Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια"

Transcript

1 8 Κρούσεις Στην µηχανική µε τον όρο κρούση εννοούµε τη σύγκρουση δύο σωµάτων που κινούνται το ένα σχετικά µε το άλλο.το ϕαινόµενο της κρούσης έχει δύο χαρακτηριστικά : ˆ Εχει πολύ µικρή χρονική διάρκεια. ˆ Κατά τη διάρκεια της επαφής των δύο σωµάτων αναπτύσσονται πολύ ισχυρές δυνάµεις, ισχυρότερες από όλες τις άλλες που µπορει να ασκούνται στα σώµατα (π.χ. ϐαρύτητα). Οι δυνάµεις αυτές έχουν σχέση δράσης - αντίδρασης και το µέτρο τους µεταβάλλεται κατα την διάρκεια της κρούσης. Στην ατοµική και πυρηνική ϕυσική η έννοια της κρούσης επεκτείνεται, ώστε νε περιλαµβάνει και την αλληλεπίδραση µεταξύ σωµατιδίων τα οποία δεν έρχονται σε επαφή. Για παράδειγµα η εκτόξευση ενός ηλεκτρονίου προς ένα ϕορτισµένο σωµατίδιο, έχει ως αποτέλεσµα την απότοµη αλλαγή της κινητικής κατάστασης των σωµατιδίων, τα οποία αν και δεν έρχονται σε επαφή, εµφανίζουν τα χαρακτηριστικά της κρούσης. Ονοµάζουµε κρούση κάθε ϕαινόµενο και του µικρόκοσµου, στο οποίο δύο σώµατα αλληλεπιδρούν µε σχετικά µεγάλες δυνάµεις για πολύ µικρό χρονικό διάστηµα. Στην σύγχρονη ϕυσκή το παραπάνω ϕαινόµενο ονοµάζεται και σκέδαση. Τα είδη της κρούσης, ανάλογα µε την διεύθυνση κίνησης των σωµάτων πριν συγκρουστούν. (α ) Κεντρική (ϐ ) Εκκεντρη (γ ) Πλάγια ˆ Κεντρική ή µετωπική κρούση ονοµάζεται η κρούση, στην οποία τα διανύσµατα των ταχυτήτων των κέντρων µάζας των σωµάτων που συγκρούονται ϐρίσκονται πάνω στην ευθεία που συνδέει τα κέντρα µάζας τους. ˆ Εκκεντρη ονοµάζεται η κρούση στην οποία τα διανύµατα των ταχυτήτων των κέντρων µάζας των σωµάτων που συγκρούονται ειναι παράλληλα µεταξύ τους. ˆ Πλάγια ονοµάζεται η κρούση στην οποία τα διανύσµατα των ταχυτήτων των κέντρων µάζας των σωµάτων που συγκρούονται δεν έχουν την ίδια διεύθυνση. http : //perif ysikhs.wordpress.com 101 Μιχάλης Ε. Καραδηµητριου

2 Η διατήρηση της ορµής στις κρούσεις Επειδή κατά την διάρκεια της κρούσης δεν ασκούνται εξωτερικές δυνάµεις στα σώµατα ή η συνισταµένη τους είναι µηδέν ϑεωρούµε το σύστηµα των σωµάτων µονωµένο. Άρα : Σ F ɛξ = d P oλ dt = 0 P oλ = σταθ P oλ(πριν) = P oλ(µɛτα) Η ολική ορµή ενός συστήµατος σωµάτων, κατά την διάρκεια της κρούσης διατηρείται. Τα είδη της κρούσης ανάλογα µε την διατήρηση της κινητικής ενέργειας των συγκρουόµενων σωµάτων. Σε αντίθεση µε την Ορµή που παραµένει σταθερή σε όλες τις περιπτώσεις κρούσεων που ϑα µελετήσουµε, δεν συµβαινει το ίδιο µε την µηχανική ενέργεια του συστήµατος των σωµάτων. Σε κάθε κρούση υπάρχουν δύο ϐασικά στάδια : Στο πρώτο στάδιο τα σώµατα έρχονται σε επαφή µεταξύ τους και αρχίζουν να παραµορ- ϕώνονται, µέχρι να αποκτήσουν κοινή στιγµιαία ταχύτητα. Η απαιτούµενη ενέργεια για την παραµόρφωση τους προέρχεται από την αρχική τους µηχανική ενέργεια. Επειδή η κρούση γίνεται σε µικρό χρονικό διάστηµα, ϑεωρούµε ότι τα σώµατα δεν αλλάζουν ϑέση, άρα δεν µεταβάλλεται η Βαρυτική δυναµική τους ενέργεια, παρά µόνο η κινητική τους. Στο δεύτερο στάδιο, ανάλογα µε την ϕυση των σωµάτων που παραµορφώνονται η κρούση διακρίνεται σε ελαστική ή σε ανελαστική. Ελαστική Κρούση Η παραµόρφωση εξαφανίζεται και το σύστηµα αποκτά πάλι την κινητική ενέργεια που είχε πριν την κρούση. Η αιτία ειναι οι ϕύση των δυνάµεων που ασκούνται στα σώµατα κατά την διάρκεια της κρούσης, καθώς είναι ελαστικές δυνάµεις δεν προκαλούν µόνιµες παραµορφώσεις. Άρα η κρούση στην οποία η Κινητική Ενέργεια του συστήµατος των σωµάτων παραµένει σταθερή ονοµάζεται ελαστική Η διατύπωση της ιατήρηση της Κινητικής ενέργειας κατά την ελαστική κρούση διατυπώνεται ως εξής : K oλ(πριν) = K oλ(µɛτα) Η ελαστική κρούση είναι ιδανική περίπτωση, αλλά µπορούµε να ϑεωρήσουµε ελαστικές τις κρούσεις ανάµεσα σε σκληρά σώµατα ( π.χ. µπάλες µπιλιάρδου). Στην περιπτωση όµως του µικρόκοσµου οι κρούσεις (σκεδάσεις) είναι απόλυτα ελαστικές. Ανελαστική Κρούση Η παραµόρφωση των σωµάτων δεν εξαφανίζεται τελείως και ένα µέρος της αρχικής Κ- ινητικής ενέργειας που δαπανήθηκε για την παραµόρφωση δεν γίνεται πάλι Κινητική ενέργεια, αλλά ϑερµότητα ή ενέργεια µόνιµης παραµόρφωσης. Η αιτία είναι πάλι η ϕύση http : //perif ysikhs.wordpress.com 102 Μιχάλης Ε. Καραδηµητριου

