Vessel with Large Opening. PVE Samples. PVE Sample Vessels

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Vessel with Large Opening. PVE Samples. PVE Sample Vessels"

Transcript

1 Vessel with Large Opening Sample 5 Pressure Vessel Calculations November 20, 2008 PVE Samples 120 Randall Drive Waterloo, Ontario N2V 1C6 PVE Sample Vessels Ben Vanderloo Laurence Brundrett P. Eng. Pressure Vessel Engineering Ltd. PVE-Sample 5 1 of 25

2 Table of Contents 20-Nov-08 Page 2 of 25 Contents Page Cover 1 Table of Contents 2 Summary 3 Material Properties 4 Shell 5 Bottom Ferrule 6 Cone 7 Cone Discontinuity " Ferrule - Nozzle A 11 2" 300# RFSO Flange 12 2" Heavy Ferrule - Nozzle B 13 10" Nozzle C 14 10" Nozzle App " Custom Flange Swing Bolts on Pipe Swing Bolt and Cover " Coupling E 24 Vessel Weight & Volume 25 Rev Revision(s) Description Date By 0 Initial Release 5/25/05 LB 1 Revised Calculations 11/20/08 BV 2

3 Pressure Vessel Design Summary 20-Nov-08 Page 3 of 25 PVE Samples Customer Vessel with Large Opening Vessel Vessel with Large Opening Part Number Sample 5 Drawing PVE-Sample 5 Job Outside Diameter [inch] 20 straight Shell (not including straight flange on heads) 2 Volume [cuft] Water Fluid (value from Material Properties) 160 Weight Empty [lbs.] 275 Weight Full 275 Weight Under Test Maximum Internal pressure, psi Maximum External Pressure, psi At Temperature, ºF Maximum Temperature, ºF Minimum Temperature, ºF At Pressure, psi Test Pressure, psi At a Minimum Temperature of: ºF For a Minimum Duration of: F 1/2 hr Maximum Allowed Working Pressure Maximum Design Metal Temperature Hydrostatic Test SA Primary Material of Construction 18,600 Allowable Stress Minimum allowed thickness per UG-16(b) No Material Normalized No Material Impact Tested (not required per UHA-51) None Radiography required 0 Corrosion Allowance ASME VIII-1 Code 2007 Edition - Addenda IID Materials Code Cases Required UG-22 Loadings Considered Yes (a) Internal pressure - (a) External pressure Yes (b) Vessel weight full, empty and at hydro test - (c) Weight of attached equipment and piping - (d)(1) Attachment of internals - (d)(2) Attachment of vessel supports - (d) Cyclic or dynamic reactions - (f) Wind - (f) Snow - (f) Seismic - (g) Fluid impact shock reactions - (h) Temperature gradients - (h) Differential thermal expansion - (i) Abnormal pressures like deflagration

4 1 Material Properties ver Nov-08 Page 4 of Vessel with Large Opening <- Vessel 4 5 Design Pressure UG-22(a) <- P, internal operating pressure at top of vessel (psig) <- mpa, external operation pressure 8 Water <- Operating Fluid <- h, fluid height (ft) <- rho, fluid density (1.0 for water) 11 Design Pressure = P *rho*h = * 1 * 2.2 mdp = Hydro Test (UG-99(b)) pressure measured at top of vessel, rounded up 14 Test Press = P * 1.3 * MR = 200 * 1.3 * 1 mtp = Material Properties (ASME IID) <- mtemp, design temp ºF Test at ambient temp Material Where Used Ambient Design Strength Max ºF Ext 18 Strength Strength Ratio Graph 19 SA Plate shell, cone, cover HA-1 20 SA-312 TP304 Sms. and Wld. Pipe nozzle, bottom, ferrule HA-1 21 SA Bar side ferrule HA-1 22 SA-182 F304 Forging flange, coupling HA-1 23 SA-193 B7 Bolts <= 2.5" bolts Min Ratio (MR) =

5 1 Pipe and Shell ver 4.08 Page 5 of 25 2 Shell Description 3 Options: 4 Interior ip? - Calculate interior pressure 5 No Exterior ep? - Calculate exterior pressure 6 Rolled Plate pr? - Pipe or rolled plate 7 Non-Threaded pt? - Type of pipe 8 No relief? - Stress Relief Calculations Required 9 Dimensions: Do [in] - outside diameter t [in] - nominal wall thickness tminug16b [in] - minimum wall per UG-16(b) L [in] - length for volume and weight Corr [in] - corrosion allowance 15 Material and Conditions: 16 SA Material 17 18,600 S [psi] - allowable stress level El - longitudinal efficiency (circ. stress) Ec - circ. connecting efficiency (longitudinal stress) % UTP [%] - undertolerance allowance UTI [in] - undertolerance allowance P [psi] - interior pressure 23 Stress Classification: 24 NOTE: Both validity checks need to be "Acceptable" in order to use this sheet 25 If not, refer to sheet "Thick Cylindrical Shell" 26 ckvalidity1 = tmin < 0.5*(Do/2) < 0.5*(12.75/2) = Acceptable 27 ckvalidity2 = P< 0.385*S*El < 0.385*18600*0.7 = Acceptable 28 Variables: 29 Td = = UT [in] = t*utp+uti 0.188*0+0 = nt [in] = t-corr-ut-td = Ri [in] = Do/2-nt 12.75/ = Volume [cuft] = ((Do/2-t)^2)*π*L/1728 ((12.75/ )^2)*3.1416*15.5/1728 = Weight [lb] = (Do-t)*π*L*t*40.84/ ( )*3.1416*15.5*0.188*40.84/144 = Interior Pressure: VIII-1 UG-27(c)(1,2) 36 ta [in] = P*Ri/(S*El-0.6*P) *6.187/(18600* *200.95) = tb [in] = P*Ri/(2*S*Ec+0.4*P) *6.187/(2*18600* *200.95) = tmin [in] = MAX(ta,tb,tminUG16b) MAX(0.096,0.048,0.063) = tr1 [in] = P*Ri/(S*1-0.6*P) *6.187/(18600*1-0.6*200.95) = Checkt = tmin <= nt <= = Acceptable 41 PMaxA [psi] = (S*El*nt)/(Ri+0.6*nt) (18600*0.7*0.188)/( *0.188) = PMaxB [psi] = (2*S*Ec*nt)/(Ri-0.4*nt) (2*18600*0.7*0.188)/( *0.188) = PMax [psi] = Min(PMaxA,PMaxB) MIN(389,801) = CheckP = PMax >= P 389 >= = Acceptable t Do Long Seam Length

6 1 Pipe and Shell ver 4.08 Page 6 of 25 2 Bottom Ferrule - Machined From 8" SCH 80 Pipe Description 3 Options: 4 Interior ip? - Calculate interior pressure 5 No Exterior ep? - Calculate exterior pressure 6 Rolled Plate pr? - Pipe or rolled plate 7 Non-Threaded pt? - Type of pipe 8 No relief? - Stress Relief Calculations Required 9 Dimensions: Do [in] - outside diameter t [in] - nominal wall thickness tminug16b [in] - minimum wall per UG-16(b) L [in] - length for volume and weight Corr [in] - corrosion allowance 15 Material and Conditions: 16 SA-312 TP304 Material 17 18,600 S [psi] - allowable stress level El - longitudinal efficiency (circ. stress) Ec - circ. connecting efficiency (longitudinal stress) % UTP [%] - undertolerance allowance UTI [in] - undertolerance allowance P [psi] - interior pressure 23 Stress Classification: 24 NOTE: Both validity checks need to be "Acceptable" in order to use this sheet 25 If not, refer to sheet "Thick Cylindrical Shell" 26 ckvalidity1 = tmin < 0.5*(Do/2) < 0.5*(8.03/2) = Acceptable 27 ckvalidity2 = P< 0.385*S*El < 0.385*18600*0.85 = Acceptable 28 Variables: 29 Td = = UT [in] = t*utp+uti 0.078* = nt [in] = t-corr-ut-td = Ri [in] = Do/2-nt 8.03/ = Volume [cuft] = ((Do/2-t)^2)*π*L/1728 ((8.03/ )^2)*3.1416*1.102/1728 = Weight [lb] = (Do-t)*π*L*t*40.84/ ( )*3.1416*1.102*0.078*40.84/144 = Interior Pressure: VIII-1 UG-27(c)(1,2) 36 ta [in] = P*Ri/(S*El-0.6*P) *3.947/(18600* *200.95) = tb [in] = P*Ri/(2*S*Ec+0.4*P) *3.947/(2*18600* *200.95) = tmin [in] = MAX(ta,tb,tminUG16b) MAX(0.051,0.03,0.063) = tr1 [in] = P*Ri/(S*1-0.6*P) *3.947/(18600*1-0.6*200.95) = Checkt = tmin <= nt <= = Acceptable 41 PMaxA [psi] = (S*El*nt)/(Ri+0.6*nt) (18600*0.85*0.068)/( *0.068) = PMaxB [psi] = (2*S*Ec*nt)/(Ri-0.4*nt) (2*18600*0.7*0.068)/( *0.068) = PMax [psi] = Min(PMaxA,PMaxB) MIN(271,453) = CheckP = PMax >= P 271 >= = Acceptable t Do Long Seam Length

7 1 Cone ver Nov-08 Page 7 of Vessel with Large Opening <- Vessel 5 Cone <- Description 6 7 Dimensions (inch) <- ODL, outside diameter large end <- ODS, outside diameter small end <- t, thickness <- L, length <- Ln, length from small end to nozzle <- ca, Corrosion allowance Material Properties 16 SA <- Material 17 18,600 <- S, allowable stress Level (psi) <- E, long seam weld efficiency t Ln ODS P Long Seam a Length <- P, design pressure (psig) <- Pa, Exterior Pressure ODL Calculated Properties: <- Volume (cubic ft) 28 9 <- Material Weight (lbs cs) <- aº <- a, rad Interior Pressure 1-4(e) 32 nt = t-ca = nt = treq = P*ODL/(2*COS(a)*(S*E+0.4*P)) tl = = *12.75/(2*Cos(0.441)*(18600* * ) Acceptable 35 Outside diameter at nozzle location: ODN = = ODS+2*((ODL-ODS)/2/L)*Ln 37 = *(( )/2/5)* treq at nozzle = P*ODN/(2*COS(a)*(S*E+0.4*P)) tln = = = *10.39/(2*COS(0.441)*(18600* * )) 40 Pmax = 2*S*E*nt*cos(a)/(ODL-0.8*nt*cos(a)) Pmax = = 2*18600*0.7*0.188*cos(0.441)/( *0.188*cos(0.441)) Acceptable 42

8 1 Cone Discontinuity Stress ver 4.03 Page 8 of 25 2 Pressure Vessel Design Handbook - Second Edition - Henry H Bednar. Pages 231 to 240 & ASME VIII-1 5(g) 3 Cone Discontinuity Description 4 Large Cylinder - Zone A: 5 SA Material 6 18,600 Sl [psi] - allowed stress El - longitudinal efficiency ODL [in] - outside diameter tln [in] - thickness 10 Cone - Zones B and C: 11 SA Material 12 18,600 Sc [psi] - allowed stress Ec - longitudinal efficiency AlphaDeg - Angle in degrees tcn [in] - thickness 16 Small Cylinder - Zone D: 17 SA-312 TP304 Material 18 18,600 Ss [psi] - allowed stress Es - longitudinal efficiency ODS [in] - outside diameter tsn [in] - thickness 22 Operating Conditions: P [psi] - design internal pressure Ca [in] - corrosion allowance W [lb] - External load M [in-lb] - External moment 27 Geometry: 28 tl [in] = tln - Ca = tc [in] = tcn - Ca = ts [in] = tsn - Ca = RL [in] = (ODL-tL)/2 Large End ( )/2 = Rs [in] = (ODS-tS)/2 Small End ( )/2 = Alpha [rad] = AlphaDeg/180*π 25.3/180*3.142 = Constants - Large End: 35 nl = tc / tl / = kl = sqrt(cos(alpha)/nl) SQRT(COS(0.441)/1) = V1L = kl*(1+nl^2*(1+2*kl*nl))/(kl*nl^4+2*kl^2*nl^3+2*kl*nl^2+2*nl+kl) *(1+1^2*(1+2*0.951*1))/(0.951*1^4+2*0.951^2*1^3+2*0.951*1^2+2* ) = V2L = kl*nl*(1+v1l*(nl^2-1))/(4*(kl*nl^3+1)) *1*( *(1^2-1))/(4*(0.951*1^3+1)) = Constants - Small End: 42 ns = tc / ts / = ks = sqrt(cos(alpha)/ns) SQRT(COS(0.441)/2.41) = V1S = ks*(1+ns^2*(1+2*ks*ns))/(ks*ns^4+2*ks^2*ns^3+2*ks*ns^2+2*ns+ks) *(1+2.41^2*(1+2*0.613*2.41))/(0.613*2.41^4+2*0.613^2*2.41^3+2*0.613*2.41^2+2* ) = V2S = ks*ns*(1+v1s*(ns^2-1))/(4*(ks*ns^3+1)) *2.41*( *(2.41^2-1))/(4*(0.613*2.41^3+1)) = Discontinuity Influence Coefficients - Large End: 49 XL = 4.669*V2L*TAN(Alpha) 4.669*0.122*TAN(0.441) = YL = 1.285*(V1L - 2*V2L)*tan(Alpha) 1.285*( *0.122)*TAN(0.441) = UL = XL/nL^ /1^2 = A B C D

