ΘΕΜΑ Δ Δύο σφαίρες ίδιας μάζας, m = 0,2 kg, κινούνται ευθύγραμμα και ομαλά σε λείο οριζόντιο επίπεδο σε αντίθετες κατευθύνσεις και με ταχύτητες

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΘΕΜΑ Δ Δύο σφαίρες ίδιας μάζας, m = 0,2 kg, κινούνται ευθύγραμμα και ομαλά σε λείο οριζόντιο επίπεδο σε αντίθετες κατευθύνσεις και με ταχύτητες"

Transcript

1 Δύο σφαίρες ίδιας μάζας, m = 0,2 kg, κινούνται ευθύγραμμα και ομαλά σε λείο οριζόντιο επίπεδο σε αντίθετες κατευθύνσεις και με ταχύτητες μέτρων υ 1 = 6 m s -1, υ 2 = 2 m s -1 αντίστοιχα, ώστε να πλησιάζουν η μια την άλλη. Τη χρονική στιγμή t = 0 οι σφαίρες απέχουν μεταξύ τους 4 m. Η κρούση τους είναι πλαστική και η χρονική της διάρκεια θεωρείται αμελητέα. Δ1) Σχεδιάστε τις σφαίρες τη χρονική στιγμή t = 0 και υπολογίστε τα μέτρα των ορμών τους. Δ2) Ποια χρονική στιγμή θα γίνει η κρούση ; Δ3) Ποιο το μέτρο της ταχύτητας του συσσωματώματος αμέσως μετά την κρούση ; Δ4) Σχεδιάστε (σε κοινό διάγραμμα) τις γραφικές παραστάσεις για τις τιμές των ταχυτήτων των δύο σφαιρών και του συσσωματάματος σε συνάρτηση με το χρόνο, για το χρονικό διάστημα από 0 μέχρι 1 s. Να θεωρήσετε ως θετική την αρχική φορά κίνησης της σφαίρας με ταχύτητα υ 1.

2 Ποσότητα αερίου υδρογόνου βρίσκεται στην ίδια θερμοκρασία με ποσότητα αερίου οξυγόνου (και τα δύο αέρια θεωρούνται ιδανικά). Δ1) Ποιος είναι ο λόγος των μέσων μεταφορικών κινητικών ενεργειών των μορίων των δύο αερίων; u 2 Δ2) Ποιος είναι ο λόγος των ενεργών ταχυτήτων των μορίων των δύο αερίων ; u Στη συνέχεια χωρίς να μεταβληθεί η ποσότητα του υδρογόνου, συμπιέζεται ο όγκος του αερίου στο μισό (σε σχέση με τον αρχικό όγκο). Ποιος είναι ο λόγος των ενεργών ταχυτήτων των μορίων του υδρογόνου, πριν και μετά τη μεταβολή του όγκου του όταν αυτή η μεταβολή συντελείται: Δ3) υπό σταθερή θερμοκρασία; Δ4) υπό σταθερή πίεση; Δίνεται οι γραμμομοριακές μάζες του υδρογόνου, Μ Η2 = kg/mοl, και του οξυγόνου Μ Ο2 = kg/mοl. 2

3 Δύο σώματα με μάζες m 1 = 0,4 kg και m 2 = 0,6 kg κινούνται πάνω σε οριζόντιο επίπεδο με συντελεστή τριβής ολίσθησης μ = 0,2. Τα σώματα κινούνται σε αντίθετες κατευθύνσεις και συγκρούονται πλαστικά, έχοντας ακριβώς πριν τη στιγμή της σύγκρουσης ταχύτητες μέτρων υ 1 = 20 m/s και υ 2 = 5 m/s αντίστοιχα. Δ1) Να υπολογίσετε και να σχεδιάσετε τις ορμές των δύο σωμάτων ακριβώς πριν την κρούση. Δ2) Να υπολογίσετε την ταχύτητα του συσσωματώματος αμέσως μετά την κρούση. Δ3) Να υπολογίσετε το χρονικό διάστημα για το οποίο το συσσωμάτωμα θα κινηθεί μετά την κρούση. Δ4) Να υπολογίσετε την αύξηση της θερμικής ενέργειας μετά την κρούση των σωμάτων λόγω της τριβής στο τραχύ δάπεδο. Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10 m/s 2

4 Ποσότητα ιδανικού αέριου ίση με 2/R mol, βρίσκεται αρχικά σε κατάσταση ισορροπίας στην οποία έχει πίεση N/m 2 και θερμοκρασία 100 Κ. Το αέριο υφίσταται τις παρακάτω αντιστρεπτές μεταβολές: Θερμαίνεται ισοβαρώς μέχρι ο όγκος του να γίνει m 3. Ακολούθως ψύχεται ισόχωρα μέχρι να αποκτήσει θερμοκρασία ίδια με την αρχική. Τέλος το αέριο συμπιέζεται ισόθερμα μέχρι να βρεθεί στην αρχική του κατάσταση. Δ1) Να κατασκευάσετε το διαγράμματα p V σε βαθμολογημένους άξονες. Δ2) Να κατασκευάσετε τα διαγράμματα p Τ και V - T σε βαθμολογημένους άξονες. Μονάδες 8 Δ3) Υπολογίστε τη θερμότητα που αποβάλλει το αέριο συνολικά κατά την κυκλική μεταβολή. Μονάδες 5 Δ4) Υπολογίστε τη μεταβολή της εσωτερικής ενέργειας του αερίου σε κάθε μεταβολή ξεχωριστά. Δίνεται ότι στα ιδανικά μονοατομικά αέρια C v = και ότι ln 5 1.6

5 Ορισμένη ποσότητα ιδανικού αερίου υφίσταται αντιστρεπτή κυκλική μεταβολή, η οποία αποτελείται από τις παρακάτω αντιστρεπτές μεταβολές: Αρχικά ισόχωρη μεταβολή κατά την οποία προσφέρεται στο αέριο θερμότητα 200 J, στη συνέχεια ισόθερμη μεταβολή κατά την οποία το αέριο παράγει έργο 150 J και τελικά επιστρέφει στην αρχική κατάσταση μέσω μιας ισοβαρούς μεταβολής αποδίδοντας στο περιβάλλον θερμότητα 250 J. Δ1) Να κατασκευάσετε ποιοτικά διαγράμματα (δηλαδή χωρίς αριθμούς) p V και V - T Δ2) Υπολογίστε το συνολικό μηχανικό έργο που αποδίδει το αέριο σε αυτή την κυκλική μεταβολή. Δ3) Υπολογίστε το συνολικό ποσό θερμότητας που αποβάλει το αέριο στο περιβάλλον σε αυτή την κυκλική μεταβολή. Δ4) Υπολογίστε το συντελεστή απόδοσης μιας θερμικής μηχανής η οποία θα λειτουργούσε με βάση τον παραπάνω αντιστρεπτό κύκλο.

6 Μπαλάκι του τένις, μάζας m, αφήνεται να πέσει από ύψος h 1 από την επιφάνεια του εδάφους. Αφού χτυπήσει στο έδαφος αναπηδά και φτάνει σε ύψος h 2 από την επιφάνεια του εδάφους. Να υπολογίσετε : Δ1) το μέτρο της ταχύτητας που έχει το μπαλάκι ακριβώς πριν προσκρούσει στο έδαφος, Μονάδες 5 Δ2) τη μεταβολή της ορμής του (μέτρο και κατεύθυνση) κατά τη διάρκεια της πρόσκρουσης του στο έδαφος. Δ3) Αν η μέση συνισταμένη δύναμη που ασκείται στο μπαλάκι κατά τη διάρκεια της πρόσκρουσης έχει μέτρο 6Ν να υπολογιστεί η χρονική διάρκεια της πρόσκρουσης. Στη συνέχεια το μπαλάκι αναπηδά στο έδαφος για δεύτερη φορά. Δ4 Εάν γνωρίζετε ότι κατά τη διάρκεια της δεύτερης αυτής πρόσκρουσης χάνεται στο περιβάλλον το 50% της ενέργειας που είχε το μπαλάκι πριν την πρόσκρουση, να υπολογίσετε το νέο μέγιστο ύψος από το έδαφος,h 3, στο οποίο θα ανέβει. Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10 m/s 2, m =100 g, h 1 = 80 cm, h 2 = 20 cm. Η αντίσταση του αέρα θεωρείται αμελητέα.

7 Ορισμένη ποσότητα μονατομικού ιδανικού αερίου που βρίσκεται στην κατάσταση θερμοδυναμικής ισορροπίας Α (p 0, V 0, T 0 ), υπόκειται στην παρακάτω αντιστρεπτή κυκλική μεταβολή: ΑΒ-ισοβαρής εκτόνωση μέχρι να διπλασιάσει τον όγκο του, ΒΓ-ισόθερμη θέρμανση μέχρι να διπλασιάσει τον όγκο που έχει στην κατάσταση Β, ΓΔ-ισόχωρη ψύξη μέχρι το αέριο να αποκτήσει τη θερμοκρασία που είχε στην κατάσταση θερμοδυναμικής ισορροπίας Α, ΔΑ-ισόθερμη συμπίεση ώστε να επανέλθει στην κατάσταση θερμοδυναμικής ισορροπίας Α. Δ1) Να γίνει η γραφική παράσταση των μεταβολών σε άξονες p-v, όπου θα φαίνονται οι τιμές της πίεσης, του όγκου και της θερμοκρασίας του αερίου στις καταστάσεις Α, Β, Γ και Δ, συναρτήσει των p 0, V 0, T 0. (Οι τιμές της θερμοκρασίας θα σημειωθούν πάνω στις ισόθερμες καμπύλες.) Δ2) Να υπολογίσετε τις μεταβολές της εσωτερικής ενέργειας του αερίου ΔU ΑΒ, ΔU ΓΔ και ΔU ΔΑ που αντιστοιχούν στις μεταβολές ΑΒ, ΓΔ και ΔΑ. Μονάδες 5 Δ3) Να υπολογίσετε τη θερμότητα και το έργο που ανταλλάσσει το αέριο με το περιβάλλον του σε έναν κύκλο. Δ4) Να υπολογίσετε την απόδοση μηχανής Carnot που λειτουργεί μεταξύ των ισόθερμων του παραπάνω κύκλου καθώς και την απόδοση θερμικής μηχανής που λειτουργεί σύμφωνα με την παραπάνω αντιστρεπτή κυκλική μεταβολή. Δίνονται η γραμμομοριακή ειδική θερμότητα του αερίου υπό σταθερό όγκο C v = 3R/2 και ln2=0,7.

8 Δύο σφαιρίδια Σ 1 και Σ 2 με μάζες m 1 = 4 kg και m 2 = 6 kg αντίστοιχα μπορούν να κινούνται στο εσωτερικό κυκλικού δακτυλίου ακτίνας R = 2 m που είναι ακλόνητα στερεωμένος σε λείο οριζόντιο τραπέζι (κάτοψη του οποίου εικονίζεται στο σχήμα). Οι τριβές μεταξύ των σφαιριδίων και του κυκλικού δακτυλίου θεωρούνται αμελητέες, όπως και οι διαστάσεις τους. Αρχικά το σφαιρίδιο Σ 2 είναι ακίνητο, ενώ το Σ 1 εκτελεί ομαλή κυκλική κίνηση με φορά αντίθετη εκείνης των δεικτών του ρολογιού με ταχύτητα, μέτρου υ 1 = 5 m/s. Αν τα σφαιρίδια Σ 1 και Σ 2 συγκρουστούν πλαστικά, να υπολογίσετε : m 2 υ 1 m 2 m 1 Δ1) Το μέτρο της ταχύτητας του συσσωματώματος μετά την κρούση καθώς και την περίοδο της κίνησης του. Δ2) Την απώλεια της μηχανικής ενέργειας κατά την διάρκεια της πλαστικής κρούσης. Μονάδες 5 Δ3) Σε κάποια άλλη περίπτωση, αλλάζοντας το υλικό των σφαιριδίων, αλλά διατηρώντας τις μάζες τους, τα σφαιρίδια συγκρούονται χωρίς να δημιουργηθεί συσσωμάτωμα. Αν η ταχύτητα της σφαίρας m 2 αμέσως μετά την κρούση είναι 4 m/s, να υπολογίσετε την ταχύτητα της σφαίρας m 1 αμέσως μετά την κρούση. Να ελέγξετε αν στην κρούση αυτή διατηρείται η μηχανική ενέργεια του συστήματος των δύο σφαιρών. Μονάδες 8 Δ4) Ποιο είναι το μήκος του τόξου που διανύει το κάθε ένα από τα δύο σώματα μέχρι την επόμενη σύγκρουσή τους;

9 υ 1 Σε οριζόντιο επίπεδο βρίσκεται ακίνητο ένα μήλο μάζας Μ = 200 g. Ένα μικρό βέλος μάζας m = 40 g κινείται οριζόντια με ταχύτητα μέτρου, υ 1 = 10 m/s, χτυπά το μήλο με αποτέλεσμα να το διαπεράσει. Αν γνωρίζετε ότι η χρονική διάρκεια της διάτρησης είναι Δt = 0,1 s και ότι το βέλος εξέρχεται από μήλο με ταχύτητα, μέτρου υ 2 = 2 m/s, να υπολογίσετε : Δ1) το μέτρο της ορμής του μήλου ακριβώς μετά την έξοδο του βέλους από αυτό, Μονάδες 5 Δ2) τη μεταβολή της ορμής του βέλους εξαιτίας της διάτρησης, Δ3) τη μέση δύναμη που ασκείται από το βέλος στο μήλο κατά τη χρονική διάρκεια της διάτρησης καθώς και τη μέση δύναμη που ασκείται από το μήλο στο βέλος στην ίδια χρονική διάρκεια, Δ4) Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης. Για την επίλυση του προβλήματος θεωρήστε το βέλος αλλά και το μήλο ως υλικά σημεία..