3 των δυνάµεων που ασκούνται στα σώµατα, καθώς είναι δυνάµεις που προκαλούν µόνιµες παραµορφώσεις. Άρα η κρούση στην οποία µέρος της Κινητικής Ενέργειας του συστήµατος των σωµάτων µετατρέπεται σε ϑερµότητα ονοµάζεται ανελαστική κρούση Μια ειδική περίπτωση ανελαστικής κρούσης είναι εκείνη κατά την οποία τα σώµατα µετά την κρούση γίνονται συσσωµάτωµα και κινούνται µε κοινή ταχύτητα. Η κρούση αυτή λέγεται πλαστική και έχει µελετηθεί στην Α Λυκειου. Η διατύπωση της διατήρησης της ενέργειας κατά την ανελαστική κρούση διατυπώνεται ως εξής : K oλ(πριν) E απωλ = K oλ(µɛτα) K oλ(πριν) > K oλ(µɛτα) όπου ϐέβαια E απωλ είναι οι ενεργειακές απώλειες σε ϑερµότητα και ανελαστικές παραµορ- ϕώσεις. Η κεντρική Ελαστική κρούση Θεωρούµε δύο υλικά Σώµατα µε µάζες m 1 και m 2, που κινούνται σε οριζόντιο λείο επίπεδο µε ταχύτητας υ 1 και υ 2. Τα σώµατα συγκρούονται κεντρικά και ελαστικά και µετά την κρούση αποκτούν νέες ταχύτητες υ 1 και υ 2, τις οποίες ϑέλουµε να υπολογίσουµε. Ο υπολογισµός είναι απλός αρκεί να χρησι- µοποιήσουµε τις ϐασικες ιδέες - αρχές που αναπτύχθηκαν παραπάνω. ιατήρηση της Ορµής P oλ(πριν) = P oλ(µɛτα) m 1 υ 1 + m 2 υ 2 = m 1 υ 1 + m 2 υ 2 (149) προσέχουµε το πρόσηµο των ταχυτήτων γιατί δεν ξεχνάµε τον διανυσµατικό χαρακτήρα της σχέσης µας. ιατήρηση της Κινητικής Ενέργειας K oλ(πριν) = K oλ(µɛτα) 1 2 m 1υ m 2υ2 2 = 1 2 m 1υ m 2υ 2 2 (150) Η εξίσωση (149) γράφεται : m 1 (υ 1 υ 1) = m 2 (υ 2 υ 2 ) Η εξίσωση (150) γράφεται : m 1 (υ1 2 υ 12 ) = m 2 (υ 22 υ2) 2 http : //perif ysikhs.wordpress.com 103 Μιχάλης Ε. Καραδηµητριου

4 ιαιρούµε κατα µέλη τις παραπάνω σχέσεις : υ 1 υ 1 υ1 2 υ 1 2 = υ 2 υ 2 υ 22 υ2 2 και προκύπτει εύκολα ότι υ 1 + υ 1 = υ 2 + υ 2 υ 2 = υ 1 + υ 1 υ 2 Αντικαθιστώντας στην (149) και λύνοντας ως προς υ 1 ϐρίσκουµε τις ταχύτητες των σωµάτων µετά την κρούση. υ 1 = m 1 m 2 υ 1 + 2m 1 υ 2 (151) υ 2 = 2m 1 υ 1 + m 2 m 1 υ 2 (152) Βέβαια κατά τον υπολογισµό µας υποθέσαµε µια συγκεκριµένη ϕορά για τις ταχύτητες πριν και µετά την κρούση, ειναι προφανές ότι σε περίπτωση αντίθετης ϕοράς από την παραπάνω οι σχέσεις µας οδηγούν σε αρνητικές τιµές για τις ταχύτητες.οι παραπάνω σχέσεις δεν είναι τόσο εύκολο να αποµνηµονευτούν, αλλά είναι ευκολότερο να αποδειχθούν από τις ϐασικές αρχές! Ειδικές περιπτώσεις α. Τα δύο σώµατα έχουν ίσες µάζας m 1 = m 2 = m Από τις παραπάνω σχέσεις (151),(152) µε αντικατάσταση των µαζών προκύπτει : υ 1 = υ 2 και υ 2 = υ 1 ηλαδή, κατά την κεντρική ελαστική κρούση δύο σωµάτων που έχουν ίσες µάζες, τα σώµατα ανταλλάσσουν τις ταχύτητες τους. Βέβαια στο παραπάνω συµπερασµα µπορούµε να καταλήξουµε αν ξεκινήσουµε από την Αρχή ιατήρησης της Ορµής και την ιατήρηση της Ενέργειας, όπως κάναµε παραπάνω. ϐ. Το ένα σώµα είναι ακίνητο πριν την κρούση (υ 2 = 0) Από τις σχέσεις (151),(152) προκύπτει : υ 1 = m 1 m 2 υ 1 (153) υ 2 = 2m 1 υ 1 (154) Βέβαια στην περίπτωση που έχουν και ίσες µάζες και το ένα σώµα είναι ακίνητο, τότε το αρχικά κινούµενο σταµατάει µετά την κρούση (υ 1 = 0) και το αρχικά ακίνητο σώµα αποκτά ταχύτητα υ 2 = υ 1 http : //perif ysikhs.wordpress.com 104 Μιχάλης Ε. Καραδηµητριου

5 Ελαστική Κρούση σώµατος µε άλλο ακίνητο πολύ µεγάλης µάζας Αν το ένα σώµα έχει πολύ µεγαλύτερη µάζα σε σχέση µε το άλλο (m 1 << m 2 ) και είναι ακίνητο πριν την κρούση (υ 2 = 0) τότε : m 1 << m 2 ή m 1 m 2 << 1 ή m 1 m 2 = 0. άρα οι παραπάνω σχέσεις µας δίνουν : υ 1 = υ 1 και υ 2 = 0 ηλαδή : ένα σώµα µικρής µάζας που συγκρούεται κεντρικά και ελαστικά µε ακίνητο σώµα πολύ µεγαλύτερης µάζας αντανακλάται µε ταχύτητα ίδιου µέτρου και αντίθετης ϕοράς από αυτή που είχε πριν την κρούση. Το σώµα µεγάλης µάζας µένει πρακτικά ακίνητο. Σύµφωνα µε τα παραπάνω, όταν ένα σώµα µικρής µάζας προσκρούει ελαστικά και κάθετα στην επιφάνεια ενός τοίχου ή σε ένα δάπεδο, τότε ανακλάται µε ταχύτητα ίδιου µέτρου και αντίθετης ϕοράς. Άν το σώµα προσκρούει ελαστικά και πλάγια σε ένα τοίχο µε ταχύτητα υ, αναλύουµε την ταχύτητα του σε δύο συνιστώσες, µια κά- ϑετη στον τοίχο και µια παράλληλη σε αυτόν, όπως ϕαίνεται στο σχήµα. Σύµφωνα µε τα παραπάνω η κάθετη συνιστώσα στον τοίχο ϑα αλλάξει ϕορά και ϑα διατηρήσει το µέτρο της (υ x = υ x ). Η παράλληλη στον τοίχο συνιστώσα δεν µεταβάλλεται (υ y = υ y ). Άρα το µέτρο της ταχύτητας του σώµατος µετά την κρούση υ ϑα είναι υ = υ 2 x + υ 2 y. Άρα σύµφωνα µε τα παραπάνω, το µέτρο της ταχύτητας παραµένει σταθερό : υ = υ Στο ίδιο συµπέρασµα µπορούµε να ϕτάσουµε ϐέβαια και µε την ιατήρηση της Κινητικής Ενέργειας κατά την κρούση. 1 2 mυ2 = 1 2 mυ 2 υ = υ Αν θ pi και θ α οι γωνίες που σχηµατίζουν µε την κάθετη στον τοίχο οι ταχύτητες του σώµατος πριν και µετά την κρούση τότε ισχύει : ηµθ π = υ y υ συνθ α = υ y υ επειδή υ y = υ y και υ = υ προκύπτει ότι η γωνία πρόσπτωσης στον τοίχο ειναι ίση µε την γωνία ανάκλασης από αυτόν. θ π = θ α (155) http : //perif ysikhs.wordpress.com 105 Μιχάλης Ε. Καραδηµητριου