9 Cone Discontinuity Stress ver 4.03 Page 9 of 25 1 Discontinuity Influence Coefficients - Small End: 2 XS = 4.669*V2S*TAN(Alpha) 4.669*0.101*TAN(0.441) = YS = 1.285*(V1S - 2*V2S)*TAN(Alpha) 1.285*( *0.101)*TAN(0.441) = US = XL/nL^ /1^2 = Equivalent Loads from W and M: 6 ll [lb/in] = ( 4*M/(π*4*RL^2) + (W / (π*2*rl))) 7 ( 4*0/(3.142*4*6.281^2) + (0 / (3.142*2*6.281))) = PeL [psi] = P+(2*lL/RL) 201+(2*0/6.281) = ls [lb/in] = (4*M/(π*4*Rs^2)+(W/(π*2*Rs))) 10 (4*0/(3.142*4*3.976^2)+(0/(3.142*2*3.976))) = PeS [psi] = P+(2*lS/Rs) 201+(2*0/3.976) = Maximum Allowed Stresses: ASME 1-5(g) & UG-23(e) 13 LLmax [psi] = 3*Sl*El 3*18600*0.7 = 39, MLmax [psi] = 1.5*Sl*El 1.5*18600*0.7 = 19, LCmax [psi] = 3*Sc*Min(El,Es) 3*18600*MIN(0.7,0.85) = 39, MCmax [psi] = 1.5*Sc*Min(El,Es) 1.5*18600*MIN(0.7,0.85) = 19, LSmax [psi] = 3*Ss*Es 3*18600*0.85 = 47, MSmax [psi] = 1.5*Ss*Es 1.5*18600*0.85 = 23, Combined Stresses - Large Cylinder - Zone A: 20 Long1 [psi] = (PeL*RL/tL)*(0.5 + XL*SQRT(RL/tL)) 21 ( *6.281/0.188)*( *SQRT(6.281/0.188)) = 13, CkLong1 = ABS(Long1) <= LLmax ABS(13778) <= = Acceptable 23 Long2 [psi] = (PeL*RL/tL)*(0.5 - XL*SQRT(RL/tL)) 24 ( *6.281/0.188)*( *SQRT(6.281/0.188)) = -7, CkLong1 = ABS(Long2) <= LLmax ABS(-7064) <= = Acceptable 26 MemTan1 [psi] = (P*RL/tL)*(1-(PeL/P)*YL*SQRT(RL/tL)) 27 (201*6.281/0.188)*(1-( /201)*0.148*SQRT(6.281/0.188)) = CkMemTan1 = ABS(MemTan1) <= MLmax ABS(977) <= = Acceptable 29 Combined Stresses - Large End of Cone - Zone B: 30 Long3 [psi] = (PeL*RL/tL)*(0.5/(nL*cos(Alpha)) + UL*SQRT(RL/tL)) 31 ( *6.281/0.188)*(0.5/(1*COS(0.441)) *SQRT(6.281/0.188)) = 14, CkLong3 = ABS(Long3) <= LCmax ABS(14133) <= = Acceptable 33 Long4 [psi] = (PeL*RL/tL)*(0.5/(nL*cos(Alpha)) - UL*SQRT(RL/tL)) 34 ( *6.281/0.188)*(0.5/(1*COS(0.441)) *SQRT(6.281/0.188)) = -6, CkLong4 = ABS(Long4) <= LCmax ABS(-6709) <= = Acceptable 36 MemTan2 [psi] = (P*RL/tL)*(1/(nL*cos(Alpha))-(PeL/P)*YL*SQRT(RL/tL)) 37 (201*6.281/0.188)*(1/(1*COS(0.441))-( /201)*0.148*SQRT(6.281/0.188)) = 1, CkMemTan2 = ABS(MemTan2) <= MCmax ABS(1688) <= = Acceptable 39 Combined Stresses - Small End of Cone - Zone C: 40 Long5 [psi] = (PeS*Rs/tS)*(0.5/(nS*cos(Alpha)) + US*SQRT(Rs/tS)) 41 ( *3.976/0.078)*(0.5/(2.41*COS(0.441)) *SQRT(3.976/0.078)) = 21, CkLong5 = ABS(Long5) <= LCmax ABS(21990) <= = Acceptable 43 Long6 [psi] = (PeS*Rs/tS)*(0.5/(nS*cos(Alpha)) - US*SQRT(Rs/tS)) 44 ( *3.976/0.078)*(0.5/(2.41*COS(0.441)) *SQRT(3.976/0.078)) = -17, CkLong6 = ABS(Long6) <= LCmax ABS(-17290) <= = Acceptable 46 MemTan3 [psi] = (P*Rs/tS)*(1/(nS*cos(Alpha))+(PeS/P)*YS*SQRT(Rs/tS)) 47 (201*3.976/0.078)*(1/(2.41*COS(0.441))+( /201)*0.081*SQRT(3.976/0.078)) = 10, CkMemTan3 = ABS(MemTan3) <= MCmax ABS(10650) <= = Acceptable 49 Combined Stresses - Small Cylinder - Zone D: 50 Long7 [psi] = (PeS*Rs/tS)*(0.5 + XS*SQRT(Rs/tS)) 51 ( *3.976/0.078)*( *SQRT(3.976/0.078)) = 21,361

10 Cone Discontinuity Stress ver 4.03 Page 10 of 25 1 CkLong7 = ABS(Long7) <= LSmax ABS(21361) <= = Acceptable 2 Long8 [psi] = (PeS*Rs/tS)*(0.5 - XS*SQRT(Rs/tS)) 3 ( *3.976/0.078)*( *SQRT(3.976/0.078)) = -11,117 4 CkLong8 = ABS(Long8) <= LSmax ABS(-11117) <= = Acceptable 5 MemTan4 [psi] = (P*Rs/tS)*(1+(PeS/P)*YS*SQRT(Rs/tS)) 6 (201*3.976/0.078)*(1+( /201)*0.081*SQRT(3.976/0.078)) = 16,194 7 CkMemTan4 = ABS(MemTan4) <= MSmax ABS(16194) <= = Acceptable

11 30 Nozzle Reinforcement ver 3.90 UW16(c) <- SavedDesign 20-Nov-08 Page 11 of Manual dh for hillside nozzles 22 Vessel with Large Opening <- Vessel Automatic Limit Diameter 33 2" Ferrule - Nozzel A <- Description Curved Shell or Head Section 34 Shell: 35 SA <- Shell Material 36 18,600 <- Sv, shell allowable stress level, PSI Do <- E1, efficiency of shell at nozzle <- Ds, Shell ID Nt <- Vt, shell wall thick, uncorroded, UT removed <- tr, required shell wall thickness int. press.(e=1) <- tre, required shell wall thickness ext. press.(e=1) <- tmin16b, Min allowed wall per UG-16(b) 44 Nozzle: 45 SA-312 TP304 <- Nozzle Material 46 18,600 <- Sn, allowable stress level (Sn) 47 1,400 <- B, from A = <- E, nozzle efficiency <- P, internal design pressure <- Pa, external design pressure <- Do, outside diameter <- dh, id of hillside nozzle <- Nt, wall thick, uncorroded % <- UTp, undertolerance (%) <- L, exterior Projection 61 Reinforcing: <- Leg41, size of weld fillet <- F 87 Variables: Leg41 UW-16.1 (c) 88 UT = Nt*UTp = * Undertolerance UT = Rn = Do/2 - (Nt-nca) + UT = 2.375/2 - ( ) Effective Radius Rn = t = Vt-sca = Effective Shell Thickness t = tn = Nt-nca = Avail. Nozzle Thick. No UT tn = d = dh = Finished Opening Dia. d = fr1 = MIN(Sn/Sv,1) = MIN(18600/18600, 1) fr1 = fr2 = MIN(Sn/Sv,1) = MIN(18600/18600, 1) fr2 = tcleg41 = Min(0.25,0.7*Min(0.75,tn,t)) = Min(0.25,0.7*Min(0.75,0.154,0.188)) tc41 = F = Min(Fenterered, 1) F = Pipe Required Wall Thickness - trn from internal, trne from external pressure 142 LDo = L/Do LDo = Dot = Do/trnE Dot = trn = (P*Rn)/(Sn*E - 0.6*P) <= tn-ut = (201*1.053)/(18600*1-0.6*201) trn = Acceptable 145 trnr = (P*Rn)/(Sn*1-0.6*P) = (201*1.053)/(18600*1-0.6*201) E=1 trnr = trne = (3*Do*Pa)/(4*B) <= tn-ut = (3*2.375*0)/(4*1400) trne = Acceptable 148 Geometry Constraints: *Leg41 >= tc41 0.7*0.188 >= >= Acceptable 180 Appendix 1-7 Necessary Check 181 when Ds>60,if(2*Rn<=Ds/3,if(2*Rn<=40, "App. 1-7 calculations not required","app. 1-7 calculations required"),"app. 1-7 calculations required") 182 when Ds<=60,if(2*Rn<Ds/2,if(2*Rn<20,"App. 1-7 calculations not required","app. 1-7 calculations required"),"app. 1-7 calculations required") 183 App. 1-7 calculations not required 207 Area Replacement: Fig UG-37.1 Pressure From: Internal External 208 A = 1.0*d*tr*F + 2*tn*tr*F*(1-fr1) A Required (internal) = = 1.0*2.333*0.088*1 + 2*0.154*0.088*1*(1-1) 212 Ae = 0.5*(d*trE*1 + 2*tn*trE*1*(1-fr1)) = 0.5*(2.333*0*1 + 2*0.154*0*1*(1-1)) A Required (external) = A1 = max(d, 2*(t+tn)) * (E1*t-F*tr)-2*tn*(E1*t-F*tr)*(1-fr1) A1 = = max(2.333,2*( ))* (1* *0.088)-2*0.154*(1* *0.088)*(1-1) 219 A1e = max(d, 2*(t+tn)) * (E1*t-F*trE)-2*tn*(E1*t-F*trE)*(1-fr1) A1e = = max(2.333,2*( ))* (1* *0)-2*0.154*(1* *0)*(1-1) 225 A2 = min((tn-trnr)*fr2*min(5*t,2*l), (tn-trnr)*fr2*min(5*tn,2*l)) A2 = = min(( )*1*min(5*0.188,2*3), ( )*1*Min(5*0.154,2*3)) 230 A2e = min((tn-trne)*fr2*min(5*t,2*l), (tn-trne)*fr2*min(5*tn,2*l)) A2e = = min(( )*1*min(5*0.188,2*3), ( )*1*Min(5*0.154,2*3)) 240 A41 = Leg41^2*fr2 = 0.188^2*1 A41 = Actual Area = Acceptable Actual-Required = Tstd = Standard pipe wall thickness from chart Tstd = Swre = tr * Pa / P = * 0 / Req. Exterior pressure Swre = Nact = Nt * (1-UTp) = * ( ) Actual Wall Thick. Nact = Tt = 0.8/Nth = 0.8/0 Ug-31(c)(2) threads Tt = UG-45 Acceptable 336 UG45 = Max(UG45a, UG45b) <= Nact = Max(0.011, 0.088) <= UG45 = UG45a = Max(trn,trnE) + Nca + Tt = Max(0.011,0) UG45a = UG45b = Min(UG45b3,UG45b4) = Min(0.088, 0.135) UG45b = UG45b1 = Max(tr + Sca, tmin16b + Sca) = Max( , ) UG45b1 = UG45b2 = Max(Swre + Sca,tmin16b + Sca) = Max(0 + 0, ) UG45b2 = 341 UG45b3 = Max(UG45b1,UG45b2) = Max(0.088,) UG45b3 = UG45b4 = Tstd* Nca = 0.154* UG45b4 = Nozzle t Leg41 Shell Vt

12 18 B16.5/16.47 Flange Ver 2.61 SlipOn 20-Nov-08 Page 12 of #VALUE! Sample Vessel 5 <- Vessel 22 2" 300# RFSO Flange <- Description Select Flange 25 SA <- Category 26 Forged <- Material Type 27 SA 182 Gr. F304 <- Material <- Pressure Class <- Nominal Size Nominal - 18Cr-8Ni 33 Table Max Temp ºF Pod, pipe OD Nozzle <- tn, Nozzle Wall Thickness (inch) <- tnr, Required Nozzle Wall Thickness (inch) Operating Conditions Acceptable <- T, temperature ºF Max [p1] <- P, pressure, psig Max [p2] <- Corr, corrosion allowance Flange Welds: <- F1, pipe fillet size <- F2, flange fillet size F <- Sp, allowable stress, pipe <- Sf, allowable stress, flange Geometry constraint: VIII UW-21 (b) 61 wtmin = 0.7*tn = 0.7*0.154 Req. weld throat wtmin = wt = 0.7*MIN(F1,F2) Actual weld throat wt = =0.7*MIN(0.154,0.154) Acceptable Weld Strength: 69 Min Sa = MIN(Sp,Sf) = MIN(18600,17400) Min Sa = 17, Max Weld Stress = Sa * 0.49 = * 0.49 Max S = 8, Weld Load = POD^2*pi*P/4 = 2.375^2*pi* /4 Load = Weld Area = Pod*pi*(F1-corr + F2) Area = = 2.375*pi*( ) 78 Weld Stress = Load/Area = /2.298 Stress = Acceptable

