News from NRQCD. Matthias Steinhauser TTP Karlsruhe Dresden, July 3,

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "News from NRQCD. Matthias Steinhauser TTP Karlsruhe Dresden, July 3,"

Transcript

1 News from NRQCD Matthias Steinhauser TTP Karlsruhe Dresden, July 3, 2014 KIT University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

2 Outline Introduction a 3 to 3 loops c v to 3 loops Γ(Υ(1S) l + l NNNLO positronium HFS Summary Matthias Steinhauser News from NRQCD 2

3 Physical quantities energy levels and wave function of bound states E q q [NNNLO: Penin,Steinhauser 02; Kiyo,Sumino 03; Beneke,Kiyo,Schuller 05] M Υ(1S) = 2m b + E b b(n = 1) m b E res = 2m t + E t t(n = 1)+δ Γt E res m t Υ sum rules m b [Penin,Pivovarov 98; Hoang 98; Melnikov,Yelkhovsky 98,..., Penin,Zerf 14] Γ(Υ(1S) l + l ), NNNLO σ(e + e NLO t t), NNNLO R NNLO LO NNNLO NNNLO c3 0 NNLL [Pineda,Signer 07; Hoang,Stahlhofen 13,... ] Comparison of pqcd and LQCD s [Beneke,Kiyo,Schuller 08] [Necco,Sommer 01,Pineda 02,Sumino 05,..., Brambilla,Vairo,Garcia i Tormo,Soto 09, Donnellan,Knechtli,Leder,Sommer 10] Matthias Steinhauser News from NRQCD 3

4 Framework: potential NRQCD scales: mass, m: hard momentum, mv: soft energy, mv 2 : ultrasoft Λ QCD potential quarks: ultrasoft gluons: { E p mv 2 p mv { E k mv 2 k mv 2 1 E p p 2 2m 1 E 2 k k 2 QCD NRQCD pnrqcd (potential non-relativistic QCD) integrate out hard scale m from QCD [Caswell,Lepage 86; integrate out all scales from NRQCD except potential quarks and ultrasoft gluons Bodwin,Braaten,Lepage 95] [Beneke,Smirnov 97; Pineda,Soto 98; Brambilla,Pineda,Soto,Vairo 00] alternative formulation: velocity NRQCD (vnrqcd) [Luke,Manohar,Rothstein 00; Hoang,Stewart 03] Matthias Steinhauser News from NRQCD 4

5 Effective Hamiltonian to N 3 LO [Gupta,Radford 81,...,Manohar 97,...,Kniehl,Penin,Smirnov,Steinhauser 02,...,Beneke,Kiyo,Schuller 13] ( p H = (2π) 3 2 δ( q) m p ) 4 + 4m 3 C c (α s )V C ( q )+C 1/m (α s )V 1/m ( q ) [ ] + πc Fα s (µ) m 2 C δ (α s )+C p (α s ) p 2 + p q 2 C s (α s ) S 2 Static potential: V C ( q ) = 4πC Fα s( q ) q 2 C c 3 loops 1/m potential: V 1/m ( q ) = π2 C F α 2 s ( q ) m q C 1/m 2 loops Breit potential: 1/m 2 C δ,p,s 1 loop q = p p q Matthias Steinhauser News from NRQCD 5

6 Static potential Matthias Steinhauser News from NRQCD 6

7 Static potential V C [ = 4πC Fα s ( q ) q 2 1 [Appelquist,Politzer 75,Susskind 77] Matthias Steinhauser News from NRQCD 7

8 Static potential V C [ = 4πC Fα s ( q ) 1+ α s( q ) q 2 4π a 1 [Appelquist,Politzer 75,Susskind 77] [Fischler 77;Biloire 80] Matthias Steinhauser News from NRQCD 7

9 Static potential V C [ = 4πC Fα s ( q ) 1+ α s( q ) q 2 4π a 1 + ( ) αs ( q ) 2 a 2 4π [Appelquist,Politzer 75,Susskind 77] [Fischler 77;Biloire 80] [Peter 96;Schröder 98] Matthias Steinhauser News from NRQCD 7

