι η διαφορά μεταξύ της ελαστικής και της πλαστικής παραμόρφωσης;

3. Ποια είναι η διαφορά μεταξύ της ελαστικής και της πλαστικής παραμόρφωσης; 4.3 Κεφάλαιο 3: Η ΝΕΥΤΩΝΙΚΗ ΣΥΝΘΕΣΗ 4.3.1 Ερωτήσεις σύντομης απάντησης 1. Να περιγράψετε ένα φαινόμενο στο οποίο αλλάζει η κινητική κατάσταση του σώματος και να προσδιορίσετε το αίτιο της αλλαγής. 2. Μια

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ: ΔΥΝΑΜΕΙΣ ΚΑΙ ΡΟΠΕΣ Σ ένα στερεό ασκούνται ομοεπίπεδες δυνάμεις. Όταν το στερεό ισορροπεί, δηλαδή ισχύει ότι F 0 και δεν περιστρέφεται τότε το αλγεβρικό άθροισμα των ροπών είναι μηδέν Στ=0,

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΚΕΦΑΛΑΙΟ 3 Ο ΔΥΝΑΜΕΙΣ 3.1 Η έννοια της δύναμης ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Στο κεφάλαιο των κινήσεων ασχοληθήκαμε με τη μελέτη της κίνησης χωρίς να μας απασχολούν τα αίτια που προκαλούν την κίνηση

Διαβάστε περισσότερα

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΦΡΟΝΤΙΣΤΗΡΙΟ ΓΝΩΣΗ ΘΕΜΑ 1 1. Σε μια ελαστική κρούση δύο σωμάτων διατηρείται: α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

Διαβάστε περισσότερα

Να σχεδιάσετε και να υπολογίσετε τη συνισταμένη δύναμη στις πιο κάτω περιπτώσεις.

Να σχεδιάσετε και να υπολογίσετε τη συνισταμένη δύναμη στις πιο κάτω περιπτώσεις. ΔΥΝΑΜΕΙΣ ΝΟΜΟΙ ΤΟΥ ΝΕΥΤΩΝΑ ΓΙΑ ΤΗΝ ΚΙΝΗΣΗ Να σχεδιάσετε και να υπολογίσετε τη συνισταμένη δύναμη στις πιο κάτω περιπτώσεις. F 2=2N F 1=6N F 3=3N F 4=5N (α) (β) F 5=4N F 6=1N F 7=3N (γ) Να σχεδιάσετε και

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1

ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ιαγώνισµα στις Ταλαντώσεις ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ 1 ΘΕΜΑ 1 0 Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Το

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Δύο χορδές μιας κιθάρας Χ1, Χ2

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ. 1. Μπορεί ένα σύστημα σωμάτων να έχει κινητική ενέργεια χωρίς να έχει ορμή; Ισχύει το ίδιο και στην περίπτωση ενός σώματος;

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ. 1. Μπορεί ένα σύστημα σωμάτων να έχει κινητική ενέργεια χωρίς να έχει ορμή; Ισχύει το ίδιο και στην περίπτωση ενός σώματος; ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΕΡΩΤΗΣΕΙΣ ΠΡΩΤΟΥ ΚΑΙ ΔΕΥΤΕΡΟΥ ΘΕΜΑΤΟΣ 1. Μπορεί ένα σύστημα σωμάτων να έχει κινητική ενέργεια χωρίς να έχει ορμή; Ισχύει το ίδιο και στην περίπτωση ενός σώματος; 2. Ποιο από τα παρακάτω

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Ο Ένα κλειστό δοχείο µε ανένδοτα τοιχώµατα περιέχει ποσότητα η=0,4mol ιδανικού αερίου σε θερµοκρασία θ 1 =17 ο C. Να βρεθούν: α) το παραγόµενο έργο, β) η θερµότητα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επιµέλεια: Γιοµπλιάκης Λάζαρος Ματελόπουλος Αντώνης Τσαµήτρος ηµήτριος

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επιµέλεια: Γιοµπλιάκης Λάζαρος Ματελόπουλος Αντώνης Τσαµήτρος ηµήτριος ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Επιµέλεια: Γιοµπλιάκης Λάζαρος Ματελόπουλος Αντώνης Τσαµήτρος ηµήτριος ΘΕΜΑ Ο. Σφαίρα Α µε µάζα m g συγκρούεται µετωπικά και ελαστικά µε ταχύτητα υ 5m/ µε ακίνητη σφαίρα Β