6 Το αποτέλεσµα ειναι παροµοιο µε την νόµο της ανάκλασης για το ϕως που προσπίπτει πάνω σε ένα καθρέπτη. Απόλυτα συµβατό ϐέβαια µε την σωµατιδιακή ϕύση του ϕωτός, αρκεί να ϕανταστούµε ότι τα ϕωτόνια συµπεριφέρονται ως σωµατίδια και ανακλόνται όπως το παραπάνω σωµατίδιο. Η Κεντρική Ανελαστική κρούση ϑεωρούµε τώρα δύο υλικά σώµατα µε µάζες m 1 και m 2 που κινούνται πάνω σε λείο οριζοντιο επίπεδο µε ταχύτητες υ 1 και υ 2. Τα σώµατα συγκρούονται κεντρικά και µετά την κρούση κινούνται µε ταχύτητες υ 1 και υ 2. ιατήρηση της Ορµής P oλ(πριν) = P oλ(µɛτα) m 1 υ 1 + m 2 υ 2 = m 1 υ 1 + m 2 υ 2 προσέχουµε το πρόσηµο των ταχυτήτων γιατί δεν ξεχνάµε τον διανυσµατικό χαρακτήρα της σχέσης µας. ιατήρηση της Ενέργειας K oλ(πριν) E απωλ = K oλ(µɛτα) 1 2 m 1υ m 2υ2 2 E απωλ = 1 2 m 1υ m 2υ 2 2 όπου ϐέβαια E απωλ είναι οι απώλειες λόγω των ανελαστικών ϕαινοµένων. Αν µετά την κρούση τα δύο σώµατα δηµιουργήσουν ένα συσσωµάτωµα που έχει µια ταχύτητα V,η ανελαστική κρούση ονοµάζεται Πλαστική. Σε µια πλαστική κρούση είναι επίσης προφανές ότι έχουµε απώλειες της ενέργειας σε ενέργεια πλαστικής παραµόρφωσης και ϑερµότητα. Το πρόβληµα αυτό έχει µελετηθεί στην Α Λυκείου. Η Πλάγια ελαστική κρούση Στην περίπτωση που τα σώµατα δεν συγκρούονται κεντρικά, αλλά έκκεντρα ή πλάγια τότε ϑα αποκτούν νέες ταχύτητες µε διευθύνσεις πάνω στο επίπεδο. Ας ϑεωρήσουµε για παράδειγµα δυο υλικά σώµατα µε µάζες m 1 και m 2 µε το δεύτερο να ειναι αρχικά ακίνητο. Μετά την κρούση τα σώµατα ϑα κινηθούν µε ταχύτητες υ 1 και υ 2. Αναλύουµε τις ταχύτητες σε κατάλληλες συνιστώσες και προχωράµε στην εφαρµογή των ϐασικών αρχών. ιατήρηση της Ορµής στον άξονα x Ox P oλ(πριν)(x) = P oλ(µɛτα)(x) m 1 υ 1 = m 1 υ 1x + m 2 υ 2x http : //perif ysikhs.wordpress.com 106 Μιχάλης Ε. Καραδηµητριου

7 ιατήρηση της Ορµής στον άξονα y Oy P oλ(πριν)(y) = P oλ(µɛτα)(y) m 1 υ 1 = m 1 υ 1y m 2 υ 2y ιατήρηση της Κινητικής Ενέργειας K oλ(πριν) = K oλ(µɛτα) 1 2 m 1υ m 2υ2 2 = 1 2 m 1υ m 2υ 2 2 Σε αυτή την περίπτωση προκύπτει ένα σύστηµα τριών εξισώσεων, αλλά µε 4 αγνώστους καθώς είναι άγνωστη η κατεύθυνση και το µέτρο των ταχυτήτων µετά την κρούση. Μ- πορούµε ϐέβαια να λύσουµε το πρόβληµα εφόσον µας ειναι γνωστό ένα ακόµα µέγεθος ( για παράδειγµα µια γωνία). Το πρόβληµα της πλάγιας πλαστικής κρούσης λύνεται πάλι µε την διατήρηση της ορµής σε κάθε άξονα. εν ξεχνάµε ϐέβαια ότι σε αυτή την περιπτωση δεν διατηρείτε σταθερή η Κινητική Ενέργεια του συστήµατος των σωµάτων. υναµική Ενέργεια µέγιστης ελαστικής παραµόρφωσης Οταν τα δύο σηµειακά σώµατα συγκρούονται κεντρικά και ελαστικά, τότε κάποια στιγµή t, κατά την διάρκεια της επαφής τους, οι ταχύτητες των δύο σφαιρών γίνονται ίσες (κατα µέτρο και κατεύθυνση) και η παραµόρφωση των σωµάτων είναι η µέγιστη δυνατή. Αν υποθέσουµε ότι η κοινή ταχύτητα τους είναι η V τότε ονοµάζουµε U max την µέγιστη ενέργεια ελαστικής παραµόρφωσης τους. Για να την υπολογίσουµε αρκεί να εφαρµόσουµε την Αρχή ιατήρησης της Ορµής και την Αρχή ιατήρησης της Ενέργειας για την χρονική στιγµή αυτή. Από την διατήρηση της ορµής προκύπτει : P oλ(πριν) = P oλ(t) m 1 υ 1 + m 2 υ 2 = m 1 V + m 2 V V = m 1υ 1 + m 2 υ 2 Από την διατήρηση της ενέργειας προκύπτει : K oλ(πριν) = K oλ(t) + U max 1 2 m 1υ m 2υ 2 2 = 1 2 m 1V m 2V 2 + U max Άρα υπολογίζω την U max η οποία στην συνέχεια ϑα µετατραπεί πάλι σε Κινητική Ενέργεια καθώς στην ελαστική κρούση η Κινητική Ενέργεια του συστηµατος παραµένει σταθερή. Πρόταση Μελέτης Λύσε απο τον Β τόµο των Γ. Μαθιουδάκη & Γ.Παναγιωτακόπουλου τις ακόλουθες ασκήσεις : , 8.102, 8.103, 8.104, 8.106, 8.118, 8.119, 8.121, 8.126,8.127, 8.130, 8.131, 8.133, 8.134, 8.136, 8.139, 8.143, 8.144, 8.146, 8.149, 8.151, 8.154, 8.156, 8.164, 8.168, 8.170, 8.173, http : //perif ysikhs.wordpress.com 107 Μιχάλης Ε. Καραδηµητριου