10 Static potential V C [ = 4πC Fα s ( q ) 1+ α ( ) s( q ) q 2 4π a αs ( q ) a 2 4π ( ) αs ( q ) 3 ) ] + (a 3 + 8π 2 3A µ2 C ln + 4π q 2 [Appelquist,Politzer 75,Susskind 77] [Fischler 77;Biloire 80] [Peter 96;Schröder 98] [Smirnov,Smirnov,Steinhauser 08; Smirnov,Smirnov,Steinhauser 09; Anzai,Kiyo,Sumino 09] Matthias Steinhauser News from NRQCD 7

11 Static potential V C [ = 4πC Fα s ( q ) 1+ α ( ) s( q ) q 2 4π a αs ( q ) a 2 4π ( ) αs ( q ) 3 ( ( )) ] 1 + a 3 + 8π 2 CA 3 µ2 + ln + 4π 3ǫ q 2 IR divergence [Appelquist,Dine,Muzinich 77] (in naive perturbation theory ) pnrqcd: ultra-soft contribution: (us)-gluons and (Q Q) bound states as dynamical degrees of freedom IR finite result [Brambilla,Pineda,Soto,Vairo 99; Kniehl,Penin,Smirnov,Steinhauser 02] Finite physical quantities: V QCD (r) = V pert QCD +δvus QCD static energy ( lattice) energy levels of (q q) system: E q q = n H n +δe US q q H.O. log-contributions to V: [Pineda,Soto 00; Brambilla,Garcia i Tormo,Soto,Vairo 07] Matthias Steinhauser News from NRQCD 7

12 Numerical results V C( q ) = 4πCFαs( q ) [ 1+ αs q 2 π ( nl) ( ) 2 αs ( ) nl n 2 l + π ( αs π ) 3 ( ) (1) nl n 2 l n 3 l + ] n l α (n l) s 1 loop 2 loop 3 loop charm bottom top static potential for other colour configurations: [Kniehl,Penin,Schroder,Smirnov,Steinhauser 05; Anzai,Kiyo,Sumino 10; Collet,Steinhauser 11; Prausa,Steinhauser 13; Anzai,Prausa,Smirnov,Smirnov,Steinhauser 13] Matthias Steinhauser News from NRQCD 8

13 Matthias Steinhauser News from NRQCD 9

14 c v to 3 loops QCD NRQCD j µ v = Qγ µ Q ji = φ σ i χ jv i = c v (µ) ji + dv(µ) φ σ i 6m D 2 χ+... Q 2 Z 2 Γ v = c v Z2 Z 1 v Γ v +... Γ v : Γ v 1 Z2 1 Z 2 : Zv = 1+O(α 2 s) [Melnikov,v.Ritbergen 00] [Marquard,Mihaila,Piclum,Steinhauser 07] Matthias Steinhauser News from NRQCD 10

15 c v c v = 1+ αs π c(1) v c (1) v c (2) v c (3),n l v c (3),n h v c (3) v [Källen, Sarby 55] + ( α s ) 2 (2) π c v [Czarnecki,Melnikov 97; Beneke,Signer,Smirnov 97] [Marquard,Piclum,Seidel,Steinhauser 06] [Marquard,Piclum,Seidel,Steinhauser 08] [Marquard,Piclum,Seidel,Steinhauser 14] + ( α s ) 3 (3) π c v +O(αs) 4 (a) (b) (c) (d) (e) (f) (g) (h) massive vertices on-shell quarks: q 2 1 = q2 2 = M2 Q (q 1 + q 2 ) 2 = 4M 2 Q (a) (b) (c) (d) Matthias Steinhauser News from NRQCD 11

16 e + e t threshold NNLO LO NNNLO R 0.8 NNNLO c NLO 0.2 Only c (3),n l v s included [Beneke,Kiyo,Schuller 08] Matthias Steinhauser News from NRQCD 12

