Παράδειγμα 1. Μετατροπή από βαθμούς Φαρενάιτ σε βαθμούς Κελσίου

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Παράδειγμα 1. Μετατροπή από βαθμούς Φαρενάιτ σε βαθμούς Κελσίου"

Transcript

1 2.1. Ðñïóäïêþìåíá áðïôåëýóìáôá Ολοκληρώνοντας αυτό το κεφάλαιο, θα έχεις κατανοήσει ακριβώς την έννοια του αλγορίθμου. Θα έχεις συνειδητοποιήσει τη σπουδαιότητα των αλγορίθμων ως μεθοδολογία σκέψης και ως εργαλείο αντιμετώπισης των προβλημάτων. Θα έχεις διαπιστώσει μέσα από τα παρουσιαζόμενα παραδείγματα και από τις ασκήσεις που θα λύσεις, την αναγκαιότητα αλγοριθμικής προσέγγισης κατά τη διαδικασία επίλυσης των προβλημάτων. Θα έχεις μπορέσει να εξασκηθείς στη μορφοποίηση αλγορίθμων με χρήση συγκεκριμένων τεχνικών. Έτσι λοιπόν εισάγεσαι στα εργαλεία ανάπτυξης αλγορίθμων, δηλαδή στη μεθοδολογία επίλυσης προβλημάτων με προγραμματισμό ÅðéðëÝïí ðáñáäåßãìáôá Παράδειγμα 1. Μετατροπή από βαθμούς Φαρενάιτ σε βαθμούς Κελσίου Η μετατροπή μίας θερμοκρασιακής τιμής από βαθμούς Φαρενάιτ σε βαθμούς Κελσίου γίνεται με βάση τον τύπο ( F ) 5 32 C = 9 όπου οι μεταβλητές C και F συμβολίζουν τις αντίστοιχες τιμές. Η μετατροπή αυτή γίνεται εύκολα με τον επόμενο αλγόριθμο που έχει ακολουθιακή δομή.

2 18 ÁíÜðôõîç åöáñìïãþí óå ðñïãñáììáôéóôéêü ðåñéâüëëïí Αλγόριθμος Θερμοκρασία Διάβασε farenheit celsius (farenheit-32) * 5 / 9 Εκτύπωσε celsius Τέλος Θερμοκρασία Παράδειγμα 2. Υπολογισμός γεωμετρικών μεγεθών Εστω ότι δεδομένης του μήκους της ακτίνας θέλουμε να υπολογίσουμε το εμβαδόν του αντίστοιχου κύκλου, το εμβαδόν του τετραγώνου που είναι περιγεγραμμένο στο δεδομένο κύκλο και το μήκος της διαγωνίου του τετραγώνου αυτού. Ο επόμενος αλγόριθμος επιλύει το γεωμετρικό αυτό πρόβλημα, όπου τα ονόματα των μεταβλητών είναι προφανή. Τέλος, διευκρινίζεται ότι ο ακόλουθος αλγόριθμος καλεί έναν αλγόριθμο ονομαζόμενο Ρίζα, που επιστρέφει την τετραγωνική ρίζα ενός θετικού αριθμού. Αλγόριθμος Γεωμετρικός Διάβασε aktina emvadon 3.14 * aktina * aktina plevra 2 * aktina tetragwno plevra * plevra diagwnios Ρίζα(2 * tetragwno) Εκτύπωσε emvadon, tetragwno, diagwnios Τέλος Γεωμετρικός Παράδειγμα 3. Τιμές θερμοκρασίας από Μετεωρολογικό Κέντρο Σε ένα μετεωρολογικό κέντρο χρειάζεται να βρεθεί η μέγιστη και η ελάχιστη θερμοκρασία από τις μέσες ημερήσιες θερμοκρασίες ενός μήνα. Να γραφεί ένας αλγόριθμος που θα διαβάζει τη μέση ημερήσια θερμοκρασία για κάθε ημέρα ενός μήνα 30 ημερών και θα υπολογίζει την ελάχιστη και τη μέγιστη από αυτές τις θερμοκρασίες Για τον υπολογισμό ελάχιστης και μέγιστης θερμοκρασίας είναι βασικό να δοθούν αρχικές τιμές στις μεταβλητές που θα κρατήσουν τις τιμές για να μπορεί να γίνει σωστά η σύγκριση. Εάν για παράδειγμα στη μεταβλητή ΜΙΝ δώσουμε αρχική τιμή 0, δεν θα καταλήξουμε σε σωστή ελάχιστη θερμοκρασία, εφ όσον στο μήνα δεν υπάρχουν αρνητικές θερμοκρασίες. Αντίθετα εάν στο ΜΑΧ δώσουμε αρχική τιμή 0, δεν θα καταλήξουμε σε σωστή μέγιστη θερμοκρασία, στην περίπτωση που όλος ο μήνας είχε καθημερινή αρνητική μέση θερμοκρασία. Επομένως είναι χρήσιμο η ΜΙΝ να έχει αρκετά υψηλή θερμοκρασία ως αρχική τιμή, ενώ αντίθετα η ΜΑΧ να έχει αρκετά χαμηλή θερμοκρασία ως αρχική τιμή.

3 ÂáóéêÝò Ýííïéåò áëãïñßèìùí 19 Αλγόριθμος Ελάχιστη_Μέγιστη1 ΜΙΝ 100 ΜΑΧ -100 Για i από 1 μέχρι 30 Διάβασε THΕΡ Αν THΕΡ < ΜΙΝ τότε ΜΙΝ ΤΗΕΡ Αν THΕΡ > ΜΑΧ τότε ΜΑΧ ΤΗΕΡ Τέλος_επανάληψης Αποτελέσματα // ΜΙΝ, ΜΑΧ// Τέλος Ελάχιστη_Μέγιστη1 Παράδειγμα 4. Επίλυση δευτεροβάθμιας εξίσωσης Η περίπτωση της δευτεροβάθμιας εξίσωσης είναι παρόμοια. Αρχικά είναι απαραίτητο η τιμή του Α να είναι μη μηδενική, πράγμα που ελέγχεται κατά την είσοδο. Στη συνέχεια, για την εύρεση πραγματικών ριζών της εξίσωσης Ax 2 +Bx+Γ=0, πρέπει να ελεγχθεί αν η διακρίνουσα είναι θετική. Και πάλι καλείται ο αλγόριθμος Ρίζα, που επιστρέφει την τετραγωνική ρίζα ενός θετικού αριθμού. Αλγόριθμος ΕξίσωσηΒ Αρχή_επανάληψης Διάβασε a Μέχρις ότου a 0 Διάβασε b Διάβασε c delta b*b-4*a*c Αν delta 0 τότε solution1 (-b+ρίζα(delta))/(2*a) solution2 (-b-ρίζα(delta))/(2*a) Εκτύπωσε solution1,solution2 Τέλος_αν Τέλος ΕξίσωσηB Παράδειγμα 5. Φοίτηση στο Πανεπιστήμιο Σε κάποια Σχολή υπάρχει ένα 3ετές Τμήμα με διαφορετικό αριθμό φοιτητών / φοιτητριών ανά έτος φοίτησης. Συνολικά το Τμήμα αυτό έχει 200 φοιτητές. Να σχεδιασθεί ένα διάγραμμα ροής και να γραφεί ένας αλγόριθμος που θα διαβάζει το έτος κάθε φοιτητή του Τμήματος και θα υπολογίζει τον αριθμό των φοιτητών για κάθε έτος φοίτησης. Είναι χρήσιμο εδώ να χρησιμοποιηθεί η διαδικασία των πολλαπλών επιλογών διότι είναι ένα πρόβλημα όπου χρειάζεται να γίνει ξεχωριστός υπολογισμός για τις διακριτές τιμές 1, 2, 3 που είναι τα έτη φοίτησης στο συγκεκριμένο Τμήμα.