Φυσική Β Λυκειου, Γενικής Παιδείας 3ο Φυλλάδιο - Ορµή / Κρούση

Φυσική Β Λυκειου, Γενικής Παιδείας 3ο Φυλλάδιο - Ορµή / Κρούση Φυσική Β Λυκειου, Γενικής Παιδείας - Ορµή / Κρούση Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://perifysikhs.wordpress.com 1 Σύστηµα Σωµάτων - Εσωτερικές & Εξωτερικές υνάµεις ύο ή περισσότερα

Διαβάστε περισσότερα

ENOTHTA 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ

ENOTHTA 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 5 Ο : ΚΡΟΥΣΕΙΣ ΦΑΙΝΟΜΕΝΟ DOPPLER ENOTHT 1: ΚΡΟΥΣΕΙΣ ΣΗΜΕΙΩΣΕΙΣ Κρούση: Κρούση ονομάζουμε το φαινόμενο κατά το οποίο δύο ή περισσότερα σώματα έρχονται σε επαφή για πολύ μικρό χρονικό διάστημα κατά

Διαβάστε περισσότερα

Φυσική Β Λυκειου, Θετικού Προσανατολισµού 3ο Φυλλάδιο - Ορµή / Κρούση

Φυσική Β Λυκειου, Θετικού Προσανατολισµού 3ο Φυλλάδιο - Ορµή / Κρούση Φυσική Β Λυκειου, Θετικού Προσανατολισµού - Ορµή / Κρούση Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://www.perifysikhs.com 1 Σύστηµα Σωµάτων - Εσωτερικές & Εξωτερικές υνάµεις ύο ή περισσότερα

Διαβάστε περισσότερα

4.1.α. Κρούσεις. Κρούσεις. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. 4.1.22. Κρούση και τριβές. 4.1.23. Κεντρική ανελαστική κρούση

4.1.α. Κρούσεις. Κρούσεις. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. 4.1.22. Κρούση και τριβές. 4.1.23. Κεντρική ανελαστική κρούση 4.1.α.. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. Μια πλάκα µάζας Μ=4kg ηρεµεί στο πάνω άκρο ενός κατακόρυφου ελατηρίου, σταθεράς k=250ν/m, το άλλο άκρο του οποίου στηρίζεται στο έδαφος. Εκτρέπουµε

Διαβάστε περισσότερα

ΚΡΟΥΣΕΙΣ Θέµατα Εξετάσεων

ΚΡΟΥΣΕΙΣ Θέµατα Εξετάσεων ΚΡΟΥΣΕΙΣ Θέµατα Εξετάσεων ΚΡΟΥΣΕΙΣ. Θέµατα Εξετάσεων 1) Σε κάθε κρούση ισχύει α. η αρχή διατήρησης της µηχανικής ενέργειας. β. η αρχή διατήρησης της ορµής. γ. η αρχή διατήρησης του ηλεκτρικού φορτίου.

Διαβάστε περισσότερα

6.10 Ηλεκτροµαγνητικά Κύµατα

6.10 Ηλεκτροµαγνητικά Κύµατα Πρόταση Μελέτης Λύσε απο τον Α τόµο των Γ. Μαθιουδάκη & Γ.Παναγιωτακόπουλου τις ακόλουθες ασκήσεις : 11.1-11.36, 11.46-11.50, 11.52-11.59, 11.61, 11.63, 11.64, 1.66-11.69, 11.71, 11.72, 11.75-11.79, 11.81

Διαβάστε περισσότερα

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004)

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004) Άσκηση (Μονάδες ) 4 η Εργασία (Ηµεροµηνία Παράδοσης: -5-4) Α) Αστροναύτης µάζας 6 Κg βρίσκεται µέσα σε διαστηµόπλοιο που κινείται µε σταθερή ταχύτητα προς τον Άρη. Σε κάποιο σηµείο του ταξιδιού βρίσκεται

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

Φυσική Α Ενιαίου Λυκείου Νόµοι του Νεύτωνα - Κινηµατική Υλικού Σηµείου. Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός. http://www.perifysikhs.

Φυσική Α Ενιαίου Λυκείου Νόµοι του Νεύτωνα - Κινηµατική Υλικού Σηµείου. Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός. http://www.perifysikhs. Φυσική Α Ενιαίου Λυκείου Νόµοι του Νεύτωνα - Κινηµατική Υλικού Σηµείου Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, MSc Φυσικός hp://www.perifysikhs.com Αναζητώντας την αιτία των κινήσεων Η µελέτη των κινήσεων,

Διαβάστε περισσότερα

1 Απλή Αρµονική Ταλάντωση

1 Απλή Αρµονική Ταλάντωση ,Θετικής & Τεχνολογικής Κατεύθυνσης Καραδηµητρίου Ε. Μιχάλης http://perifysikhs.wordpress.com mixalis.karadimitriou@gmail.com Πρόχειρες Σηµειώσεις 2011-2012 1 Απλή Αρµονική Ταλάντωση 1.1 Περιοδικά Φαινόµενα

Διαβάστε περισσότερα

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 007 Α ΛΥΚΕΙΟΥ Θέµα ο ΦΥΣΙΚΗ Για τις παρακάτω 3 ερωτήσεις, να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε ένα σώµα

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΜΗΧΑΝΙΚΗ ΣΥΣΤΗΜΑΤΟΣ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

Γ ΛΥΚΕΙΟΥ ΜΗΧΑΝΙΚΗ ΣΥΣΤΗΜΑΤΟΣ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΜΗΧΑΝΙΚΗ ΣΥΣΤΗΜΑΤΟΣ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΟΡΜΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΩΜΑΤΟΣ ΚΑΙ ΣΥΣΤΗΜΑΤΟΣ ΣΩΜΑΤΩΝ Το αποτέλεσμα μιας σύγκρουσης δύο σωμάτων εξαρτάται από τις ορμές τους. Όταν δύο κριάρια συγκρούονται και

Διαβάστε περισσότερα

γ. η κρούση είναι ανελαστική και κατά την κρούση η κατεύθυνση της κίνησης της πρώτης σφαίρας αναστρέφεται

γ. η κρούση είναι ανελαστική και κατά την κρούση η κατεύθυνση της κίνησης της πρώτης σφαίρας αναστρέφεται 1. Δυο σφαίρες Α και Β με Μ Α =2kg και Μ Β =4Κg κινούνται σε λείο οριζόντιο επίπεδο με ταχύτητες μέτρων υ Α =10m/s και υ Β =20m/s, σε αντίθετες κατευθύνσεις. Οι δυο σφαίρες συγκρούονται κεντρικά. Μετά

Διαβάστε περισσότερα

Σχετικά µε τα ατοµικά σωµατίδια πρέπει να γνωρίζουµε ότι: και αρνητικού φορτίου q e. που εκπέµπονται από τους ατοµικούς πυρήνες λέγονται σωµατίδια β.