17 Some technical details... automatic generation of Feynman diagrams, apply projector, reduce scalar products in numerator,... (many) scalar integrals reduction to 100 master integrals withcrusher [Marquard,Seidel] compute MIs withfiesta [Smirnov,Tentyukov 08; Smirnov,Smirnov,Tentyukov 11; Smirnov 13] q1 q2 ( = e3ǫγ E m 4 Q ( ) µ 2 3ǫ m 2 Q (3) ǫ (1) ǫ (2) (4)ǫ+O(ǫ 2 ) simpler integrals also known analytically add uncertainties of individual integrals in quadrature multiply final uncertainty by factor 5 ( 5σ ) ) Matthias Steinhauser News from NRQCD 13

18 Checks finiteness n l contribution gauge parameter independence (ξ 1 ) change basis of MIs coefficient default basis alternative basis [CF 3] c FFF 36.55(0.11) 36.61(2.93) [CF 2C A] c FFA (0.17) (2.91) [C F CA 2] c FAA 97.81(0.08) 97.76(2.05) c (3) v (n l = 4) (0.4) 1621(23) c (3) v (n l = 5) (0.4) 1507(23) (factor 5 not yet included) Matthias Steinhauser News from NRQCD 14

19 Z v ( ) α (nl) 2 ( s (µ) CFπ Z 2 1 v = 1+ π ǫ 12 CF + 1 ) ( ) α (nl) 3 8 CA s (µ) + C Fπ 2 π { [ ( C F 144ǫ ln 2+ 5 ) ] 1 48 Lµ ǫ [ ( C F C A 864ǫ ) ] 5 1 ln Lµ ǫ [ + C 2 A 1 ( 2 16ǫ ) ] 1 1 ln Lµ ǫ [ ( 1 + Tn l C F 54ǫ 25 ) ( 1 + C 2 A 324ǫ 36ǫ 37 )] 2 432ǫ } + C F Tn h 1 60ǫ +O(α 4 s) analytic result from [Beneke,Signer,Smirnov 98; Kniehl,Penin,Smirnov,Steinhauser 02; Marquard,Piclum,Seidel,Steinhauser 06; Beneke,Kiyo,Penin 07] (numerical) agreement better than 1% L µ = lnµ 2 /m 2 Z 2 Γ v = c v Z2 Z 1 v Γ v Matthias Steinhauser News from NRQCD 15

20 Results for c v [Marquard,Piclum,Seidel,Steinhauser 14] c v (µ = m Q ) = α s π +[ n l] ( αs ) 2 π + [ ] ( 2091(2) n l 0.82nl 2 α s π + singlet terms ) 3 MS scheme; µ = m Q large corrections singlet terms: small ( 3% of c (2) ) at 2 loops (for axial-vector, scalar, pseudo-scalar current) [Kniehl,Onishchenko,Piclum,Steinhauser 06] Matthias Steinhauser News from NRQCD 16

21 Application: height of σ(e + e t t) 1.4 LO, NLO, NNLO R s (GeV) [Hoang,Beneke,Melnikov,Nagano,Ota,Penin,Pivovarov,Signer,Smirnov,Sumino,Teubner,Yakovlev,Yelkhovsky 00] Matthias Steinhauser News from NRQCD 17

22 Application: height of σ(e + e t t) ( q 2 g µν + q µ q ν ) Π(q 2 ) = i dx e iqx 0 Tj µ (x)j ν(0) 0 [ Π(q 2 ) E En = Nc Z n mQ 2 E Z ( ) ] n (E+i0) t = cv 2 E 1 m t c v cv + dv ψ 3 1 (0) 2 Z t (µ)/z t LO(µ S ) NNLO NNNLO NNNLO (ferm.) NLO LO µ (GeV) Matthias Steinhauser News from NRQCD 17