10 V (L) 4 Γ B 2 Δ A T 1 4 T 1 T(K) Μία θερμική μηχανή που χρησιμοποιεί ιδανικό αέριο λειτουργεί με τον αντιστρεπτό κύκλο που φαίνεται στο διάγραμμα. Στην αρχική κατάσταση Α η πίεση του ιδανικού αερίου είναι ίση με p A = N/m 2. Δ1) Να υπολογίσετε την απόδοση μίας θερμικής μηχανής Carnot που λειτουργεί μεταξύ των ίδιων ισόθερμων, με αυτές στις οποίες λειτουργεί η θερμική μηχανή που σας δίνεται. Μονάδες 5 Δ2) Να σχεδιάσετε το διάγραμμα P-V της κυκλικής μεταβολής σε βαθμολογημένο σύστημα αξόνων. Δ3) Να υπολογίσετε το ωφέλιμο έργο που αποδίδει η μηχανή σε κάθε κύκλο λειτουργίας της. Δ4) Να υπολογίσετε το συντελεστή απόδοσης της θερμικής μηχανής. Δίνονται: ln2 = 0,7 και C V = 3R/2

11 Β Α R 1 R 2 Δίσκος (1) Δίσκος (2) Στο σχήμα φαίνονται δύο δίσκοι με ακτίνες R 1 = 0,2 m και R 2 = 0,4 m αντίστοιχα, οι οποίοι συνδέονται μεταξύ τους με μη ελαστικό λουρί. Οι δίσκοι περιστρέφονται γύρω από σταθερούς άξονες που διέρχονται από το κέντρο τους και είναι κάθετοι στο επίπεδο τους. Αν η περίοδος περιστροφής του δίσκου (2) είναι σταθερή και ίση με Τ 2 = 0,05π s, να υπολογίσετε : Δ1) το μέτρο της ταχύτητας των σημείων Α και Β της περιφέρειας των δίσκων, Δ2) το μέτρο της γωνιακής ταχύτητας του δίσκου (1), Δ3) το λόγο των μέτρων των κεντρομόλων επιταχύνσεων των σημείων Α και Β :, Μονάδες 5 Δ4) τον αριθμό των περιστροφών που έχει εκτελέσει ο δίσκος (1), όταν ο δίσκος (2) έχει εκτελέσει 10 περιστροφές.

12 Μια βόμβα μάζας m = 3 kg βρίσκεται στιγμιαία ακίνητη σε ύψος H = 500 m από την επιφάνεια της Γης. Τη στιγμή εκείνη εκρήγνυται σε δύο κομμάτια. Το πρώτο κομμάτι έχει μάζα m 1 = 2 kg και εκτοξεύεται οριζόντια με αρχική ταχύτητα υ 1 = 40 m/s. Δ1) Να υπολογίσετε με πόση ταχύτητα εκτοξεύεται το δεύτερο κομμάτι. Μονάδες 5 Δ2) Να υπολογίσετε την ταχύτητα, σε μέτρο και κατεύθυνση, του δεύτερου κομματιού, 6 s μετά από την έκρηξη. Δ3) Ποια χρονική στιγμή φτάνει το κάθε κομμάτι στο έδαφος; Σχολιάστε το αποτέλεσμα. +2 Δ4) Εάν το πρώτο κομμάτι φτάνει στο έδαφος στο σημείο Α και το άλλο στο σημείο Β να υπολογίσετε την απόσταση ΑΒ. Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10 m/s 2. Η αντίσταση του αέρα θεωρείται αμελητέα.

13 Ιδανικό μονοατομικό αέριο ποσότητας 1/R mol (το R είναι αριθμητικά ίσο με τη σταθερά των J ιδανικών αερίων εκφρασμένη σε ) και θερμοκρασίας 27 C βρίσκεται σε κυλινδρικό δοχείο mol K η πάνω επιφάνεια του οποίου φράσσεται από έμβολο μάζας m = 300 kg και επιφάνειας, εμβαδού Α = 100 cm 2. Το έμβολο μπορεί να μετακινείται χωρίς τριβές και αρχικά ισορροπεί. Δ1) Να υπολογίσετε την αρχική πίεση του αερίου. Στη συνέχεια το αέριο θερμαίνεται αντιστρεπτά έως τη θερμοκρασία των 127 C. Δ2). Να υπολογίσετε τον τελικό όγκο του αερίου. Δ3) Πόσο ανυψώθηκε το έμβολο ; Δ4) Το έμβολο ακινητοποιείται (ασφαλίζεται) στη νέα αυτή θέση και το αέριο ψύχεται στην αρχική του θερμοκρασία. Να υπολογίσετε πόση θερμότητα ανταλλάσσεται μεταξύ αερίου και περιβάλλοντος. Δίνεται η ατμοσφαιρική πίεση στην περιοχή που βρίσκεται το δοχείο p atm = 10 5 Ν/m 2, η επιτάχυνση της βαρύτητας στην επιφάνεια της Γής g = 10 m/s 2 και C v = 3 R/2.

14 Ανεμογεννήτρια οριζοντίου άξονα περιστροφής έχει τα εξής χαρακτηριστικά: Ύψος πύργου H = 18 m (δηλαδή απόσταση από το έδαφος μέχρι το κέντρο της κυκλικής τροχιάς), ακτίνα έλικας R = 2 m, ενώ πραγματοποιεί 60 περιστροφές ανά λεπτό. Δ1) Να υπολογίσετε τη γωνιακή ταχύτητα περιστροφής της έλικας. Μονάδες 5 Στην άκρη της έλικας έχει κολλήσει ένα (σημειακό) κομμάτι λάσπης. Δ2) Να υπολογίσετε τη γραμμική ταχύτητα και την κεντρομόλο επιτάχυνση του κομματιού της λάσπης. Μονάδες 8 Τη στιγμή που η λάσπη περνάει από το ανώτερο σημείο της τροχιάς της ξεκολλάει κι εγκαταλείπει την έλικα. Δ3) Τι είδους κίνηση θα εκτελέσει; Μονάδες 3 Δ4) Μετά από πόσο χρόνο θα φτάσει στο έδαφος και με τι ταχύτητα; Μονάδες 9 Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10 m/s 2. Θεωρήστε π Επίσης θεωρήστε αμελητέα την αντίσταση του αέρα.

15 Τη χρονική στιγμή t o = 0 σώμα μάζας m 1 = 0,4 kg βάλλεται οριζόντια με ταχύτητα μέτρου υ 1 = 30 m/s από ύψος 160 m από το έδαφος. Ταυτόχρονα από το έδαφος βάλλεται κατακόρυφα προς τα επάνω ένα δεύτερο σώμα μάζας m 2 = 0,1 kg με ταχύτητα μέτρου υ 2 = 40 m/s. Όταν το m 2 φτάσει στο μέγιστο ύψος της τροχιάς του, τα δύο σώματα συγκρούονται πλαστικά. Να υπολογίσετε: Δ1) To μέγιστo ύψος που φτάνει το m 2 και τη χρονική στιγμή t 1 της κρούσης. Δ2) Την ταχύτητα του σώματος m 1 (σε μέτρο και κατεύθυνση, υπολογίζοντας τη γωνία που σχηματίζει το διάνυσμα της ταχύτητας του σώματος m 1 με τον οριζόντιο άξονα) τη χρονική στιγμή t 1. Δ3) Να αποδείξετε ότι τη χρονική στιγμή που το σώμα μάζας m 2 φτάνει στο μέγιστο ύψος του, το σώμα m 1 βρίσκεται επίσης στο ίδιο ύψος. Δ4) Την ταχύτητα του συσσωματώματος (σε μέτρο και κατεύθυνση, υπολογίζοντας τη γωνία που σχηματίζει το διάνυσμα της ταχύτητας του συσσωματώματος με τον οριζόντιο άξονα) αμέσως μετά την κρούση. Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της γης g = 10 m/s 2. Η αντίσταση του αέρα θεωρείται αμελητέα.

16 Σώμα μάζας m 1 = 2 kg αφήνεται από κάποιο ύψος και μετά από 3 s χτυπάει με ταχύτητα μέτρου υ 1 στο έδαφος. Το σώμα αναπηδά με ταχύτητα μέτρου υ 2 = 20 m/s. Καθώς ανεβαίνει και σε ύψος 15 m από το έδαφος, συγκρούεται πλαστικά με άλλο σώμα μάζας m 2 = 3 kg που συγκρατείται ακίνητο στο ύψος αυτό, και τη στιγμή της κρούσης απελευθερώνεται. Να υπολογίσετε: Δ1) την ταχύτητα υ 1 καθώς και το αρχικό ύψος από το οποίο αφέθηκε το σώμα m 1, Δ2) τη μέση συνισταμένη δύναμη που δέχτηκε το σώμα μάζας m 1 κατά την κρούση του με το έδαφος, εάν ο χρόνος επαφής με αυτό ήταν 0,1 s, Δ3) την ταχύτητα του συσσωματώματος αμέσως μετά την κρούση, Δ4) το μέγιστο ύψος από το έδαφος που θα φθάσει το συσσωμάτωμα, Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της γης g = 10 m/s 2. Η αντίσταση του αέρα θεωρείται αμελητέα.

17 Σώμα μάζας m 1 = 2 kg είναι δεμένο στο άκρο Α νήματος μήκους l = 1,25 m. Το σώμα αφήνεται από το σημείο Α, με το νήμα οριζόντιο, και διαγράφει το τεταρτοκύκλιο που φαίνεται στο σχήμα. Διερχόμενο από το κατώτερο σημείο της τροχιάς του B, όπου η ταχύτητά του έχει μέτρο υ 1, συγκρούεται πλαστικά με σώμα υ 2 υ 1 Β μάζας m 2 = 3 kg που κινείται με ταχύτητα υ 2 αντίθετης κατεύθυνσης από την υ 1. Το συσσωμάτωμα που δημιουργείται κινείται με ταχύτητα μέτρου V = 4 m/s, με κατεύθυνση ίδια με την κατεύθυνση της ταχύτητας υ 2. Να υπολογίσετε: Δ1) Το μέτρο της ταχύτητας υ 1. Δ2) Την τάση του νήματος καθώς το σώμα m 1 διέρχεται από το σημείο Β. Δ3) Το μέτρο της ταχύτητας υ 2. Δ4) Την αύξηση της θερμικής ενέργειας κατά την κρούση. Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της γης g = 10 m/s 2. Η αντίσταση του αέρα θεωρείται αμελητέα.

18 Ένας ξύλινος στόχος μάζας M 5 kg βρίσκεται ακίνητος σε λείο οριζόντιο δάπεδο. Βλήμα μάζας m 0,1 kg λίγο πριν την κρούση με το στόχο, έχει οριζόντια προς τα δεξιά ταχύτητα με μέτρο 200 m/s. Το βλήμα διαπερνά το στόχο και εξέρχεται από αυτόν με οριζόντια ταχύτητα μέτρου 100 m/s, ομόρροπη της αρχικής του ταχύτητας. Δ1) Να βρεθεί η ταχύτητα την οποία αποκτά ο στόχος αμέσως μετά τη σύγκρουση. Δ2) Να βρεθεί το ποσό της κινητικής ενέργειας που μετατράπηκε σε θερμότητα εξ αιτίας της συγκρούσεως. Υποθέτουμε ότι οι δυνάμεις που αναπτύσσονται μεταξύ του στόχου και του βλήματος, όταν το βλήμα διαπερνά το στόχο, είναι χρονικά σταθερές. Δ3) Αν ο χρόνος που χρειάστηκε το βλήμα να διαπεράσει το στόχο είναι t 0,01 s, να βρείτε το μέτρο της δύναμης που ασκείται από το βλήμα στο στόχο. Δ4) Ο στόχος βρίσκεται στην άκρη ενός τραπεζιού, οπότε μετά την κρούση εκτελεί οριζόντια βολή. Όταν ο στόχος πέφτει στο δάπεδο, τότε το μέτρο της ταχύτητάς του είναι διπλάσιο από το μέτρο της ταχύτητας που έχει αμέσως μετά τη σύγκρουσή του με το βλήμα. Να βρεθεί το ύψος του τραπεζιού. m Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της γης g 10. s 2

19 Ορισμένη ποσότητα ιδανικού αερίου υφίσταται τις παρακάτω αντιστρεπτές μεταβολές: Α Β ισόθερμη εκτόνωση, Β Γ ισοβαρής συμπίεση και Γ Α ισόχωρη θέρμανση. Δίνονται για τις καταστάσεις θερμοδυναμικής ισορροπίας Α και Β: 3 3 V Α 2 10 m, 3 3 V Β 4 10 m. 5 2 p Α 4 10 N/m, p Α Γ Β Δ1) Να βρείτε το έργο που ανταλλάσσεται μεταξύ αερίου και περιβάλλοντος για κάθε μία από τις παραπάνω αντιστρεπτές μεταβολές. Δ2) Για κάθε μία μεταβολή να βρείτε τη μεταβολή της εσωτερικής ενέργειας του αερίου και το ποσό θερμότητας που ανταλλάσσεται μεταξύ αερίου και περιβάλλοντος. Μονάδες 9 Δ3) Εάν μια μηχανή λειτουργεί με το ιδανικό αέριο που εκτελεί τον παραπάνω κύκλο, να βρείτε την απόδοση αυτής της μηχανής. Μονάδες 5 Δ4) Να βρεθεί η απόδοση μιας ιδανικής μηχανής Carnot η οποία λειτουργεί μεταξύ των ίδιων ακραίων θερμοκρασιών. Δίνονται: Για το ιδανικό αέριο η γραμμοριακή ειδική θερμότητα υπό σταθερό όγκο ln 2 0,7. V Μονάδες 5 3 C V R και 2

20 Ένα τρενάκι αποτελείται από δύο μικρά βαγόνια και μπορεί να κινείται με ομαλή κυκλική κίνηση 2 σε κυκλικές ράγες ακτίνας r m με περίοδο T 2 s. Δ1) Να υπολογίσετε το μέτρο της γραμμικής ταχύτητας περιστροφής του αντικειμένου. Κάποια χρονική στιγμή το τρένο υφίσταται μια μικρή έκρηξη και τα δύο βαγόνια αποχωρίζονται μεταξύ τους, ενώ συνεχίζουν να κινούνται στις κυκλικές ράγες. Η μάζα και των δύο μαζί είναι m 3 kg ενώ η μάζα του μπροστινού βαγονιού είναι m1 1 kg. Το μπροστινό βαγόνι μετά την m έκρηξη κινείται με ταχύτητα μέτρου 1 12 στην ίδια κατεύθυνση με την κατεύθυνση κίνησης s του τρένου. Δ2) Να υπολογίσετε την τιμή της ταχύτητας του άλλου βαγονιού. Δ3) Να βρείτε το ποσό της ενέργειας που ελευθερώνεται κατά την έκρηξη. Δ4) Πόση γωνία θα έχει διαγράψει το κάθε βαγόνι μέχρι να συναντηθούν για πρώτη φορά, μετά την έκρηξη; Στην επίλυση του προβλήματος θεωρούμε τα βαγόνια ως υλικά σημεία.