Σχετικά µε τα ατοµικά σωµατίδια πρέπει να γνωρίζουµε ότι: και αρνητικού φορτίου q e. που εκπέµπονται από τους ατοµικούς πυρήνες λέγονται σωµατίδια β. Ηλεκτρόνιο - σωµατίδιο β Πρωτόνιο m p 840 m e Νετρόνιο m p m n Ποζιτρόνιο Σχετικά µε τα ατοµικά σωµατίδια πρέπει να γνωρίζουµε ότι: Το ηλεκτρόνιο είναι σωµατίδιο µάζας m e και αρνητικού ορτίου q e =-,6

Διαβάστε περισσότερα

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ÍÅÏ ÖÑÏÍÔÉÓÔÇÑÉÏ ΕΚΦΩΝΗΣΕΙΣ

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ÍÅÏ ÖÑÏÍÔÉÓÔÇÑÉÏ ΕΚΦΩΝΗΣΕΙΣ 1 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΘΕΜΑ 1 o ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Η ορµή ενός σώµατος

Διαβάστε περισσότερα

5 Σύνθεση Ταλαντώσεων

5 Σύνθεση Ταλαντώσεων Πρόχειρες Σηµειώσεις 011-01 5 Σύνθεση Ταλαντώσεων Ενα σώµα µπορει να εκτελεί ταυτόχρονα δυο αρµονικές ταλαντώσεις, οι οποίες µπορεί να έχουν οποιαδήποτε διεύθυνση. Το αποτέλεσµα είναι, γενικά, µια πολύπλοκη

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΠΛΑΓΙΑ ΚΡΟΥΣΗ.. Σώμα που κινείται με κάποια ταχύτητα που σχηματίζει γωνία ως προς το κεκλιμένο επίπεδο συγκρούεται πλαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. Ξύλινο

Διαβάστε περισσότερα

Θέµατα προς ανάλυση: ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ - ΑΥΤΕΠΙΣΤΑΣΙΑ

Θέµατα προς ανάλυση: ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ - ΑΥΤΕΠΙΣΤΑΣΙΑ ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥ ΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ - ΑΥΤΕΠΙΣΤΑΣΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΣΙΚΗΣ ΑΓΩΓΗΣ & ΑΘΛΗΤΙΣΜΟΥ «Αρχές Βιοκινητικής» Μάθηµα του βασικού κύκλου σπουδών (Γ εξάµηνο)

Διαβάστε περισσότερα

Κεφάλαιο Μ9. Ορµή και κρούση

Κεφάλαιο Μ9. Ορµή και κρούση Κεφάλαιο Μ9 Ορµή και κρούση Μοντέλα ανάλυσης µε βάση την ορµή Η δύναµη και η επιτάχυνση συνδέονται µέσω του δεύτερου νόµου του Νεύτωνα. Όταν η δύναµη και η επιτάχυνση µεταβάλλονται ως προς τον χρόνο, η

Διαβάστε περισσότερα

1 Απλή Αρµονική Ταλάντωση

1 Απλή Αρµονική Ταλάντωση Πρόχειρες Σηµειώσεις 011-01,Θετικής & Τεχνολογικής Κατεύθυνσης Καραδηµητρίου Ε. Μιχάλης http://perifysikhs.wordpress.com mixalis.karadimitriou@gmail.com Πρόχειρες Σηµειώσεις 011-01 1 Απλή Αρµονική Ταλάντωση

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 1 Ονοματεπώνυμο.. Υπεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης, Κυριτσάκας Βαγγέλης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Κυριακή 17-10-2010

Διαβάστε περισσότερα

Κίνηση σε Ηλεκτρικό Πεδίο.

Κίνηση σε Ηλεκτρικό Πεδίο. Κίνηση σε Ηλεκτρικό Πεδίο. 3.01. Έργο κατά την μετακίνηση φορτίου. Στις κορυφές Β και Γ ενόςισοπλεύρου τριγώνου ΑΒΓ πλευράς α= 2cm, βρίσκονται ακλόνητα δύο σηµειακά ηλεκτρικά φορτία q 1 =2µC και q 2 αντίστοιχα.

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ. 1. Μπορεί ένα σύστημα σωμάτων να έχει κινητική ενέργεια χωρίς να έχει ορμή; Ισχύει το ίδιο και στην περίπτωση ενός σώματος;

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ. 1. Μπορεί ένα σύστημα σωμάτων να έχει κινητική ενέργεια χωρίς να έχει ορμή; Ισχύει το ίδιο και στην περίπτωση ενός σώματος; ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΕΡΩΤΗΣΕΙΣ ΠΡΩΤΟΥ ΚΑΙ ΔΕΥΤΕΡΟΥ ΘΕΜΑΤΟΣ 1. Μπορεί ένα σύστημα σωμάτων να έχει κινητική ενέργεια χωρίς να έχει ορμή; Ισχύει το ίδιο και στην περίπτωση ενός σώματος; 2. Ποιο από τα παρακάτω

Διαβάστε περισσότερα

ˆ Αποτελείται από σωµατίδια, τα οποία πληρούν το µέσο χωρίς διάκενα. ˆ Τα σωµατίδια αυτά συνδέονται µεταξύ τους µε ελαστικές δυνάµεις.

ˆ Αποτελείται από σωµατίδια, τα οποία πληρούν το µέσο χωρίς διάκενα. ˆ Τα σωµατίδια αυτά συνδέονται µεταξύ τους µε ελαστικές δυνάµεις. 6 Κύµατα 6.1 Ορισµός του κύµατος Κύµα ονοµάζεται η διάδοση µιας διαταραχής που µεταφέρει ενέργεια και ορµή µε στα- ϑερή ταχύτητα. Εαστικό µέσο ονοµάζεται κάθε υικό µέσο που, για όγους απότητας, δεχόµαστε

Διαβάστε περισσότερα

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΦΡΟΝΤΙΣΤΗΡΙΟ ΓΝΩΣΗ ΘΕΜΑ 1 1. Σε μια ελαστική κρούση δύο σωμάτων διατηρείται: α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

Διαβάστε περισσότερα

Ποια η ταχύτητά του τη στιγµή που έχει περάσει πλήρως από την τρύπα? Λύση µε διατήρηση της ενέργειας. + K f. ! 0 + 0 = mg " L & $ !