23 Γ(Υ(1S) l + l ) Matthias Steinhauser News from NRQCD 18

24 Γ(Υ(1S) l + l ) Υ(1S) meson: simplest heavy quark bound state Γ(Υ(1S) l + l ) exp = 1.340(18) kev Γ(Υ(1S) l + l ) = 4πα2 9m 2 b ( ψ 1 (0) 2 c v [c v E 1 cv m b + dv 3 ) +... ] d v : matching constant of sub-leading b b current ψ 1 (0) wave function of the (b b) system ψ LO 1 (0) 2 = 8m3 b α3 s 27π M Υ(1S) = 2m b + E 1 E p,lo 1 = (4m b αs)/9 2 many building blocks necessary; most recent ones: c v [Marquard,Piclum,Seidel,Steinhauser 14] ψ 1 (0): ultrasoft contribution [Beneke,Kiyo,Penin 07] ψ 1 (0): single- and double-potential insertions [Beneke,Kiyo,Schuller 08 13] O(ǫ) term of 2-loop 1/(m b r 2 ) pnrqcd potential [Peinin,Smirnov,Steinhauser 13] NLL: [Pineda 01]; NNLL-approx: [Pineda,Signer 07];... Matthias Steinhauser News from NRQCD 19

25 Result Γ(Υ(1S) l + l ) pole = 2 5 α 2 α 3 [ s mb ( 1+α s ( L)+ α s lnαs L L 2) +α 3 s ( a b2ǫ cf 134.8(1) cg lnα s ln 2 α s +( lnα s) L L L 3) ] +O(α 4 s) µ=3.5 GeV = 2 5 α 2 α 3 s mb 3 5 [ αs α 2 s +( a b2ǫ cf 134.8(1) cg ) α 3 s +O(α 4 s) ] = 2 5 α 2 α 3 s mpole b 3 5 [ ] = [1.04±0.04(α s) (µ)] kev 2 5 α 2 α 3 s = mps b [ ] 3 5 = [1.08±0.05(α s) (µ)] kev L = ln[µ/(m b C F α s )], C F = 4/3 Matthias Steinhauser News from NRQCD 20

26 Γ(Υ(1S) l + l ): µ dependence PS Matthias Steinhauser News from NRQCD 21

27 Γ(Υ(1S) l + l ): µ dependence PS Matthias Steinhauser News from NRQCD 21

28 Γ(Υ(1S) l + l ): µ dependence PS Matthias Steinhauser News from NRQCD 21

29 Γ(Υ(1S) l + l ): µ dependence PS NNNLO NNLO NLO LO Matthias Steinhauser News from NRQCD 21

30 Γ(Υ(1S) l + l ): µ dependence PS NNNLO NNLO NLO LO Matthias Steinhauser News from NRQCD 21

31 Γ(Υ(1S) l + l ): α s dependence PS NNLO NNNLO NLO LO Matthias Steinhauser News from NRQCD 22

32 Γ(Υ(1S) l + l ): PS vs. OS PS OS NNNLO 1 NNNLO NNLO 0.6 NNLO NLO LO NLO LO PS NNLO NNNLO NLO LO OS NNLO NNNLO NLO LO Matthias Steinhauser News from NRQCD 23

33 Result Γ(Υ(1S) l + l ) pole = [1.04±0.04(α s ) (µ)] kev Γ(Υ(1S) l + l ) PS = [1.08±0.05(α s ) (µ)] kev Γ(Υ(1S) l + l ) exp = [1.340±0.018] kev third-order perturbative result is 30% too low possible explanation: sizeable non-perturbative contribution Matthias Steinhauser News from NRQCD 24

34 Non-perturbative contribution 1. δ np ψ 1 (0) 2 = ψ LO 1 (0) π 2 K [Leutwyler 81,Voloshin 82] K = αs π G2 m 4 b (αscf)6 αs π G2 = GeV 4 δ np Γ ll (Υ(1S)) = 1.67 pole /2.20 PS kev? value of αs π G2? scale of α s? dimension-6 condensate contribution [Pineda 97] Matthias Steinhauser News from NRQCD 25

35 Non-perturbative contribution 1. δ np ψ 1 (0) 2 = ψ LO 1 (0) π 2 K [Leutwyler 81,Voloshin 82] K = αs π G2 m 4 b (αscf)6 2. M Υ(1S) = 2m b + E p π2 425 m b(α s C F ) 2 K use PS scheme perturbation theory converges [Beneke,Kiyo,Schuller 05] charm effects [Hoang 00] δ np Γ ll (Υ(1S)) = 4α2 α s δm np Υ(1S) [ (α s)±0.42(m b ) (µ)±0.12(m c)] kev? m MS b = GeV GeV δ np Γ ll (Υ(1S)) 0.3 kev Matthias Steinhauser News from NRQCD 25