4 20 ÁíÜðôõîç åöáñìïãþí óå ðñïãñáììáôéóôéêü ðåñéâüëëïí ÄéÜãñáììá ñïþò Áëãüñéèìïò Αλγόριθμος Φοιτητές_Ετος s1 0 s2 0 s3 0 Για i από 1 μέχρι 200 Διάβασε Ε Αν Ε = 1 τότε s1 s1+1 αλλιώς_αν Ε = 2 τότε s2 s2+1 αλλιώς_αν Ε = 3 τότε s3 s3+1 Τέλος_αν Τέλος_επανάληψης Αποτελέσματα // s1, s2, s3 // Τέλος Φοιτητές_Ετος

5 ÂáóéêÝò Ýííïéåò áëãïñßèìùí 21 Παράδειγμα 6. Διοφαντική ανάλυση Να εκπονηθεί ένας αλγόριθμος για την εύρεση όλων των ακεραίων λύσεων της εξίσωσης 3x+2y 7z=5 για τιμές των x, y, z μεταξύ των 0 και 100. Η επίλυση τέτοιων εξισώσεων με πολλές μεταβλητές που επιδέχονται πολλές λύσεις, ονομάζεται διοφαντική ανάλυση. Αλγοριθμικά το πρόβλημα αντιμετωπίζεται ως εξής. Αλγόριθμος Διοφαντική Για x από 0 μέχρι 100 Για y από 0 μέχρι 100 Για z από 0 μέχρι 100 Αν 3x+2y-7z=5 τότε Εκτύπωσε x,y,z Τέλος_επανάληψης Τέλος_επανάληψης Τέλος_επανάληψης Τέλος Διοφαντική 2.3. ÓõìâïõëÝò - õðïäåßîåéò Από την αρχή της ενασχόλησής σου με τους αλγόριθμους, είναι χρήσιμο να μάθεις να ακολουθείς κάποιους κανόνες και κάποιες γενικές αρχές, έτσι ώστε να μπορείς να λύσεις πραγματικά προβλήματα με μεθοδικό τρόπο και να βρίσκεις την καλύτερη τεχνική για την επίλυση ενός προβλήματος. Τη σπουδαιότητα των αλγορίθμων καθώς και την αναγκαιότητά τους για την επίλυση προβλημάτων θα την καταλαβαίνεις όλο και καλύτερα όσο τα προβλήματα γίνονται περισσότερο σύνθετα και πολύπλοκα. Ο αλγόριθμός σου πρέπει να είναι απλός και να προτείνει την εξυπνότερη δυνατή λύση σε ένα πρόβλημα. Είναι χρήσιμο να προσπαθείς κάθε φορά να εντάξεις ένα πρόβλημα σε ένα σύνολο από διαδοχικά βήματα σε φυσική γλώσσα και στη συνέχεια να καταγράφεις αυτά τα βήματα σε κάποια αλγοριθμική δομή. Θα πρέπει να χρησιμοποιείς επαναληπτικές δομές για προβλήματα στα οποία μία ακριβώς ίδια ενέργεια γίνεται για ένα σύνολο από παρόμοιες οντότητες (π.χ. για 100 μαθητές, για 20 αυτοκίνητα κλπ). Είναι χρήσιμο να αναγνωρίσεις την αλγοριθμική δομή που βολεύει ανάλογα με την εκφώνηση του προβλήματος.

6 22 ÁíÜðôõîç åöáñìïãþí óå ðñïãñáììáôéóôéêü ðåñéâüëëïí 2.4. Äñáóôçñéüôçôåò - áóêþóåéò Óôçí ôüîç ΔΤ1. Ο υπολογισμός της περιόδου του εκκρεμούς δίνεται από τον τύπο: T = 2π L g όπου L είναι το μήκος του εκκρεμούς και g είναι η επιτάχυνση της βαρύτητας. Να γραφεί αλγόριθμος που να υλοποιεί τον τύπο αυτό. ΔΤ2. Να γράψετε με βήματα αλγορίθμου τη διαδικασία μετατροπής των παρακάτω νομισμάτων σε ευρώ, με δεδομένο ότι έχετε τις παρακάτω πληροφορίες : 1. Το ευρώ έχει τιμή πώλησης 330 δρχ. 2. Η λίρα Αγγλίας έχει τιμή πώλησης 550 δρχ. 3. Το δολάριο Αμερικής έχει τιμή πώλησης 280 δρχ. 4. Το μάρκο Γερμανίας έχει τιμή πώλησης 100 δρχ. Στη συνέχεια να υπολογίσετε σε δραχμές το σύνολο από 1025 λίρες Αγγλίας, 2234 δολάριο Αμερικής και 3459 μάρκα Γερμανίας ΔΤ3. Να γράψετε με βήματα αλγορίθμου και με διάγραμμα ροής τα παρακάτω 1. Το μέσο όρο ηλικιών μίας ομάδας 100 ανθρώπων. 2. Το σύνολο βαθμολογίας όλων των ομάδων που έχουν πάρει περισσότερο από 100 βαθμούς σε ένα διαγωνισμό. ΔΤ4. Τι τύπου αλγοριθμική συνιστώσα πρέπει να χρησιμοποιήσετε για τα παρακάτω στοιχεία υπολογισμού ; Γράψετε το αντίστοιχο τμήμα δηλώσεων. 1. Το σύνολο ποσού για μία λίστα από 100 αντικείμενα. 2. Τη βαθμολογία ενός μαθητή εάν έχει περάσει τα μαθήματά του 3. Το μέσο όρο βαθμολογίας 100 μαθητών. 4. Διάβασε όνομα και τηλέφωνο ενός μαθητή. 5. Διάβασε όνομα, διεύθυνση και τηλέφωνο 25 μαθητών. 6. Τον αριθμό που προκύπτει όταν ρίξουμε ένα ζάρι. ΔΤ5. Να διαβάζονται δύο αριθμοί που αντιστοιχούν στο ποσοστό του διοξειδίου του άνθρακα και του αζώτου μίας ημέρας, όπως έχει καταγραφεί στα ειδικά μηχανήματα

7 ÂáóéêÝò Ýííïéåò áëãïñßèìùí 23 καταγραφής στην ατμόσφαιρα της πόλης. Να εκτυπώνεται ότι η ατμόσφαιρα είναι «καθαρή», αν το ποσοστό του διοξειδίου του άνθρακα είναι κάτω από 0.35, ή να εκτυπώνεται «μολυσμένη» στην αντίθετη περίπτωση. Επίσης να εκτυπώνεται «διαυγής», αν το άζωτο είναι κάτω από 0.17, αλλιώς να εκτυπώνεται «αδιαυγής». ΔΤ6. Εστω ότι ένας Πανελλήνιος Διαγωνισμός στα Μαθηματικά δίνει δικαίωμα συμμετοχής στο 1% των μαθητών μίας τάξης με την προϋπόθεση ότι ο μέσος όρος της βαθμολογίας στα Μαθηματικά των μαθητών αυτής της τάξης είναι μεγαλύτερος από 18. Να γραφεί ένας αλγόριθμος που θα ελέγχει τη δυνατότητα συμμετοχής σε έναν τέτοιο διαγωνισμό και να παρακολουθήσετε τον αλγόριθμο για τα δεδομένα της τάξης σας. ΔΤ7. Οι υπάλληλοι μίας εταιρείας συμφώνησαν για το μήνα Δεκέμβριο να κρατηθούν από το μισθό τους δύο ποσά, ένα για την ενίσχυση του παιδικού χωριού SOS και ένα για την ενίσχυση των σκοπών της UNICEF. Ο υπολογισμός του ποσού των εισφορών εξαρτάται από τον αρχικό μισθό του κάθε υπαλλήλου και υπολογίζεται με βάση τα παρακάτω όρια μισθών : Ìéóèüò ÅéóöïñÜ 1 ÅéóöïñÜ 2 Åùò äñ 5% 4% % 6% ,5% 8% ìåãáëýôåñï áðü % 11% Να γραφεί αλγόριθμος που να δέχεται ως είσοδο το μισθό του και στη συνέχεια να υπολογίζει το ποσό των δύο εισφορών και το καθαρό ποσό που θα πάρει ο υπάλληλος. ΔΤ8. Σε 10 σχολεία της περιφέρειας έχουν εγκατασταθεί πειραματικά 10 ηλεκτρονικοί υπολογιστές (εξυπηρέτες) που περιέχουν πληροφοριακές «σελίδες» του Internet και μπορεί να προσπελάσει κανείς την πληροφορία τους μέσα από οποιοδήποτε ηλεκτρονικό υπολογιστή στον κόσμο. Να γραφεί ένας αλγόριθμος που θα διαβάζει τον συνολικό αριθμό των προσπελάσεων που πραγματοποιήθηκε σε κάθε έναν από τους εξυπηρέτες αυτούς για διάστημα μιας ημέρας. Να βρεθεί ο εξυπηρέτης με το μικρότερο αριθμό προσπελάσεων καθώς και ο εξυπηρέτης με το μεγαλύτερο αριθμό προσπελάσεων. ΔΤ9. Σε ένα φυτώριο υπάρχουν 3 είδη δένδρων που θα δοθούν για δενδροφύτευση. Το 1 ο είδος δένδρου θα δοθεί στην περιοχή της Μακεδονίας, το 2 ο στην περιοχή της Θράκης, και το 3 ο είδος στην περιοχή της Πελοποννήσου. Να σχεδιασθεί το διάγραμμα ροής και να γραφεί ένας αλγόριθμος που θα διαβάζει τον αριθμό του είδους του δένδρου και θα εκτυπώνει την περιοχή στην οποία θα γίνει η δενδροφύτευση.