Διαβάστε περισσότερα

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 5. Μονάδες 5. Μονάδες 5. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ ο ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ου ΓΕΛ ΠΕΤΡΟΥΠΟΛΗΣ ΔΕΥΤΕΡΑ 3 ΜΑΪΟΥ 200 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ () Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Β Γυμνασίου >> Αρχική σελίδα ΔΥΝΑΜΗ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμ εε ααππααννττήή σσεει ιςς (σελ. 1) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. 5) ΙΑΒΑΣΕ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2011 Μάθηµα: ΦΥΣΙΚΗ Ηµεροµηνία και ώρα εξέτασης: Σάββατο, 4 Ιουνίου 2011 8:30 11:30

Διαβάστε περισσότερα

ΚΕΦ. 2.1: ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ

ΚΕΦ. 2.1: ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ ΚΕΦ. 2.1: ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ Ερωτήσεις σύντομης απάντησης 1. Να εξηγήσετε τα παρακάτω φαινόμενα με βάση την αρχή διατήρησης της ορμής: α) ανάκρουση του όπλου και β) κίνηση πυραύλου. 2. Γιατί ο πυροσβέστης

Διαβάστε περισσότερα

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

r r r r r r r r r r r Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ

ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΘΕΡΜΟ ΥΝΑΜΙΚΗ ΚΕΦΑΛΑΙΟ ΕΥΤΕΡΟ ΘΕΡΜΟ ΥΝΑΜΙΚΗ 1. Τι εννοούµε λέγοντας θερµοδυναµικό σύστηµα; Είναι ένα κοµµάτι ύλης που αποµονώνουµε νοητά από το περιβάλλον. Περιβάλλον του συστήµατος είναι το σύνολο των

Διαβάστε περισσότερα

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου

Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου ΛΥΚΕΙΟ ΜΑΚΑΡΙΟΥ Γ ΛΑΡΝΑΚΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2014-15 Οδηγός βαθμολόγησης Εξεταστικού Δοκιμίου Α Λυκείου 1) Να γράψετε 3 διανυσματικά μεγέθη και 2 μονόμετρα μεγέθη καθώς και τις μονάδες μέτρησής τους (στο

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤ-ΤΕΧΝ ΚΑΤΕΥΘΥΝΣΗΣ

ΤΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕΤ-ΤΕΧΝ ΚΑΤΕΥΘΥΝΣΗΣ ΥΠΟΛΟΓΙΟ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΘΕ-ΕΧΝ ΚΑΕΥΘΥΝΣΗΣ Κινητική θεωρία των ιδανικών αερίων. Νόμος του Boyle (ισόθερμη μεταβή).σταθ. για σταθ.. Νόμος του hales (ισόχωρη μεταβή) p σταθ. για σταθ. 3. Νόμος του Gay-Lussac

Διαβάστε περισσότερα

1. Ένας ποδηλάτης διαγράφει την περιφέρεια ενός κύκλου (OR). Το διάστηµα που έχει διανύσει είναι ίσο µε : α) 2πR β) πr. γ) πr 2.

1. Ένας ποδηλάτης διαγράφει την περιφέρεια ενός κύκλου (OR). Το διάστηµα που έχει διανύσει είναι ίσο µε : α) 2πR β) πr. γ) πr 2. 1. Ένας ποδηλάτης διαγράφει την περιφέρεια ενός κύκλου (OR). Το διάστηµα που έχει διανύσει είναι ίσο µε : α) 2πR β) πr γ) πr 2 δ) καµία από τις παραπάνω τιµές Το µέτρο της µετατόπισης που έχει υποστεί

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2008 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑÏΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΚΡΟΥΣΗ. Θα μελετήσουμε τώρα συστήματα που η ταλάντωση ξεκινά εξαιτίας μίας κρούσης ή έχουμε ήδη μία ταλάντωση και κάπου στην πορεία συμβαίνει και μία κρούση.. Σώμα που κινείται με κάποια

Διαβάστε περισσότερα

φυσική κατεύθυνσης γ λυκείου ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΕΠΙΛΟΓΗΣ (κεφ.4) Γκότσης Θανάσης - Τερζής Πέτρος

φυσική κατεύθυνσης γ λυκείου ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ ΛΑΘΟΥΣ ΕΠΙΛΟΓΗΣ (κεφ.4) Γκότσης Θανάσης - Τερζής Πέτρος 1 Ένα στερεό εκτελεί μεταφορική κίνηση όταν: α) η τροχιά κάθε σημείου είναι ευθεία γραμμή β) όλα τα σημεία του έχουν ταχύτητα που μεταβάλλεται με το χρόνο γ) μόνο το κέντρο μάζας του διαγράφει ευθύγραμμη

Διαβάστε περισσότερα

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του;

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Άσκηση Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Απάντηση Έστω R n η ακτίνα του κύκλου. Αφού η κίνηση είναι

Διαβάστε περισσότερα

α) Το µέτρο της ταχύτητας της ταχύτητας την πλαστική κρούση είναι 30% ποια η σχέση των µαζών m, M. ( Η µάζα Μ είναι αρχικά ακίνητη).