Ποια η ταχύτητά του τη στιγµή που έχει περάσει πλήρως από την τρύπα? Λύση µε διατήρηση της ενέργειας. + K f. ! 0 + 0 = mg  L & $ ! Παράδειγµα Ενέργειες Το ακόλουθο πρόβληµα µπορεί να λυθεί είτε µε χρήση των νόµων του Newton ( F=mα ) ή Διατήρηση ενέργειας. Ένα µικρό τµήµα σχοινιού κρέµεται προς τα κάτω µέσα από µια τρύπα σε λείο τραπέζι.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015

ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ 17/4/2015 ΘΕΜΑΤΑ : ΦΥΣΙΚΗ B ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ: ΕΦ ΟΛΗΣ ΤΗΣ ΥΛΗΣ ΘΕΜΑ 1 ο 17/4/2015 Στις ερωτήσεις 1-5 να γράψετε στο φύλλο απαντήσεων τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΣΧΕΤΙΚΙΣΤΙΚΗΣ ΥΝΑΜΙΚΗΣ Έλλειµµα µάζας και ενέργεια σύνδεσης του πυρήνα του ατόµου A Ένα ισότοπο, το οποίο συµβολίζουµε µε Z X, έχει ατοµικό αριθµό Ζ και µαζικό αριθµό Α. Ο πυρήνας του ισοτόπου

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Τετάρτη 18 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις 1 έως 4 να γράψετε στο τετράδιο σας τον αριθµό

Διαβάστε περισσότερα

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή

Φυσική Β Λυκειου, Γενικής Παιδείας 1ο Φυλλάδιο - Οριζόντια Βολή Φυσική Β Λυκειου, Γενικής Παιδείας - Οριζόντια Βολή Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, M Sc Φυσικός http://perifysikhs.wordpress.com 1 Εισαγωγικές Εννοιες - Α Λυκείου Στην Φυσική της Α Λυκείου κυριάρχησαν

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΕΡIΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΣΤΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΙΣΗΓΗΤΗΣ: ΧΙΩΤΕΛΗΣ ΙΩΑΝΝΗΣ

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΕΡIΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΣΤΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΙΣΗΓΗΤΗΣ: ΧΙΩΤΕΛΗΣ ΙΩΑΝΝΗΣ Σχολικό έτος 2012-2013 Πελόπιο, 23 Μαΐου 2013 ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΛΥΚΕΙΟΥ ΠΕΡIΟΔΟΥ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2013 ΣΤΟ ΜΑΘΗΜΑ:ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΙΣΗΓΗΤΗΣ: ΧΙΩΤΕΛΗΣ ΙΩΑΝΝΗΣ ΘΕΜΑ

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

Κεφάλαιο 9. A little knowledge is a dangerous thing, so is a lot. Albert Einstein. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 9. A little knowledge is a dangerous thing, so is a lot. Albert Einstein. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 9 Γραµµική Ορµή little knowledge is a dangerous thing, so is a lot. lbert Einstein Περιεχόµενα Κεφαλαίου 9 Σχέση Ορµής και Δύναµης Διατήρηση της ορµής Κρούση και Ώθηση Διατήρηση ενέργειας και

Διαβάστε περισσότερα

1 ΦΕΠ 012 Φυσική και Εφαρμογές

1 ΦΕΠ 012 Φυσική και Εφαρμογές 1 ΦΕΠ 012 Φυσική και Εφαρμογές Διάλεξη 5 η Παραδείγματα: (1) Δύο σώματα είναι δεμένα με σχοινί όπως στο σχήμα. Στο πρώτο σώμα μάζας m 1 = 2Κg ασκούμε δύναμη F = 4N. Αν η μάζα του σώματος (2) είναι m 2

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση 1 A' ΛΥΚΕΙΥ ΖΗΤΗΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση 1. Το µέτρο της µετατόπισης

Διαβάστε περισσότερα

r r r r r r r r r r r

r r r r r r r r r r r ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 0 ΜΑÏΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000 Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2 ΕΚΦΩΝΗΣΕΙΣ Ζήτηµα 1ο Στις ερωτήσεις 1-5 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Σύµφωνα

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ

ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΜΗΧΑΝΙΚΗΣ Θέση, μετατόπιση και διάστημα Όταν ένα σημειακό αντικείμενο κινείται ευθύγραμμα, για να μελετήσουμε την κίνησή του θεωρούμε σαν σύστημα αναφοράς έναν άξονα χ χ. Στην αρχή του

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ

ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ ΑΠΟ ΤΗΝ Α ΚΑΙ Β ΛΥΚΕΙΟΥ ΑΠΑΡΑΙΤΗΤΕΣ ΣΤΗΝ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΤΗΣ Α ΛΥΚΕΙΟΥ ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ : η μετατόπιση ενός σώματος (m) () Δx x x x : η τελική θέση του σώματος (m) x : η αρχική θέση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. Η δύναμη είναι ένα διανυσματικό μέγεθος. Όταν κατά την κίνηση ενός σώματος η δύναμη είναι μηδενική

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.. Τα δύο

Διαβάστε περισσότερα

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ

5 Σχετικιστική μάζα. Στο Σ Πριν Μετά. Στο Σ Α Τόγκας - ΑΜ333: Ειδική Θεωρία Σχετικότητας Σχετικιστική μάζα 5 Σχετικιστική μάζα Όπως έχουμε διαπιστώσει στην ειδική θεωρία της Σχετικότητας οι μετρήσεις των χωρικών και χρονικών αποστάσεων εξαρτώνται

Διαβάστε περισσότερα

Κεφάλαιο M11. Στροφορµή

Κεφάλαιο M11. Στροφορµή Κεφάλαιο M11 Στροφορµή Στροφορµή Η στροφορµή παίζει σηµαντικό ρόλο στη δυναµική των περιστροφών. Αρχή διατήρησης της στροφορµής Η αρχή αυτή είναι ανάλογη µε την αρχή διατήρησης της ορµής. Σύµφωνα µε την

Διαβάστε περισσότερα

Φυσική Β Λυκειου, Θετικού Προσανατολισµού 1ο Φυλλάδιο - Οριζόντια Βολή

Φυσική Β Λυκειου, Θετικού Προσανατολισµού 1ο Φυλλάδιο - Οριζόντια Βολή Φυσική Β Λυκειου, Θετικού Προσανατολισµού - Οριζόντια Βολή Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, M Sc Φυσικός http://www.perifysikhs.com 1 Εισαγωγικές Εννοιες - Α Λυκείου Στην Φυσική της Α Λυκείου κυριάρχησαν

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

Κέντρο Μάζας - Παράδειγμα

Κέντρο Μάζας - Παράδειγμα Κέντρο Μάζας - Παράδειγμα ΦΥΣ 131 - Διαλ.1 1 Ο Ρωμαίο (m R =77kg) διασκεδάζει την Ιουλιέτα (m I =55kg) παίζοντας την κιθάρα του καθισμένος στην πρύμνη της βάρκας τους (μήκους.7 m) που είναι ακίνητη στα