8 24 ÁíÜðôõîç åöáñìïãþí óå ðñïãñáììáôéóôéêü ðåñéâüëëïí ΔΤ10. Σε ένα μουσείο υπάρχουν 10 διαφορετικές αίθουσες που περιέχουν διάφορα έργα της ελληνιστικής περιόδου. Κάθε αίθουσα έχει το δικό της αριθμό που είναι από 101, 102,, έως 110. Να γράψεις έναν αλγόριθμο που θα διαβάζει τον αριθμό των ε- πισκεπτών κάθε αίθουσας για μία ημέρα και θα υπολογίζει το μέσο όρο των επισκεπτών από όλες τις αίθουσες. Στη συνέχεια ο αλγόριθμος θα πρέπει να εκτυπώνει τους αριθμούς των αιθουσών που είχαν περισσότερους επισκέπτες από το μέσο όρο των επισκεπτών. Óôï óðßôé Στο τετράδιο σας αντιμετωπίστε τα παρακάτω προβλήματα : ΔΣ1. Δίνεται το παρακάτω διάγραμμα ροής : Να δώσετε την εκφώνηση του προβλήματος που εκφράζεται με το συγκεκριμένο διάγραμμα ροής.

9 ÂáóéêÝò Ýííïéåò áëãïñßèìùí 25 ΔΣ2. Εστω ότι σου έχουν δώσει ένα μεταχειρισμένο ηλεκτρονικό υπολογιστή για 6 μήνες. Θέλεις να διαπραγματευτείς την τιμή αυτού του υπολογιστή για να δεις αν μπορείς να τον αλλάξεις με κάποιο άλλο μοντέλο. Η αρχική τιμή του υπολογιστή που πήρες είναι δρχ. και σου τον προσφέρουν για δρχ. Είναι χρήσιμο να να υ- πολογίσεις το ποσοστό της απαξίωσης για τον υπολογιστή αυτό δεδομένου ότι το ε- τήσιο ποσοστό υποτίμησης υπολογίζεται από τον παρακάτω τύπο : Ποσοσό_Απαξίωσης = 1 Τιμή_προσφοράς Αρxική_ Τιμή 1 Αριθμός _ ετών Να σχεδιασθεί το διάγραμμα ροής και να γραφεί ένας αλγόριθμος που θα υπολογίζει το ποσοστό απαξίωσης για τον υπολογιστή που πήρες για τους 6 μήνες. Στη συνέχεια να γενικεύσεις τον αλγόριθμο, έτσι ώστε να δουλεύει επαναληπτικά για έναν α- ριθμό από διαφορετικά είδη των οποίων ξέρεις το αρχικό ποσό, το ποσό της προσφοράς και το χρονικό διάστημα για το οποίο θέλεις να υπολογίσεις τα ποσοστά απαξίωσης. ΔΣ3. Ενας καταναλωτής πηγαίνει στο πολυκατάστημα και έχει στη τσέπη του ευρώ. Ξεκινά να αγοράζει διάφορα είδη και ταυτόχρονα κρατά το συνολικό ποσό στο οποίο έχει φθάσει κάθε στιγμή που αγοράζει κάποιο είδος. Οι τιμές των ειδών που α- γοράζει είναι σε δραχμές και είναι δεδομένο ότι 1 ευρώ=330 δραχμές. Να γραφεί σε φυσική γλώσσα, με ακολουθία βημάτων και με διάγραμμα ροής ένας αλγόριθμος για τον υπολογισμό του ποσού από τα ψώνια που έγιναν και να σταματά η αγορά ειδών έτσι ώστε να μην ξεπεραστεί το ποσό που έχει διαθέσιμο ο καταναλωτής. ΔΣ4. Δίνεται ο παρακάτω αλγόριθμος : Αλγόριθμος Ελεγχος_Ανάθεσης Διάβασε x Όσο x > 1 επανάλαβε Αν x είναι άρτιος τότε x x/2 αλλιώς x 3*x+1 Τέλος_αν Τέλος_επανάληψης Αποτελέσματα // x // Τέλος Ελεγχος_Ανάθεσης Να γράψεις τα αποτελέσματα αυτού του αλγορίθμου για x=13, x=9 και x=22. Τι παρατηρείς ; ΔΣ5. Σε ένα Λύκειο κάθε μαθητής αξιολογείται με βάση το μέσο όρο που θα έχει σε 5 βασικά μαθήματα. Να γραφεί ένας αλγόριθμος που θα διαβάζει τη βαθμολογία για καθένα από τα 5 αυτά μαθήματα και θα υπολογίζει το μέσο όρο του μαθητή.

10 26 ÁíÜðôõîç åöáñìïãþí óå ðñïãñáììáôéóôéêü ðåñéâüëëïí Να αναλυθεί το πρόβλημα και να προταθεί λύση του με ακολουθία βημάτων και με διάγραμμα ροής. Υπόδειξη Για τον υπολογισμό του συνολικού μέσου όρου η χρήση επαναληπτικής δομής είναι σημαντική λόγω της ελάφρυνσης του κώδικα από παρόμοιες εντολές και από χρήση πολλαπλών μεταβλητών. ΔΣ6. Πηγαίνεις σε ένα πολυκατάστημα και παρατηρείς τις παρακάτω τιμές για 4 διαφορετικά είδη γάλακτος. Åßäïò ÔéìÞ Ðïóüôçôá ÃÁËÁ_Á 195 äñ 300ml ÃÁËÁ_B 205 äñ 400ml ÃÁËÁ_à 400 äñ 500ml ÃÁËÁ_Ä 450 äñ 550ml Να γράψεις έναν αλγόριθμο που θα υπολογίζει και θα εμφανίζει το είδος γάλακτος που έχει την πλέον συμφέρουσα τιμή. ΔΣ7. Εστω ότι θέλεις να υπολογίσεις το ποσό που θα έχεις στο μέλλον με βάση το ποσό που τώρα έχεις αποταμιεύσει στην τράπεζα. Δίνεται ο παρακάτω τύπος υπολογισμού : 2 xρόνια επιτόκιο Τελικό_Ποσό = Αρχικό_Ποσό Να γράψεις έναν αλγόριθμο που να υπολογίζει το ποσό που θα έχεις μετά από 5 χρόνια με δεδομένο ότι το ετήσιο επιτόκιο είναι 6,5 %. Να επεκτείνεις τον αλγόριθμο έ- τσι ώστε να υπολογίζει το ποσό που θα έχεις για 5 διαφορετικά ποσά που έχει κρατήσει σε ξεχωριστούς τραπεζικούς λογαριασμούς. Να βρεθεί και το τελικό ποσό που θα έχεις από όλους αυτούς τους λογαριασμούς. ΔΣ8. Εστω ότι έχεις να επεκτείνεις το πρόβλημα της δενδροφύτευσης που δόθηκε στις δραστηριότητες για την τάξη (ΔΤ9). Να επεκτείνεις τον αλγόριθμο έτσι ώστε να διαβάζεις ένα σύνολο από 100 τιμές που αφορούν το είδος του δένδρου και να υπολογίζεις πόσα από τα δένδρα αυτά θα φυτευτούν στη Μακεδονία, πόσα στη Θράκη και πόσα στην Πελοπόννησο. ΔΣ9. Εστω ότι θέλεις να οργανώσεις μία εκδήλωση για την παγκόσμια ημέρα περιβάλλοντος και έχεις τη χωρητικότητα (σε αριθμό ατόμων) και τις τιμές που θα κοστίσει η ενοικίαση χώρου από 3 διαφορετικούς χώρους στους οποίους μπορεί να γίνει η εκδήλωση. Επιπλέον έχεις προσφορές από 5 διαφορετικούς χορηγούς που διαθέτουν