36 Non-perturbative contribution 1. δ np ψ 1 (0) 2 = ψ LO 1 (0) π 2 K [Leutwyler 81,Voloshin 82] K = αs π G2 m 4 b (αscf)6 2. M Υ(1S) = 2m b + E p π2 425 m b(α s C F ) 2 K use PS scheme perturbation theory converges [Beneke,Kiyo,Schuller 05] charm effects [Hoang 00] δ np Γ ll (Υ(1S)) = 4α2 α s δm np Υ(1S) [ (α s)±0.42(m b ) (µ)±0.12(m c)] kev? m MS b = GeV GeV δ np Γ ll (Υ(1S)) 0.3 kev Summary: perturbation theory: solid prediction non-perturbative contribution: unclear Matthias Steinhauser News from NRQCD 25

37 Matthias Steinhauser News from NRQCD 26

38 Positronium hyperfine splitting ν = E (e + e ) E (e + e ) precise test of QED Experiment: (1 6) GHz [Mills et al ] (74) GHz [Ritter et al. 84] 2.7σ (16) stat. (13) syst. GHz [Ishida et al. 13] ( ) Zeeman HFS 1+4q2 1 q B non-thermalized positronium? material effects? non-uniform B field?... Matthias Steinhauser News from NRQCD 27

39 Comparison experiment theory from [Ishida et al. 13] Matthias Steinhauser News from NRQCD 28

40 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders { ν = ν LO 1 α ( 32 π ln 2 ( ) α 2 [ π ] 56 ζ(3) 3 2 ( ) α 3 } + D π ( π2 + α 3 π ln2 α+ ) 5 14 α2 lnα π2 ) ( ln 2 ln 2 ) α 3 π lnα Matthias Steinhauser News from NRQCD 29

41 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] ζ(3) 3 2 ( ) α 3 } + D π ( ) 7 ln α2 lnα ( π2 + α 3 π ln2 α π2 ) ( ln 2 ln 2 ) α 3 π lnα [Pirenne 47] Matthias Steinhauser News from NRQCD 29

42 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] ζ(3) 3 2 ( ) α 3 } + D π ( ) 7 ln α2 lnα ( π2 + α 3 π ln2 α π2 ) ( ln 2 ln 2 ) α 3 π lnα [Brodsky,Erickson 66;... ; Hoang,Labelle,Zebarjad 97; Czanecki,Melnikov,Yelkhovsky 99] Matthias Steinhauser News from NRQCD 29

43 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] ζ(3) 3 2 ( ) α 3 } + D π ( ) 7 ln α2 lnα ( π2 + α 3 π ln2 α π2 ) ( ln 2 ln 2 ) α 3 π lnα [Karshenboim 93] Matthias Steinhauser News from NRQCD 29

44 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] ζ(3) 3 2 ( ) α 3 } + D π ( ) 7 ln α2 lnα ( π2 + α 3 π ln2 α π2 ) ( ln 2 ln 2 ) α 3 π lnα [Kniehl,Penin 00; Hill 01; Melnikov,Yelkhovsky 01] Matthias Steinhauser News from NRQCD 29

45 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π ( ) α 2 [ 1367 π ] ( ) 7 ln α2 lnα ( π ) 84 π2 ln ζ(3) 3 ( α 3 2 π ln2 α ) α 3 7 ln 2 π lnα ( ) α 3 } ( ) α 3 + D = (41) GHz+ ν LO D π π error estimate: D from muonium atom [Nio,Kinoshita 97] Matthias Steinhauser News from NRQCD 29

46 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders { ν = ν LO 1 α ( 32 π ln 2 ( ) α 2 [ π ] 56 ζ(3) 3 2 ( ) α 3 } + D π ( π2 + α 3 π ln2 α+ ) 5 14 α2 lnα π2 ) ( ln 2 ln 2 ) α 3 π lnα [Adkins,Fell 14] light-by-light 2γ exchange contribution to D: tiny Matthias Steinhauser News from NRQCD 29