21 Ένα βλήμα μάζας m m 0,1 kg κινείται με οριζόντια ταχύτητα μέτρου 100 και προσκρούει s σε ακίνητο στόχο μάζας Δ1) Την ταχύτητα του συσσωματώματος. M 4,9 kg οπότε και δημιουργείται συσσωμάτωμα. Να βρείτε: Δ2) Τη θερμότητα η οποία ελευθερώθηκε λόγω της σύγκρουσης. Δ3) Το μέτρο της μεταβολής της ορμής για κάθε σώμα ξεχωριστά κατά τη διάρκεια της σύγκρουσης. Δ4) Το βλήμα διανύει μέσα στο στόχο απόσταση 1 m. Να βρεθεί η μέση δύναμη που ασκείται από το στόχο στο βλήμα κατά της διάρκεια της ενσωμάτωσής του, αν υποτεθεί ότι το βλήμα και ο στόχος εκτελούν ευθύγραμμες ομαλά μεταβαλλόμενες κινήσεις κατά τη χρονική διάρκεια της σύγκρουσης.

22 Δύο σώματα με μάζες m1 1 kg και m2 2 kg κινούνται το ένα προς το άλλο, σε λείο οριζόντιο επίπεδο με ταχύτητες μέτρου m 4 s και m 3 s και σε αντίθετες κατευθύνσεις. Τα σώματα κουβαλούν μικροποσότητες εκρηκτικών, τα οποία ενδέχεται να εκραγούν κατά τη μεταξύ τους σύγκρουση. Παρατηρούμε ότι μετά τη σύγκρουσή τους η ταχύτητα του σώματος 1 έχει μέτρο και κατεύθυνση αντίθετη από την αρχική κατεύθυνση κίνησης του σώματος 1. Να βρείτε: Δ1) Την ταχύτητα του σώματος 2 μετά τη σύγκρουση. Δ2) Τη μεταβολή της ορμής κατά μέτρο για κάθε σώμα ξεχωριστά. m 8 s Δ3) Τη μέση δύναμη που ασκεί το κάθε σώμα στο άλλο, αν η σύγκρουση διαρκεί t 0,01 s. Δ4) Κατά τη σύγκρουση εξερράγη κάποια ποσότητα εκρηκτικού ή απλώς παράχθηκε κάποιο ποσό θερμικής ενέργειας λόγω της σύγκρουσης; Μονάδες 1 Να προσδιορίσετε το ποσό της θερμότητας που παράχθηκε λόγω της σύγκρουσης ή της ελάχιστης ενέργειας που ελευθερώθηκε από το εκρηκτικό, με βάση την απάντησή σας στο προηγούμενο ερώτημα.

23 Δίνονται στο παρακάτω σχήμα κάποιες αντιστρεπτές μεταβολές τις οποίες υφίσταται ποσότητα ιδανικού, μονοατομικού αερίου. Δίνεται επίσης ότι η μεταβολή ΓΔ είναι αδιαβατική, ότι η πίεση στην κατάσταση θερμοδυναμικής ισορροπίας Δ είναι ίδια με την πίεση στις καταστάσεις θερμοδυναμικής ισορροπίας Α και Β (όπως φαίνεται και από το σχήμα). N p m 2 4 Γ 1 Α Β Δ V ( m 3 ) Να υπολογιστούν: Δ1) Ο όγκος του αερίου στην κατάσταση ισορροπίας Δ. Δ2) Το έργο που ανταλλάσσει το αέριο με το περιβάλλον για κάθε μία μεταβολή ξεχωριστά. Δ3) Η μεταβολή της εσωτερικής ενέργειας του αερίου σε κάθε μία από τις μεταβολές. Δ4) Η θερμότητα που ανταλλάσσεται μεταξύ αερίου και περιβάλλοντος σε κάθε μία από τις μεταβολές. 5 Δίδεται ότι για τα ιδανικά μονοατομικά αέρια ισχύει:. Επίσης θεωρήστε ότι ,3.

24 Σώμα βρίσκεται στην οριζόντια ταράτσα ουρανοξύστη και εκτελεί ομαλή κυκλική κίνηση σε κύκλο 5 1 ακτίνας r m με περίοδο T s. Να βρείτε: 2 Δ1) Το μέτρο της γραμμικής ταχύτητας του σώματος. Κάποια χρονική στιγμή το σκοινί το οποίο κρατάει το σώμα στην κυκλική τροχιά κόβεται, με αποτέλεσμα αυτό να διαφύγει εκτελώντας οριζόντια βολή. Να βρείτε: Δ2) Την ταχύτητα του σώματος κατά μέτρο και κατεύθυνση 2 s αφού εγκαταλείψει την οροφή της πολυκατοικίας. Δ3) Την απόσταση από το σημείο που διέφυγε από την ταράτσα μέχρι το σημείο που βρίσκεται τη χρονική στιγμή που περιγράφεται στο ερώτημα Δ2. Δ4) Παρατηρούμε ότι το σώμα πέφτει στο οριζόντιο έδαφος με γωνία ως προς αυτό για την οποία ισχύει: εφ 2. Να βρείτε το πηλίκο της κατακόρυφης απόστασης του σημείου βολής από το έδαφος προς τη μέγιστη οριζόντια μετατόπιση (βεληνεκές) του σώματος. m Δίδεται η επιτάχυνση της βαρύτητας στη επιφάνειας της γης g 10, και ότι κάθε είδους τριβή s 2 όπως και η αντίσταση από τον αέρα θεωρούνται αμελητέες.

25 Ορισμένη ποσότητα ιδανικού αερίου υφίσταται τις παρακάτω αντιστρεπτές μεταβολές: Α Β: αδιαβατική εκτόνωση από την κατάσταση θερμοδυναμικής ισορροπίας Α όγκου V 10 3 m 3 στην κατάσταση ισορροπίας Β όγκου 3 3 V 2 10 m και πίεσης p N/m 2. Β Γ: ισόχωρη ψύξη, μέχρι την κατάσταση θερμοδυναμικής ισορροπίας Γ για την οποία p 10 5 N/m 2. Γ Δ: αδιαβατική συμπίεση, μέχρι την κατάσταση θερμοδυναμικής ισορροπίας Δ η οποία έχει όγκο ίσο με V Α. Δ Α: ισόχωρη θέρμανση μέχρι την αρχική κατάσταση Α. Δ1) Να υπολογίσετε την πίεση του αερίου στις καταστάσεις θερμοδυναμικής ισορροπίας Α και Δ. Δ2) Να βρείτε το έργο που παράγει το αέριο σε κάθε αδιαβατική μεταβολή. Δ3) Να βρείτε την απόδοση μιας μηχανής που θα λειτουργούσε με το συγκεκριμένο κύκλο. Δ4) Να βρείτε την απόδοση μιας μηχανής Carnot που θα λειτουργούσε μεταξύ των ίδιων ακραίων θερμοκρασιών, όπως η μηχανή του προηγούμενου ερωτήματος. 3 Δίνονται: Για το ιδανικό αέριo η γραμμομοριακή ειδική θερμότητα υπό σταθερό όγκο C V R και 2 ότι: 3,

26 Ποσότητα μονατομικού ιδανικού αερίου βρίσκεται στην κατάσταση θερμοδυναμικής ισορροπίας Α (p 0, V 0, T 0 ). Το αέριο εκτελεί αρχικά ισόθερμη αντιστρεπτή μεταβολή έως την κατάσταση θερμοδυναμικής ισορροπίας Β (p Β, 3 V 0, T Β ). Ακολούθως συμπιέζεται ισοβαρώς ως την κατάσταση θερμοδυναμικής ισορροπίας Γ (p Γ, V Γ, T Γ ), ώστε κατόπιν εκτελώντας ισόχωρη αντιστρεπτή μεταβολή να επανέλθει στην κατάσταση Α. Δ1) Να βρεθούν η πίεση p Β και η θερμοκρασία Τ Γ συναρτήσει των p 0 και Τ 0, με εφαρμογή των αντίστοιχων νόμων. Μονάδες 4 Δ2) Να γίνει η γραφική παράσταση των μεταβολών σε άξονες p-v, όπου θα φαίνονται οι τιμές της πίεσης, του όγκου και της θερμοκρασίας του αερίου στις καταστάσεις Α, Β και Γ, συναρτήσει των p 0, V 0, T 0. (Οι τιμές της θερμοκρασίας θα σημειωθούν πάνω στις ισόθερμες καμπύλες που διέρχονται από τα Α, Β και Γ). Δ3) Να υπολογιστεί ο λόγος των μεταβολών της εσωτερικής ενέργειας ΔU ΓΑ /ΔU ΒΓ του αερίου κατά τις μεταβολές ΓΑ και ΒΓ. Δ4) Να υπολογιστεί το ολικό έργο του αερίου κατά την κυκλική μεταβολή, αν δίνεται ότι p 0 = Ν/m 2, V 0 = 10-3 m 3 και ln3 = 1,1. Μονάδες 8

27 m Ο καθηγητής της φυσικής μιας σχολής υ Μ αξιωματικών του στρατού θέτει ένα πρόβλημα σχετικά με το πώς οι φοιτητές, αξιοποιώντας τις γνώσεις τους από το h μάθημα, θα μπορούσαν να υπολογίσουν την ταχύτητα υ του βλήματος ενός πιστολιού. Ο καθηγητής υποδεικνύει στους φοιτητές την παρακάτω διαδικασία: Το βλήμα μάζας m x εκτοξεύεται οριζόντια και σφηνώνεται σε ένα κομμάτι ξύλου, μάζας Μ, που ισορροπεί ελεύθερο στην κορυφή ενός στύλου ύψους h. Οι μάζες m και Μ μετρώνται με ζύγιση και το ύψος h μετράται με μετροταινία. Το συσσωμάτωμα αμέσως μετά την κρούση εκτελεί οριζόντια βολή και χτυπάει στο έδαφος σε οριζόντια απόσταση x από τη βάση του στύλου, αφήνοντας ένα σημάδι στο χώμα ώστε να είναι δυνατή η μέτρηση αυτής της απόστασης x. Οι φοιτητές έκαναν τη διαδικασία και τις μετρήσεις που τους υπέδειξε ο καθηγητής τους και βρήκαν τις τιμές m = 0,1 kg, M = 1,9 kg, h = 5 m και x = 10 m. Λαμβάνοντας υπόψη τις προηγούμενες τιμές των μεγεθών που μετρήθηκαν από τους φοιτητές, και θεωρώντας την αντίσταση του αέρα αμελητέα,να υπολογίσετε: Δ1) Το χρονικό διάστημα που πέρασε από την στιγμή της κρούσης μέχρι το συσσωμάτωμα να αγγίξει το έδαφος. Δ2) Το μέτρο της οριζόντιας ταχύτητας V την οποία απέκτησε το συσσωμάτωμα αμέσως μετά την κρούση. Δ3) Το μέτρο της ταχύτητας υ του βλήματος πριν σφηνωθεί στο ξύλο. Δ4) Την απώλεια της μηχανικής ενέργειας του συστήματος βλήμα-ξύλο κατά την κρούση. Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γής g = 10m/s 2.

28 Μία οβίδα μάζας 3 kg εκτοξεύεται από το σημείο Α του οριζόντιου εδάφους κατακόρυφα προς τα πάνω. Όταν φθάνει στο ανώτερο σημείο O της τροχιάς της, δηλαδή έχει στιγμιαία ταχύτητα μηδέν, σπάει ακαριαία, λόγω εσωτερικής έκρηξης, σε δύο κομμάτια με μάζες m 1 = 1 kg και m 2 = 2 kg. Το σημείο Ο βρίσκεται σε ύψος 20 m από το έδαφος. Το κομμάτι μάζας m 1 αποκτά αμέσως μετά την έκρηξη οριζόντια ταχύτητα μέτρου 10m/s με φορά προς τα δεξιά ενός παρατηρητή. Τα κομμάτια m 1 και m 2 κινούνται και πέφτουν στο έδαφος στα σημεία Κ και Λ αντιστοίχως. Να υπολογίσετε: Δ1) Το μέτρο και την κατεύθυνση της ταχύτητας που αποκτά το κομμάτι μάζας m 2 αμέσως μετά την έκρηξη. Δ2) Το χρονικό διάστημα που κινείται κάθε κομμάτι από τη στιγμή της έκρηξης μέχρι να αγγίξει το έδαφος. Δ3) Την απόσταση ΚΛ. Δ4) Το μέτρο της ταχύτητας του κομματιού μάζας m 1 ακριβώς πριν ακουμπήσει στο σημείο Κ του εδάφους. Μονάδες 5 Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γής g= 10m/s 2, και ότι η αντίσταση του αέρα θεωρείται αμελητέα.

29 Ορισμένη ποσότητα μονοατομικού ιδανικού αερίου βρίσκεται στην κατάσταση θερμοδυναμικής ισορροπίας Α, όπου οι τιμές της πίεσης, του όγκου και της απόλυτης θερμοκρασίας του είναι αντίστοιχα p o = Ν/m 2, V o = 10-3 m 3 και T o = 300 Κ. Στην συνέχεια το αέριο εκτελεί ισόθερμη αντιστρεπτή μεταβολή έως την κατάσταση θερμοδυναμικής ισορροπίας Β, όπου καταλαμβάνει όγκο 2V o. Ακολούθως θερμαίνεται ισόχωρα ως την κατάσταση Γ, όπου η πίεση είναι 2p o. Δ1) Να υπολογιστούν η πίεση στην κατάσταση θερμοδυναμικής ισορροπίας Β και η απόλυτη θερμοκρασία στην κατάσταση θερμοδυναμικής ισορροπίας Γ. Δ2) Να γίνει η γραφική παράσταση των αντιστρεπτών μεταβολών ΑΒ και ΒΓ σε βαθμολογημένους άξονες πίεσης όγκου καθώς και σε άξονες όγκου - απόλυτης θερμοκρασίας. Δ3) Να βρεθεί το έργο που παράγει το αέριο στη διάρκεια της συνολικής μεταβολής από την κατάσταση θερμοδυναμικής ισορροπίας Α έως την κατάσταση θερμοδυναμικής ισορροπίας Γ. Δ4) Να βρεθεί η θερμότητα που προσφέρθηκε στο αέριο κατά τη διάρκεια της συνολικής μεταβολής από την κατάσταση θερμοδυναμικής ισορροπίας Α έως την κατάσταση θερμοδυναμικής ισορροπίας Γ. Δίνεται ln2=0,7.