11 ÂáóéêÝò Ýííïéåò áëãïñßèìùí 27 χρήματα για την υποστήριξη της εκδήλωσης. Να γραφεί ένας αλγόριθμος που θα υ- πολογίζει πόσοι χορηγοί μπορούν να καλύψουν το κόστος της αίθουσας με τη δυνατή μεγαλύτερη χωρητικότητα Ôåóô áõôïáîéïëüãçóçò Δίνονται οι παρακάτω ομάδες προτάσεων. Σε κάθε μία από αυτές, να κάνετε τις απαραίτητες διορθώσεις ώστε να ισχύουν οι προτάσεις 1. Η αναπαράσταση αλγορίθμου με ελεύθερο κείμενο (free text) αποτελεί τον πιο καλά δομημένο τρόπο παρουσίασης αλγορίθμου. 2. Τα διαγράμματα ροής (flow charts) αποτελούν έναν ακολουθιακό τρόπο παρουσίασης ενός αλγορίθμου με χρήση βημάτων. 3. Η κωδικοποίηση (coding) ενός αλγορίθμου γίνεται με ένα πρόγραμμα που όταν ε- κτελεσθεί μπορεί και να μη δώσει τα ίδια αποτελέσματα με τον αλγόριθμο. Συμπλήρωσε τα κενά με το σωστή λέξη που λείπει 4. Η δομή (σειριακών βημάτων) χρησιμοποιείται πρακτικά για την αντιμετώπιση απλών προβλημάτων, όπου είναι δεδομένη η σειρά εκτέλεσης ενός συνόλου ενεργειών. 5. Η δομή της χρησιμοποιείται όταν υπάρχει αναγκαιότητα απόφασης μεταξύ ενός συνόλου περιπτώσεων. 6. Η ενός αλγορίθμου γίνεται με ένα πρόγραμμα που όταν εκτελεσθεί θα δώσει τα ίδια αποτελέσματα με τον αλγόριθμο. 7. Τα αποτελούν ένα γραφικό τρόπο παρουσίασης ενός αλγορίθμου. 8. Οι διαδικασίες συνδυάζουν και χρησιμοποιούν περισσότερες από μία περιπτώσεις αλγοριθμικών συνιστωσών. Χαρακτήρισε τα παρακάτω σαν σωστό ή λάθος 9. Η αλγοριθμική υποστήριξη βοηθά στην επίλυση προβλημάτων. 10. Οι αλγοριθμικές δομές αποτελούνται από ένα ενιαίο κομμάτι και διαφέρουν μόνο στα στοιχεία εισόδου. 11. Για τον υπολογισμό ενός αθροίσματος ακεραίων μπορώ να χρησιμοποιήσω τη δομή της επιλογής. 12. Οι διαδικασίες πολλαπλών επιλογών χρησιμοποιούνται για τις διαφορετικές ε- νέργειες που πρέπει να γίνουν με βάση τον αριθμό των διακριτών ακεραίων τιμών μίας μεταβλητής.

12 28 ÁíÜðôõîç åöáñìïãþí óå ðñïãñáììáôéóôéêü ðåñéâüëëïí Διάλεξε όλα όσα χρειάζεται μεταξύ των προτεινόμενων 13. Τα χρησιμοποιούμενα γεωμετρικά σχήματα για την αναπαράσταση των διαγραμμάτων ροής είναι τα εξής : Α) έλλειψη Β) ρόμβος Γ) ορθογώνιο Δ) κύκλος 14. Ποιά από τα παρακάτω είναι δεκτά ως αλγοριθμικές δομές : Α) επιλογή Β) εκτύπωση Γ) ανάγνωση Δ) υπολογισμός Ε) επανάληψη Βάλε έναν κύκλο στα σωστά 15. Οι αλγοριθμικές συνιστώσες περιλαμβάνουν : Α) Επιλογή Β) Επανάληψη Γ) Ανάγνωση Δ) Πολλαπλή Εκτύπωση 16. Ο πολλαπλασιασμός αλά ρωσικά περιλαμβάνει : Α) πολλαπλασιασμό επί 4 Β) πολλαπλασιασμό επί 2 Γ) διαίρεση δια 4 Δ) διαίρεση δια Η Πληροφορική είναι η επιστήμη που μελετά τους αλγορίθμους από τις ακόλουθες σκοπιές : Α) Υλικού Β) Θεωρητική Γ) Πιθανολογική Δ) Αναλυτική

Λίγα λόγια για το μαθητή...9. 1. Ανάλυση προβλήματος...11. 2. Βασικές έννοιες αλγορίθμων...17. 3. Δομές Δεδομένων και Αλγόριθμοι...

Λίγα λόγια για το μαθητή...9. 1. Ανάλυση προβλήματος...11. 2. Βασικές έννοιες αλγορίθμων...17. 3. Δομές Δεδομένων και Αλγόριθμοι... Ðåñéå üìåíá Λίγα λόγια για το μαθητή...9 1. Ανάλυση προβλήματος...11 2. Βασικές έννοιες αλγορίθμων...17 3. Δομές Δεδομένων και Αλγόριθμοι...29 4. Τεχνικές σχεδίασης αλγορίθμων...37 5. Aνάλυση αλγορίθμων...47

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ : Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ : Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ ΤΑΞΗ ΚΕΦΑΛΑΙΟ 2 ο ΕΙΣΗΓΗΤΗΣ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ : Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ : ΚΑΖΑΝΤΖΗΣ ΧΡΗΣΤΟΣ 1. Γενικός

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 (Α) Σημειώστε δίπλα σε κάθε πρόταση «Σ» ή «Λ» εφόσον είναι σωστή ή λανθασμένη αντίστοιχα. 1. Τα συντακτικά λάθη ενός προγράμματος

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου.

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου. 2.1 Αν χ και y μεταβλητές με τιμές 5 και 10 αντίστοιχα να εξηγηθούν οι ακόλουθες εντολές εξόδου. 1) Η τιμή του χ είναι,χ Ητιμή του χ είναι 5 Ηεντολή εμφανίζει ότι υπάρχει στα διπλά εισαγωγικά ως έχει.

Διαβάστε περισσότερα

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Βασικές αλγοριθμικές δομές

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Βασικές αλγοριθμικές δομές Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Βασικές αλγοριθμικές δομές Βασικές Αλγοριθμικές Δομές 2 Εισαγωγή Οι αλγοριθμικές δομές εκφράζουν διαφορετικούς τρόπους γραφής ενός αλγορίθμου.