47 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] ζ(3) 3 2 ( ) α 3 } + D π m 2 e ( ) 7 ln α2 lnα ( π2 + α 3 π ln2 α+ aim: 1-γ annihilation contribution to D at O(α 6 m e ): 1-γ annihilation contribution 32% non-annihilation 47% π2 ) ( ln 2 ln 2 ) α 3 π lnα Matthias Steinhauser News from NRQCD 29

48 Dann 1 γ : 1-γ annihilation contribution pnrqed dimensional regularization QED part of c v Π γγ (q 2 = 4m 2 e) computed up to 3 loops...+δ us π c QED v δ us : ultra-soft contribution [Marcu 11]; QCD: [Beneke,Kiyo,Penin 07] Matthias Steinhauser News from NRQCD 30

49 D 1 γ ann : result D 1 γ ann = 84.8±0.5 ν th = GHz = (22) GHz error estimate: size of the evaluated 1-γ annihilation contribution moves closer to [Ishida et al. 13] ν exp = (16) stat. (13) syst. GHz Matthias Steinhauser News from NRQCD 31

50 D 1 γ ann : result D 1 γ ann = 84.8±0.5 ν th = GHz = (22) GHz error estimate: size of the evaluated 1-γ annihilation contribution moves closer to [Ishida et al. 13] ν exp = (16) stat. (13) syst. GHz 95% from ultra-soft contribution: D 1 γ,us ann 3π2 7 δus o Assumption: also non-annihilation correction is dominated by ultra-soft contribution: D 1 γ,us sct 4π2 7 δus o 106 D tot 191 ν th = GHz agreement within 1σ with [Ishida et al. 13] Matthias Steinhauser News from NRQCD 31

51 Conclusions a 3, c v to 3 loops Γ(Υ(1S) l + l ) to NNNLO positronium HFS: 1 γ annihilation to O(α 7 m e ) Coming soon: e + e t t at NNNLO Matthias Steinhauser News from NRQCD 32

Large β 0 corrections to the energy levels and wave function at N 3 LO

Large β 0 corrections to the energy levels and wave function at N 3 LO Large β corrections to the energy levels and wave function at N LO Matthias Steinhauser, University of Karlsruhe LCWS5, March 5 [In collaboration with A. Penin and V. Smirnov] M. Steinhauser, LCWS5, March

Διαβάστε περισσότερα

The static quark potential to three loops in perturbation theory

The static quark potential to three loops in perturbation theory The static quark potential to three loops in perturbation theory Alexander V. Smirnov a, Vladimir A. Smirnov b, Matthias Steinhauser c a Scientific Research Computing Center of Moscow State University,

Διαβάστε περισσότερα

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample

Διαβάστε περισσότερα

Higher order corrections to H. production. Nikolaos Kidonakis. production channels. Higher-order corrections. Charged Higgs production at the LHC

Higher order corrections to H. production. Nikolaos Kidonakis. production channels. Higher-order corrections. Charged Higgs production at the LHC igher order correcions o producion Nikolaos Kidonakis (Kennesaw Sae Universiy) producion channels igher-order correcions Charged is producion a he LC N. Kidonakis, c arged 008, Uppsala, Sepember 008 Charged

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Theory predictions for the muon (g 2): Status and Perspectives

Theory predictions for the muon (g 2): Status and Perspectives Theory predictions for the muon (g 2): Status and Perspectives Matthias Steinhauser Mass 2018, Odense, May 29 June 1, 2018 TTP KARLSRUHE KIT University of the State of Baden-Wuerttemberg and National Laboratory

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

A manifestly scale-invariant regularization and quantum effective operators

A manifestly scale-invariant regularization and quantum effective operators A manifestly scale-invariant regularization and quantum effective operators D. Ghilencea Corfu Summer Institute, Greece - 8 Sep 2015 E-print: arxiv:1508.00595 sponsored by RRC grant - project PN-II-ID-PCE-2011-3-0607

Διαβάστε περισσότερα

O(a 2 ) Corrections to the Propagator and Bilinears of Wilson / Clover Fermions

O(a 2 ) Corrections to the Propagator and Bilinears of Wilson / Clover Fermions O(a 2 Corrections to the ropagator and Bilinears of Wilson / Clover Fermions Martha Constantinou Haris anagopoulos Fotos Stylianou hysics Department, University of Cyprus In collaboration with members