30 Μικρή σφαίρα μάζας 0,1 kg αφήνεται από ύψος h να πέσει ελεύθερα πάνω σε οριζόντιο δάπεδο. Η σφαίρα προσκρούει στο δάπεδο με ταχύτητα μέτρου υ 1 = 5 m/s και αναπηδά κατακόρυφα έχοντας αμέσως μόλις χάσει την επαφή της με το δάπεδο, ταχύτητα μέτρου υ 2 = 2 m/s. Η χρονική διάρκεια της επαφής της σφαίρας με το δάπεδο είναι 0,1 s. Να υπολογιστούν: Δ1) Η μεταβολή της ορμής της σφαίρας (κατά μέτρο και κατεύθυνση) κατά την κρούση της με το δάπεδο. Δ2) Η μέση τιμή της δύναμης που ασκήθηκε από το δάπεδο στη σφαίρα κατά την κρούση. Δ3) Το ύψος h από το οποίο αφέθηκε η σφαίρα. Δ4) Το % ποσοστό της αρχικής μηχανικής ενέργειας της σφαίρας που μεταφέρθηκε στο περιβάλλον κατά την κρούση. Δίνονται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10 m/s 2 και ότι η αντίσταση του αέρα θεωρείται αμελητέα. Θεωρήστε ως επίπεδο δυναμικής ενέργειας μηδέν, το επίπεδο του δαπέδου.

31 Ένας ξύλινος κύβος μάζας Μ = 1 kg m υ 1 M ισορροπεί στην άκρη της ταράτσας στο σημείο Ο ενός κτηρίου Κ1 ύψους 40 m. Κάποια στιγμή, που τη θεωρούμε ως O αρχή μέτρησης του χρόνου t = 0, ένα βλήμα μάζας m = 0,1 kg, το οποίο 40m Κ1 A κινείται με οριζόντια ταχύτητα μέτρου υ 1 = 200 m/s, διαπερνά ακαριαία τον κύβο και εξέρχεται από αυτόν με Κ2 20m 20m οριζόντια ταχύτητα μέτρου υ 2, ενώ ο κύβος αποκτά οριζόντια ταχύτητα μέτρου V. Ο κύβος εκτελεί στη συνέχεια οριζόντια βολή και καθώς κινείται συναντά ένα κτήριο Κ2 ύψους 20m, οπότε προσκρούει στο σημείο Α της ταράτσας, που είναι το πλησιέστερο σημείο της στο κτήριο Κ1. Τα κτήρια απέχουν 20m, όπως φαίνεται στο σχήμα. Να υπολογιστούν: Δ1) η χρονική στιγμή της πρόσκρουσης του κύβου στο σημείο Α, Δ2) το μέτρο V της ταχύτητας του κύβου αμέσως μετά τη διέλευση του βλήματος, Δ3) το μέτρο της ταχύτητας του κύβου πριν ακριβώς προσκρούσει στο σημείο Α, Δ4) η απώλεια της μηχανικής ενέργειας του συστήματος βλήμα-κύβος κατά τη διέλευση του βλήματος από τον κύβο. Δίνονται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10m/s 2 και ότι η αντίσταση του αέρα θεωρείται αμελητέα.

32 Ορισμένη ποσότητα ιδανικού μονοατομικού αερίου βρίσκεται στην κατάσταση θερμοδυναμικής ισορροπίας Α, όπου η πίεσή του είναι p A = 2 atm, ο όγκος του είναι V A = 5 L και η απόλυτη θερμοκρασία του είναι Τ Α = 600 Κ. Το αέριο υποβάλλεται σε αντιστρεπτή κυκλική μεταβολή, η οποία αποτελείται από τις εξής επιμέρους αντιστρεπτές μεταβολές: Α Β: ισοβαρής ψύξη μέχρι να υποδιπλασιαστεί η απόλυτη θερμοκρασία του. Β Γ: ισόθερμη εκτόνωση. Γ Α: ισόχωρη θέρμανση μέχρι την αρχική του θερμοκρασία. Δ1) Να υπολογίσετε, σε mol, την ποσότητα του ιδανικού αερίου. Μονάδες 4 Δ2) Να υπολογίσετε τον όγκο και την πίεση του αερίου στην κατάσταση Γ. Μονάδες 2+4 Δ3) Να σχεδιάσετε τη κυκλική μεταβολή σε διάγραμμα p-v με βαθμολογημένους άξονες. Δ4) Να υπολογίσετε το συνολικό ποσό θερμότητας που αντάλλαξε το αέριο με το περιβάλλον του κατά τη παραπάνω κυκλική μεταβολή. Μονάδες 8 Δίνονται: N 5 1 atm = 10, 1 L = 10-3 m 3 και ln 2 0,7 m 2,η σταθερά των ιδανικών αερίων 25 J R 3 mol K C V 3 R. 2 και η γραμμομοριακή ειδική θερμότητα του αερίου υπό σταθερό όγκο

33 Μια ποσότητα ιδανικού αερίου εκτελεί την αντιστρεπτή κυκλική μεταβολή ΑΒΓΔΑ που φαίνεται στο παρακάτω διάγραμμα p V. p (atm) 4 A Δ T Δ 2 B Γ T Γ T A = 400 K V (L) Δ1) Να χαρακτηρίσετε τις επιμέρους αντιστρεπτές μεταβολές από τις οποίες αποτελείται η κυκλική μεταβολή ΑΒΓΔΑ. Μονάδες 4 Δ2) Να υπολογίσετε την απόλυτη θερμοκρασία του αερίου στις καταστάσεις θερμοδυναμικής ισορροπίας Γ και Δ. Δ3) Να βρείτε σε ποιες επιμέρους μεταβολές του παραπάνω κύκλου το αέριο απορροφά θερμότητα από το περιβάλλον και να υπολογίσετε την τιμή της θερμότητας που απορροφάται. Μονάδες 8 Δ4) Να υπολογίσετε το συνολικό έργο του αερίου κατά την κυκλική μεταβολή ΑΒΓΔΑ. 5 N Δίνονται: 1atm 10 και ln 2 0,7. m 2 Οι γραμμομοριακές ειδικές θερμότητες του αερίου υπό σταθερό όγκο C V 3 R 2 και υπό σταθερή πίεση 5 C P R. 2

34 Ένα ξύλινο κιβώτιο μάζας M = 20 kg βρίσκεται ακίνητο στην άκρη της ταράτσας ενός ουρανοξύστη η οποία βρίσκεται σε ύψος Η = 80 m πάνω από το οριζόντιο έδαφος, όπως φαίνεται στο παρακάτω σχήμα. Ένα βλήμα μάζας m = 500 g, που κινείται με οριζόντια ταχύτητα μέτρου υ = 200 m s, συγκρούεται με το ακίνητο κιβώτιο, το διαπερνά και εξέρχεται απ αυτό με ταχύτητα υ1 που έχει μέτρο υποδιπλάσιο της ταχύτητας υ. Αμέσως μετά τη κρούση και τα δύο σώματα (ξύλινο κιβώτιο και βλήμα), εκτελούν οριζόντια βολή. m υ Μ Η Οριζόντιο έδαφος Δ1) Να υπολογίσετε την ταχύτητα του κιβωτίου αμέσως μετά την κρούση. Δ2) Να υπολογίσετε τη θερμότητα που απελευθερώθηκε στο περιβάλλον λόγω της κρούσης του βλήματος με το κιβώτιο. Δ3) Αν υποθέσετε ότι η χρονική διάρκεια της κίνησης του βλήματος μέσα στο κιβώτιο είναι Δt= 0,1 s, να υπολογίσετε τη μέση δύναμη F, που δέχθηκε το βλήμα από το κιβώτιο. Το κιβώτιο αλλά και το βλήμα μετά την οριζόντια βολή που εκτελούν, πέφτουν στο έδαφος στα σημεία Α και Β αντίστοιχα. Δ4) Να υπολογίσετε την απόσταση ΑΒ. m Δίνονται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g= 10 και ότι κατά τις κινήσεις 2 s των σωμάτων θεωρούμε μηδενική την αντίσταση του αέρα.

35 Ένα κιβώτιο μάζας Μ = 970 g βρίσκεται ακίνητο πάνω σε οριζόντιο δάπεδο με το οποίο εμφανίζει συντελεστή τριβής ολίσθησης μ = 0,2. Βλήμα μάζας m = 30 g κινείται με οριζόντια ταχύτητα m μέτρου υ = 200, συγκρούεται με το ακίνητο κιβώτιο και σφηνώνεται σ αυτό, οπότε s δημιουργείται συσσωμάτωμα. m υ Μ Δ1) Να υπολογίσετε το μέτρο της ταχύτητας με την οποία ξεκινά να κινείται το συσσωμάτωμα. Δ2) Να βρείτε το μέτρο της μέσης δύναμης F που ασκείται από το βλήμα στο κιβώτιο, αν το βλήμα ακινητοποιήθηκε μέσα στο κιβώτιο σε χρονικό διάστημα Δt = 0,01 s. Δ3) Να υπολογίσετε την απώλεια της κινητικής ενέργειας του συστήματος κιβώτιο-βλήμα λόγω της κρούσης. Δ4) Να βρείτε το διάστημα που θα διανύσει το συσσωμάτωμα, αμέσως μετά την κρούση, μέχρι να σταματήσει. m Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10. s 2

36 Μια ποσότητα n = 2 R mol ιδανικού αερίου (το R είναι αριθμητικά ίσο με τη σταθερά των ιδανικών J αερίων εκφρασμένη σε ) βρίσκεται στην κατάσταση θερμοδυναμικής ισορροπίας Α, όπου η mol K πίεσή του είναι p A = 3 atm, ο όγκος του V A και η απόλυτη θερμοκρασία Τ Α = 300 Κ. Το αέριο υποβάλλεται στις παρακάτω αντιστρεπτές μεταβολές: Α Β: ισοβαρή θέρμανση μέχρι να διπλασιαστεί η απόλυτη θερμοκρασία του. Β Γ: ισόχωρη ψύξη μέχρι να υποτριπλασιαστεί η απόλυτη θερμοκρασία του. Δ1) Να υπολογίσετε τον όγκο του αερίου στην αρχική του κατάσταση. Δ2) Να υπολογίσετε την πίεση του αερίου στην τελική του κατάσταση. Δ3) Να υπολογίσετε το έργο του αερίου κατά την συνολική μεταβολή Α Β Γ. Δ4) Να σχεδιάσετε τις μεταβολές σε διάγραμμα p-v με βαθμολογημένους άξονες. 5 N Δίνεται ότι 1 atm = 10. m 2 Μονάδες 5 Μονάδες 8

37 Ένα ξύλινο κιβώτιο μάζας M = 1,95 kg βρίσκεται ακίνητο στην άκρη κατακόρυφης χαράδρας η οποία βρίσκεται σε ύψος Η = 45 m, πάνω από την επιφάνεια της θάλασσας, όπως φαίνεται στο παρακάτω σχήμα. Βλήμα μάζας m = 50 g, που κινείται με οριζόντια ταχύτητα υ = 100 m s, συγκρούεται με το ακίνητο κιβώτιο και σφηνώνεται σ αυτό. Στη συνέχεια, το συσσωμάτωμα κιβώτιο-βλήμα που δημιουργείται, εκτελεί οριζόντια βολή με την ταχύτητα που απέκτησε και πέφτει προς την θάλασσα αμέσως μετά την κρούση. Να υπολογίσετε: υ Μ m Η Θάλασσα Δ1) Την ταχύτητα V Σ του συσσωματώματος κιβώτιο-βλήμα αμέσως μετά την κρούση. Δ2) Την απώλεια της κινητικής ενέργειας του συστήματος κιβώτιο-βλήμα λόγω της κρούσης. Δ3) Το χρόνο που διαρκεί η κάθοδος του συσσωματώματος, μέχρι αυτό να φτάσει στην επιφάνεια της θάλασσας. Δ4) Την μέγιστη οριζόντια απόσταση s, που θα διανύσει το συσσωμάτωμα (βεληνεκές), φτάνοντας στην επιφάνεια της θάλασσας. m Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γής g = 10 και ότι κατά την κίνηση 2 s του συσσωματώματος κιβώτιο-βλήμα θεωρούμε την αντίσταση από τον αέρα μηδενική.

38 Ποσότητα ιδανικού αερίου βρίσκεται σε θερμοδυναμική ισορροπία στην κατάσταση Α μέσα σε κατακόρυφο κυλινδρικό δοχείο. Ο όγκος του αερίου είναι V A = 4 L και η πίεση του p A = 1 atm. Το δοχείο έχει διαθερμικά τοιχώματα, είναι σκεπασμένο με αεροστεγές έμβολο εμβαδού Α = 40 cm 2 και βρίσκεται σε λουτρό θερμότητας με θερμοκρασία Τ = 300 Κ. Από την κατάσταση Α συμπιέζουμε το έμβολο και με μία αντιστρεπτή μεταβολή φέρνουμε το αέριο στην κατάσταση Β όπου p Β = 2 atm. Αφαιρούμε το δοχείο από το λουτρό θερμότητας και κρατώντας σταθερή την πίεση του αερίου το θερμαίνουμε μέχρι να φτάσει σε μια κατάσταση Γ. Στην κατάσταση Γ στερεώνουμε το έμβολο ώστε να μην μπορεί να κινηθεί και ψύχουμε το δοχείο. Με αυτή την αντιστρεπτή μεταβολή το αέριο επανέρχεται στην αρχική του κατάσταση Α. Κατά την μεταβολή ΓΑ η μεταβολή της εσωτερικής ενέργειας του αερίου είναι J. Δ1) Να υπολογίσετε πόσο θα μετακινηθεί το έμβολο ώστε το αέριο από την κατάσταση Α να μεταβεί στην κατάσταση Β. Μονάδες 5 Δ2) Να υπολογίσετε τον λόγο όπου υ ενα και υ ενγ οι ενεργές ταχύτητες των μορίων του αερίου στην κατάσταση Α και Γ αντίστοιχα. Δ3) Να υπολογίσετε το συντελεστή γ του αερίου. Δ4) Να υπολογίσετε το συνολικό έργο της κυκλικής μεταβολής. Δίνεται ότι 1atm=10 5 και ln2=0,7

39 Η ταράτσα ενός κτιρίου βρίσκεται σε ύψος H = 20 m από το έδαφος. Ένα κουτί Α μάζας m 1 = 3 kg είναι δεμένο σε σχοινί μήκους L και κάνει ομαλή κυκλική κίνηση κινούμενο πάνω στην επιφάνεια της ταράτσας (βλ. σχήμα 1). To κουτί κινείται με ταχύτητα υ = 20 m/s και κάνει μία πλήρη περιστροφή σε χρόνο 0,2 π s. Στην κατάλληλη θέση το σχοινί κόβεται ώστε το κουτί Α αφού ολισθήσει να συγκρουστεί πλαστικά με ένα άλλο κουτί Β μάζας m 2 = 1 kg που βρίσκεται στην άκρη της ταράτσας. Αμέσως μετά την σύγκρουση το συσσωμάτωμα εγκαταλείπει την ταράτσα με οριζόντια ταχύτητα μέτρου υ 0. Δ1) Να υπολογίσετε το μήκος του σχοινιού που είναι δεμένο το κουτί Α. Μονάδες 4 Δ2) Να υπολογίσετε την ταχύτητα υ 0 με την οποία το συσσωμάτωμα εγκαταλείπει την ταράτσα καθώς και πόσο μακριά από το κτίριο το συσσωμάτωμα χτυπά το έδαφος. Μονάδες 8 Δ3) Να υπολογίσετε την ταχύτητα με την οποία το συσσωμάτωμα χτυπά το έδαφος (μέτρο και κατεύθυνση). Δ4) Έστω ότι σε απόσταση d = 15 m από την βάση του κτιρίου βρίσκεται στύλος ύψους h = 6 m (Σχήμα 2). Ο στύλος βρίσκεται στο ίδιο επίπεδο με την τροχιά του συσσωματώματος. Να αιτιολογήσετε αν το συσσωμάτωμα θα χτυπήσει στο στύλο ή αν θα περάσει πάνω από αυτόν. Να θεωρήσετε την αντίσταση του αέρα αμελητέα και να αγνοήσετε την τριβή για όλη την κίνηση του κουτιού Α πάνω στην ταράτσα. Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g=10 m/s 2. L A υ B υ 0 Η Η d h Σχήμα 1. Σχήμα 2.