13 30 Nozzle Reinforcement ver 3.90 UW16(c) <- SavedDesign 20-Nov-08 Page 13 of Automatic dh - not hillside 22 Vessel with Large Opening <- Vessel Automatic Limit Diameter 33 2" Heavy Ferrule - Nozzle B <- Description Curved Shell or Head Section 34 Shell: 35 SA <- Shell Material 36 18,600 <- Sv, shell allowable stress level, PSI Do <- E1, efficiency of shell at nozzle <- Ds, Shell ID Nt <- Vt, shell wall thick, uncorroded, UT removed <- tr, required shell wall thickness int. press.(e=1) <- tre, required shell wall thickness ext. press.(e=1) <- tmin16b, Min allowed wall per UG-16(b) 44 Nozzle: 45 SA <- Nozzle Material 46 18,600 <- Sn, allowable stress level (Sn) 47 1,400 <- B, from A = <- E, nozzle efficiency <- P, internal design pressure <- Pa, external design pressure <- Do, outside diameter <- Nt, wall thick, uncorroded % <- UTp, undertolerance (%) <- L, exterior Projection 61 Reinforcing: <- Leg41, size of weld fillet <- F 87 Variables: Leg41 UW-16.1 (c) 88 UT = Nt*UTp = * 0 Undertolerance UT = Rn = Do/2 - (Nt-nca) + UT = 2.192/2 - ( ) + 0 Effective Radius Rn = t = Vt-sca = Effective Shell Thickness t = tn = Nt-nca = Avail. Nozzle Thick. No UT tn = d = Do-2*tn = *0.161 Opening Dia. d = fr1 = MIN(Sn/Sv,1) = MIN(18600/18600, 1) fr1 = fr2 = MIN(Sn/Sv,1) = MIN(18600/18600, 1) fr2 = tcleg41 = Min(0.25,0.7*Min(0.75,tn,t)) = Min(0.25,0.7*Min(0.75,0.161,0.188)) tc41 = F = Min(Fenterered, 1) F = Pipe Required Wall Thickness - trn from internal, trne from external pressure 142 LDo = L/Do LDo = Dot = Do/trnE Dot = trn = (P*Rn)/(Sn*E - 0.6*P) <= tn-ut = (201*0.935)/(18600*1-0.6*201) trn = Acceptable 145 trnr = (P*Rn)/(Sn*1-0.6*P) = (201*0.935)/(18600*1-0.6*201) E=1 trnr = trne = (3*Do*Pa)/(4*B) <= tn-ut = (3*2.192*0)/(4*1400) trne = Acceptable 148 Geometry Constraints: *Leg41 >= tc41 0.7*0.188 >= >= Acceptable 180 Appendix 1-7 Necessary Check 181 when Ds>60,if(2*Rn<=Ds/3,if(2*Rn<=40, "App. 1-7 calculations not required","app. 1-7 calculations required"),"app. 1-7 calculations required") 182 when Ds<=60,if(2*Rn<Ds/2,if(2*Rn<20,"App. 1-7 calculations not required","app. 1-7 calculations required"),"app. 1-7 calculations required") 183 App. 1-7 calculations not required 207 Area Replacement: Fig UG-37.1 Pressure From: Internal External 208 A = 1.0*d*tr*F + 2*tn*tr*F*(1-fr1) A Required (internal) = = 1.0*1.87*0.067*1 + 2*0.161*0.067*1*(1-1) 212 Ae = 0.5*(d*trE*1 + 2*tn*trE*1*(1-fr1)) = 0.5*(1.87*0*1 + 2*0.161*0*1*(1-1)) A Required (external) = A1 = max(d, 2*(t+tn)) * (E1*t-F*tr)-2*tn*(E1*t-F*tr)*(1-fr1) A1 = = max(1.87,2*( ))* (1* *0.067)-2*0.161*(1* *0.067)*(1-1) 219 A1e = max(d, 2*(t+tn)) * (E1*t-F*trE)-2*tn*(E1*t-F*trE)*(1-fr1) A1e = = max(1.87,2*( ))* (1* *0)-2*0.161*(1* *0)*(1-1) 225 A2 = min((tn-trnr)*fr2*min(5*t,2*l), (tn-trnr)*fr2*min(5*tn,2*l)) A2 = = min(( )*1*min(5*0.188,2*1.5), ( )*1*Min(5*0.161,2*1.5)) 230 A2e = min((tn-trne)*fr2*min(5*t,2*l), (tn-trne)*fr2*min(5*tn,2*l)) A2e = = min(( )*1*min(5*0.188,2*1.5), ( )*1*Min(5*0.161,2*1.5)) 240 A41 = Leg41^2*fr2 = 0.188^2*1 A41 = Actual Area = Acceptable Actual-Required = Tstd = Standard pipe wall thickness from chart Tstd = Swre = tr * Pa / P = * 0 / Req. Exterior pressure Swre = Nact = Nt * (1-UTp) = * (1-0) Actual Wall Thick. Nact = Tt = 0.8/Nth = 0.8/0 Ug-31(c)(2) threads Tt = UG-45 Acceptable 336 UG45 = Max(UG45a, UG45b) <= Nact = Max(0.01, 0.067) <= UG45 = UG45a = Max(trn,trnE) + Nca + Tt = Max(0.01,0) UG45a = UG45b = Min(UG45b3,UG45b4) = Min(0.067, 0.127) UG45b = UG45b1 = Max(tr + Sca, tmin16b + Sca) = Max( , ) UG45b1 = UG45b2 = Max(Swre + Sca,tmin16b + Sca) = Max(0 + 0, ) UG45b2 = 341 UG45b3 = Max(UG45b1,UG45b2) = Max(0.067,) UG45b3 = UG45b4 = Tstd* Nca = 0.145* UG45b4 = Nozzle t Leg41 Shell Vt

14 30 Nozzle Reinforcement ver 3.90 UW16(c) <- SavedDesign 20-Nov-08 Page 14 of Automatic dh - not hillside 22 Vessel with Large Opening <- Vessel Manually enter Limit Diameter 33 10" Nozzle With Limit Radius - Nozzle C <- Description Curved Shell or Head Section 34 Shell: 35 SA <- Shell Material 36 18,600 <- Sv, shell allowable stress level, PSI Do <- E1, efficiency of shell at nozzle <- Ds, Shell ID Nt <- Vt, shell wall thick, uncorroded, UT removed <- tr, required shell wall thickness int. press.(e=1) <- tre, required shell wall thickness ext. press.(e=1) <- tmin16b, Min allowed wall per UG-16(b) 44 Nozzle: 45 SA-312 TP304 <- Nozzle Material 46 18,600 <- Sn, allowable stress level (Sn) 47 1,400 <- B, from A = <- E, nozzle efficiency <- P, internal design pressure <- Pa, external design pressure <- Do, outside diameter <- dlr, Limit radius <= d <- Nt, wall thick, uncorroded % <- UTp, undertolerance (%) <- L, exterior Projection 61 Reinforcing: <- Leg41, size of weld fillet <- F 87 Variables: Leg41 UW-16.1 (c) 88 UT = Nt*UTp = * Undertolerance UT = Rn = Do/2 - (Nt-nca) + UT = 10.75/2 - ( ) Effective Radius Rn = t = Vt-sca = Effective Shell Thickness t = tn = Nt-nca = Avail. Nozzle Thick. No UT tn = d = Do-2*tn = *0.365 Opening Dia. d = fr1 = MIN(Sn/Sv,1) = MIN(18600/18600, 1) fr1 = fr2 = MIN(Sn/Sv,1) = MIN(18600/18600, 1) fr2 = tcleg41 = Min(0.25,0.7*Min(0.75,tn,t)) = Min(0.25,0.7*Min(0.75,0.365,0.188)) tc41 = F = Min(Fenterered, 1) F = Pipe Required Wall Thickness - trn from internal, trne from external pressure 142 LDo = L/Do LDo = Dot = Do/trnE Dot = trn = (P*Rn)/(Sn*E - 0.6*P) <= tn-ut = (201*5.056)/(18600*1-0.6*201) trn = Acceptable 145 trnr = (P*Rn)/(Sn*1-0.6*P) = (201*5.056)/(18600*1-0.6*201) E=1 trnr = trne = (3*Do*Pa)/(4*B) <= tn-ut = (3*10.75*0)/(4*1400) trne = Acceptable 148 Geometry Constraints: *Leg41 >= tc41 0.7*0.25 >= >= Acceptable 180 Appendix 1-7 Necessary Check 181 when Ds>60,if(2*Rn<=Ds/3,if(2*Rn<=40, "App. 1-7 calculations not required","app. 1-7 calculations required"),"app. 1-7 calculations required") 182 when Ds<=60,if(2*Rn<Ds/2,if(2*Rn<20,"App. 1-7 calculations not required","app. 1-7 calculations required"),"app. 1-7 calculations required") 183 App. 1-7 calculations required 207 Area Replacement: Fig UG-37.1 Pressure From: Internal External 208 A = 1.0*d*tr*F + 2*tn*tr*F*(1-fr1) A Required (internal) = = 1.0*10.02*0.067*1 + 2*0.365*0.067*1*(1-1) 212 Ae = 0.5*(d*trE*1 + 2*tn*trE*1*(1-fr1)) = 0.5*(10.02*0*1 + 2*0.365*0*1*(1-1)) A Required (external) = A1 = (2*dLr-d) * (E1*t-F*tr)-2*tn*(E1*t-F*tr)*(1-fr1) A1 = = 5.01* (1* *0.067)-2*0.365*(1* *0.067)*(1-1) 219 A1e = (2*dLr-d) * (E1*t-F*trE)-2*tn*(E1*t-F*trE)*(1-fr1) A1e = = 5.01* (1* *0)-2*0.365*(1* *0)*(1-1) 225 A2 = min((tn-trnr)*fr2*min(5*t,2*l), (tn-trnr)*fr2*min(5*tn,2*l)) A2 = = min(( )*1*min(5*0.188,2*4), ( )*1*Min(5*0.365,2*4)) 230 A2e = min((tn-trne)*fr2*min(5*t,2*l), (tn-trne)*fr2*min(5*tn,2*l)) A2e = = min(( )*1*min(5*0.188,2*4), ( )*1*Min(5*0.365,2*4)) 240 A41 = Leg41^2*fr2 = 0.25^2*1 A41 = Actual Area = Acceptable Actual-Required = Tstd = Standard pipe wall thickness from chart Tstd = Swre = tr * Pa / P = * 0 / Req. Exterior pressure Swre = Nact = Nt * (1-UTp) = * ( ) Actual Wall Thick. Nact = Tt = 0.8/Nth = 0.8/0 Ug-31(c)(2) threads Tt = UG-45 Acceptable 336 UG45 = Max(UG45a, UG45b) <= Nact = Max(0.055, 0.067) <= UG45 = UG45a = Max(trn,trnE) + Nca + Tt = Max(0.055,0) UG45a = UG45b = Min(UG45b3,UG45b4) = Min(0.067, 0.319) UG45b = UG45b1 = Max(tr + Sca, tmin16b + Sca) = Max( , ) UG45b1 = UG45b2 = Max(Swre + Sca,tmin16b + Sca) = Max(0 + 0, ) UG45b2 = 341 UG45b3 = Max(UG45b1,UG45b2) = Max(0.067,) UG45b3 = UG45b4 = Tstd* Nca = 0.365* UG45b4 = Nozzle t Leg41 Shell Vt