Διαβάστε περισσότερα

Κεφάλαιο 4 ο. Δομή επιλογής. Περιεχόμενα

Κεφάλαιο 4 ο. Δομή επιλογής. Περιεχόμενα Δομή επιλογής Κεφάλαιο 4 ο Περιεχόμενα 4.1. Δομή επιλογής 4.2. Δομή απλής επιλογής 4.3. Παραδείγματα δομή απλής επιλογής 4.4. Δομή σύνθετης επιλογής 4.5. Παραδείγματα δομή σύνθετης επιλογής 4.6. Δομή πολλαπλής

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

1 η εξεταστική περίοδος από 20/10/2013 έως 17/11/2013. γραπτή εξέταση στο μάθημα Α ΝΑΠΤΥΞΗ ΕΦΑΡΜ Ο ΓΩ Ν ΣΕ ΠΡΟΓΡ ΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ

1 η εξεταστική περίοδος από 20/10/2013 έως 17/11/2013. γραπτή εξέταση στο μάθημα Α ΝΑΠΤΥΞΗ ΕΦΑΡΜ Ο ΓΩ Ν ΣΕ ΠΡΟΓΡ ΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ γραπτή εξέταση στο μάθημα Α ΝΑΠΤΥΞΗ ΕΦΑΡΜ Ο ΓΩ Ν ΣΕ ΠΡΟΓΡ ΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ Τάξη: Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: ΒΛΙΣΙΔΗΣ ΓΙΩΡΓΟΣ ΘΕΜΑ Α Α1. Να αναφέρετε τους λόγους για τους οποίους

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1Ο Α1. Να χαρακτηρίσετε τις παρακάτω προτάσεις σαν Σωστό ή Λάθος. 1. Ο υπολογιστής είναι ο ταχύτερος μηχανισμός επεξεργασίας δεδομένων. 2. Οι εντολές

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

8. Επιλογή και επανάληψη

8. Επιλογή και επανάληψη 8. Επιλογή και επανάληψη 8.1 Εντολές Επιλογής ΕΣΕΠ06-Θ1Β5 Η ιεραρχία των λογικών τελεστών είναι µικρότερη των αριθµητικών. ΕΣ07-Θ1Γ5 Η σύγκριση λογικών δεδοµένων έχει έννοια µόνο στην περίπτωση του ίσου

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015

Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015 Φροντιστήρια Επίγνωση Προτεινόμενα Θέματα Πανελλαδικών ΑΕΠΠ 2015 Βάλβης Δημήτριος Μηχανικός Πληροφορικής ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ 1 Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Óõíåéñìüò ΕΚΦΩΝΗΣΕΙΣ

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Óõíåéñìüò ΕΚΦΩΝΗΣΕΙΣ 1 ΘΕΜΑ 1 o Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στην κόλλα σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1 5 και δίπλα τη λέξη

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-6 και

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝ/ΚΗΣ ΚΑΤ/ΝΣΗΣ (Πλ. & Υπ.) 2006 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝ/ΚΗΣ ΚΑΤ/ΝΣΗΣ (Πλ. & Υπ.) 2006 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1 ο ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝ/ΚΗΣ ΚΑΤ/ΝΣΗΣ (Πλ. & Υπ.) 2006 ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ 1. Τι καλείται ψευδοκώδικας; 2. Τι καλείται λογικό διάγραμμα; 3. Για ποιο λόγο είναι απαραίτητη η τυποποίηση του αλγόριθμου; 4. Ποιες είναι οι βασικές αλγοριθμικές δομές; 5. Να περιγράψετε τις

Διαβάστε περισσότερα

Αν τότε. αλλιώς. Τέλος_αν. Τέλος_αν

Αν τότε. αλλιώς. Τέλος_αν. Τέλος_αν Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 2 0 1 5 Α Ν Α Π Τ Υ Ξ Η Ε Φ Α Ρ Μ Ο Γ Ω Ν Σ Ε Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Τ Ι Κ Ο Π Ε Ρ Ι Β Α Λ Λ Ο Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η Σ Κ Α

Διαβάστε περισσότερα

Μιχάλης Αρταβάνης κλάδου Πληροφορικής ΠΕ19

Μιχάλης Αρταβάνης κλάδου Πληροφορικής ΠΕ19 Φυλλάδιο Ασκήσεων 1 - οµές Επανάληψης Ασκ1. Πόσες φορές θα εκτελεστούν οι επαναληπτικές δοµές στα παρακάτω τµήµατα αλγορίθµων; x 5 Όσο (x > 0) x x - 1 x 5 Όσο (x >= 0) x x - 1 x -5 Όσο (x >= 0) x x - 1

Διαβάστε περισσότερα

www.lazarinis.gr ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ 2011 - ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ

www.lazarinis.gr ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ 2011 - ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ Σελίδα 1 από 12 www.lazarinis.gr ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ 2011 - ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ Σε συνεργασία µε τις εκδόσεις ΕΛΛΗΝΟΕΚ ΟΤΙΚΗ κυκλοφορούν τα βοηθήµατα «Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον:

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Προτεινόμενα θέματα 2013 - Λύσεις

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Προτεινόμενα θέματα 2013 - Λύσεις Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Προτεινόμενα θέματα 2013 - Λύσεις ΘΕΜΑ 1 ο Α1. Να γράψετε την λέξη Σωστό αν είναι σωστή, ή την λέξη Λάθος αν είναι λανθασμένη η πρόταση : 1. Μια συνάρτηση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΕΤΡΑΔΙΟΥ ΜΑΘΗΤΗ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΕΤΡΑΔΙΟΥ ΜΑΘΗΤΗ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΤΕΤΡΑΔΙΟΥ ΜΑΘΗΤΗ ΤΕΣΤ1 ΑΠΑΝΤΗΣΕΙΣ 1. Κατανόηση, Ανάλυση, Επίλυση 2. Είσοδος, Επεξεργασία, Έξοδος, Έλεγχος 3. Κατανόηση 4. Πληροφορία 5. Διατύπωση 6. Δομή 7. Απαιτήσεων 8. Λ, 9. Σ,

Διαβάστε περισσότερα

2015 1-5 1. 5 5 4. 10 2. . 3. 6 3. . 6

2015 1-5 1. 5 5 4. 10 2. . 3. 6 3. . 6 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµίας από τις παρακάτω προτάσεις 1-5 και, δίπλα, τη λέξη ΣΩΣΤΟ, αν

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος

ΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος ΑΛΓΟΡΙΘΜΟΙ Στο σηµείωµα αυτό αρχικά εξηγείται η έννοια αλγόριθµος και παραθέτονται τα σπουδαιότερα κριτήρια που πρέπει να πληρεί κάθε αλγόριθµος. Στη συνέχεια, η σπουδαιότητα των αλγορίθµων συνδυάζεται

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Ο

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Ο Α. Να αναπτύξετε τις παρακάτω ερωτήσεις: 1. Τι καλείται βρόγχος; 2. Σε ποιες κατηγορίες διακρίνονται τα προβλήματα ανάλογα με

Διαβάστε περισσότερα

Κατασκευή Προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων

Κατασκευή Προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Κατασκευή Προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Λιακόπουλος Ιωάννης1 και Λυπηρίδης Χαράλαμπος2 1liakopoulosjohn@gmail.com, 2xarislip@hotmail.com Επιβλέπων Καθηγητής: Λάζαρος Τζήμκας tzimkaslazaros@gmail.com

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΙI ΚΕΦΑΛΑΙΟ 2

ΚΕΦΑΛΑΙΟ ΙI ΚΕΦΑΛΑΙΟ 2 ΚΕΦΑΛΑΙΟ ΙI Βασικές Έννοιες Αλγορίθμων Αλγόριθμος, είναι μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήματος. Κάθε αλγόριθμος

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ «ΕΝΑ» ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΦΡΟΝΤΙΣΤΗΡΙΟ «ΕΝΑ» ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ «ΕΝΑ» ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Α. Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις και δίπλα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης

ΚΕΦΑΛΑΙΟ 1ο 3ο. ΚΕΦΑΛΑΙΟ 5ο 6ο. ΚΕΦΑΛΑΙΟ 7ο. Δομημένος Προγραμματισμός - Γενικές Ασκήσεις Επανάληψης ΚΕΦΑΛΑΙΟ 1ο 3ο 1. Συμπληρώστε τα κενά με τη λέξη που λείπει. α. Ένα πρόβλημα το χωρίζουμε σε άλλα απλούστερα, όταν είναι ή όταν έχει τρόπο επίλυσης. β. Η επίλυση ενός προβλήματος προϋποθέτει την του. γ.