40 Ιδανικό μονατομικό αέριο πραγματοποιεί την ακόλουθη κυκλική αντιστρεπτή μεταβολή. Από την κατάσταση θερμοδυναμικής ισορροπίας Α, όπου p A = Ν/m 2, V A = m 3 και Τ Α = 600 Κ εκτονώνεται ισόθερμα στην κατάσταση Β. Στη συνέχεια ψύχεται ισόχωρα μέχρι την κατάσταση Γ, στην οποία η πίεση είναι p Γ = 10 5 Ν/m 2, και τέλος συμπιέζεται αδιαβατικά μέχρι την αρχική κατάσταση. Δ1) Να σχεδιάσετε σε διάγραμμα p-v ποιοτικά (χωρίς αριθμούς) την κυκλική μεταβολή. Μονάδες 4 Δ2) Να υπολογίσετε την πίεση, τον όγκο και την θερμοκρασία του αερίου στις καταστάσεις Γ και Β. Μονάδες 10 Δ3) Να υπολογίσετε την μεταβολή της εσωτερικής ενέργειας του αερίου κατά την ισόχωρη ψύξη. Μονάδες 4 Δ4) Να υπολογίσετε τη θερμότητα κατά την κυκλική μεταβολή, και να αιτιολογήσετε αν αυτή την απορροφά το αέριο ή αν την αποδίδει στο περιβάλλον. Δίνεται η γραμμομοριακή ειδική θερμότητα υπο σταθερό όγκο C V =, ln2 = 0,7 και ότι

41 Ποσότητα ιδανικού αερίου υφίσταται την παρακάτω κυκλική αντιστρεπτή μεταβολή: Από την κατάσταση θερμοδυναμικής ισορροπίας Α θερμαίνεται ισοβαρώς στην κατάσταση θερμοδυναμικής ισορροπίας Β όπου διπλασιάζεται η απόλυτη θερμοκρασία του (Τ Β = 2Τ Α ) και ο όγκος του γίνεται V B = 2, m 3. Από την κατάσταση θερμοδυναμικής ισορροπίας Β υφίσταται αντιστρεπτή μεταβολή στην κατάσταση θερμοδυναμικής ισορροπίας Γ, κατά την διάρκεια της οποίας διατηρείται σταθερή η εσωτερική ενέργεια του αερίου, και η πίεση του είναι p Γ = 10 5 Ν/m 2. Από την κατάσταση θερμοδυναμικής ισορροπίας Γ ψύχεται ισόχωρα μέχρι την κατάσταση θερμοδυναμικής ισορροπίας Δ όπου Τ Δ = 300 Κ και V Δ = 4, m 3. Τέλος από την κατάσταση θερμοδυναμικής ισορροπίας Δ επιστρέφει ισόθερμα στην αρχική κατάσταση Α. Δ1) Να υπολογίσετε τον όγκο του αερίου στην κατάσταση Γ και τη θερμοκρασία του σε όλες τις καταστάσεις. Δ2) Να υπολογίσετε τον όγκο του αερίου στην κατάσταση Α και την πίεση του σε όλες τις καταστάσεις. Δ3) Να υπολογίσετε τη θερμότητα που ανταλλάσσει το αέριο με το περιβάλλον κατά την ισόχωρη ψύξη και κατά την ισόθερμη συμπίεση. Μονάδες 5 Δ4) Να υπολογίσετε την μεταβολή της εσωτερικής ενέργειας του αερίου κατά την ισοβαρή θέρμανση και να σχεδιάσετε σε διάγραμμα P-V την κυκλική μεταβολή. Δίνονται η γραμμομοριακή ειδική θερμότητα υπό σταθερό όγκο C V = και ln2=0,7. Μονάδες 8

42 Σε κινηματογραφική ταινία ένα Μπόϊγκ 777 μετά από διαδοχικές βλάβες πέφτει κατακόρυφα κάνοντας ελεύθερη πτώση (οι κινητήρες του αεροπλάνου δεν λειτουργούν). Στην ταινία αυτή ένας υπερήρωας σταματάει το αεροπλάνο ασκώντας του κατακόρυφη δύναμη προς τα επάνω (βλ. φωτογραφία). Το αεροπλάνο έχει μάζα kg και όταν ο υπερήρωας αρχίζει να του ασκεί δύναμη έχει ταχύτητα 270 m/s. Το αεροπλάνο σταματά σε 30 s. Να υπολογίσετε : Δ1) το μέτρο της μεταβολής της ορμής του αεροπλάνου από τη στιγμή που δέχεται τη δύναμη από τον υπερήρωα μέχρι να σταματήσει, Μονάδες5 Δ2) τη μέση δύναμη που δέχεται το αεροπλάνο στο χρονικό διάστημα των 30 s, Μονάδες6 Δ3) τη μέση δύναμη που ασκείται στο αεροπλάνο από τον υπερήρωα, Μονάδες7 Δ4) την απόσταση που κινήθηκε το αεροπλάνο από τη στιγμή που δέχθηκε τη δύναμη μέχρι να σταματήσει. Μονάδες7 Δίνεται η επιτάχυνση της βαρύτητας g= 10 m/s 2 και ότι η αντίσταση του αέρα είναι αμελητέα.

43 Το 2014 η τεννίστρια Sabine Lisicki έκανε ένα σερβίς στο οποίο η μπάλα έφυγε από την ρακέτα με ταχύτητα υ 0 = 58 m/s. Η ταχύτητα αυτή είναι η μεγαλύτερη καταγεγραμμένη ταχύτητα για τις γυναίκες τενίστριες.το μπαλάκι υ 0 h 1 h 2 του τένις ζυγίζει 60 g και ο χρόνος επαφής του με την ρακέτα ήταν 5 ms. Θεωρούμε ότι πριν χτυπήσει η ρακέτα το μπαλάκι του τένις είχε στιγμιαία ταχύτητα μηδέν και ότι η τελική του ταχύτητα ήταν οριζόντια. Να υπολογίσετε: Δ1) τη μεταβολή της ορμής στο μπαλάκι, Μονάδες5 Δ2) τη μέση δύναμη που δέχτηκε το μπαλάκι από την ρακέτα, Μονάδες6 Δ3) την εφαπτομένη της γωνίας που σχηματίζει η ταχύτητα της μπάλας με την κατακόρυφο όταν η μπάλα χτυπάει στο έδαφος, Μονάδες7 Όταν η τενίστρια χτύπησε το μπαλάκι απείχε από το δίχτυ απόσταση d= 17,4 m και το ύψος από το οποίο ξεκίνησε την κίνησή του το μπαλάκι ήταν h 1 = 2 m. Το δίχτυ έχει ύψος h 2 = 1 m. Δ4) Να υπολογίσετε σε πόσο ύψος πάνω από το δίχτυ πέρασε το μπαλάκι. Μονάδες7 Για τους υπολογισμούς να θεωρήσετε ότι η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης είναι g= 10 m/s 2 και. d

44 Η σφαίρα του σχήματος ξεκίνησε την ομαλή κυκλική κίνησή της σε κύκλο ακτίνας ΟΑ = 2 m από τη θέση Α με σταθερoύ μέτρου γραμμική ταχύτητα υ 1. Το έντομο ξεκίνησε την ευθύγραμμη ομαλή κίνησή του από το σημείο Γ, που βρίσκεται Κ στην ίδια κατακόρυφη με την ακτίνα OA και σε απόσταση Λ ΑΓ = 0,5m κάτω από το Α, με ταχύτητα, μέτρου υ 2 = 0,1 m/s. Η έναρξη των κινήσεων ήταν ταυτόχρονη. Το στιγμιότυπο της κίνησης που φαίνεται στο σχήμα αντιστοιχεί σε χρόνο 25 s μετά την έναρξη των κινήσεων. Στο στιγμιότυπο οι θέσεις των κινητών και το κέντρο του κύκλου είναι στην ίδια ευθεία την ΟΚΛ. Δ1) Πόση είναι απόσταση ΓΛ που διένυσε το έντομο μέχρι τη θέση που φαίνεται στο στιγμιότυπο του σχήματος; Μονάδες 5 Δ2) Ποια είναι η επίκεντρη γωνία ΓΟΛ που διέγραψε η σφαίρα; Μονάδες 8 Δ3) Πόση είναι η περίοδος, η γωνιακή ταχύτητα και η γραμμική ταχύτητα της σφαίρας; Δ4) Πόση είναι η κεντρομόλος επιτάχυνση της σφαίρας; Να θεωρήσετε για την άσκηση ότι π 2 = 10.

45 Δύο σφαίρες με μάζες m 1 = 6 kg και m 2 = 4 kg κινούνται σε οριζόντιο δάπεδο με αντίθετη φορά και συγκρούονται πλαστικά. Τη στιγμή της σύγκρουσης τα μέτρα των ταχυτήτων των σφαιρών ήταν υ 1 = 20 m/s και υ 2 = 10 m/s. Δ1) Να βρεθεί η ταχύτητα του συσσωματώματος αμέσως μετά την κρούση. Μονάδες 5 Δ2) Να βρεθεί η απώλεια της μηχανικής ενέργειας του συστήματος των δύο σφαιρών κατά την πλαστική κρούση. Μονάδες 5 Δ3) Αν η κρούση διαρκεί 0,1 s, να βρεθεί το μέτρο της μέσης δύναμης που ασκεί το ένα σώμα στο άλλο. Δ4) Να βρεθεί το διάστημα για το οποίο κινήθηκε το συσσωμάτωμα μετά την κρούση. Θεωρείστε ότι κατά τη διάρκεια της κρούσης η μετατόπιση του συσσωματώματος είναι αμελητέα, ενώ ο συντελεστής τριβή συσσωματώματος δαπέδου είναι μ = 0,32. Μονάδες 8 Δίνεται η επιτάχυνση της βαρύτητας στην επιφάνεια της Γης g = 10 m/s 2.

46 Ένα πουλί και ένα έντομο διέρχονται ταυτόχρονα από το σημείο επαφής των δύο εφαπτόμενων κύκλων του σχήματος. Το πουλί διαγραφεί ομαλά την τροχιά του κύκλου σε χρονικό διάστημα 2 s. Το έντομο διαγράφει τον άλλο κύκλο ομαλά σε χρονικό διάστημα 3 s. Δ1) Να υπολογίσετε τον λόγο της συχνότητας του πουλιού, προς τη συχνότητα του εντόμου. Μονάδες 5 Δ2) Να υπολογίσετε τον λόγο της γραμμικής ταχύτητας του πουλιού προς τη γραμμική ταχύτητα του εντόμου, αν ο λόγος των αντίστοιχων ακτίνων κίνησης πουλιού - εντόμου είναι R πουλ /R εντ. = 3/2. Δ3) Υπολογίστε πόσους κύκλους θα έχει κάνει το πουλί και πόσους το έντομο μέχρι να ξανασυναντηθούν για πρώτη φόρα, μετά από τη στιγμή που διήλθαν ταυτόχρονα, από το σημείο επαφής. Δ4) Σε πόσο χρόνο θα ξανασυναντηθούν για δεύτερη φορά;

47 Σε σώμα μάζας m που κινείται με ταχύτητα μέτρου υ 0, σε λείο οριζόντιο δάπεδο, δρα δύναμη σταθερού μέτρου F, με κατεύθυνση αντίθετη της 0. Θεωρούμε θετική την κατεύθυνση της 0. Όταν η μεταβολή της ορμής του σώματος είναι -3 m υ 0 να υπολογιστούν: Δ1) Η ταχύτητα του σώματος. Δ2) Η χρονική διάρκεια κατά την οποία προκλήθηκε η προηγούμενη μεταβολή ορμής. Δ3) Το έργο της δύναμης F για την μετατόπιση κατά την οποία η δύναμη F είναι ομόρροπη με την ταχύτητα του σώματος. Δ4) Το μέτρο της μετατόπισης που αντιστοιχεί στο έργο που υπολογίσατε στο ερώτημα Δ3. Οα απαντήσεις σας θα πρέπει να είναι εκφράσεις των m, F, και υ 0.