α) Το µέτρο της ταχύτητας της ταχύτητας την πλαστική κρούση είναι 30% ποια η σχέση των µαζών m, M. ( Η µάζα Μ είναι αρχικά ακίνητη). 2.72. Το σώµα µάζας Μ=1,2 Κgr είναι ακίνητο σε οριζόντιο επίπεδο. Το βλήµα µάζας =0,3Κgr κινείται οριζόντια µε ταχύτητα 10/sec και συγκρούεται πλαστικά µε την Μ. Εάν ο συντελεστής τριβής συσσωµατώµατος

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Φιλολάου & Εκφαντίδου 26 : Τηλ.: 2107601470 ΔΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2013 ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦ. 4Ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦ. 4Ο Όνοµα:... Ηµεροµηνία:... Βαθµός : ΘΕΜΑ Ο Στις παρακάτω ερωτήσεις να επιλέξετε τη σωστή απάντηση. Όταν ένα σώµα πραγµατοποιεί µόνο στροφική κίνηση : α) όλα τα σηµεία του έχουν την ίδια γραµµική ταχύτητα

Διαβάστε περισσότερα

ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ ΑΣΚΗΣΕΙΣ

ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ ΑΣΚΗΣΕΙΣ Νικήτα Μ Ριζόπολο «Ασκήσεις Φσικής» ΝΟΜΟΙ ΙΔΑΝΙΚΩΝ ΑΕΡΙΩΝ ΑΣΚΗΣΕΙΣ Ιδανικό αέριο έχει θερμοκρασία 7 ο C και όγκο 3L Θερμαίνομε το αέριο με σταθερή πίεση στος 7 ο C Πόσος είναι ο νέος όγκος Ιδανικό αέριο

Διαβάστε περισσότερα

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ

ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Φυσική Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΠΙΤΡΟΠΗ ΤΡΑΠΕΖΑΣ

Διαβάστε περισσότερα

ΔΙΑΚΡΟΤΗΜΑ - Τα Καλύτερα Φροντιστήρια της Πόλης!

ΔΙΑΚΡΟΤΗΜΑ - Τα Καλύτερα Φροντιστήρια της Πόλης! ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΗΝΙΩΝ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΥ ΟΝΟΜΑΤΕΠΩΝΥΜΟ... ΗΜΕΡΟΜΗΝΙΑ:... /... / 01, ΤΜΗΜΑ :... ΒΑΘΜΟΣ:... ΘΕΜΑ 1 Να επιλέξετε τη σωστή απάντηση στις παρακάτω

Διαβάστε περισσότερα

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΔΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΤΙΚΕΙΜΕΝΟ: ΤΑΛΑΝΤΩΣΕΙΣ - ΚΥΜΑΤΑ

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΔΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΤΙΚΕΙΜΕΝΟ: ΤΑΛΑΝΤΩΣΕΙΣ - ΚΥΜΑΤΑ ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΔΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΤΙΚΕΙΜΕΝΟ: ΤΑΛΑΝΤΩΣΕΙΣ - ΚΥΜΑΤΑ ΘΕΜΑ Α : Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής

Διαβάστε περισσότερα

ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΡΓΑΣΙΑ ΣΤΙΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΡΩΤΗΣΗ 1 Ένα σώμα εκτελεί κίνηση που οφείλεται στη σύνθεση δύο απλών αρμονικών ταλαντώσεων ίδιας διεύθυνσης, που γίνονται γύρω από το ίδιο σημείο, με το ίδιο πλάτος A και συχνότητες

Διαβάστε περισσότερα

1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός κυλάει χωρίς να ολισθαίνει. Ποιες από τις παρακάτω σχέσεις είναι σωστές ;

1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός κυλάει χωρίς να ολισθαίνει. Ποιες από τις παρακάτω σχέσεις είναι σωστές ; 45 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΣΑΒΒΑΪ Η-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Χρυσ Σµύρνης 3 : Τηλ.: 107601470 ΙΑΓΩΝΙΣΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 006 ΘΕΜΑ 1 1) Πάνω σε ευθύγραµµο οριζόντιο δρόµο ένας τροχός

Διαβάστε περισσότερα

1 ΦΕΠ 012 Φυσική και Εφαρμογές

1 ΦΕΠ 012 Φυσική και Εφαρμογές 1 ΦΕΠ 012 Φυσική και Εφαρμογές Διάλεξη 10 η Ομαλή κυκλική κίνηση Δθ = ω = σταθερό Δt X = Rσυν (ωt) => X 2 +Υ 2 = R 2 Υ = Rημ(ωt) Οι προβολές της κίνησης στους άξονες των x και y είναι αρμονικές ταλαντώσεις