15 t 11 App 1-7 Nozzle Ver 1.07 Fig Case B 20-Nov-08 Page 15 of Vessel with Large Opening <- Vessel 14 10" Nozzle App. 1-7 <- Description Dimensions: <- Dv, vessel outside diameter <- t, vessel wall <- Dn, nozzle outside diameter <- tn, nozzle wall <- Fw, flange width <- tf, flange thickness <- Hf, flange standoff <- P, pressure 31 18,600 <- Ss, stress limit for shell 32 18,600 <- Sn, stress limit for nozzle <- Aactual, actual area from limit radius by app. 1-7(a) <- Arequired, required area Geometry 38 Rv = Dv/2-t = 12.75/ Rv = Rn = Dn/2-tn = 10.75/ Rn = Rm = Rv + t/2 = /2 Rm = Rnm = Rn + tn/2 = /2 Rnm = B = Sqrt(Rm*t) = Sqrt(6.281*0.188) B = H = Hf = 5 H = Hfmax = Max(Sqrt(Rnm*tn),16*tn) >= Hf Acceptable Hmax = = Max(Sqrt(5.193*0.365),16*0.365) >= App. 1-7(a) 54 Limit radius = Max(0.75*2*Rn, Rn+t+tn) dlr = = Max(0.75*2*5.01, ) 56 Aactual >= (2/3)*Arequired >= 0.674*2/3 Acceptable App. 1-7(b) necessary check 0 App. 1-7(b) not requir 59 If(Rn/Rv>0.7,"U-2(g) needed","u-2(g) not needed") U-2(g) needed 60 If(2*Rv>60,"Required","not required) 0 Not required 61 If(2*Rn>40,if(2*Rn>3.4*Sqrt(Rv*t),"Required","Not required"),"not required") 0 Not Required 62 Moment of Inertia about Neutral Axis a 63 Width Depth Y Area A*Y A*Y^2 Io Depth Shell - As Flange - Af Nozzle - An 68 Area = As Total a = AY/As = /4.098 a = I = AYtwo+IoD - Cxx*Ay = * I = Stress Limts 74 SmMax = Min(Ss,Sn) = Min(18600,18600) SmMax = 18, SbMax = 1.5*SmMax = 1.5*18600 SbMax = 27, Membrane Stress 78 Sm = P*(Rv*(Rn+tn+B) + Rn*(t+te+H))/As <= SmMax Sm = 3, = *(6.187*( ) *( ))/4.098 <= Acceptable Bending Stress 82 e = a-t/2 = /2 e = M = P*(Rn^3/6 + Rv*Rn*e) M = 25, = *(5.01^3/ *5.01*3.397) 85 Sb = M*a/I = 25373*3.491/ Sb = 7, Nozzle C L C L Cylindrical Shell 87 Limit = Sb + Sm <= SbMax = <= Limit = 11, Acceptable Rnm Rn Hf a An tn Af Fw Neutral Axis As B tf Fig Case B e Rv Rm

16 1 Flange ver 4.27 Page 16 of 25 2 ASME VIII Div I Appendix " Custom Flange Description 4 Dimensions: 5 Fig2-4(3a) fd? - Select a flange design A [in] - flange OD Bn [in] - ID, uncorroded t [in] - flange thickness tn [in] - nozzle wall thickness treq [in] - required nozzle wall 11 Gasket: GOD [in] - gasket OD GID [in] - gasket ID m - gasket factor gy - gasket factor y 16 Bolting: varc [in] - bolt circle dia BoltOD [in] - bolt size Nbolt - number of bolts Leg1 [in] Leg3 [in] 22 Operating Conditions: Corr [in] - corrosion allowance P [psi] - internal operating pressure Pe [psi] - external operating pressure 26 Material Properties: 27 NonCast CastMaterial? - Cast Or NonCast 28 18,600 Sf [psi] - allowable flange stress at DESIGN temp ,000 Sfa [psi] - Allowable Flange Stress at ASSEMBLY temp ,400,000 Efo [psi] -Operating Flange Modulus 31 28,300,000 Efs [psi] - Seating Flange Modulus 32 25,000 Sb [psi] - allowable bolt stress at DESIGN temp 33 25,000 Sba [psi] - allowable bolt stress at ASSEMBLY temp 34 Geometry Constraints: 35 tx = max(1/4,2*treq) MAX(1/4,2*0.055) = c = MIN(tn,tx) MIN(0.365,0.25) = mtc = 0.7*c ~~ Min Throat 0.7*0.25 = ThroatLeg1 = 0.7*Leg1 0.7*0.365 = ChTL1 = ThroatLeg1 >= mtc >= = Acceptable 40 ChTL3 = 0.7*Leg3 >= mtc 0.7*0.365 >= = Acceptable 41 MaxSetback = c + 1/ /4 = NutG [in] = PVELookup("TEMATableD5","Lookup","NutWidth",BoltOD) Rb [in] = PVELookup("TEMATableD5","Lookup","Rb",BoltOD) E [in] = PVELookup("TEMATableD5","Lookup","E",BoltOD) WrenchClearance = varc/2-b/2-leg1-rb ~~ TEMA Table D-5 13/ / = CkWrenchClr = WrenchClearance > > 0 = Acceptable 47 NutClearance = varc/2-b/2-leg1-nutg/2 ~~ TEMA Table D / / /2 = CkNutClr = NutClearance > > 0 = Acceptable 50 EdgeClearance = (A-E)-varC ~~ TEMA Table D-5 ( )-13 = ckedge = EdgeClearance > 0 1 > 0 = Acceptable 3 1 Leg3 Leg1

17 Flange ver 4.27 Page 17 of 25 1 Calculated Dimensions: 2 B = Bn+2*Corr *0 = varn = (GOD-GID)/2 ~~ Gasket width in contact ( )/2 = b0 = varn / 2 ~~ Gasket seating width / 2 = varb = IF(b0>0.25,Sqrt(b0)/2,b0) ~~ Effective seating width 6 IF(0.344>0.25,SQRT(0.344)/2,0.344) = varg = IF(b0>0.25,GOD-2*varb,(GOD-GID)/2 + GID) 8 IF(0.344>0.25, *0.293,( )/ ) = Bolt Loads: (VIII App 2-5) 10 Bolt size and class: 5/8-11 UNC 2A 11 H = 0.785*varG^2*P ~~ end load 0.785*11.539^2*201 = 21, He = 0.785*varG^2*Pe ~~ end load external pressure 0.785*11.539^2*0 = 0 13 HP = 2*varb*3.14*varG*m*P ~~ contact load 2*0.293*3.14*11.539*1*201 = 4, HD = pi()/4 * B^2 * P ~~ end load PI()/4 * 10.75^2 * 201 = 18, HDe = pi()/4 * B^2 * Pe ~~ end load external pressure PI()/4 * 10.75^2 * 0 = 0 16 HT = H - HD ~~ face load = 2, HTe = He - HDe ~~ face load external 0-0 = 0 18 Wm1 = H + HP ~~ bolt load = 25, Wm2 = pi()*varb*varg*gy ~~ seating load PI()*0.293*11.539*200 = 2, Am = Max(Wm1/Sb, Wm2/Sba) ~~ Bolt area required 21 MAX(25272/25000, 2125/25000) = RootArea [sq. in] = PVELookup("BoltSizing","Lookup","Root Area",BoltOD) Ab = RootArea*Nbolt 0.208*8 = CheckExcess = Ab>=Am 1.664>=1.011 = Acceptable 25 Flange Loads: (App 2-5) 26 W [lb] = (Am + Ab)*Sba/2 ~~ seating conditions ( )*25000/2 = 33, HG [lb] = Wm1 - H ~~ operating conditions = 4, TBoltLoad [lb] = (W+Wm1)/Nbolt ( )/8 = 7, Flange Moment Arms: (Table App loose flanges) 30 mhd [in] = (varc-b)/2 ( )/2 = mht [in] = (mhd+mhg)/2 ( )/2 = mhg [in] = (varc-varg)/2 ( )/2 = Flange Moments: (App 2-6) 34 MD [in-lb] = HD * mhd ~~ end pressure * = 20, MT [in-lb] = HT * mht ~~ face pressure 2764 * = 2, MG [in-lb] = HG * mhg ~~ gasket load 4269 * = 3, Mo1e [in-lb] = HDe*(mhD-mhG)+HTe*(mhT-mhG) ~~ total operating external 38 0*( )+0*( ) = 0 39 Mo1 [in-lb] = Max(MD+MT+MG,Mo1e) ~~ total operating 40 MAX( ,0) = 26, Mo2 [in-lb] = W*(varC-varG)/2 ~~ total seating 33436*( )/2 = 24, Graph: App Value of Y 43 K = A/B 14.75/10.75 = Y = PVELookup("Y","FlangeFactorK",K) Flange Seating Stress: (App 2-7,8) 46 STs = Y*ABS(Mo2) / (t^2*b) 6.299*ABS(24430) / (1.25^2*10.75) = 9, CheckSTs = ABS(STs) <= Sfa ABS(9161) <= = Acceptable 48 Flange Operating Stress: (App 2-7,8) 49 STo = Y*ABS(Mo1) / (t^2*b) 6.299*ABS(26202) / (1.25^2*10.75) = 9, CheckSTo = STo <= Sf 9826 <= = Acceptable 51 Flange Flexibility: (App 2-14) 52 Jseating = (109.4*Mo2) / (Efs*t^3*ln(K)*0.2) 53 (109.4*24430) / ( *1.25^3*LN(1.372)*0.2) = 0.764

18 Flange ver 4.27 Page 18 of 25 1 CheckJSt = ABS(Jseating) <= 1 ABS(0.764) <= 1 = Acceptable 2 Joperating = (109.4*Mo1) / (Efo*t^3*ln(K)*0.2) 3 (109.4*26202) / ( *1.25^3*LN(1.372)*0.2) = CheckJOp = ABS(Joperating) <= 1 ABS(0.879) <= 1 = Acceptable

19 1 Flange ver 4.27 Page 19 of 25 2 ASME VIII Div I Appendix 2 3 Swing Bolts on Pipe Description 4 Dimensions: 5 Fig2-4(6)modified fd? - Select a flange design A [in] - flange OD Bn [in] - ID, uncorroded t [in] - flange thickness h [in] - hub length g0f [in] - hub thickness g1 [in] - hub base thickness 12 Gasket: GOD [in] - gasket OD GID [in] - gasket ID m - gasket factor 16 0 gy - gasket factor y 17 Bolting: varc [in] - bolt circle dia BoltOD [in] - bolt size Nbolt - number of bolts 21 Operating Conditions: Corr [in] - corrosion allowance P [psi] - internal operating pressure Pe [psi] - external operating pressure 25 Material Properties: 26 NonCast CastMaterial? - Cast Or NonCast 27 18,600 Sf [psi] - allowable flange stress at DESIGN temp ,000 Sfa [psi] - Allowable Flange Stress at ASSEMBLY temp ,400,000 Efo [psi] -Operating Flange Modulus 30 28,300,000 Efs [psi] - Seating Flange Modulus 31 25,000 Sb [psi] - allowable bolt stress at DESIGN temp 32 25,000 Sba [psi] - allowable bolt stress at ASSEMBLY temp 33 Geometry Constraints: 34 NutG [in] = PVELookup("TEMATableD5","Lookup","NutWidth",BoltOD) Rh [in] = PVELookup("TEMATableD5","Lookup","Rh",BoltOD) E [in] = PVELookup("TEMATableD5","Lookup","E",BoltOD) EdgeClearance = (A-E)-varC ~~ TEMA Table D-5 ( ) = Calculated Dimensions: 39 g0 = g0f-corr = gone = g1-corr = B = Bn+2*Corr *0 = varr = (varc-b)/2 - gone ~~ Gasket width in contact ( )/ = varn = (GOD-GID)/2 ~~ Gasket width in contact ( )/2 = b0 = varn / 2 ~~ Gasket seating width 0.27 / 2 = varb = IF(b0>0.25,Sqrt(b0)/2,b0) ~~ Effective seating width 46 IF(0.135>0.25,SQRT(0.135)/2,0.135) = varg = IF(b0>0.25,GOD-2*varb,(GOD-GID)/2 + GID) 48 IF(0.135>0.25, *0.135,( )/ ) = hub = h ~~ Length of Hub 1.5 = Bolt Loads: (VIII App 2-5) 51 Bolt size and class: 3/4-10 UNC 2A 52 H = 0.785*varG^2*P ~~ end load 0.785*12.125^2*201 = 23,191 t h GOD GID B A C Bolt Circle Line Fig. 2-4 (6) Modified