48 Στις παρακάτω γραφικές παραστάσεις φαίνονται οι θέσεις δύο σωμάτων, A και Β που συγκρούονται στη θέση x = 4 m, σε συνάρτηση με το χρόνο. Η μάζα του σώματος Α είναι m A = 1 kg και η μάζα του σώματος Β είναι m B = 3 kg. Δ1) Να μεταφέρετε στο απαντητικό σας φύλλο και να συμπληρώσετε τον πίνακα που ακολουθεί. Ταχύτητα Ορμή Κινητική Ενέργεια Πριν την Κρούση Μετά την κρούση Α Β Α Β Μονάδες 12 Δ2) Με βάση τον προηγούμενο πίνακα, να εξηγήσετε ποιες αρχές διατήρησης ισχύουν στη συγκεκριμένη κρούση. Μονάδες 3 Δ3) Αν η χρονική διάρκεια του φαινομένου της κρούσης είναι Δt = 0,01 s, (που είναι τόσο μικρό ώστε δεν μπορεί να παρασταθεί στην κλίμακα του χρόνου που έχουμε διαλέξει για τα διαγράμματα θέσης χρόνου) να βρεθεί η δύναμη που άσκησε το σώμα Α στο σώμα Β κατά τη διάρκεια της κρούσης. Μονάδες 5 Δ4) Να βρεθεί το ποσοστό της κινητικής ενέργεια του κινούμενου σώματος που μεταφέρθηκε στο ακίνητο ως αποτέλεσμα της κρούσης. Μονάδες 5

49 Δύο σώματα κινούνται με σταθερές ταχύτητες στην ίδια οριζόντια ευθεία. Στον πίνακα, φαίνονται οι θέσεις από τις οποίες διέρχονται τα σώματα Α και Β κάθε δευτερόλεπτο. ΣΩΜΑ (Α) ΣΩΜΑ (Β) ΧΡΟΝΟΣ (s) ΘΕΣΗ (m) ΘΕΣΗ (m) Δ1) Σε ποια θέση συγκρούονται τα σώματα; Μονάδες 3 Δ2) Ποιες είναι οι ταχύτητες των σωμάτων πριν και μετά τη σύγκρουσή τους; Μονάδες 10 Δ3) Να βρείτε τη σχέση που ικανοποιούν οι μάζες των δύο σωμάτων. Δ4) Να ελέγξετε αν διατηρείται η μηχανική ενέργεια του συστήματος. Μονάδες 5

50 Τα καρότσια που φαίνονται στην πιο κάτω εικόνα βρίσκονται ακίνητα πάνω στην οριζόντια επιφάνεια του πάγκου στο εργαστήριο Φυσικών Επιστημών, και συνδέονται μεταξύ τους με νήμα. Ένα ελατήριο ελάχιστης μάζας, το οποίο είναι σταθερά συνδεδεμένο στο καρότσι Α, βρίσκεται συμπιεσμένο ανάμεσά τους. Κάποια στιγμή καίμε το νήμα που συνδέει τα δύο καρότσια, τα καρότσια απελευθερώνονται, κινούνται αντίθετα και φτάνουν ταυτόχρονα στις άκρες του πάγκου. Αν αγνοήσουμε τις τριβές κατά την κίνηση των καροτσιών, να υπολογίσετε: Δ1) Το λόγο του μέτρου της ταχύτητα του Α προς το μέτρο της ταχύτητας του Β, υ Α /υ Β, κατά τη διάρκεια της κίνησης των καροτσιών. Μονάδες 3 Δ2) Το λόγο των μαζών τους, m A / m B καθώς και το λόγο των μέτρων των ορμών τους p A / p B των καροτσιών Α και Β. Μονάδες 8 Δ3) Το λόγο των μέσων τιμών των δυνάμεων F A / F B που αναπτύχθηκαν στα καρότσια αμέσως μετά την καύση του νήματος και για όσο χρονικό διάστημα τα καρότσια ήταν σε επαφή με το ελατήριο. Δ4) Το λόγο των κινητικών ενεργειών Κ Α /Κ Β, που απέκτησαν τα καρότσια. Μονάδες 8

51 Ορισμένη ποσότητα ιδανικού αερίου μιας θερμικής μηχανής Μ, υποβάλλεται στην αντιστρεπτή κυκλική μεταβολή Το αέριο ξεκινά από την κατάσταση θερμοδυναμικής ισορροπίας 1, όπου V 1 = 2 L και p 1 = N/m 2, Τ 1 = 600 Κ, ακολουθεί μια ισόθερμη εκτόνωση 1 2 μέχρι ο όγκος να γίνει V 2 = 8 L, και στην συνέχεια υφίσταται μια ισόχωρη ψύξη 2 3 μέχρι τη θερμοκρασία T 3 = 300 Κ. Η επόμενη μεταβολή είναι μια ισόθερμη συμπίεση 3 4, μέχρι ο όγκος να γίνει V 1, και ο κύκλος ολοκληρώνεται με μια ισόχωρη θέρμανση μέχρι την αρχική κατάσταση 1. Δ1) Να υπολογιστεί η πίεση του αερίου στις καταστάσεις 4 και 2. Μονάδες 5 Δ2) Να σχεδιαστεί σε διάγραμμα p V η κυκλική μεταβολή λαμβάνοντας υπόψη τις τιμές των μεγεθών p και V που υπολογίσατε. Δ3) Να υπολογιστεί το ποσό της θερμότητας που μεταφέρθηκε από το περιβάλλον στο αέριο στην ισόχωρη μεταβολή 4 1. Δ4) Να υπολογιστεί ο συντελεστής απόδοσης της ιδανικής θερμικής μηχανής Carnot που λειτουργεί μεταξύ των θερμοκρασιών Τ 1 και Τ 3. Χωρίς να υπολογίσετε την απόδοση της μηχανής Μ, να εξηγήσετε αν είναι μικρότερη ή μεγαλύτερη από την απόδοση της προηγούμενης μηχανής Carnot. Δίνονται C V = 3R/2 και ότι 1 L = 10-3 m 3.

52 α. φ = 45 ο, β. φ < 45 ο, γ. φ > 45 ο Μονάδες 8 ΘΕΜΑ Δ Ένας μικρός ξύλινος κύβος μάζας Μ = 30 g ηρεμεί αρχικά στο άκρο Α του πάγκου του σχολικού εργαστηρίου, που έχει ύψος h = 0,8 m από το οριζόντιο δάπεδο. Εκτοξεύουμε ένα κομμάτι πλαστελίνης μάζας m = 10 g ώστε να συγκρουστεί με οριζόντια ταχύτητα u π με τον ξύλινο κύβο. Η κρούση είναι πλαστική και αμέσως μετά το συσσωμάτωμα εκτελεί οριζόντια βολή. To συσσωμάτωμα έπεσε στο πάτωμα σε οριζόντια απόσταση S = 0,8 m από το σημείο βολής. Δ1) Να υπολογίσετε την οριζόντια ταχύτητα του συσσωματώματος αμέσως μετά την κρούση. Δ2) Ποια η ταχύτητα u π με την οποία συγκρούστηκε η πλαστελίνη με το ξύλινο σώμα; Μονάδες 5 Δ3) Να υπολογίσετε την απώλεια κινητικής ενέργειας για το σύστημα πλαστελίνη-ξύλινος κύβος λόγω της κρούσης. Δ4) Ένας συμμαθητής σας ισχυρίζεται, πως «είδε» ότι το συσσωμάτωμα έπεσε υπό γωνία φ = 45 ο ως προς το πάτωμα. Όμως είναι πολύ δύσκολο να μετρηθεί άμεσα η γωνία αυτή για να ελεγχθεί ο ισχυρισμός του. Με τα δεδομένα που έχετε, να αναπτύξτε κάποια άλλη μέθοδο για να ελέγξετε τον παραπάνω ισχυρισμό. Ποιο από τα επόμενα συμπεράσματα είναι αυτό στο οποίο καταλήγετε; Να θεωρήσετε αμελητέες οποιεσδήποτε αντιστάσεις ή τριβές και ότι η επιτάχυνση της βαρύτητας έχει τιμή g = 10 m/s 2. Επιπλέον δίνεται ότι εφ45 0 = 1

53 Συμπαγής ελαστική μπάλα μάζας m = 0,5 kg αφήνεται ελεύθερη από ύψος h = 1,25 m πάνω από οριζόντιο μαρμάρινο δάπεδο. Αν μετά από την πρώτη αναπήδηση η μπάλα φτάνει στην ίδια θέση απ όπου αφέθηκε μετά από χρόνο 1,1 s, τότε : Δ1) Να υπολογιστεί η ορμή της μπάλας αμέσως πριν και αμέσως μετά την κρούση με το δάπεδο, Μονάδες 8 Δ2) Να σχεδιαστούν τα διανύσματα: της αρχικής και τελικής ορμής καθώς και της μεταβολής της ορμής. Να υπολογιστεί το μέτρο της μεταβολής της ορμής της μπάλας κατά την κρούση, Μονάδες 8 Δ3) Να σχεδιαστούν ποιοτικά τα διανύσματα των δυνάμεων που ασκούνται στη μπάλα κατά τη διάρκεια της κρούσης και να βρεθεί η μέση δύναμη που δέχεται το δάπεδο κατά τη διάρκεια της σύγκρουσης μπάλας και δαπέδου. Μονάδες 9 Θεωρήστε ότι δεν υπάρχει αντίσταση του αέρα και ότι η επιτάχυνση της βαρύτητας είναι g = 10 m/s 2

Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης.

Δ 4. Το ποσοστό της αρχικής κινητικής ενέργειας του βέλους που μεταφέρεται στο περιβάλλον του συστήματος μήλο-βέλος κατά τη διάρκεια της διάτρησης. Σε οριζόντιο επίπεδο βρίσκεται ακίνητο ένα μήλο μάζας Μ = 200 g. Ένα μικρό βέλος μάζας m = 40 g κινείται οριζόντια με ταχύτητα μέτρου, υ 1 = 10 m / s, χτυπά το μήλο με αποτέλεσμα να το διαπεράσει. Αν γνωρίζετε

Διαβάστε περισσότερα

Δ4) Να υπολογίσετε την αύξηση της θερμικής ενέργειας μετά την κρούση των σωμάτων λόγω της τριβής στο τραχύ δάπεδο.

Δ4) Να υπολογίσετε την αύξηση της θερμικής ενέργειας μετά την κρούση των σωμάτων λόγω της τριβής στο τραχύ δάπεδο. ΘΕΜΑ Δ (15652) Δύο σφαίρες ίδιας μάζας, 0,2 kg, κινούνται ευθύγραμμα και ομαλά σε λείο οριζόντιο επίπεδο σε αντίθετες κατευθύνσεις και με ταχύτητες μέτρων 6 m s, 2 m s αντίστοιχα, ώστε να πλησιάζουν η

Διαβάστε περισσότερα

Θέματα Δ της τράπεζας θεμάτων του υπουργείου Παιδείας

Θέματα Δ της τράπεζας θεμάτων του υπουργείου Παιδείας Θέματα Δ της τράπεζας θεμάτων του υπουργείου Παιδείας Οριζόντια βολή Θέμα 16087 (Τα σκαλοπάτια) Τα σκαλοπάτια μιας σκάλας είναι όλα όμοια μεταξύ τους και έχουν ύψος h = 20 cm και πλάτος d = 40 cm. Από

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ ΘΕΜΑ 1 ο 17/4/2015 Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2014-2015

ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2014-2015 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α ΗΜΕΡΟΜΗΝΙΑ: 23-11-2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.- ΚΑΤΣΙΛΗΣ Α.- ΠΑΠΑΚΩΣΤΑΣ Τ.- ΤΖΑΓΚΑΡΑΚΗΣ Γ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

8 2.ΘΕΜΑ B 2-16138 Β.1

8 2.ΘΕΜΑ B 2-16138 Β.1 1 ΘΕΜΑ B Καταστατική εξίσωση των ιδανικών αερίων 1.ΘΕΜΑ Β 2-16146 Β.1 Μια ποσότητα ιδανικού αερίου βρίσκεται σε κατάσταση θερμοδυναμικής ισορροπίας, καταλαμβάνει όγκο V, έχει απόλυτη θερμοκρασία Τ, ενώ

Διαβάστε περισσότερα

m A m B Δ4) Να υπολογιστεί το ποσό θερμικής ενέργειας (θερμότητας) που ελευθερώνεται εξ αιτίας της κρούσης των δύο σωμάτων.

m A m B Δ4) Να υπολογιστεί το ποσό θερμικής ενέργειας (θερμότητας) που ελευθερώνεται εξ αιτίας της κρούσης των δύο σωμάτων. Το σώμα Α μάζας m A = 1 kg κινείται με ταχύτητα u 0 = 8 m/s σε λείο οριζόντιο δάπεδο και συγκρούεται μετωπικά με το σώμα Β, που έχει μάζα m B = 3 kg και βρίσκεται στο άκρο αβαρούς και μη εκτατού (που δεν

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚAMΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ-ΟΡΜΗ-ΝΟΜΟΙ ΑΕΡΙΩΝ 5/1/2015

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚAMΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ-ΟΡΜΗ-ΝΟΜΟΙ ΑΕΡΙΩΝ 5/1/2015 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΚMΠΥΛΟΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ-ΟΡΜΗ-ΝΟΜΟΙ ΑΕΡΙΩΝ ΘΕΜΑ 1 ο 5/1/2015 Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα

Διαβάστε περισσότερα

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

. ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ . ΠΡΩΤΟΣ ΘΕΡΜΟ ΥΝΑΜΙΚΟΣ ΝΟΜΟΣ 1. Σε µια ισόθερµη µεταβολή : α) Το αέριο µεταβάλλεται µε σταθερή θερµότητα β) Η µεταβολή της εσωτερικής ενέργειας είναι µηδέν V W = PV ln V γ) Το έργο που παράγεται δίνεται

Διαβάστε περισσότερα

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από

1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 1. Ένας κασκαντέρ θέλει με το αυτοκίνητό του, να πηδήξει πάνω από 8 αυτοκίνητα σταθμευμένα ένα μετά το άλλο κάτω από μια οριζόντια πλατφόρμα. Το κάθε αυτοκίνητο έχει μήκος d = 3 m και ύψος h = 1,2 m. Τo

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ 1. Στο παρακάτω διάγραμμα απομάκρυνσης-χρόνου φαίνονται οι γραφικές παραστάσεις για δύο σώματα 1 και 2 τα οποία εκτελούν Α.Α.Τ. Να βρείτε τη σχέση που συνδέει τις μέγιστες επιταχύνσεις

Διαβάστε περισσότερα

2. Κιβώτιο μάζας Μ = 995 g κρέμεται ακίνητο στη μια άκρη αβαρούς μη εκτατού νήματος μήκους l = 1 m από το κλαδί ενός δέντρου.