Διαβάστε περισσότερα

ΚΡΟΥΣΕΙΣ ΚΑΙ ΣΧΕΤΙΚΕΣ ΚΙΝΗΣΕΙΣ

ΚΡΟΥΣΕΙΣ ΚΑΙ ΣΧΕΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΚΡΟΥΣΕΙΣ ΚΑΙ ΣΧΕΤΙΚΕΣ ΚΙΝΗΣΕΙΣ 5 Κρούσεις 755 Αδρανειακά συστήματα Σχετικές κινήσεις 160 Κέντρο μάζας 163 Φαινόμενο Doppler 167 Σύνοψη 171 Ασκήσεις 11 173 5-1 ΕΙΣΑΓΩΓΗ Η ταχύτητα και η επιτάχυνση των σωμάτων,

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 015 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 6 Απριλίου 015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ η εξεταστική ερίοδος 05-6 - Σελίδα ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ημερομηνία: 7-0-05 Διάρκεια: ώρες Ύλη: Κρούσεις - Ταλαντώσεις Καθηγητής: Ονοματεώνυμο:

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014)

Σε γαλάζιο φόντο ΔΙΔΑΚΤΕΑ ΥΛΗ (2013 2014) Σε μαύρο φόντο ΘΕΜΑΤΑ ΕΚΤΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ (2013-2014) > Φυσική Β Γυμνασίου >> Αρχική σελίδα ΔΥΝΑΜΗ ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς μμ εε ααππααννττήή σσεει ιςς (σελ. 1) ΕΕρρωττήήσσεει ιςς ΑΑσσκκήήσσεει ιςς χχωρρί ίςς ααππααννττήήσσεει ιςς (σελ. 5) ΙΑΒΑΣΕ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2014-2015

ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2014-2015 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ / B ΛΥΚΕΙΟΥ ΣΕΙΡΑ: ΑΠΑΝΤΗΣΕΙΣ Α ΗΜΕΡΟΜΗΝΙΑ: 23-11-2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ Μ.- ΚΑΤΣΙΛΗΣ Α.- ΠΑΠΑΚΩΣΤΑΣ Τ.- ΤΖΑΓΚΑΡΑΚΗΣ Γ. ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 014 Ε_3.ΦλΓΑΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΓΕΝΙΚΗ ΠΑΙ ΕΙΑ & ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 7 Απριλίου 014 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΚΡΟΥΣΗ. Θα μελετήσουμε τώρα συστήματα που η ταλάντωση ξεκινά εξαιτίας μίας κρούσης ή έχουμε ήδη μία ταλάντωση και κάπου στην πορεία συμβαίνει και μία κρούση.. Σώμα που κινείται με κάποια

Διαβάστε περισσότερα

Ορισµός της δύναµης. Παραδείγµατα δυνάµεων

Ορισµός της δύναµης. Παραδείγµατα δυνάµεων Ανύψωση βαρών Παραδείγµατα δυνάµεων Κλώτσιµα µπάλας Άπωση µαγνητών Φύσηµαανέµου 1 Ορισµός της δύναµης Ηεξάσκηση δύναµης σε κάποιο σώµα όπως Κλώτσιµα µπάλας Φύσηµα ανέµου Συµπίεση ελατηρίου έχουν σαν αποτέλεσµα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Τάξης ΓΕΛ 4 ο ΓΕΛ ΚΟΖΑΝΗΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ - ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ Δυναμική ενέργεια δυο φορτίων Δυναμική ενέργεια τριών ή περισσοτέρων

Διαβάστε περισσότερα

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i.

( ) ( ) ( )! r a. Στροφορμή στερεού. ω i. ω j. ω l. ε ijk. ω! e i. ω j ek = I il. ! ω. l = m a. = m a. r i a r j. ra 2 δ ij. I ij. ! l. l i. Στροφορμή στερεού q Η στροφορµή του στερεού γράφεται σαν: q Αλλά ο τανυστής αδράνειας έχει οριστεί σαν: q H γωνιακή ταχύτητα δίνεται από: ω = 2 l = m a ra ω ω ra ω e a ΦΥΣ 211 - Διαλ.31 1 r a I j = m a

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΙΑΓΩΝΙΣΜΑ 1 Ηµεροµηνία: Τετάρτη 7 Ιανουαρίου 015 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις.

1.1. Μηχανικές Ταλαντώσεις. 1.1. Μηχανικές. 1) Εξισώσεις ΑΑΤ Ένα υλικό σηµείο κάνει α.α.τ. µε πλάτος 0,1m και στην αρχή των χρόνων, βρίσκεται σε σηµείο Μ µε απο- µάκρυνση 5cm, αποµακρυνόµενο από τη θέση ισορροπίας. Μετά από 1s περνά

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) Θέµα 1 ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) 1.1 Πολλαπλής επιλογής A. Ελαστική ονοµάζεται η κρούση στην οποία: α. οι ταχύτητες των σωµάτων πριν και µετά την κρούση

Διαβάστε περισσότερα

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Το έργο μίας από τις δυνάμεις που ασκούνται σε ένα σώμα. α. είναι μηδέν όταν το σώμα είναι ακίνητο β. έχει πρόσημο το οποίο εξαρτάται από τη γωνία

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 01 Ε_3.Φλ1(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ 1 ο Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή Απριλίου 01 ΕΚΦΩΝΗΣΕΙΣ Να

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 25 ΜΑΙΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω

Διαβάστε περισσότερα

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ)

ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΔΕΙΓΜΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΩΝ ΧΙΛΙΑΔΩΝ ΕΡΩΤΗΣΕΩΝ ΓΝΩΣΤΙΚΟΥ ΦΥΣΙΚΩΝ (ΒΑΣΙΚΟ+ΣΥΝΕΞΕΤΑΖΟΜΕΝΟ) ΠΟΥ ΔΙΑΘΕΤΟΥΜΕ ΚΑΙ ΠΟΥ ΑΝΟΙΓΟΥΝ ΤΟ ΔΡΟΜΟ ΓΙΑ ΤΟΝ ΔΙΟΡΙΣΜΟ ΤΩΝ ΥΠΟΨΗΦΙΩΝ ΜΑΣ ΣΤΟ ΔΗΜΟΣΙΟ 1. Για το κωνικό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 10 ΙΟΥΝΙΟΥ 2014 ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 10 ΙΟΥΝΙΟΥ 2014 ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 0 ΙΟΥΝΙΟΥ 04 ΕΝ ΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑ Α Α. γ Α. β Α3. γ Α4. β Α5. α. Σ β. Σ γ. Λ δ. Λ ε. Σ ΘΕΜΑ Β Β. Σωστή απάντηση η: (iii) Το πλάτος της ΑΑΤ του σώματος () πριν την κρούση

Διαβάστε περισσότερα

Παραδείγµατα δυνάµεων

Παραδείγµατα δυνάµεων ΥΝΑΜΕΙΣ Παραδείγµατα Ορισµός της δύναµης Χαρακτηριστικά της δύναµης Μάζα - Βάρος Μέτρηση δύναµης ράση - αντίδραση Μέτρηση δύναµης Σύνθεση - ανάλυση δυνάµεων Ισορροπία δυνάµεων 1 Ανύψωση βαρών Παραδείγµατα