20 Flange ver 4.27 Page 20 of 25 1 He = 0.785*varG^2*Pe ~~ end load external pressure 0.785*12.125^2*0 = 0 2 HP = 2*varb*3.14*varG*m*P ~~ contact load 2*0.135*3.14*12.125*0*201 = 0 3 HD = pi()/4 * B^2 * P ~~ end load PI()/4 * ^2 * 201 = 20,425 4 HDe = pi()/4 * B^2 * Pe ~~ end load external pressure PI()/4 * ^2 * 0 = 0 5 HT = H - HD ~~ face load = 2,766 6 HTe = He - HDe ~~ face load external 0-0 = 0 7 Wm1 = H + HP ~~ bolt load = 23,191 8 Wm2 = pi()*varb*varg*gy ~~ seating load PI()*0.135*12.125*0 = 0 9 Am = Max(Wm1/Sb, Wm2/Sba) ~~ Bolt area required 10 MAX(23191/25000, 0/25000) = RootArea [sq. in] = PVELookup("BoltSizing","Lookup","Root Area",BoltOD) Ab = RootArea*Nbolt 0.311*6 = CheckExcess = Ab>=Am 1.866>=0.928 = Acceptable 14 Flange Loads: (App 2-5) 15 W [lb] = (Am + Ab)*Sba/2 ~~ seating conditions ( )*25000/2 = 34, HG [lb] = Wm1 - H ~~ operating conditions = 0 17 TBoltLoad [lb] = (W+Wm1)/Nbolt ( )/6 = 9, Flange Moment Arms: (Table App Integral flanges) 19 mhd [in] = varr+0.5*gone *0.625 = mht [in] = (varr+gone+mhg)/2 ( )/2 = mhg [in] = (varc-varg)/2 ( )/2 = Flange Moments: (App 2-6) 23 MD [in-lb] = HD * mhd ~~ end pressure * = 28, MT [in-lb] = HT * mht ~~ face pressure 2766 * 1.5 = 4, MG [in-lb] = HG * mhg ~~ gasket load 0 * = 0 26 Mo1e [in-lb] = HDe*(mhD-mhG)+HTe*(mhT-mhG) ~~ total operating external 27 0*( )+0*( ) = 0 28 Mo1 [in-lb] = Max(MD+MT+MG,Mo1e) ~~ total operating 29 MAX( ,0) = 32, Mo2 [in-lb] = W*(varC-varG)/2 ~~ total seating 34921*( )/2 = 45, Graphs: App Values of F, f, T, U, V, Y and Z 32 h0 = sqrt(b*g0) SQRT(11.376*0.188) = hh0 = hub/h0 1.5/1.462 = g1g0 = gone/g /0.188 = F = PVELookup("F","FlangeFactor",hh0,g1g0) V = PVELookup("V","FlangeFactor",hh0,g1g0) smallf = MAX(PVELookup("smallF","FlangeFactor",hh0,g1g0),1) K = A/B 12.75/ = T = PVELookup("T","FlangeFactorK",K) U = PVELookup("U","FlangeFactorK",K) Y = PVELookup("Y","FlangeFactorK",K) Z = PVELookup("Z","FlangeFactorK",K) d = (U/V)*h0*g0^2 (18.713/0.069)*1.462*0.188^2 = e = F / h / = L = (t*e + 1)/T + t^3/d (3* )/ ^3/ = Flange Seating Stress: (App 2-7,8) 47 SHs = smallf*abs(mo2) / ( L*gOne^2 * B) 48 1*ABS(45833) / ( 3.203*0.625^2 * ) = 3, CheckSHs = SHs <= 1.5*(Sfa) 3220 <= 1.5*(20000) = Acceptable 50 SRs = (1.33*t*e+1)*ABS(Mo2) / (L*t^2*B) 51 (1.33*3* )*ABS(45833) / (3.203*3^2*11.376) = CheckSRs = SRs <= Sfa 398 <= = Acceptable 53 STs = (Y*ABS(Mo2) / (t^2*b)) - Z*SRs 54 (17.029*ABS(45833) / (3^2*11.376)) *398 = 4,122

21 Flange ver 4.27 Page 21 of 25 1 CheckSTs = ABS(STs) <= Sfa ABS(4122) <= = Acceptable 2 SAs = (SHs + Max(SRs, STs))/2 ( MAX(398, 4122))/2 = 3,671 3 CheckSAs = SAs <= Sfa 3671 <= = Acceptable 4 Flange Operating Stress: (App 2-7,8) 5 SHo = smallf*mo1/(l*gone^2*b) 1*32223/(3.203*0.625^2*11.376) = 2,264 6 CheckSHo = SHo <= 1.5*(Sf) 2264 <= 1.5*(18600) = Acceptable 7 SRo = (1.33*t*e+1)*Mo1/(L*t^2*B) 8 (1.33*3* )*32223/(3.203*3^2*11.376) = CheckSRo = SRo <= Sf 279 <= = Acceptable 10 STo = Y*Mo1/(t^2*B)-Z*SRo *32223/(3^2*11.376)-8.808*279 = 2, CheckSTo = STo <= Sf 2898 <= = Acceptable 12 SAo = (SHo+Max(SRo,STo))/2 (2264+MAX(279,2898))/2 = 2, CheckSAo = SAo <= Sf 2581 <= = Acceptable 14 Flange Flexibility: (App 2-14) 15 Jseating = (52.14*Mo2*V) / (L*Efs*g0^2*h0*0.3) 16 (52.14*45833*0.069) / (3.203* *0.188^2*1.462*0.3) = CheckJSt = ABS(Jseating) <= 1 ABS(0.117) <= 1 = Acceptable 18 Joperating = (52.14*Mo1*V) / (L*Efo*g0^2*h0*0.3) 19 (52.14*32223*0.069) / (3.203* *0.188^2*1.462*0.3) = CheckJOp = ABS(Joperating) <= 1 ABS(0.088) <= 1 = Acceptable

22 1 Swing Bolt and Cover ver 4.03 Page 22 of Cover Swing Bolts Description 4 Cover: P [psi] - Pressure GOd [in] - Gasket OD Dc [in] - Cover OD tc [in] - Cover Thickness wc [in] - Tab Width BCD [in] - Bolt Circle Diameter 11 SA Cover Material 12 18,600 CSA [psi] - Allowable Stress 13 Eye Bolt: 14 6 n - Number of bolts Dia [in] - Bolt Diameter Rdia [in] - Thread Root Diameter ID [in] - ID of Eye OD [in] - OD of Eye 19 SA-193 B7 Bolt Material 20 25,000 BSA [psi] - Allowable Stress 21 Pin: 22 SA-193 B7 PinMat - Pin Material Pin [in] - Pin OD 24 25,000 PSA [psi] - Allowable Stress 25 Lugs: L [in] - Height ch [in] - Half Width tl [in] - Thickness F [in] - Weld Fillet Size 30 SA Lug Material 31 18,600 LSA [psi] - Allowable Stress 32 Load: no gasket seating load, pf: Pressure Load 33 Do [in] = BCD-2*cH *1 = pf [lb] = (P*π*GOd^2)/4 (201*3.14*12.395^2)/4 = Eye bolts: Baa: Actual Area 1, Bab: Actual Area 2, ra: Required Area, Ba: Minimum Area, SF: Seating Force, LpB: Load per Bolt 36 Baa [in 2 ] = n*π*rdia^2/4 6*3.14*0.627^2/4 = Bab [in 2 ] = n*(od-id)*dia 6*( )*0.75 = ra [in 2 ] = pf/bsa /25000 = CheckrA = ra<=min(baa,bab) 0.97<=MIN(1.853,3.375) = Acceptable 40 Ba [in 2 ] = Min(Baa,Bab) MIN(1.853,3.375) = SF [lb] = Max(Ba*BSA/2,pF) MAX(1.853*25000/2, ) = LpB [lb] = SF/n /6 = Pin: PA: Pin Area, MSp: Max Sp, Sp: Shear 44 PA [in 2 ] = (π*pin^2/4) (3.14*0.75^2/4) = MSp [psi] = 0.8*PSA 0.8*25000 = Sp [psi] = LpB/(2*PA) /(2*0.442) = CheckShear = Sp <= MSp 4574 <= = Acceptable

23 Swing Bolt and Cover ver 4.03 Page 23 of 25 1 Lug: Ratio <= 1, msl: Max Shear, LL: Lug Load, LS: Lug Shear, rls: Load Ratio, mbl: Max Bending, il: Moment of Inertia 2 ml: Moment, LB: Bending Load, rlb: Load Ratio, LugRatio: Factored Load 3 msl [psi] = LSA* *0.8 = LL [lb] = LpB/ /2 = LS [psi] = LL/(tL*L) /(0.375*2.5) = rls = LS/msL 2155/14880 = mbl [psi] = LSA* *1.5 = cl [in] = L/2 2.5/2 = il [in 4 ] = (tl*l^3)/12 (0.375*2.5^3)/12 = ml [in-lb] = LL*cH *1 = LB [lb] = ml*cl/il *1.25/0.488 = rlb = LB/mbL /27900 = LugRatio = SQRT(rLS^2+rLB^2) SQRT(0.145^ ^2) = CheckLug = LugRatio <= <= 1 = Acceptable 15 Lug Weld: Factored load ratio must be less than 1, msw: Max Shear/Bending, WS: Weld Shear, rws: Load Ratio 16 WB: Bending Load, rwb: Load Ratio 17 LugWeldRatio: Factored Load 18 msw [psi] = 0.49*MIN(LSA, PSA) 0.49*MIN(18600, 25000) = Wa [in 2 ] = (L+2*F)*(tL+2*F)-tL*L (2.5+2*0.25)*( *0.25)-0.375*2.5 = WS [psi] = LL/Wa /1.688 = rws = WS/msW 1197/9114 = iw [in 4 ] = (tl + 2*F)*(L + 2*F)^3/12 - il 22 ( *0.25)*( *0.25)^3/ = WB [psi] = ml*(cl+f)/iw *( )/1.48 = rwb = WB/msW 2047/9114 = LugWeldRatio = SQRT(rWS^2+rWB^2) SQRT(0.131^ ^2) = CheckWeld = LugWeldRatio <= <= 1 = Acceptable 27 Cover: mbc: Max Bending, mc1: Pressure Moment, mc2: Bolt Unit Moment, mct: Total Moment, tca: Required Thickness 28 Required thickness - Roarks Table 24 Case 10a and mbc [psi] = 1.5*CSA 1.5*18600 = mc1 [in-lb] = P*Do^2*3.3/64 201*12.75^2*3.3/64 = mc2 [in-lb] = SF*cH/(Do*π) *1/(12.75*3.14) = mct [in-lb] = mc1 + mc = tca [in] = sqrt(6*mct/mbc) SQRT(6* /27900) = Required thickness - Table UG-34 (j), C = 0.3, W = SF, hg = ch, S = CSA, d=do, E=1 tcb [in] = Do*sqrt((0.3*P)/(CSA*E)+(1.9*SF*cH)/(CSA*E*Do^3)) *SQRT((0.3*201)/(18600*1)+(1.9* *1)/(18600*1*12.75^3)) = ReqCThick [in] = Max(tca, tcb) MAX(0.702, 0.849) = CheckThick = ReqCThick <= tc <= 1 = Acceptable 38 Cover Tabs: it: Moment of Inertia, mt: Moment, LT: Bending Load 39 ct [in] = tc/2 1/2 = it [in 4 ] = (wc*tc^3*2)/12 Moment of Inertia (1*1^3*2)/12 = mt [in-lb] = LpB*(BCD-Dc)/4 Moment *( )/4 = LT [lb] = mt*ct/it Bending Load *0.5/0.167 = CheckLT = LT <= mbc <= = Acceptable

24 15 Coupling ver 2.11 UW16.1Z1M 20-Nov-08 Page 24 of Vessel with Large Opening <- Vessel 18 2" Coupling E <- Description Shell: COD <- t, Shell Wall Thick (inch) POD <- tmin, Min Required Wall at E=1 (inch) <- D, Shell Opening Diameter (inch) <- P,design Pressure (psi) Coupling: t inch 3000# <- Coupling 32 SA-182 F304 <- Coupling Material 33 17,400 <- Sn, Allowable Stress Level (Sn) D <- F1, Weld Size <- tmin16b, Min allowed wall per UG-16(b) <- Corrc, Coupling Corrosion Allowance (inch) <- COD - Coupling OD <- POD - Pipe OD <- n, Threads Per Inch <- pt, Corresponding sch160 Wall Thickness (inch) % <- UT, Under Tolerence (%) Geometry Restrictions Fig. UW tcp = (COD-POD)/2-CORRC = ( )/2-0 Tcp = Tmin = Min(0.75,tcp,t) = Min(0.75,0.313,1) Tmin = tcmin = Min(0.25,0.7*Tmin) = Min(0.25,0.7*0.313) tcmin = t1 = 0.7*F1 = 0.7*0.313 t1 = t1 > = tcmin = >= Acceptable Required Coupling Wall Thickness UG-44(c), B and UG-31(c)(2) 76 Ro = POD/2-0.8/n = 2.375/2-0.8/11.5 Ro = tp = (1-UT)*pt-Corrc-0.8/n = ( )* /11.5 tp = Min Thick = P*Ro/(Sn*1+0.4*P) = 201*1.118/(17400*1+0.4*200.9Acceptable trn = Pressure Weld Stress UW-18(d) - Pressure Load only UW-16(f)(3)(a)(3)(b) 81 Load = COD^2*(PI()/4)*P = 3^2*(PI()/4)* Load = Weld Area = pi()*((cod+f1)^2-cod^2)/4 Weld Area = = pi()*(( )^2-3^2)/4 88 Max Stress = Min(Sn,Sv) * 0.55 = Min(17400,0) * 0.55 Max Stress = Weld Stress = Load / Area = 1420 / Weld Stress = Acceptable 95 UG Tstd = Standard pipe wall thickness from chart Tstd = Nact = Pt * (1-UT) Actual Wall Thick. Nact = Tt = 0.8/n Ug-31(c)(2) threads Tt = UG45 = Max(UG45a, UG45b) <= Nact UG45 = = Max(0.082, 0.135) <= Acceptable 101 UG45a = trn + corrc + Tt UG45a = UB45b = Min(UG45b1, UG45b4) UB45b = = Min(0.849, 0.135) 105 UG45b1 = Max(tmin+ CORRC, Tmin16b + CORRC) UG45b1 = = Max( , ) 107 UG45b4 = Tstd* corrc = 0.154* UG45b4 = t F1 Outside Inside Vessel UW-16.1 (Z-1) (Modified) FULL PEN. t

Weight [lb] = (Do-t)*π*L*t*40.84/ (60-1)*3.1416*100*1*40.84/144 = (20000*1*1)/(29+0.6*1) = Pipe and Shell ver 4.