2. Κιβώτιο μάζας Μ = 995 g κρέμεται ακίνητο στη μια άκρη αβαρούς μη εκτατού νήματος μήκους l = 1 m από το κλαδί ενός δέντρου. 1. Ο μπάρμαν σπρώχνει ένα ποτήρι μπίρας πάνω στον πάγκο του μπαρ, το ο- ποίο γλιστράει και πέφτει στο πάτωμα σε απόσταση d = 1,4m από τη βάση του πάγκου. Αν το ύψος του πάγκου είναι h = 0,8m, να υπολογίσετε:

Διαβάστε περισσότερα

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6 ΘΕΜΑ Δ 1. Δύο αμαξοστοιχίες κινούνται κατά την ίδια φορά πάνω στην ίδια γραμμή. Η προπορευόμενη έχει ταχύτητα 54km/h και η επόμενη 72km/h. Όταν βρίσκονται σε απόσταση d, οι μηχανοδηγοί αντιλαμβάνονται

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΕΠΙΜΕΛΕΙΑ ΘΕΜΑΤΩΝ ΒΑΡΕΛΑΣ ΔΗΜΗΤΡΗΣ ΟΜΑΔΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑ 1 Στις ερωτήσεις 1-5 να γράψετε στη κολλά σας τον αριθμό της ερώτησης και δίπλα το γράμμα που

Διαβάστε περισσότερα

Β ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Β ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΛΥΚΕΙΟΥ: ΦΥΣΙΚΗΣ ΠΡΟΣΑΑΤΟΛΙΣΜΟΥ Διαγωνίσματα 2014-2015 1 ο Διαγώνισμα Θεματικό πεδίο: Επαναληπτικό (Οριζόντια ολή Κυκλική Κίνηση Κρούσεις) Ημερομηνία 16 οεμβρίου 2014 Διάρκεια Επιμέλεια 2 Ώρες ΘΕΜΑ 1 25

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ/ΜΑΘΗΤΡΙΑΣ: ΘΕΜΑ Α Εξεταστέα ύλη: ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ ΟΡΜΗ ΑΕΡΙΑ Στις ερωτήσεις Α1 Α4 να επιλέξετε τη σωστή απάντηση. Α1. Όταν η πίεση ορισμένης ποσότητας

Διαβάστε περισσότερα

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Το έργο μίας από τις δυνάμεις που ασκούνται σε ένα σώμα. α. είναι μηδέν όταν το σώμα είναι ακίνητο β. έχει πρόσημο το οποίο εξαρτάται από τη γωνία

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 28 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 15 Δεκεμβρίου, 2013 Ώρα: 10:00-13:00 Οδηγίες: 1) Το δοκίμιο αποτελείται από πέντε (5) σελίδες και πέντε (5) θέματα. 2) Να απαντήσετε σε

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ

ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ-2 ος ΘΕΡΜΟΔΥΝΑΜΙΚΟΣ ΝΟΜΟΣ Θερμικες μηχανες 1. Το ωφελιμο εργο μπορει να υπολογιστει με ένα από τους παρακατω τροπους: Α.Υπολογιζουμε το αλγεβρικο αθροισμα των εργων ( μαζι με τα προσημα

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια

ÊÏÑÕÖÇ ÊÁÂÁËÁ Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ. U 1 = + 0,4 J. Τα φορτία µετατοπίζονται έτσι ώστε η ηλεκτρική δυναµική ενέργεια 1 ΘΕΜΑ 1 ο Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ 1. οχείο σταθερού όγκου περιέχει ορισµένη ποσότητα ιδανικού αερίου. Αν θερµάνουµε το αέριο µέχρι να τετραπλασιαστεί η απόλυτη θερµοκρασία

Διαβάστε περισσότερα

4.1.α. Κρούσεις. Κρούσεις. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. 4.1.22. Κρούση και τριβές. 4.1.23. Κεντρική ανελαστική κρούση

4.1.α. Κρούσεις. Κρούσεις. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. 4.1.22. Κρούση και τριβές. 4.1.23. Κεντρική ανελαστική κρούση 4.1.α.. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. Μια πλάκα µάζας Μ=4kg ηρεµεί στο πάνω άκρο ενός κατακόρυφου ελατηρίου, σταθεράς k=250ν/m, το άλλο άκρο του οποίου στηρίζεται στο έδαφος. Εκτρέπουµε

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ 1 B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε κίνηση ενός κινητού; 2. Τι ονομάζουμε τροχιά ενός κινητού; 3. Τι ονομάζουμε υλικό σημείο; 4. Ποια μεγέθη ονομάζονται μονόμετρα και ποια διανυσματικά;

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε:

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. = 2r, τότε: ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση 1. (Διατήρηση της στροφορμής) Η Γη στρέφεται σε ελλειπτική τροχιά γύρω από τον Ήλιο. Το κοντινότερο σημείο στον Ήλιο ονομάζεται Περιήλιο (π) και το πιο απομακρυσμένο Αφήλιο (α).

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση 1 A' ΛΥΚΕΙΥ ΖΗΤΗΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση 1. Το µέτρο της µετατόπισης

Διαβάστε περισσότερα

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ÍÅÏ ÖÑÏÍÔÉÓÔÇÑÉÏ ΕΚΦΩΝΗΣΕΙΣ

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ÍÅÏ ÖÑÏÍÔÉÓÔÇÑÉÏ ΕΚΦΩΝΗΣΕΙΣ 1 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΘΕΜΑ 1 o ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Η ορµή ενός σώµατος

Διαβάστε περισσότερα

2. Ασκήσεις Θερμοδυναμικής. Ομάδα Γ.

2. Ασκήσεις Θερμοδυναμικής. Ομάδα Γ. . σκήσεις ς. Ομάδα..1. Ισοβαρής θέρμανση και έργο. Ένα αέριο θερμαίνεται ισοβαρώς από θερμοκρασία Τ 1 σε θερμοκρασία Τ, είτε κατά την μεταβολή, είτε κατά την μεταβολή Δ. i) Σε ποια μεταβολή παράγεται περισσότερο

Διαβάστε περισσότερα

ΤΕΣΤ 16. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας.

ΤΕΣΤ 16. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Να επιλέξετε τη σωστή απάντηση. Να δικαιολογήσετε την επιλογή σας. Επαναληπτικό 4 ΘΕΜ aa ΤΕΣΤ 16 1. Στη διάταξη του σχήματος, ασκούμε κατακόρυφη δύναμη σταθερού μέτρου F στο άκρο του νήματος, ώστε ο τροχός () να ανέρχεται κυλιόμενος χωρίς ολίσθηση στο κεκλιμένο επίπεδο.

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

Για τα μέτρα της μεταβολής της ορμής και τις μεταβολές της κινητικής ενέργειας ισχύει: Μονάδες 4. Μονάδες 9

Για τα μέτρα της μεταβολής της ορμής και τις μεταβολές της κινητικής ενέργειας ισχύει: Μονάδες 4. Μονάδες 9 Β.1 Προσφέρουμε ένα ποσό θερμότητας σε ένα αέριο. α. Η θερμοκρασία του αερίου μειώνεται πάντα. β. Υπάρχει περίπτωση να μειωθεί η θερμοκρασία του αερίου. γ. Δεν υπάρχει περίπτωση να μειωθεί η θερμοκρασία

Διαβάστε περισσότερα

Να γράψετε στο τετράδιο σας την σωστή απάντηση στις παρακάτω ερωτήσεις.

Να γράψετε στο τετράδιο σας την σωστή απάντηση στις παρακάτω ερωτήσεις. ΘΕΜΑ 1 Να γράψετε στο τετράδιο σας την σωστή απάντηση στις παρακάτω ερωτήσεις. 1. Αέριο συμπιέζεται ισόθερμα στο μισό του αρχικού όγκου.η ενεργός ταχύτητα των μορίων του: α) διπλασιάζεται. β) παραμένει

Διαβάστε περισσότερα

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8)

ΘΕΜΑ Β Παράδειγμα 1. Να δικαιολογήσετε την επιλογή σας. (Μονάδες 8) ΘΕΜΑ Β Παράδειγμα 1 Β1. Στο σχολικό εργαστήριο μια μαθήτρια περιεργάζεται ένα ελατήριο και λέει σε συμμαθητή της: «Θα μπορούσαμε να βαθμολογήσουμε αυτό το ελατήριο και με τον τρόπο αυτό να κατασκευάσουμε

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΛΥΚΕΙΟ ΑΓΙΟΥ ΣΠΥΡΙΔΩΝΑ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΛΥΚΕΙΟ ΑΓΙΟΥ ΠΥΡΙΔΩΝΑ ΧΟΛΙΚΗ ΧΡΟΝΙΑ 2011-2012 ΓΡΑΠΤΕ ΠΡΟΑΓΩΓΙΚΕ ΕΞΕΤΑΕΙ ΦΥΙΚΗ ΚΑΤΕΥΘΥΝΗ Β ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 31-05-2012 ΔΙΑΡΚΕΙΑ: 07.45 10.15 Οδηγίες 1. Το εξεταστικό δοκίμιο αποτελείται από 9 σελίδες.

Διαβάστε περισσότερα

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1

4 η Εργασία F 2. 90 o 60 o F 1. 2) ύο δυνάµεις F1 4 η Εργασία 1) ύο δυνάµεις F 1 και F 2 ασκούνται σε σώµα µάζας 5kg. Εάν F 1 =20N και F 2 =15N βρείτε την επιτάχυνση του σώµατος στα σχήµατα (α) και (β). [ 2 µονάδες] F 2 F 2 90 o 60 o (α) F 1 (β) F 1 2)

Διαβάστε περισσότερα

R 2. Να επιλέξετε τη σωστή απάντηση και να αιτιολογήσετε την επιλογή σας.

R 2. Να επιλέξετε τη σωστή απάντηση και να αιτιολογήσετε την επιλογή σας. 1. Δύο τροχοί συνδέονται με ιμάντα, όπως φαίνεται στο σχήμα. Οι συχνότητες περιστροφής του συνδέονται με τη σχέση: A R 2 Γ R 1 B Δ 2. Ο ωροδείκτης και ο λεπτοδείκτης ενός ρολογιού δείχνουν ακριβώς 12h.

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014

ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΜΑΘΗΜΑ / ΤΑΞΗ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / Β ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 04/01/2014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 Α4 και δίπλα το γράμμα

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 28-2-2010

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 28-2-2010 ΕΠΩΝΥΜΟ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 ΖΗΤΗΜΑ 1 ο ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 28-2-2010 Να γράψετε στο

Διαβάστε περισσότερα

Σχολικό έτος 2012-2013 Πελόπιο, 30 Μαΐου 2013

Σχολικό έτος 2012-2013 Πελόπιο, 30 Μαΐου 2013 Σχολικό έτος 0-03 Πελόπιο, 30 Μαΐου 03 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΛΥΚΕΙΟΥ ΠΕΡIΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 03 ΣΤΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤ. ΚΑΙ ΤΕΧ. ΚΑΤΕΥΘΥΝΣΗΣ ΕΙΣΗΓΗΤΕΣ: ΖΑΦΕΙΡΟΠΟΥΛΟΥ Ε., ΧΙΩΤΕΛΗΣ Ι. ΘΕΜΑ. Να σημειώσετε

Διαβάστε περισσότερα

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου;

E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά τη λειτουργία της µηχανής του αυτοκινήτου; E. ΘΕΡΜΙΚΕΣ ΜΗΧΑΝΕΣ 1. Β2.25 Θερµική µηχανή είναι, α) το τρόλεϊ; β) ο φούρνος; γ) το ποδήλατο; δ) ο κινητήρας του αεροπλάνου; Επιλέξτε τη σωστή απάντηση. 2. Β2.26 Με ποιόν τρόπο αποβάλλεται θερµότητα κατά

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ. Δίνεται ότι η ροπή αδράνειας του δίσκου ως προς τον άξονα Κ είναι Ι= M R ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 1 Η ράβδος ΟΑ του σχήματος μπορεί να στρέφεται γύρω από τον άξονα z z χωρίς τριβές Tη στιγμή t=0 δέχεται την εφαπτομενική δύναμη F σταθερού μέτρου 0 Ν, με φορά όπως φαίνεται στο σχήμα

Διαβάστε περισσότερα

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ

EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ EΡΓΟ-ΘΕΡΜΟΤΗΤΑ-ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ ΠΑΡΑΤΗΡΗΣΕΙΣ 1. Διαδοση θερμοτητας και εργο είναι δυο τροποι με τους οποιους η ενεργεια ενός θερμοδυναμικου συστηματος μπορει να αυξηθει ή να ελαττωθει. Δεν εχει εννοια

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση B' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΖΗΤΗΜΑ 1 ΕΚΦΩΝΗΣΕΙΣ Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα που αντιστοιχεί στην σωστή απάντηση

Διαβάστε περισσότερα

Β) Να υπολογίσετε τα μέτρα των δυνάμεων που σχεδιάσατε, σε συνάρτηση με τα βάρη Β 1 και Β 2 των δύο σφαιρών. Μονάδες 7

Β) Να υπολογίσετε τα μέτρα των δυνάμεων που σχεδιάσατε, σε συνάρτηση με τα βάρη Β 1 και Β 2 των δύο σφαιρών. Μονάδες 7 Β ΘΕΜΑ Β 1. Δύο μεταλλικές σφαίρες Σ 1, Σ 2 έχουν βάρη Β 1 και Β 2 αντίστοιχα και κρέμονται ακίνητες με τη βοήθεια λεπτών νημάτων αμελητέας μάζας από την οροφή, όπως παριστάνεται στο σχήμα. Α) Να μεταφέρετε

Διαβάστε περισσότερα

β) διπλασιάζεται. γ) υποδιπλασιάζεται. δ) υποτετραπλασιάζεται. Μονάδες 4

β) διπλασιάζεται. γ) υποδιπλασιάζεται. δ) υποτετραπλασιάζεται. Μονάδες 4 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΟΦΡΟΝΤΙΣΤΗΡΙΑΚΗΣ ΠΡΟΣΟΜΟΙΩΣΗΣ B ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΑΝΟΥΑΡΙΟΥ 009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ

Διαβάστε περισσότερα

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές.