Διαβάστε περισσότερα

Κεφάλαιο 10. Υποπρογράμματα

Κεφάλαιο 10. Υποπρογράμματα Κεφάλαιο 10 Υποπρογράμματα 10.1 Γενικός διδακτικός σκοπός Ο γενικός σκοπός του κεφαλαίου είναι να καταστούν ικανοί οι μαθητές να χρησιμοποιούν υποπρογράμματα για τη δημιουργία συνθέτων προγραμμάτων. 194

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-6 και δίπλα τη λέξη ΣΩΣΤΟ, αν η πρόταση

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 27 ΜΑΪΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΘΕΜΑ Α Α1. Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή ή τη λέξη ΛΑΘΟΣ, αν είναι λανθασμένη.

ΘΕΜΑ Α Α1. Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή ή τη λέξη ΛΑΘΟΣ, αν είναι λανθασμένη. ΜΑΘΗΜΑ / ΤΑΞΗ : Ανάπτυξη Εφαρμογών ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α Α1. Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή ή τη λέξη ΛΑΘΟΣ, αν είναι λανθασμένη.

Διαβάστε περισσότερα

Βήματα: μνήμη 2. Αλγόριθμος βήματα που περιγράφουν την επεξεργασία των δεδομένων. Δομές Δεδομένων + Αλγόριθμοι = Προγράμματα

Βήματα: μνήμη 2. Αλγόριθμος βήματα που περιγράφουν την επεξεργασία των δεδομένων. Δομές Δεδομένων + Αλγόριθμοι = Προγράμματα Απλά Προγράμματα Βήματα: 1. Καθορισμός παράστασης δεδομένων στη μνήμη 2. Αλγόριθμος βήματα που περιγράφουν την επεξεργασία των δεδομένων Δομές Δεδομένων + Αλγόριθμοι = Προγράμματα Οι Βασικοί κανόνες Κατανόηση

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 6 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Ο Α. Να χαρακτηρίσετε µε σωστό ή λάθος τις παρακάτω προτάσεις: 1. Ανοικτά είναι τα προβλήµατα που δεν

Διαβάστε περισσότερα

ÑÏÕËÁ ÌÁÊÑÇ. Β. Να αναφέρετε τις κυριότερες τυποποιηµένες τεχνικές σχεδίασης αλγορίθµων. ΜΟΝΑ ΕΣ 3

ÑÏÕËÁ ÌÁÊÑÇ. Β. Να αναφέρετε τις κυριότερες τυποποιηµένες τεχνικές σχεδίασης αλγορίθµων. ΜΟΝΑ ΕΣ 3 1 Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 Ο ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΕΚΦΩΝΗΣΕΙΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2007 ΘΕΜΑ 1ο ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις

Διαβάστε περισσότερα

10 Α2. 5 Α3. (ΟΧΙ = 20-4*2^2)) H (X>Ψ ΚΑΙ X > Ψ

10 Α2. 5 Α3. (ΟΧΙ = 20-4*2^2)) H (X>Ψ ΚΑΙ X > Ψ Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 2 0 1 4 Α Ν Α Π Τ Υ Ξ Η Ε Φ Α Ρ Μ Ο Γ Ω Ν Σ Ε Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Τ Ι Κ Ο Π Ε Ρ Ι Β Α Λ Λ Ο Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η Σ Κ Α

Διαβάστε περισσότερα

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων

Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Κατασκευή προγράμματος για επίλυση Φυσικομαθηματικών συναρτήσεων Ιωάννης Λιακόπουλος 1, Χαράλαμπος Λυπηρίδης 2 1 Μαθητής B Λυκείου, Εκπαιδευτήρια «Ο Απόστολος Παύλος» liakopoulosjohn0@gmail.com, 2 Μαθητής

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 04/03/2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. Α2. 2. ΣΩΣΤΟ 2 δ 3. ΣΩΣΤΟ 3 ε 5. ΛΑΘΟΣ 5 α. 1.

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 04/03/2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. Α2. 2. ΣΩΣΤΟ 2 δ 3. ΣΩΣΤΟ 3 ε 5. ΛΑΘΟΣ 5 α. 1. ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 04/03/2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. Α2. 1. ΛΑΘΟΣ 1 στ 2. ΣΩΣΤΟ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΛΑΘΟΣ 5 α Α3. α. (σελ. 193-194) Υπολογισμός αθροίσματος

Διαβάστε περισσότερα

III. Πως μετατρέπεται το πηγαίο πρόγραμμα σε εκτελέσιμο πρόγραμμα;

III. Πως μετατρέπεται το πηγαίο πρόγραμμα σε εκτελέσιμο πρόγραμμα; ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Θέμα 1ο I. Τι πρέπει να ικανοποιεί ένα κομμάτι κώδικα ώστε να χαρακτηριστεί ως υποπρόγραμμα; Τα υποπρογράμματα πρέπει

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ 1 (Εργαστήριο)

Προγραμματισμός Η/Υ 1 (Εργαστήριο) Προγραμματισμός Η/Υ 1 (Εργαστήριο) Ενότητα 1: Εισαγωγή στη C - Αλγόριθμοι Καθηγήτρια Εφαρμογών: Τσαγκαλίδου Ροδή Τμήμα: Ηλεκτρολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε

Διαβάστε περισσότερα

ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013

ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013 ΕΝΙΑΙΟ ΛΥΚΕΙΟ ΚΑΛΑΜΠΑΚΑΣ ΣΧΟΛ. ΕΤΟΣ 2012-2013 ΕΚΠΑΙΔΕΥΤΙΚΉ ΠΡΟΣΟΜΟΙΩΣΗ ΕΞΕΤΑΣΕΩΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Α1. Να γράψετε

Διαβάστε περισσότερα

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ Α3. α. (σελ. 183-184) Στοίβα: ώθηση, απώθηση Ουρά:

Διαβάστε περισσότερα

Η ΑΕΠΠ IN A GLANCE! ΦΡΟΝΤΙΣΤΗΡΙΑ ΠΟΛΥΜΕΝΗ

Η ΑΕΠΠ IN A GLANCE! ΦΡΟΝΤΙΣΤΗΡΙΑ ΠΟΛΥΜΕΝΗ Η ΑΕΠΠ IN A GLANCE! Κατανομή μονάδων: 40 μονάδες το 1 ο Θέμα, από 20 τα υπόλοιπα τρία. Μην χαίρεστε όμως γιατί η «καθαρή» θεωρία περιορίζεται συνήθως- σε 5 ερωτήσεις σωστού ή λάθους και σε 1-2 ερωτήσεις

Διαβάστε περισσότερα

Α4. Δίδεται ο παρακάτω αλγόριθμος

Α4. Δίδεται ο παρακάτω αλγόριθμος Διαγώνισμα 2014-15 Ανάπτυξη Εφαρμογών σε Πραγματικό Περιβάλλον Επώνυμο Όνομα Εξεταζόμενο μάθημα Γ Λυκείου Κυριακή 02/11/2014 Τμήμα Ημερομηνία Τάξη Θέμα Α A1. Επιλέξτε Σωστό ή Λάθος για τις παρακάτω προτάσεις:

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΘΕΜΑ 1 ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΘΕΜΑ 1 ο ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 27 MAΪΟΥ 2009 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΘΕΜΑ A Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή, ή τη λέξη ΛΑΘΟΣ,

Διαβάστε περισσότερα

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

Μονάδες 12 ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 5 ΙΟΥΝΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ:

Διαβάστε περισσότερα

Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον

Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον Κεφάλαιο 6ο Εισαγωγή στον Προγραµµατισµό Μέρος Πρώτο (6.1, 6.2 και 6.3) Α. Ερωτήσεις Σωστού Λάθους 1. Η γλώσσα µηχανής είναι µία γλώσσα υψηλού επιπέδου.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης

ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ. Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ Δρ. Βασίλης Π. Αγγελίδης Τμήμα Μηχανικών Παραγωγής & Διοίκησης Δημοκρίτειο Πανεπιστήμιο Θράκης Στόχοι Ο κύριος στόχος του μαθήματος είναι να βοηθήσει τους φοιτητές να αναπτύξουν πρακτικές

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΛΥΚΕΙΟ ΑΡΧ. ΜΑΚΑΡΙΟΥ Γ - ΔΑΣΟΥΠΟΛΗ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΠΛΗΡΟΦΟΡΙΚΗ ΗΜΕΡΟΜΗΝΙΑ: 10 /6 / 2015 ΒΑΘΜΟΣ:... ΤΑΞΗ: Β ΧΡΟΝΟΣ: 2 ώρες ΥΠ. ΚΑΘΗΓΗΤΗ:...