Weight [lb] = (Do-t)*π*L*t*40.84/ (60-1)*3.1416*100*1*40.84/144 = (20000*1*1)/(29+0.6*1) = Pipe and Shell ver 4. 1 Pipe and Shell ver 4.08 Page 1 of 2 2 Host Shell Description 3 Options: 4 Interior ip? - Calculate interior pressure 5 No Exterior ep? - Calculate exterior pressure 6 Rolled Plate pr? - Pipe or rolled

Διαβάστε περισσότερα

ASME PTB Example E E4.3.5 BPVC VIII

ASME PTB Example E E4.3.5 BPVC VIII Table of contents Table of contents... 1 Comparison Overview *... 2 4.3 Internal Design Pressure... 3 Example E4.3.1 - Cylindrical Shell... 3 E4.3.1 - LV Calculation *... 4 4.3.2 Example E4.3.2 - Conical

Διαβάστε περισσότερα

5.0 DESIGN CALCULATIONS

5.0 DESIGN CALCULATIONS 5.0 DESIGN CALCULATIONS Load Data Reference Drawing No. 2-87-010-80926 Foundation loading for steel chimney 1-00-281-53214 Boiler foundation plan sketch : Figure 1 Quantity Unit Dia of Stack, d 6.00 m

Διαβάστε περισσότερα

Chapter 7 Transformations of Stress and Strain

Chapter 7 Transformations of Stress and Strain Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1

Διαβάστε περισσότερα

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD:

APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD: APPENDIX 1: Gravity Load Calculations SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD: A t = 16.2 * 13 = 208 ft^2 R 1 = 1.2 -.001* A t = 1.2 -.001*208 =.992 F = 0 for a flat

Διαβάστε περισσότερα

Cross sectional area, square inches or square millimeters

Cross sectional area, square inches or square millimeters Symbols A E Cross sectional area, square inches or square millimeters of Elasticity, 29,000 kips per square inch or 200 000 Newtons per square millimeter (N/mm 2 ) I Moment of inertia (X & Y axis), inches

Διαβάστε περισσότερα

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES

STRUCTURAL CALCULATIONS FOR SUSPENDED BUS SYSTEM SEISMIC SUPPORTS SEISMIC SUPPORT GUIDELINES Customer: PDI, 4200 Oakleys Court, Richmond, VA 23223 Date: 5/31/2017 A. PALMA e n g i n e e r i n g Tag: Seismic Restraint Suspended Bus System Supports Building Code: 2012 IBC/2013 CBC&ASCE7-10 STRUCTURAL

Διαβάστε περισσότερα

Pipe E235N (St 37.4 NBK) phosphated and oiled

Pipe E235N (St 37.4 NBK) phosphated and oiled Pipe E235N (St 37.4 NBK) phosphated and oiled Working Pressure Burst Pressure 4X1ST37.4NBK* 4 x 1.0 3201041000 397 459 555 2600 0.07 6X1ST37.4NBK 6 x 1.0 3201061000 252 289 394 1560 0.12 6X1.5ST37.4NBK

Διαβάστε περισσότερα

Design of Self supporting Steel Chimney for

Design of Self supporting Steel Chimney for Prepared by : Date : Job No. : Sheet : Cont'd : Verified by : Project : Subject : Calculation Sheet CALCULATION Revision Notes : Design of Self supporting Steel Chimney for Data Wind Loads as per India

Διαβάστε περισσότερα

Aluminum Electrolytic Capacitors (Large Can Type)

Aluminum Electrolytic Capacitors (Large Can Type) Aluminum Electrolytic Capacitors (Large Can Type) Snap-In, 85 C TS-U ECE-S (U) Series: TS-U Features General purpose Wide CV value range (33 ~ 47,000 µf/16 4V) Various case sizes Top vent construction

Διαβάστε περισσότερα

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%

Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8% 91 500 201 0/11 Aluminum raming Linear Motion and Assembly Technologies 1 Section : Engineering Data and Speciications Technical Data or Proiles Metric U.S. Equivalent Material designation according to

Διαβάστε περισσότερα

Aluminum Electrolytic Capacitors

Aluminum Electrolytic Capacitors Aluminum Electrolytic Capacitors Snap-In, Mini., 105 C, High Ripple APS TS-NH ECE-S (G) Series: TS-NH Features Long life: 105 C 2,000 hours; high ripple current handling ability Wide CV value range (47

Διαβάστε περισσότερα

E62-TAB AC Series Features

E62-TAB AC Series Features NEW! E62-TAB AC Series Features Perfect for non-sinusoidal voltages and pulsed s. Housed in a hermetically sealed aluminum can which is filled with environmentally friendly plant oil as standard. The integrated

Διαβάστε περισσότερα

Consolidated Drained

Consolidated Drained Consolidated Drained q, 8 6 Max. Shear c' =.185 φ' =.8 tan φ' =.69 Deviator, 8 6 6 8 1 1 p', 5 1 15 5 Axial, Symbol Sample ID Depth Test Number Height, in Diameter, in Moisture Content (from Cuttings),

Διαβάστε περισσότερα

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206 Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206 Scope -This specification applies to all sizes of rectangular-type fixed chip resistors with Ruthenium-base as material. Features

Διαβάστε περισσότερα

TEST REPORT Nο. R Έκθεση Ελέγχου α/α

TEST REPORT Nο. R Έκθεση Ελέγχου α/α - Ergates Industrial Estate, PO Box 16104, Nicosia 2086, Cyprus Tel: +357 22624090 Fax: +357 22624092 TEST REPORT Nο. R01.4222 Page 1 of 9 Σελίδα 1 από 9 Test Description περιγραφή δοκιμής/ελέγχου Client

Διαβάστε περισσότερα

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT .5 C, φ, deg Tan(φ) Total.7 2.2 Effective.98 8.33 Shear,.5.5.5 2 2.5 3 Total Normal, Effective Normal, Deviator,.5.25.75.5.25 2.5 5 7.5 Axial Strain, % Type of

Διαβάστε περισσότερα

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1 20/01/2014 1 of 8 TOW SSD v3 Location Project a =IF(Design_Storm>0,VL b =IF(Design_Storm>0,VL c =IF(Design_Storm>0,VL Designed By Checked By Date Date Comment Min Tc 15 LOCATION From To MH or CBMH STA.

Διαβάστε περισσότερα

ELWOOD HIGH PERFORMANCE MOTORS H-SERIES MOTOR DATA

ELWOOD HIGH PERFORMANCE MOTORS H-SERIES MOTOR DATA H-SERIES MOTOR DATA MOTOR MODEL H-3007 H-3016 H-4030-P H-4030-M H-4040 H-4050 H-4075 H-6100 H-6200 H-6300 MECHANICAL DATA (1) Rated Torque, Cont (Stall) 0.8 2.3 3.4 3.4 5.0 6.8 10.2 11.3 22.6 36.7 lb-in

Διαβάστε περισσότερα

RSDW08 & RDDW08 series

RSDW08 & RDDW08 series /,, MODEL SELECTION TABLE INPUT ORDER NO. INPUT VOLTAGE (RANGE) NO LOAD INPUT CURRENT FULL LOAD VOLTAGE CURRENT EFFICIENCY (Typ.) CAPACITOR LOAD (MAX.) RSDW08F-03 344mA 3.3V 2000mA 80% 2000μF RSDW08F-05

Διαβάστε περισσότερα

RECIPROCATING COMPRESSOR CALCULATION SHEET

RECIPROCATING COMPRESSOR CALCULATION SHEET Gas properties, flowrate and conditions 1 Gas name Air RECIPRCATING CMPRESSR CALCULATIN SHEET WITH INTERCLER ( Sheet : 1. f 4.) Item or symbol Quantity Unit Item or symbol Quantity Unit 2 Suction pressure,

Διαβάστε περισσότερα

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* PART NUMBER SYSTEM

Διαβάστε περισσότερα

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

SIEMENS Squirrel Cage Induction Standard Three-phase Motors - SIEMENS Squirrel Cage Induction Standard Three-phase Motors 2 pole 3000 rpm 50Hz Rated current Power Efficiency Rated Ratio Noise Output Frame Speed Weight 3V 400V 415V factor Class 0%Load 75%Load torque

Διαβάστε περισσότερα

ECOL Motors In Aluminum Housing

ECOL Motors In Aluminum Housing ECOL Motors In Aluminum Housing FEATURES APPLICATIONS E TBS C TBW B L K AC TBH A AA KK H AD N T E TBS R TBW L AC M 56-160 IM B3 56-160 IM B5 56-160 IM B14 TBH 4-S KK P HD N TBS T E R TBW L AC P M TBH 4-S

Διαβάστε περισσότερα

APPLICATIONS TECHNOLOGY. Leaded Discs N.03 N.06 N.09

APPLICATIONS TECHNOLOGY. Leaded Discs N.03 N.06 N.09 NC Disc hermistors ND 03/06/09 NE 03/06/09 NV 06/09 APPLICAIONS ND or NE: Commerical, Industrial and Automotive Applications AEC-Q200 Qualified NV: Professional Applicationsl Alarm and temperature measurement

Διαβάστε περισσότερα

MSN DESK TOP ENCLOSURE WITH STAND / CARRYING HANDLE

MSN DESK TOP ENCLOSURE WITH STAND / CARRYING HANDLE MSN SERIES MSN DESK TOP ENCLOSURE WITH STAND / CARRYING HANDLE W H FEATURE Available in 176 sizes. Stand / carrying handle can be adjusted in 30 degree. Maximum load is kg. There are no ventilation hole

Διαβάστε περισσότερα

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Surface Mount Multilayer Chip Capacitors for Commodity Solutions Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF

Διαβάστε περισσότερα

Packaging Chip Resistors

Packaging Chip Resistors Packaging Chip esistors Chip esistor eel Nominal Dimensions Inches () Packaging: Chips Per EI Standard S-481 inches B C D E F G H J 1 0.16 ± 0.01 4.0 ± 0.1 0.08 ± 0.01 2.0 ± 0.1 0.16 ± 0.01 4.0 ± 0.1 0.06

Διαβάστε περισσότερα

MS SERIES MS DESK TOP ENCLOSURE APPLICATION EXAMPLE FEATURE. Measuring instruments. Power supply equipments

MS SERIES MS DESK TOP ENCLOSURE APPLICATION EXAMPLE FEATURE. Measuring instruments. Power supply equipments MS SERIES MS DESK TOP ENCLOSURE FEATURE Available in 176 sizes. Screws are not appeared on the surface. Usable as rack mount case with optinal mounting bracket. There are no ventilation hole for cover

Διαβάστε περισσότερα

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example: UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα

Multilayer Ceramic Chip Capacitors

Multilayer Ceramic Chip Capacitors FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* Temperature Coefficient

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

BALL VALVE NP - LEVE 754. Range of application: Temperature range: Perform standard: Order information: Paint: Soft seal Ball valve.

BALL VALVE NP - LEVE 754. Range of application: Temperature range: Perform standard: Order information: Paint: Soft seal Ball valve. Soft seal Ball valve Unilateral spring washer Seat Float ball valve Flange PN16-40 DN15-200 Range of application: In industrial facilities, oil and chemical industry and related manufacturing industries

Διαβάστε περισσότερα

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in ME 10W E. Evans Stresses in a Plane Some parts eperience normal stresses in two directions. hese tpes of problems are called Plane Stress or Biaial Stress Cross Section thru Bod z angent and normal to

Διαβάστε περισσότερα

Surface Mount Aluminum Electrolytic Capacitors

Surface Mount Aluminum Electrolytic Capacitors FEATURES CYLINDRICAL V-CHIP CONSTRUCTION LOW COST, GENERAL PURPOSE, 2000 HOURS AT 85 O C NEW EXPANDED CV RANGE (up to 6800µF) ANTI-SOLVENT (2 MINUTES) DESIGNED FOR AUTOMATIC MOUNTING AND REFLOW SOLDERING

Διαβάστε περισσότερα

Anti-Corrosive Thin Film Precision Chip Resistor-SMDR Series. official distributor of

Anti-Corrosive Thin Film Precision Chip Resistor-SMDR Series. official distributor of Product : Anti-Corrosive Thin Film Precision Chip Resistor-SMDR Series Size : 0402/0603/0805/1206/2010/2512 official distributor of Anti-Corrosive Thin Film Precision Chip Resistor (SMDR Series) 1. Features

Διαβάστε περισσότερα

RECIPROCATING COMPRESSOR CALCULATION SHEET

RECIPROCATING COMPRESSOR CALCULATION SHEET RECIPRCATING CMPRESSR CALCULATIN SHEET WITH INTERCLER Gas properties, flowrate and conditions 1 Gas name Air Item or symbol Quantity Unit Item or symbol Quantity Unit 2 Suction pressure, ps 1.013 bar A

Διαβάστε περισσότερα

B37631 K K 0 60

B37631 K K 0 60 Multilayer Ceramic acitors High; X5R and X7R Chip Ordering code system B37631 K 7 5 K 6 Packaging 6 ^ cardboard tape, 18-mm reel 62 ^ blister tape, 18-mm reel Internal coding acitance tolerance K ^ ± %