Διαβάστε περισσότερα

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια:

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια Εσωτερική ενέργεια: ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ Μηχανική ενέργεια (όπως ορίζεται στη μελέτη της μηχανικής τέτοιων σωμάτων): Η ενέργεια που οφείλεται σε αλληλεπιδράσεις και κινήσεις ολόκληρου του μακροσκοπικού σώματος, όπως η μετατόπιση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο

ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο ΚΕΦΑΛΑΙΟ 3: ΔΥΝΑΜΕΙΣ Μέρος 1ο Φυσική Β Γυμνασίου Βασίλης Γαργανουράκης http://users.sch.gr/vgargan Εισαγωγή Στο προηγούμενο κεφάλαιο μελετήσαμε τις κινήσεις των σωμάτων. Το επόμενο βήμα είναι να αναζητήσουμε

Διαβάστε περισσότερα

ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ. + 1) με Ν=0,1,2,3..., όπου d το μήκος της χορδής. 4 χορδή με στερεωμένο το ένα άκρο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ. ,στο κενό (αέρα) co

ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ. + 1) με Ν=0,1,2,3..., όπου d το μήκος της χορδής. 4 χορδή με στερεωμένο το ένα άκρο ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΚΥΜΑΤΑ. ,στο κενό (αέρα) co ΣΤΑΣΙΜΑ ΚΥΜΑΤΑ Κύματα που t x t x σχηματίζουν το y1 = A. hm2 p ( - ), y2 = A. hm2 p ( + ) T l T l στάσιμο Εξίσωση στάσιμου c κύματος y = 2 A. sun 2 p. hm2p t l T Πλάτος ταλάντωσης c A = 2A sun 2p l Κοιλίες,

Διαβάστε περισσότερα

ΕΞΕΤΑΣΕΙΣ 2005 - Γ' ΛΥΚΕΙΟΥ 7/6/2005 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΞΕΤΑΣΕΙΣ 2005 - Γ' ΛΥΚΕΙΟΥ 7/6/2005 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ 2005 - Γ' ΛΥΚΕΙΟΥ 7/6/2005 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 Ο Να γράψετε στο τετράδιο σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

Ι < Ι. Οπότε ο λαμπτήρας θα φωτοβολεί περισσότερο. Ο λαμπτήρα λειτουργεί κανονικά. συνεπώς το ρεύμα που τον διαρρέει είναι 1 Α.

Ι < Ι. Οπότε ο λαμπτήρας θα φωτοβολεί περισσότερο. Ο λαμπτήρα λειτουργεί κανονικά. συνεπώς το ρεύμα που τον διαρρέει είναι 1 Α. ΘΕΜΑ Α. Σωστή απάντηση είναι η α. Πριν το κλείσιμο του διακόπτη η αντίσταση του κυκλώματος είναι: λ, = Λ +. Μετά το κλείσιμο του διακόπτη η ολική αντίσταση είναι: λ, = Λ. Έτσι,,,, Ι < Ι. Οπότε ο λαμπτήρας

Διαβάστε περισσότερα

3. Σε στάσιμο κύμα δύο σημεία του ελαστικού μέσου βρίσκονται μεταξύ δύο διαδοχικών δεσμών. Τότε τα σημεία αυτά έχουν

3. Σε στάσιμο κύμα δύο σημεία του ελαστικού μέσου βρίσκονται μεταξύ δύο διαδοχικών δεσμών. Τότε τα σημεία αυτά έχουν ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 25 ΜΑÏΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΘΕΜΑ GI_A_FYS_0_4993

ΘΕΜΑ GI_A_FYS_0_4993 ΘΕΜΑ GI_A_FYS_0_4993 ΘΕΜΑ Β Β Ένας αλεξιπτωτιστής που έχει μαζί με τον εξοπλισμό του συνολική μάζα Μ, πέφτει από αεροπλάνο που πετάει σε ύψος Η Αφού ανοίξει το αλεξίπτωτο, κινούμενος για κάποιο χρονικό

Διαβάστε περισσότερα

ENOTHTA 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ

ENOTHTA 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 5 Ο : ΚΡΟΥΣΕΙΣ ΦΑΙΝΟΜΕΝΟ DOPPLER ENOTHT 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ Κρούση: Κρούση ονομάζουμε το φαινόμενο κατά το οποίο δύο ή περισσότερα σώματα έρχονται σε επαφή για πολύ μικρό χρονικό διάστημα κατά

Διαβάστε περισσότερα