Διαβάστε περισσότερα

Περι-γράφοντας... κλωνάρια

Περι-γράφοντας... κλωνάρια Όνομα(τα): Όνομα Η/Υ: Σ Τμήμα: Ημερομηνία: Περι-γράφοντας... κλωνάρια Ξεκινήστε το Χώρο ραστηριοτήτων, επιλέξτε τη θεματική ενότητα: ΘΕ03: Απλή επιλογή και επιλέξτε την πρώτη δραστηριότητα (Περι-γράφοντας...

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2010 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. ίνονται τα παρακάτω τµήµατα αλγορίθµου σε φυσική γλώσσα. 1. Αν η

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΔΑΚΤΙΚΗ της ΠΛΗΡΟΦΟΡΙΚΗΣ Μ. Γρηγοριάδου Ρ. Γόγουλου Ενότητα: Η Διδασκαλία του Προγραμματισμού Περιεχόμενα Παρουσίασης

Διαβάστε περισσότερα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Βήματα προς τη δημιουργία εκτελέσιμου κώδικα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: Θέμα 1ο Α) Απαντήστε στις παρακάτω ερωτήσεις επιλέγοντας Σ (Σωστό) ή Λ (Λάθος). 1) Ο έλεγχος μιας συνθήκης έχει μόνο δυο τιμές,

Διαβάστε περισσότερα

ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ Η/Υ Γ ΓΥΜΝΑΣΙΟΥ Καθηγητής Παναγιώτης

ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ Η/Υ Γ ΓΥΜΝΑΣΙΟΥ Καθηγητής Παναγιώτης ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΜΕ Η/Υ Γ ΓΥΜΝΑΣΙΟΥ Καθηγητής Παναγιώτης ΠΡΟΒΛΗΜΑ Ένας μαθητής της Γ γυμνασίου, για να περάσει το μάθημα της Πληροφορικής θα πρέπει να βγάλει γενικό μέσο όρο (ΓΜΟ) 9.5 Το πρόγραμμα που

Διαβάστε περισσότερα

ΔΙΑΔΙΚΑΣΤΙΚΟΣ ΠΡΟΓΡΑ Ρ Μ Α ΜΑΤΙ Τ ΣΜΟΣ

ΔΙΑΔΙΚΑΣΤΙΚΟΣ ΠΡΟΓΡΑ Ρ Μ Α ΜΑΤΙ Τ ΣΜΟΣ Τμήμα Εφαρμοσμένης Πληροφορικής ΔΙΑΔΙΚΑΣΤΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Εξάμηνο Α' Φύλλο Ασκήσεων 3 ΔΟΜΕΣ ΕΠAΝΑΛΗΨΗΣ Διδάσκοντες: Μάγια Σατρατζέμη, Αλέξανδρος Χατζηγεωργίου, Ηλίας Σακελλαρίου, Στέλιος Ξυνόγαλος

Διαβάστε περισσότερα

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ http://edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ http://edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α A ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 7 ΙΟΥΝΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΟΜΗΜΕΝΟΣ

Διαβάστε περισσότερα

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 18 ΙΑΝΟΥΑΡΙΟΥ 2014 Τηλ. 6165-617784 - Fax: 64105 Tel. 6165-617784 - Fax: 64105 ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούμε να διαβάσετε προσεκτικά

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Α1. 1. ΣΩΣΤΟ 2. ΣΩΣΤΟ 3. ΛΑΘΟΣ 4. ΣΩΣΤΟ 5. ΛΑΘΟΣ ΟΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΑΠΟ ΤΟΝ ΚΑΘΗΓΗΤΗ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ

ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΕΝΟΤΗΤΑ 13 ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ ΜΕ ΣΥΜΒΑΤΙΚΕΣ ΜΟΝΑΔΕΣ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΕΡΙΜΕΤΡΟ ΚΑΙ ΕΜΒΑΔΟΝ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΜΕΤΡΗΣΗ Εκτίμηση και μέτρηση Μ1.1 Συγκρίνουν και σειροθετούν αντικείμενα με βάση το ύψος, το μήκος,

Διαβάστε περισσότερα

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ

ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ ΕΚΔΟΣΕΙΣ ΓΙΩΡΓΟΣ Α. ΚΑΡΕΚΛΙΔΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΜΕΘΟΔΟΛΟΓΙΑ τη ΘΕΩΡΙΑ με τις απαραίτητες διευκρινήσεις ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΙΑ ΕΠΙΣΤΗΜΟΝΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (ΕΠΥ)

ΕΛΛΗΝΙΚΗ ΕΤΑΙΡΙΑ ΕΠΙΣΤΗΜΟΝΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (ΕΠΥ) ÏìÜäá ÓõããñáöÞò ΒΑΚΑΛΗ ΑΘΗΝΑ, Λέκτωρ Τμήματος Πληροφορικής ΑΠΘ ΓΙΑΝΝΟΠΟΥΛΟΣ ΗΛΙΑΣ, Μηχανικός Πληροφορικής ΙΩΑΝΝΙΔΗΣ ΝΕΣΤΩΡ, Επίκουρος Καθηγητής Τμήματος Πληροφορικής ΤΕΙ Αθήνας ΚΟΙΛΙΑΣ ΧΡΗΣΤΟΣ, Επίκουρος

Διαβάστε περισσότερα

μαθηματικά β γυμνασίου

μαθηματικά β γυμνασίου μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:

Διαβάστε περισσότερα

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΓΙΑ ΤΑ ΝΕΑ ΑΝΑΛΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΝΕΟ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Γ ΓΥΜΝΑΣΙΟΥ

ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΓΙΑ ΤΑ ΝΕΑ ΑΝΑΛΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΝΕΟ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Γ ΓΥΜΝΑΣΙΟΥ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΓΙΑ ΤΑ ΝΕΑ ΑΝΑΛΥΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ ΝΕΟ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Γ ΓΥΜΝΑΣΙΟΥ Νέα Αναλυτικά Προγράμματα Πληροφορικής και Επιστήμης Ηλεκτρονικών Υπολογιστών Πηγή: Οδηγός

Διαβάστε περισσότερα

ÏÅÖÅ. Β. Να αναφέρετε τις κυριότερες τυποποιηµένες τεχνικές σχεδίασης αλγορίθµων. ΜΟΝΑ ΕΣ 3

ÏÅÖÅ. Β. Να αναφέρετε τις κυριότερες τυποποιηµένες τεχνικές σχεδίασης αλγορίθµων. ΜΟΝΑ ΕΣ 3 1 Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΘΕΜΑ 1 Ο ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΕΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2010 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΘΕΜΑΤΑ ΚΑΙ ΕΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2010 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Α1. ίνονται τα παρακάτω τμήματα αλγορίθμου σε φυσική γλώσσα. 1 Αν η βαθμολογία (ΒΑΘΜΟΣ) είναι μεγαλύτερη από τον Μέσο Ορο (ΜΟ), τότε να τυπώνει «Πολύ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Θέμα 1ο Ι. Να αντιστοιχίσετε τους παρακάτω όρους. Στη στήλη Β περισσεύει μια επιλογή. (6 Μονάδες) 1 - Β 2 - Α 3

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

Α Β (ΟΧΙ Α) Η Β Α ΚΑΙ Β Α Η Β ΨΕΥ ΗΣ ΑΛΗΘΗΣ

Α Β (ΟΧΙ Α) Η Β Α ΚΑΙ Β Α Η Β ΨΕΥ ΗΣ ΑΛΗΘΗΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 2 ΙΟΥΝΙΟΥ 2006 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2014-2015 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 04-05 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΟΥΣ ΜΙΓΑΔΙΚΟΥΣ Θεωρούμε τους μιγαδικούς C για τους οποίους ισχύει: - = + Im() και τη συνάρτηση f : w f ( w), όπου w C, w - και f (w) = w ) Να