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of

Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520. official distributor of Product: Current Sensing Chip Resistor SMDL Series Size: 0201/0402/0603/0805/1206/1010/2010/2512/1225/3720/7520 official distributor of Current Sensing Chip Resistor (SMDL Series) 1. Features -3 Watts

Διαβάστε περισσότερα

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report LM-80 Test Report Approved Method: Measuring Lumen Maintenance of LED Light Sources Project Number: KILT1212-U00216 Date: September 17 th, 2013 Requested by: Dongbu LED Co., Ltd 90-1, Bongmyeong-Ri, Namsa-Myeon,

Διαβάστε περισσότερα

E62 AC Series Features

E62 AC Series Features E62 AC Features Perfect for non-sinusoidal s and pulsed s. Housed in a hermetically sealed aluminum can which is filled with environmentally friendly plant oil as standard. The integrated overpressure

Διαβάστε περισσότερα

Thin Film Chip Resistors

Thin Film Chip Resistors FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating

Διαβάστε περισσότερα

Anti-Corrosive Thin Film Precision Chip Resistor (PR Series)

Anti-Corrosive Thin Film Precision Chip Resistor (PR Series) (PR Series) Features -Long term life stability and demonstrated the Anti Corrosion claims -Special passivated NiCr film for Anti-Acid and Anti-Damp -Tight tolerance down to ±0.1% -Extremely low TCR down

Διαβάστε περισσότερα

Thick Film Chip Resistors

Thick Film Chip Resistors FEATURES STANDARD SIZING 0402 (1/16W), 0603 (1/10W), 0805 (1/8W), 1206 (1/4W), 2010 (1/2W) AND 2512 (1W) HIGH VOLTAGE (100VDC ~ 3,000VDC) HIGH RESISTANCE VALUES (UP TO 100MW) THICK FILM ON ALUMINA SUSTRATE,

Διαβάστε περισσότερα

Finish: Anticorrosive finish in polyester. Number of motor poles 4=1400 r/min. 50 Hz 6=900 r/min. 50 Hz 8=750 r/min. 50 Hz

Finish: Anticorrosive finish in polyester. Number of motor poles 4=1400 r/min. 50 Hz 6=900 r/min. 50 Hz 8=750 r/min. 50 Hz HEP HEPT HEP: Wall-mounted axial fans, with IP65 motor HEPT: Long-cased axial fans, with IP65 motor Wall-mounted axial (HEP) and long-cased (HEPT) fans, with fibreglass-reinforced plastic impeller. Fan:

Διαβάστε περισσότερα

Figure 1 - Plan of the Location of the Piles and in Situ Tests

Figure 1 - Plan of the Location of the Piles and in Situ Tests Figure 1 - Plan of the Location of the Piles and in Situ Tests 1 2 3 A B C D DMT4 DMT5 PMT1 CPT4 A 2.2 1.75 S5+ SPT CPT7 CROSS SECTION A-A C2 E7 E5 S4+ SPT E3 E1 E DMT7 T1 CPT9 DMT9 CPT5 C1 ground level

Διαβάστε περισσότερα

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

D28 1-1/4" PIPE x 42-1/2" HIGH RAIL WITHOUT BOTTOM RAIL

D28 1-1/4 PIPE x 42-1/2 HIGH RAIL WITHOUT BOTTOM RAIL Ultra-tec Cable Railing Systems G-D28 D28 1-1/4" PIPE x 42-1/2" HIGH RAIL WITHOUT BOTTOM RAIL Building Code: Material: 2006 International Building Code 2007 California Building Code AISC Steel Construction

Διαβάστε περισσότερα

High pressure centrifugal pumps

High pressure centrifugal pumps High pressure centrifugal pumps Wilo-Multivert MVI (North America) Series description H [ft] 3 1 MVI 1 1 1 MVI 1 MVI 3 MVI MVI 1 1 Q [m³/h] Wilo-Multivert-MVI Hz - North America Q [US gpm] H [m] 1 1 1

Διαβάστε περισσότερα

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater. Low Impedance, For Switching Power Supplies Low impedance and high reliability withstanding 5000 hours load life at +05 C (3000 / 2000 hours for smaller case sizes as specified below). Capacitance ranges

Διαβάστε περισσότερα

CONSULTING Engineering Calculation Sheet

CONSULTING Engineering Calculation Sheet E N G I N E E R S Consulting Engineers jxxx 1 Structure Design - EQ Load Definition and EQ Effects v20 EQ Response Spectra in Direction X, Y, Z X-Dir Y-Dir Z-Dir Fundamental period of building, T 1 5.00

Διαβάστε περισσότερα

Shenzhen Lys Technology Co., Ltd

Shenzhen Lys Technology Co., Ltd Carbide drawing dies Properties of grade Grade Density TRS Average Grain size Hardness (HRA) (g/cm3) (MPa) (ųm) YL01 15.25 93.5 3300 0.8 YL10.2 14.5 92.0 4000 0.8 YG6 14.95 90 2400 1.6 YG6X 14.95 91.5

Διαβάστε περισσότερα

Available Specification & Size of CSAC Aluminium Products

Available Specification & Size of CSAC Aluminium Products Available Specification & Size of CSAC Aluminium Products 1. Casting Ware Application Specification Alloy Temper or sand mode, shell mode & metal mode. JIS H5202 AC2A, AC2B, AC3A, AC4B, AC4C, AC7A, AC7B,

Διαβάστε περισσότερα

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC ~ A File Name:IDLV65SPEC 07050 SPECIFICATION MODEL OUTPUT OTHERS NOTE DC VOLTAGE RATED CURRENT RATED POWER DIMMING RANGE VOLTAGE TOLERANCE PWM FREQUENCY (Typ.) SETUP TIME Note. AUXILIARY DC OUTPUT Note.

Διαβάστε περισσότερα

Current Sense Metal Strip Resistors (CSMS Series)

Current Sense Metal Strip Resistors (CSMS Series) Features: Range: 1mΩ to 100mΩ Low TCR as low as 75PPM High power rating Custom Values available RoHS Compliant and Halogen Free Operating Temperature: -55 C to +170 C Part Number Structure CSMS 0805 -

Διαβάστε περισσότερα

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS FEATURE Operating Temperature: -55 ~ +155 C 3 Watts power rating in 1 Watt size, 1225 package High purity alumina substrate for high power dissipation Long side terminations with higher power rating PART

Διαβάστε περισσότερα

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM AT-3263 Surface Mount Package SOT-363 (SC-7) I I Y Pin Connections B 1 C 1 E 1 E 2 C 2 B 2 Page 1 21.4., 7:6 PM Absolute Maximum Ratings [1] Absolute Thermal Resistance [2] : Symbol Parameter Units Maximum

Διαβάστε περισσότερα

[bar] 0,5 (7.3 PSI) maximum continuous pressure - maximum working pressure, at which the pump can be operated without time limitation.

[bar] 0,5 (7.3 PSI) maximum continuous pressure - maximum working pressure, at which the pump can be operated without time limitation. Gear Pump High Performance Version GP up to, cm (.7 inch ) p max bar ( PSI) Speed from to RPM Technical Features Nominal pressure bar, peak pressure bar High quality aluminum alloys pump with xial playe

Διαβάστε περισσότερα

QUICKTRONIC PROFESSIONAL QTP5

QUICKTRONIC PROFESSIONAL QTP5 osram.com QUICKTRONIC PROFESSIONA QTP5 ECG for T5/ 16mm, T8/ 26mm, DUUX fluorescent lamps QTP5 i.e. UMIUX T5 HO ES 01 Product Features: Up to 100.000 hours lifetime 1 amp start with optimized filament

Διαβάστε περισσότερα

the smartest energy Floor standing DHW (Domestic Hot Water) storage tanks for Forced Circulation Solar systems

the smartest energy Floor standing DHW (Domestic Hot Water) storage tanks for Forced Circulation Solar systems the smartest energy Floor standing DHW (Domestic Hot Water) storage tanks for Forced Circulation olar systems www.thermicsol.com 15 Floor standing single coil DHW storage tanks Material: teel sheet EN-10130

Διαβάστε περισσότερα

0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance

0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance .635mm Pitch Board to Board Docking Connector Lead-Free Compliance MINIDOCK SERIES MINIDOCK SERIES Features Specifications Application.635mm Pitch Connector protected by Diecasted Zinc Alloy Metal Shell

Διαβάστε περισσότερα

Grey Cast Irons. Technical Data

Grey Cast Irons. Technical Data Grey Cast Irons Standard Material designation Grey Cast Irons BS EN 1561 EN-GJL-200 EN-GJL-250 EN-GJL-300 EN-GJL-350-1997 (EN-JL1030) (EN-JL1040) (EN-JL1050) (EN-JL1060) Characteristic SI unit Tensile

Διαβάστε περισσότερα

Type. Capacities. 441, 442 Full nozzle DIN. Flanged Safety Relief Valves spring loaded. The-Safety-Valve.com LWN E

Type. Capacities. 441, 442 Full nozzle DIN. Flanged Safety Relief Valves spring loaded. The-Safety-Valve.com LWN E Type 441, 442 Full nozzle DIN Flanged Safety Relief Valves spring loaded Capacities The-Safety-Valve.com LWN 468.3-E Approvals Approvals DN O 5 65 8 Actual Orifice diameter d [mm] 23 37 46 Europe Coefficient

Διαβάστε περισσότερα

Long 3000 hour life at 105 C with high ripple current capability 2 and 3 pin versions available Can vent construction

Long 3000 hour life at 105 C with high ripple current capability 2 and 3 pin versions available Can vent construction TS-HA/HB Series 105 C, 3000 hours Long 3000 hour life at 105 C with high ripple current capability 2 and 3 pin versions available Can vent construction RoHS Compliant Rated Working Voltage: Operating Temperature:

Διαβάστε περισσότερα

BMA SERIES Subminiature Blind Mate Connectors

BMA SERIES Subminiature Blind Mate Connectors SERIES Subminiature Blind Mate Connectors FEATURES The blindmate connectors are designed for blindmate applications up to Ghz. They have a slide-on, non-locking interface which ensures frequent matings

Διαβάστε περισσότερα

[bar] 0,5 (7.3 PSI) maximum continuous pressure - maximum working pressure, at which the pump can be operated without time limitation.

[bar] 0,5 (7.3 PSI) maximum continuous pressure - maximum working pressure, at which the pump can be operated without time limitation. Gear Pump High Performance Version GP up to, cm (.7 inch ) p max bar ( PSI) Speed from to RPM Technical Features Operating pressure bar, Peak pressure bar High-strength quality aluminum alloys pump with

Διαβάστε περισσότερα

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/ Page: 10 CONTENTS Contents... 10 General Data... 10 Structural Data des... 10 erials... 10 Sections... 10 ents... 11 Supports... 11 Loads General Data... 12 LC 1 - Vollast 120 km/h 0,694 kn/qm... 12 LC,

Διαβάστε περισσότερα

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/ Page: 1 CONTENTS Contents... 1 General Data... 1 Structural Data des... 1 erials... 1 Sections... 1 ents... 2 Supports... 2 Loads General Data... 3 LC 1 - Vollast 90 km/h 0,39 kn/qm... 3 LC, LG Results

Διαβάστε περισσότερα

Polymer PTC Resettable Fuse: KMC Series

Polymer PTC Resettable Fuse: KMC Series Features 1. RoHS & Halogen-Free (HF) compliant 2. IA size: 0603, 0805, 1206, 1812 3. Hold current ratings from 0.05 to 3A 4. Voltage ratings from 6V computer and electronic applications to 60V 5. Small

Διαβάστε περισσότερα

Heat exchanger. Type WT. For the reheating of airflows in rectangular ducting PD WT 1. 03/2017 DE/en

Heat exchanger. Type WT. For the reheating of airflows in rectangular ducting PD WT 1. 03/2017 DE/en X X testregistrierung Heat exchanger Type For the reheating of airflows in rectangular ducting Rectangular hot water heat exchanger for the reheating of airflows, suitable for VAV terminal units Type TVR,

Διαβάστε περισσότερα

38BXCS STANDARD RACK MODEL. DCS Input/Output Relay Card Series MODEL & SUFFIX CODE SELECTION 38BXCS INSTALLATION ORDERING INFORMATION RELATED PRODUCTS

38BXCS STANDARD RACK MODEL. DCS Input/Output Relay Card Series MODEL & SUFFIX CODE SELECTION 38BXCS INSTALLATION ORDERING INFORMATION RELATED PRODUCTS DCS Input/Output Relay Card Series STANDARD RACK MODEL 38BXCS MODEL & SUFFIX CODE SELECTION 38BXCS MODEL CONNECTOR Y1 :Yokogawa KS2 cable use Y2 :Yokogawa KS9 cable use Y6 :Yokogawa FA-M3/F3XD32-3N use

Διαβάστε περισσότερα

Type 441 DIN 442 DIN. Capacities. Flanged Safety Relief Valves spring loaded. The-Safety-Valve.com LWN E