Διαβάστε περισσότερα

Κεφάλαιο 8 Διατήρηση της Ενέργειας

Κεφάλαιο 8 Διατήρηση της Ενέργειας Κεφάλαιο 8 Διατήρηση της Ενέργειας ΔΥΝΑΜΗ ΕΡΓΟ ΕΝΕΡΓΕΙΑ µηχανική, χηµική, θερµότητα, βαρυτική, ηλεκτρική, µαγνητική, πυρηνική, ραδιοενέργεια, τριβής, κινητική, δυναµική Περιεχόµενα Κεφαλαίου 8 Συντηρητικές

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 15 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 1 Μαΐου 15 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

Στεφάνου Μ. 1 Φυσικός

Στεφάνου Μ. 1 Φυσικός 1 ΕΡΓΟ ΕΝΕΡΓΕΙΑ Α. ΤΟ ΠΡΟΒΛΗΜΑ Βιομηχανική επανάσταση ατμομηχανές καύσιμα μηχανές απόδοση μιας μηχανής φως θερμότητα ηλεκτρισμός κ.τ.λ Οι δυνάμεις δεν επαρκούν πάντα στη μελέτη των αλληλεπιδράσεων Ανεπαρκείς

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Μαΐου 014 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από Α1-Α4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα

Διαβάστε περισσότερα

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός

Φύση του φωτός. Θεωρούμε ότι το φως έχει διττή φύση: διαταραχή που διαδίδεται στο χώρο. μήκος κύματος φωτός. συχνότητα φωτός Γεωμετρική Οπτική Φύση του φωτός Θεωρούμε ότι το φως έχει διττή φύση: ΚΥΜΑΤΙΚΗ Βασική ιδέα Το φως είναι μια Η/Μ διαταραχή που διαδίδεται στο χώρο Βασική Εξίσωση Φαινόμενα που εξηγεί καλύτερα (κύμα) μήκος

Διαβάστε περισσότερα

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc.

Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση. Copyright 2009 Pearson Education, Inc. Κεφάλαιο 32 Φως: Ανάκλασηκαι ιάθλαση Γεωµετρική θεώρηση του Φωτός Ανάκλαση ηµιουργίαειδώλουαπόκάτοπτρα. είκτης ιάθλασης Νόµος του Snell Ορατό Φάσµα και ιασπορά Εσωτερική ανάκλαση Οπτικές ίνες ιάθλαση σε

Διαβάστε περισσότερα

Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη

Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη ΤΑΛΑΝΤΩΣΕΙΣ (µερικές σηµειώσεις...) Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη διεύθυνση της κίνησης,

Διαβάστε περισσότερα

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του;

Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Άσκηση Σωματίδιο μάζας m κινείται στο οριζόντιο επίπεδο xy σε κυκλική τροχιά με σταθερή γωνιακή ταχύτητα ω. Τι συμπεραίνετε για τη στροφορμή του; Απάντηση Έστω R n η ακτίνα του κύκλου. Αφού η κίνηση είναι

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ Θέµα Α ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β ΜΑΪΟΥ 03 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση, η οποία συµπληρώνει

Διαβάστε περισσότερα

ύναµη: αλληλεπίδραση µεταξύ δύο σωµάτων ή µεταξύ ενός σώµατος και του περιβάλλοντός του (πεδίο δυνάµεων). υνάµεις επαφής Τριβή Τάσεις Βάρος Μέτρο και

ύναµη: αλληλεπίδραση µεταξύ δύο σωµάτων ή µεταξύ ενός σώµατος και του περιβάλλοντός του (πεδίο δυνάµεων). υνάµεις επαφής Τριβή Τάσεις Βάρος Μέτρο και ύναµη: αλληλεπίδραση µεταξύ δύο σωµάτων ή µεταξύ ενός σώµατος και του περιβάλλοντός του (πεδίο δυνάµεων). υνάµεις επαφής Τριβή Τάσεις Βάρος Μέτρο και φορά Συµβολίζεται µε F, µονάδα µέτρησης Newton (N).

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Α Λυκείου

Διαγώνισμα Φυσικής Α Λυκείου Διαγώνισμα Φυσικής Α Λυκείου Δυναμιική.. Θέμα 1 ο 1. Συμπληρώστε την παρακάτω πρόταση. H αρχή της αδράνειας λέει ότι όλα ανεξαιρέτως τα σώματα εκδηλώνουν μια τάση να διατηρούν την... 2. Ένα αυτοκίνητο

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2006 ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές.

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές. ΜΑΘΗΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ Θέµα 1 ο α) Ορισµένη ποσότητα ιδανικού αερίου πραγµατοποιεί µεταβολή AB από την κατάσταση A (p, V, T ) στην κατάσταση B (p, V 1, T ). i) Ισχύει V 1 = V. ii) Η µεταβολή παριστάνεται

Διαβάστε περισσότερα

ΚΕΦ. 2.1: ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ

ΚΕΦ. 2.1: ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ ΚΕΦ. 2.1: ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΟΡΜΗΣ Ερωτήσεις σύντομης απάντησης 1. Να εξηγήσετε τα παρακάτω φαινόμενα με βάση την αρχή διατήρησης της ορμής: α) ανάκρουση του όπλου και β) κίνηση πυραύλου. 2. Γιατί ο πυροσβέστης

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

W=FSσυνθ. Στο παρακάτω σχεδιάγραμμα φαίνονται οι διάφορες μορφές ενέργειας που θα μας απασχολήσουν. ΕΝΕΡΓΕΙΑ ( Ε ή W)

W=FSσυνθ. Στο παρακάτω σχεδιάγραμμα φαίνονται οι διάφορες μορφές ενέργειας που θα μας απασχολήσουν. ΕΝΕΡΓΕΙΑ ( Ε ή W) ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ-ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ: ΦΡΟΝΤΙΣΤΗΡΙΑ ΠΡΟΟΠΤΙΚΗ Ενέργεια. «Δεν ξέρουμε ακριβώς τι είναι ενέργεια. Ξέρουμε ότι είναι κάτι που μεταμορφώνεται, που μεταφέρεται αλλά στο σύνολο του

Διαβάστε περισσότερα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα

Κεφάλαιο M6. Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κεφάλαιο M6 Κυκλική κίνηση και άλλες εφαρµογές των νόµων του Νεύτωνα Κυκλική κίνηση Αναπτύξαµε δύο µοντέλα ανάλυσης στα οποία χρησιµοποιούνται οι νόµοι της κίνησης του Νεύτωνα. Εφαρµόσαµε τα µοντέλα αυτά

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ÊÏÑÕÖÇ ÊÁÂÁËÁ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Επαναληπτικά Θέµατα ΟΕΦΕ 007 Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ ZHTHMA Στις ερωτήσεις έως 4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΠΑΝΕΛΛΗΝΙΕΣ 2008 ΘΕΜΑΤΑ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 29 ΜΑÏΟΥ 2008 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ

Διαβάστε περισσότερα