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές. ΜΑΘΗΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ Θέµα 1 ο α) Ορισµένη ποσότητα ιδανικού αερίου πραγµατοποιεί µεταβολή AB από την κατάσταση A (p, V, T ) στην κατάσταση B (p, V 1, T ). i) Ισχύει V 1 = V. ii) Η µεταβολή παριστάνεται

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης)

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ Άσκηση. (Ροπή αδράνειας - Θεμελιώδης νόμος στροφικής κίνησης) Ένας ομογενής οριζόντιος δίσκος, μάζας Μ και ακτίνας R, περιστρέφεται γύρω από κατακόρυφο ακλόνητο άξονα z, ο οποίος διέρχεται

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα

Διαβάστε περισσότερα

7. Ένα σώμα εκτελεί ταυτόχρονα δύο αρμονικές ταλαντώσεις με εξισώσεις,

7. Ένα σώμα εκτελεί ταυτόχρονα δύο αρμονικές ταλαντώσεις με εξισώσεις, 1. Κάθε ελατήριο του σχήματος έχει το ένα άκρο του στερεωμένο σε ακίνητο σημείο και το άλλο του άκρο προσδεμένο στο σώμα Σ. Οι σταθερές των δύο ελατηρίων είναι Κ 1 =120Ν/m και Κ 2 =80N/m. To σώμα Σ, έχει

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ 31-10-10 ΣΕΙΡΑ Α ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Β' ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ EΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Ο Να επιλέξετε τη σωστή απάντηση σε κάθε μία από τις ερωτήσεις - που ακολουθούν: Η ενεργός ταχύτητα των μορίων ορισμένης ποσότητας

Διαβάστε περισσότερα

Επαναληπτικό Χριστουγέννων Β Λυκείου

Επαναληπτικό Χριστουγέννων Β Λυκείου Επαναληπτικό Χριστουγέννων Β Λυκείου 1.Ποιά από τις παρακάτω προτάσεις είναι σωστή ; Σύµφωνα µε τον 1ο θερµοδυναµικό νόµο το ποσό της θερµότητας που απορροφά η αποβάλει ένα θερµοδυναµικό σύστηµα είναι

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις.

1.1. Μηχανικές Ταλαντώσεις. 1.1. Μηχανικές. 1) Εξισώσεις ΑΑΤ Ένα υλικό σηµείο κάνει α.α.τ. µε πλάτος 0,1m και στην αρχή των χρόνων, βρίσκεται σε σηµείο Μ µε απο- µάκρυνση 5cm, αποµακρυνόµενο από τη θέση ισορροπίας. Μετά από 1s περνά

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 013-014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Β ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1ο ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 18 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Στις ερωτήσεις 1-4 να γράψετε

Διαβάστε περισσότερα

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ

ΓΑΛΑΝΑΚΗΣ ΓΙΩΡΓΟΣ ΔΗΜΗΤΡΑΚΟΠΟΥΛΟΣ ΜΙΧΑΛΗΣ ΘΕΜΑ Α Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί η σωστή απάντηση. Ένας ακίνητος τρoχός δέχεται σταθερή συνιστάμενη ροπή ως προς άξονα διερχόμενο

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ)

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ ΔΙΟΡΙΣΜΟ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΜΑΣ ΣΤΟ ΔΗΜΟΣΙΟ 1. Για το κωνικό

Διαβάστε περισσότερα

Ασκήσεις στη Κυκλική Κίνηση

Ασκήσεις στη Κυκλική Κίνηση 1 Ασκήσεις στη Κυκλική Κίνηση 1.Δυο τροχοί ακτινών R 1=40cm και R 2=10cm συνδέονται με ιμάντα και περιστρέφονται ο πρώτος με συχνότητα f 1=4Hz, ο δε δεύτερος με συχνότητα f 2. Να βρεθεί ο αριθμός των στροφών

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1 έως Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση

Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση Ασκήσεις υναµικής 3 η ενότητα: Κινητική σωµατιδίου: ενέργεια, ορµή, κρούση 1. Mόλις τεθεί σε κίνηση µε σταθερή ταχύτητα, ο µάζας 1000 kg ανελκυστήρας Α ανεβαίνει µε ρυθµό έναν όροφο (3 m) το δευτερόλεπτο.

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ : η μετατόπιση ενός σώματος (m) () Δx x x x : η τελική θέση του σώματος (m) x : η αρχική θέση

Διαβάστε περισσότερα

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α. Στις ερωτήσεις 1-5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση 1.

Διαβάστε περισσότερα

Οριζόντια βολή κυκλική κίνηση Ορμή-Κρούσεις

Οριζόντια βολή κυκλική κίνηση Ορμή-Κρούσεις 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Οριζόντια βολή κυκλική κίνηση Ορμή-Κρούσεις ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Ευθύγραμμη ομαλή κίνηση: Είναι κάθε ευθύγραμμη κίνηση στην οποία το διάνυσμα

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 15 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 1 Μαΐου 15 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/2014 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 013-014 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ( ΑΠΑΝΤΗΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 09/03/014 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΘΕΜΑ Δ-1 Δ1. Δ2. Δ3. Δ4. Δ3. Δ4.

ΘΕΜΑ Δ-1 Δ1. Δ2. Δ3. Δ4. Δ3. Δ4. ΘΕΜΑ Δ-1 Ένα σώμα μάζας m = 1kg κινείται ευθύγραμμα πάνω σε οριζόντιο επίπεδο περνώντας από ένα σημείο Α του επιπέδου, στη θέση x0 = 0, με ταχύτητα u0 = 10m/s. Ο συντελεστής τριβής ολίσθησης σώματος και

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΠΛΑΓΙΑ ΚΡΟΥΣΗ.. Σώμα που κινείται με κάποια ταχύτητα που σχηματίζει γωνία ως προς το κεκλιμένο επίπεδο συγκρούεται πλαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. Ξύλινο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ - ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ Δυναμική ενέργεια δυο φορτίων Δυναμική ενέργεια τριών ή περισσοτέρων

Διαβάστε περισσότερα

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής έως και το 04 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ Ερωτήσεις Πολλαπλής Επιλογής. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα που αναφέρεται στην απλή αρμονική ταλάντωση και να συμπληρώσετε

Διαβάστε περισσότερα

(ΙΙ) τα πάνω με σταθερή επιτάχυνση μέτρου α = 2g, όπου g η επιτάχυνση της βαρύτητας.

(ΙΙ) τα πάνω με σταθερή επιτάχυνση μέτρου α = 2g, όπου g η επιτάχυνση της βαρύτητας. ΘΕΜΑ Β Β 1. Μικρή σφαίρα αφήνεται να πέσει από αρχικό μικρό ύψος H, πάνω από το έδαφος και εκτελώντας ελεύθερη πτώση πέφτει στο έδαφος. K (Ι) K (ΙΙ) K (ΙΙΙ) 0 Η y 0 H y 0 H y Α) Να επιλέξετε την σωστή

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Β ΤΑΞΗ.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Β ΤΑΞΗ. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 27 ΜΑΪΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7) ΘΕΜΑ 1ο Στις ερωτήσεις

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΟΥ ΗΡΑΚΛΕΙΟΥ Τρίτη 19/5/2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ 2015 ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΟΥ ΗΡΑΚΛΕΙΟΥ Τρίτη 19/5/2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ 2015 ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΝΕΟΥ ΗΡΑΚΛΕΙΟΥ Τρίτη 19/5/015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ -ΙΟΥΝΙΟΥ 015 ΦΥΣΙΚΗ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α 1 Για τις επόμενες τέσσερες ερωτήσεις από την Α1 έως

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ η εξεταστική περίοδος 03-4 - Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ Τάξη: Β Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 6-0-03 Διάρκεια: 3 ώρες Ύλη: Κυκλική κίνηση - Βολή - Ορμή - Κρούση Καθηγητής:

Διαβάστε περισσότερα

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων

Β' τάξη Γενικού Λυκείου. Κεφάλαιο 1 Κινητική θεωρία αερίων Β' τάξη Γενικού Λυκείου Κεφάλαιο 1 Κινητική θεωρία αερίων Κεφάλαιο 1 Κινητική θεωρία αερίων Χιωτέλης Ιωάννης Γενικό Λύκειο Πελοπίου 1.1 Ποιο από τα παρακάτω διαγράμματα αντιστοιχεί σε ισοβαρή μεταβολή;

Διαβάστε περισσότερα

2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ.

2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ. 2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ. 2.2.21. Έργο και µέγιστη Κινητική Ενέργεια. Ένα σώµα µάζας 2kg κινείται σε οριζόντιο επίπεδο και σε µια στιγµή περνά από την θέση x=0 έχοντας ταχύτητα υ 0 =8m/s,

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείµενο εξέτασης: Όλη η διδακτέα ύλη Χρόνος εξέτασης: 3 ώρες

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείµενο εξέτασης: Όλη η διδακτέα ύλη Χρόνος εξέτασης: 3 ώρες ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΣΤΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείµενο εξέτασης: Όλη η διδακτέα ύλη Χρόνος εξέτασης: 3 ώρες ΘΕΜΑ 1ο Στις ερωτήσεις 1-4 να γράψετε στο φύλλο απαντήσεών σας τον αριθµό

Διαβάστε περισσότερα

β) το αυτοκίνητο τη χρονική στιγμή t = 2 s έχει ταχύτητα μέτρου υ 4. s γ) στο αυτοκίνητο ασκείται σταθερή συνισταμένη δύναμη μέτρου 1 Ν.

β) το αυτοκίνητο τη χρονική στιγμή t = 2 s έχει ταχύτητα μέτρου υ 4. s γ) στο αυτοκίνητο ασκείται σταθερή συνισταμένη δύναμη μέτρου 1 Ν. ΘΕΜΑ Β Β 1. Ένα παιγνίδι - αυτοκινητάκι μάζας 1 Kg είναι ακίνητο στη θέση x = 0 m. Την χρονική στιγμή t = 0 s ξεκινά να κινείται ευθύγραμμα. Στον παρακάτω πίνακα φαίνονται οι τιμές της θέσης του αυτοκινήτου

Διαβάστε περισσότερα

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 007 Α ΛΥΚΕΙΟΥ Θέµα ο ΦΥΣΙΚΗ Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε ένα σώµα

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 1 Ονοματεπώνυμο.. Υπεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης, Κυριτσάκας Βαγγέλης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Κυριακή 17-10-2010

Διαβάστε περισσότερα

Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α Π Ρ Ο Ο Π Τ Ι Κ Η - Π Α Π Α Ν Α Σ Τ Α Σ Ι Ο Υ 1 0 1 Σελίδα 1

Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α Π Ρ Ο Ο Π Τ Ι Κ Η - Π Α Π Α Ν Α Σ Τ Α Σ Ι Ο Υ 1 0 1 Σελίδα 1 1 ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ-ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ-Κ.Β.ΦΙΡΦΙΡΗΣ ΘΕΜΑ Β1. Μικρή σφαίρα αφήνεται να πέσει από αρχικό μικρό ύψος H, πάνω από το έδαφος και εκτελώντας ελεύθερη πτώση πέφτει στο έδαφος. Η γραφική παράσταση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ B' ΛΥΚΕΙΟΥ 16/11/2014

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ B' ΛΥΚΕΙΟΥ 16/11/2014 ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... www.syghrono.gr ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ B' ΛΥΚΕΙΟΥ 16/11/2014

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 9η Ολυμπιάδα Φυσικής Γ Λυκείου (Β φάση) Κυριακή 9 Μαρτίου 01 Ώρα:.00-1.00 ΟΔΗΓΙΕΣ: 1. Το δοκιμιο αποτελειται απο εννεα (9) σελιδες και επτα (7) θεματα.. Να απαντησετε σε ολα τα θεματα του δοκιμιου.. Μαζι

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Θέμα 1o A Λυκείου 22 Μαρτίου 28 Στις ερωτήσεις Α,Β,Γ,Δ,E μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.

Διαβάστε περισσότερα

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:...

ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΑΡ.:... ΛΑΝΙΤΕΙΟ ΛΥΚΕΙΟ Α ΣΧΟΛΙΚΟ ΕΤΟΣ 2010-2011 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: Φυσική ΤΑΞΗ: Α ΗΜΕΡΟΜΗΝΊΑ: 27 Μαίου 2011 ΧΡΟΝΟΣ: 2 ώρες ΩΡΑ: 11.00 1.00 ΒΑΘΜΟΣ: Αριθμητικά:... Ολογράφως:...

Διαβάστε περισσότερα

ΘΕΜΑ Β. διπλανό διάγραμμα. Αν t 2 =2 t 1 και t 3 =3 t 1 τότε -F

ΘΕΜΑ Β. διπλανό διάγραμμα. Αν t 2 =2 t 1 και t 3 =3 t 1 τότε -F ΘΕΜΑ Β Β 1. Ένας μικρός μεταλλικός κύβος βρίσκεται αρχικά ακίνητος σε λείο οριζόντιο δάπεδο. Στον κύβο ασκείται την χρονική στιγμή t= 0 s οριζόντια δύναμη της οποίας η τιμή σε συνάρτηση με το χρόνο παριστάνεται

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 5 ΙΟΥΝΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 50. Σε ένα σώμα μάζας m=2kg που ηρεμεί σε λείο επίπεδο ενεργεί οριζόντια δύναμη F=10Ν για χρόνο t=20s. Να βρεθεί πόσο διάστημα διανύει το σώμα σε χρόνο 25s και να γίνει γραφική παράσταση

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

Ισορροπία στερεού. 3.2.8. Ποιες είναι οι δυνάμεις που ασκούνται; 3.2.9. Ένας Κύλινδρος Πάνω σε μια Σφήνα. Υλικό Φυσικής Χημείας

Ισορροπία στερεού. 3.2.8. Ποιες είναι οι δυνάμεις που ασκούνται; 3.2.9. Ένας Κύλινδρος Πάνω σε μια Σφήνα. Υλικό Φυσικής Χημείας 3.2.. 3.2.1. Ροπές και ισορροπία. Πάνω σε λείο οριζόντιο επίπεδο βρίσκεται μια ράβδος μήκους l=4m, η οποία μπορεί να στρέφεται γύρω από κατακόρυφο άξονα, ο οποίος διέρχεται από το μέσον της Ο. Ασκούμε

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 15 ΙΟΥΝΙΟΥ 015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Β1) Ένα σώμα κινείται σε οριζόντιο δάπεδο με σταθερή ταχύτητα μέτρου 4 m/s με την επίδραση οριζόντιας σταθερής δύναμης μέτρου ίσου με 40 N.

Β1) Ένα σώμα κινείται σε οριζόντιο δάπεδο με σταθερή ταχύτητα μέτρου 4 m/s με την επίδραση οριζόντιας σταθερής δύναμης μέτρου ίσου με 40 N. ΘΕΜΑ Β Β1) Ένα σώμα κινείται σε οριζόντιο δάπεδο με σταθερή ταχύτητα μέτρου 4 m/s με την επίδραση οριζόντιας σταθερής δύναμης μέτρου ίσου με 40 N. Α) Να επιλέξετε τη σωστή πρόταση. Ο ρυθμός με τον οποίο

Διαβάστε περισσότερα