Type 441 DIN 442 DIN. Capacities. Flanged Safety Relief Valves spring loaded. The-Safety-Valve.com LWN E Type 441 DIN 442 DIN Flanged Safety Relief Valves spring loaded Capacities The-Safety-Valve.com LWN 462.03-E Approvals Approvals DN I 20 200 DN O 32 300 Actual Orifice diameter d0 [mm] 18 165 Actual Orifice

Διαβάστε περισσότερα

ΕΚΘΕΣΗ ΔΟΚΙΜΩΝ ΔΕΞΑΜΕΝΗΣ ΑΠΟΘΗΚΕΥΣΗΣ ΖΕΣΤΟΥ ΝΕΡΟΥ ΣΥΜΦΩΝΑ ΜΕ ΤΟΥΣ ΚΑΝΟΝΙΣΜΟΥΣ 812/2013 & 814/2013 TEST REPORT

ΕΚΘΕΣΗ ΔΟΚΙΜΩΝ ΔΕΞΑΜΕΝΗΣ ΑΠΟΘΗΚΕΥΣΗΣ ΖΕΣΤΟΥ ΝΕΡΟΥ ΣΥΜΦΩΝΑ ΜΕ ΤΟΥΣ ΚΑΝΟΝΙΣΜΟΥΣ 812/2013 & 814/2013 TEST REPORT ΕΘΝΙΚΟ ΚΕΝΤΡΟ ΕΡΕΥΝΑΣ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΗΜΟΚΡΙΤΟΣ / DEMOKRITOS NATIONAL CENTER FOR SCIENTIFIC RESEARCH ΕΡΓΑΣΤΗΡΙΟ ΔΟΚΙΜΩΝ ΗΛΙΑΚΩΝ & ΑΛΛΩΝ ΕΝΕΡΓΕΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ LABORATORY OF TESTING SOLAR & OTHER ENERGY

Διαβάστε περισσότερα

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage Features Rated Voltage: 100 VAC, 4000VDC Chip Size:,,,,, 2220, 2225 Electrical Dielectric Code EIA IEC COG 1BCG Applications Modems LAN / WAN Interface Industrial Controls Power Supply Back-Lighting Inverter

Διαβάστε περισσότερα

MAX-QUALITY ELECTRIC CO; LTD Thin Film Precision Chip Resistors. Data Sheet

MAX-QUALITY ELECTRIC CO; LTD Thin Film Precision Chip Resistors. Data Sheet Data Sheet Customer: Product: Size: Current Sensing Chip Resistor CS Series 0201/0402/0603/0805/1206/1010/2010/2512 1225/3720/7520 Issued Date: Edition : 12-Nov-10 REV.C5 Current Sensing Chip Resistor

Διαβάστε περισσότερα

Return Line Filters Type RTF10/25

Return Line Filters Type RTF10/25 Technical Data Type RTF1/25 Product Description Technical Data Construction Materials Filter head: Sealings: Aluminum NR (una-n ) Other sealing materials on request Options and Accessories Valve Clogging

Διαβάστε περισσότερα

NPI Unshielded Power Inductors

NPI Unshielded Power Inductors FEATURES NON-SHIELDED MAGNETIC CIRCUIT DESIGN SMALL SIZE WITH CURRENT RATINGS TO 16.5 AMPS SURFACE MOUNTABLE CONSTRUCTION TAKES UP LESS PCB REAL ESTATE AND SAVES MORE POWER TAPED AND REELED FOR AUTOMATIC

Διαβάστε περισσότερα

θ p = deg ε n = με ε t = με γ nt = μrad

θ p = deg ε n = με ε t = με γ nt = μrad IDE 110 S08 Test 7 Name: 1. The strain components ε x = 946 με, ε y = -294 με and γ xy = -362 με are given for a point in a body subjected to plane strain. Determine the strain components ε n, ε t, and

Διαβάστε περισσότερα

DC-DC Constant Current Step-Down LED driver LDD-300L LDD-350L LDD-500L LDD-600L LDD-700L CURRENT RANGE

DC-DC Constant Current Step-Down LED driver LDD-300L LDD-350L LDD-500L LDD-600L LDD-700L CURRENT RANGE SPECIFICATION ORDER NO. LDD-00L LDD-0L LDD-00L LDD-00L LDD-700L CURRENT RANGE 00mA 0mA 00mA 00mA VOLTAGE RANGE Note. ~ VDC for LDD-00~700L/LW ; ~ 8VDC for LDD-00~700LS CURRENT ACCURACY (Typ.) ±% at VDC

Διαβάστε περισσότερα

Metal Oxide Varistors (MOV) Data Sheet

Metal Oxide Varistors (MOV) Data Sheet Φ SERIES Metal Oxide Varistors (MOV) Data Sheet Features Wide operating voltage (V ma ) range from 8V to 0V Fast responding to transient over-voltage Large absorbing transient energy capability Low clamping

Διαβάστε περισσότερα

Summary of Specifications

Summary of Specifications Snap Mount Large High CV High Ripple 85 C Temperature The series capacitors are the standard 85 C, large capacitance, snap-in capacitors from United Chemi-Con. The load life for the series is 2,000 hours

Διαβάστε περισσότερα

Analyse af skrå bjælke som UPE200

Analyse af skrå bjælke som UPE200 Analyse af skrå bjælke som UPE Project: Opgave i stål. Skrå bjælke som UPE Description: Snitkræfter, forskydningscentrum, samling Customer: LC FEDesign. StruSoft Designed: LC Date: 9 Page: / 4 Documentation

Διαβάστε περισσότερα

MasterSeries MasterPort Lite Sample Output

MasterSeries MasterPort Lite Sample Output MasterSeries MasterPort Lite Sample Output The following output is from the MasterPort Lite Design program. Contents 2 Frame Geometry and Loading 3 Tabular Results Output 4 Bending Moment and Diagrams

Διαβάστε περισσότερα

Project: Brimsmore, Ye... Job no: C08127 Designed By kristian Checked By Network W.12.5. Network Design Table for OUTFALL B.SWS

Project: Brimsmore, Ye... Job no: C08127 Designed By kristian Checked By Network W.12.5. Network Design Table for OUTFALL B.SWS Page 9 Network Design Table for OUTFALL B.SWS Length Fall Slope (1:X) Area (ha) T.E. (mins) DWF k (mm) HYD SECT DIA (mm) 21.004 38.358 0.192 199.8 0.389 0.00 0.0 0.600 o 900 21.005 24.228 0.121 200.2 0.051

Διαβάστε περισσότερα

DC-DC Constant Current Step-Down LED driver LDD-300L LDD-350L LDD-500L LDD-600L LDD-700L CURRENT RANGE

DC-DC Constant Current Step-Down LED driver LDD-300L LDD-350L LDD-500L LDD-600L LDD-700L CURRENT RANGE SPECIFICATION ORDER NO. LDD-00L LDD-0L LDD-00L LDD-00L LDD-700L CURRENT RANGE 00mA 0mA 00mA VOLTAGE RANGE Note. ~ VDC for LDD-00~700L/LW ; ~ 8VDC for LDD-00~700LS CURRENT ACCURACY (Typ.) ±% at VDC input

Διαβάστε περισσότερα

SAW FILTER - RF RF SAW FILTER

SAW FILTER - RF RF SAW FILTER FEATURES - Frequencies from 0MHz to 700MHz - Custom specifications available - Industry standard package configurations - Low-loss saw component - Low amplitude ripple - RoHS compliance - Electrostatic

Διαβάστε περισσότερα

ΕΠΙΤΟΙΧΑ ΡΑΦΙΑ WALL UNIT

ΕΠΙΤΟΙΧΑ ΡΑΦΙΑ WALL UNIT ΕΠΙΤΟΙΧΑ ΡΑΦΙΑ WALL UNIT # # NO ΠΕΡΙΓΡΑΦΗ ΠΡΟΪΟΝΤΟΣ PRODUCT DESCRIPTION 1 ΚΟΛΩΝΑ UPRIGHT ΠΟΔΑΡΙΚΟ BASELEG 3 ΠΛΑΤΗ BACK PANEL 4 ΒΡΑΧΙΟΝΑΣ BRACKET 5 ΡΑΦΙ SHELF 6 ΚΟΡΝΙΖΑ ΤΙΜΩΝ PRICE STRIP 7 ΜΠΑΖΟ PLINTH

Διαβάστε περισσότερα

Ε Κ Θ Ε Σ Η Δ Ο Κ Ι Μ Ω Ν

Ε Κ Θ Ε Σ Η Δ Ο Κ Ι Μ Ω Ν Αριθμός έκθεζης δοκιμών / Test report number Σειριακός αριθμός οργάνοσ / Instrument serial No T Πελάηης / Customer TOTAL Q Επγαζηήπια Διακπιβώζεων A.E. Κοπγιαλενίος 20, Τ.Κ. 11526 Αθήνα 20 Korgialeniou

Διαβάστε περισσότερα

PRB. Development of a New Bending Method PRB for High Strength Steel Tube and Application of High Strength Steel Tubes for Automotive Parts

PRB. Development of a New Bending Method PRB for High Strength Steel Tube and Application of High Strength Steel Tubes for Automotive Parts JFE No. 17 2007 8 p. 52 58 PRB Development of a New Bending Method PRB for High Strength Steel Tube and Application of High Strength Steel Tubes for Automotive Parts SUZUKI Koji TOYODA Shunsuke SATO Akio

Διαβάστε περισσότερα

SMD - Resistors. TThin Film Precision Chip Resistor - SMDT Series. Product : Size: 0201/0402/0603/0805/1206/1210/2010/2512. official distributor of

SMD - Resistors. TThin Film Precision Chip Resistor - SMDT Series. Product : Size: 0201/0402/0603/0805/1206/1210/2010/2512. official distributor of Product : TThin Film Precision Chip Resistor - SMDT Series Size: 0201/0402/0603/0805/1206/1210/2010/2512 official distributor of 1. Features -Advanced thin film technology -Very tight tolerance down to

Διαβάστε περισσότερα

MIL-DTL Micro-D Connector R04J Series Straight to PCB Type

MIL-DTL Micro-D Connector R04J Series Straight to PCB Type MIL-TL-353 Micro- onnector R4J Series Straight to P Type Specication MIL-TL-353 Micro- onnector nvironment temperature: ~ Vibration: Hz~Hz, 6m/s Random vibration: Power spectrum density.4g Hz root mean

Διαβάστε περισσότερα

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC Metallized Polyester Film Capacitor Type: ECQE(F) Non-inductive construction using metallized Polyester film with flame retardant epoxy resin coating Features Self-healing property Excellent electrical

Διαβάστε περισσότερα

Thin Film Chip Resistors

Thin Film Chip Resistors FETURES PRECISE TOLERNCE ND TEMPERTURE COEFFICIENT EI STNDRD CSE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERLE (Pb FREE TERMINTION FINISH) Type EI Size Power Rating at 70

Διαβάστε περισσότερα

Oil grooved pads PFO series

Oil grooved pads PFO series Oil grooved pads PFO series Connector type Top Side Pad with locking fitting PFO K φ20 ~ 40 P237 Barb connector PFOTK PFOYK Pad with spring fitting NAPFO S Stroke(mm) φ20 ~ 40 6,15,30 P239 Female screw

Διαβάστε περισσότερα

CL-SB SLIDE SWITCHES CL - SB B T FEATURES PART NUMBER DESIGNATION. RoHS compliant

CL-SB SLIDE SWITCHES CL - SB B T FEATURES PART NUMBER DESIGNATION. RoHS compliant CL-SB RoHS ompliant INTERNAL STRUCTURE 1 6 4 FEATURES Part name Cover Slider Housing Moving ontat Fixed ontat pin 5 Material Flammability Stainless steel (SUS 4) UL94V- Polyamido PPS UL94V- Polyphenylenesulphide

Διαβάστε περισσότερα

Magnet Wire General Engineering Data Bare and Film Insulated Copper and Aluminum

Magnet Wire General Engineering Data Bare and Film Insulated Copper and Aluminum Magnet Wire General Engineering Data Bare and Film Insulated Copper and Aluminum CABLE Magnet Wire General Engineering Data Bare and Film Insulated Copper and Aluminum Forward This booklet contains engineering

Διαβάστε περισσότερα

+85 C Snap-Mount Aluminum Electrolytic Capacitors. High Voltage Lead free Leads Rugged Design. -40 C to +85 C

+85 C Snap-Mount Aluminum Electrolytic Capacitors. High Voltage Lead free Leads Rugged Design. -40 C to +85 C +85 C Snap-Mount Capacitors FEATURES High ripple Current Ratings Large Case Size Selection Extended Life High Voltage Lead free Leads Rugged Design SPECIFICATIONS Tolerance ±20% at 120Hz, 20 C Operating

Διαβάστε περισσότερα

IES LM Report. Form. No. GLW-0001-F / 21 P.2 P.2 P.3 P.5 P.6 P.7

IES LM Report. Form. No. GLW-0001-F / 21 P.2 P.2 P.3 P.5 P.6 P.7 IES LM-80-08 Report ~ Copy ~ Description of LED Light Sources Tested Applicable Product Series IES LM-80-08 Report Requirement IES TM-21-11 Prediction IES LM-80-08 Test Summary IES LM-80-08 Test Result

Διαβάστε περισσότερα