Διαβάστε περισσότερα

Καταστατική εξίσωση ιδανικών αερίων

Καταστατική εξίσωση ιδανικών αερίων Καταστατική εξίσωση ιδανικών αερίων 21-1. Από τι εξαρτάται η συμπεριφορά των αερίων; Η συμπεριφορά των αερίων είναι περισσότερο απλή και ομοιόμορφη από τη συμπεριφορά των υγρών και των στερεών. Σε αντίθεση

Διαβάστε περισσότερα

Α2. ίνεται το παρακάτω τμήμα αλγορίθμου: Για i από 3 μέχρι Α με_βήμα Β Εμφάνισε i Τέλος_επανάληψης ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ

Α2. ίνεται το παρακάτω τμήμα αλγορίθμου: Για i από 3 μέχρι Α με_βήμα Β Εμφάνισε i Τέλος_επανάληψης ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ (ΟΜΑ ΑΣ Β ) ΣΑΒΒΑΤΟ 22 ΜΑΪΟΥ 2010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ Ανάπτυξη Εφαρµογών ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ ΙΑΓΩΝΙΣΜΑ Α κ Θέµα 1 ο Α. Να γράψετε στο τετράδιο σας τον αριθµό κάθε µιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη: Σωστό, αν είναι σωστή, ή τη λέξη

Διαβάστε περισσότερα

ΘΕΜΑ 1ο Α. Να αναφερθούν οι βασικές αλγοριθµικές δοµές (συνιστώσες / εντολές ενός αλγορίθµου). Μονάδες 10

ΘΕΜΑ 1ο Α. Να αναφερθούν οι βασικές αλγοριθµικές δοµές (συνιστώσες / εντολές ενός αλγορίθµου). Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ʹ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 1 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ): ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Θέµα 1: Α. Η «σύγκριση» λειτουργιών ανθρώπου και υπολογιστή επιφέρει βέβαια µια τεράστια ποιοτική διαφορά υπέρ του ανθρώπου. I. Ποια είναι η διαφορά

Διαβάστε περισσότερα

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος.

Α) Αν η διάμεσος δ του δείγματος Α είναι αρνητική, να βρεθεί το εύρος R του δείγματος. ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΣΥΛΛΟΓΗ ΑΣΚΗΣΕΩΝ ου ΚΕΦΑΛΑΙΟΥ Άσκηση 1 (Προτάθηκε από Χρήστο Κανάβη) Έστω CV 0.4 όπου CV ο συντελεστής μεταβολής, και η τυπική απόκλιση s = 0. ενός δείγματος που έχει την ίδια

Διαβάστε περισσότερα

Πληρουορική Γ Γσμμασίοσ

Πληρουορική Γ Γσμμασίοσ Πληρουορική Γ Γσμμασίοσ Προγραμματισμός και Αλγόριθμοι Από το και τημ Χελώμα στημ Ευριπίδης Βραχνός http://evripides.mysch.gr/ 2014 2015 1 Προγραμματισμός Ζάννειο Πρότυπο Πειραματικό Γυμνάσιο Πειραιά Ενότητα:

Διαβάστε περισσότερα

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους;

ΖΗΤΗΜ Α 1 Ο. Α1. Τι είναι το ραβδόγραµµα και πότε χρησιµοποιείται; 5) Α2. Σε τι διακρίνονται οι µεταβλητές και τι είναι οι τιµές τους; ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 1 ΦΕΒΡΟΥΑΡΙΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΖΗΤΗΜ Α 1 Ο Α1. Τι είναι το ραβδόγραµµα

Διαβάστε περισσότερα

ΣΤ Δημοτικού - Προγραμματίζω τον υπολογιστή. Σχέδιο Μαθήματος No 1 Εισαγωγή στο προγραμματιστικό περιβάλλον της EasyLogo

ΣΤ Δημοτικού - Προγραμματίζω τον υπολογιστή. Σχέδιο Μαθήματος No 1 Εισαγωγή στο προγραμματιστικό περιβάλλον της EasyLogo ΣΤ Δημοτικού - Προγραμματίζω τον υπολογιστή Σχέδιο Μαθήματος No 1 Εισαγωγή στο προγραμματιστικό περιβάλλον της EasyLogo Εμπλεκόμενες έννοιες «Γραφή» και άμεση εκτέλεση εντολής. Αποτέλεσμα εκτέλεσης εντολής.

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ κ ΙΑΓΩΝΙΣΜΑ Α ΘΕΜΑ 1 Α. Να γράψετε τους αριθµούς της στήλης Α και δίπλα το γράµµα της Στήλης Β που αντιστοιχεί

Διαβάστε περισσότερα

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19

ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ. Κοκκαλάρα Μαρία ΠΕ19 ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ ΟΣΟ ΣΥΝΘΗΚΗ ΕΠΑΝΑΛΑΒΕ.ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ Κοκκαλάρα Μαρία ΠΕ19 ΠΕΡΙΓΡΑΜΜΑ ΤΗΣ ΠΑΡΟΥΣΙΑΣΗΣ 1. Εισαγωγικά στοιχεία 2. Ένταξη του διδακτικού σεναρίου στο πρόγραμμα σπουδών 3. Οργάνωση της τάξης

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ / ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΘΕΜΑ Α Ηµεροµηνία: Κυριακή

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β.

ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Σύνολο χαρακτήρων της Pascal Για

Διαβάστε περισσότερα

Αντικείμενα 1 ου εργαστηρίου

Αντικείμενα 1 ου εργαστηρίου 1.0 Σχολή Διοίκησης και Οικονομίας (ΣΔΟ) Τμήμα Λογιστικής και Χρηματοοικονομικής Διδάσκων: Δρ. Γκόγκος Χρήστος Μάθημα: Πληροφορική Ι (εργαστήριο) Ακαδημαϊκό έτος: 2013-2014 Εξάμηνο Α 1 ο Φυλλάδιο Ασκήσεων

Διαβάστε περισσότερα

Φύλλα εργασίας. MicroWorlds Pro. Πολυμεσικές Εφαρμογές με την χρήση της γλώσσας LOGO Στο Γυμνάσιο. Β. Χ. Χρυσοχοΐδης

Φύλλα εργασίας. MicroWorlds Pro. Πολυμεσικές Εφαρμογές με την χρήση της γλώσσας LOGO Στο Γυμνάσιο. Β. Χ. Χρυσοχοΐδης Φύλλα εργασίας MicroWorlds Pro Πολυμεσικές Εφαρμογές με την χρήση της γλώσσας LOGO Στο Γυμνάσιο Β. Χ. Χρυσοχοΐδης Πρόεδρος Συλλόγου Εκπαιδευτικών Πληροφορικής Φλώρινας 2 «Σχεδίαση και ανάπτυξη δραστηριοτήτων

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 6 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου

Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Αρχιτεκτονική Υπολογιστών Ασκήσεις Εργαστηρίου Ενότητα: ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ No 05 Δρ. Μηνάς Δασυγένης mdasyg@ieee.org Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Εργαστήριο Ψηφιακών Συστημάτων και

Διαβάστε περισσότερα

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ

ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ 22559 ΕΦΗΜΕΡΙΣ ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΔΗΜΟΚΡΑΤΙΑΣ ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ Αρ. Φύλλου 1561 17 Αυγούστου 2007 ΑΠΟΦΑΣΕΙΣ Αριθμ. 85038/Γ2 Αναλυτικό Πρόγραμμα Σπουδών του Τομέα Οικονομικών και Διοικητικών Υπηρεσιών

Διαβάστε περισσότερα

Δυνάμεις Φυσικών Αριθμών

Δυνάμεις Φυσικών Αριθμών Δυνάμεις Φυσικών Αριθμών TINΑ ΒΡΕΝΤΖΟΥ www.ma8eno.gr www.ma8eno.gr Σελίδα 1 Δυνάμεις φυσικών αριθμών Δύναμη ονομάζουμε το γινόμενο πολλών ίσων παραγόντων Πχ: 8 8= 64, 4 4 4= 64, 3 3 3 3= 81. Έτσι, το γινόμενο

Διαβάστε περισσότερα