Διαβάστε περισσότερα

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28 L. F avart I.I.H.E. Université Libre de Bruxelles H Collaboration HERA at DESY CLAS Workshop Genova - 4-8 th of Feb. 9 CLAS workshop Feb. 9 - L.Favart p./8 e p Integrated luminosity 96- + 3-7 (high energy)

Διαβάστε περισσότερα

Hadronic Tau Decays at BaBar

Hadronic Tau Decays at BaBar Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Lecture 21: Scattering and FGR

Lecture 21: Scattering and FGR ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Wavelet based matrix compression for boundary integral equations on complex geometries

Wavelet based matrix compression for boundary integral equations on complex geometries 1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Low Frequency Plasma Conductivity in the Average-Atom Approximation

Low Frequency Plasma Conductivity in the Average-Atom Approximation Low Frequency Plasma Conductivity in the Average-Atom Approximation Walter Johnson & Michael Kuchiev Physical Review E 78, 026401 (2008) 1. Review of Average-Atom Linear Response Theory 2. Demonstration

Διαβάστε περισσότερα

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling 1th AIAA/CEAS Aeroacoustics Conference, May 006 interactions Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Interaction M. Glesser 1, A. Billon 1, V. Valeau, and A. Sakout 1 mglesser@univ-lr.fr

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

The Spiral of Theodorus, Numerical Analysis, and Special Functions

The Spiral of Theodorus, Numerical Analysis, and Special Functions Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6

Διαβάστε περισσότερα

AdS black disk model for small-x DIS

AdS black disk model for small-x DIS AdS black disk model for small-x DIS Miguel S. Costa Faculdade de Ciências da Universidade do Porto 0911.0043 [hep-th], 1001.1157 [hep-ph] Work with. Cornalba and J. Penedones Rencontres de Moriond, March

Διαβάστε περισσότερα

Higher Derivative Gravity Theories

Higher Derivative Gravity Theories Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)

Διαβάστε περισσότερα

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.

Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1. Page -1-10 8 10 7 10 6 10 5 10 4 334 ( Th) Counts/Channel 10 3 10 2 10 1 49 ( Th)/ 50 ( Th)/ 50 ( Fr) 0 100 200 300 400 500 600 700 800 900 1000 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 Channel

Διαβάστε περισσότερα

Aluminum Electrolytic Capacitors (Large Can Type)

Aluminum Electrolytic Capacitors (Large Can Type) Aluminum Electrolytic Capacitors (Large Can Type) Snap-In, 85 C TS-U ECE-S (U) Series: TS-U Features General purpose Wide CV value range (33 ~ 47,000 µf/16 4V) Various case sizes Top vent construction

Διαβάστε περισσότερα

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Andreas Peters Regensburg Universtity

Andreas Peters Regensburg Universtity Pion-Nucleon Light-Cone Distribution Amplitudes Exclusive Reactions 007 May 1-4, 007, Jefferson Laboratory Newport News, Virginia, USA Andreas Peters Regensburg Universtity in collaboration with V.Braun,

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα

Aluminum Electrolytic Capacitors

Aluminum Electrolytic Capacitors Aluminum Electrolytic Capacitors Snap-In, Mini., 105 C, High Ripple APS TS-NH ECE-S (G) Series: TS-NH Features Long life: 105 C 2,000 hours; high ripple current handling ability Wide CV value range (47

Διαβάστε περισσότερα

A NLO Calculation of pqcd: Total Cross Section of P P W + + X. C. P. Yuan. Michigan State University CTEQ Summer School, June 2002

A NLO Calculation of pqcd: Total Cross Section of P P W + + X. C. P. Yuan. Michigan State University CTEQ Summer School, June 2002 A NLO Calculation of pqcd: Total Cross Section of P P W X C. P. Yuan Michigan State University CTEQ Summer School, June Outline. Parton Model Born Cross Section. Factorization Theorem How to organize a

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Non-Gaussianity from Lifshitz Scalar

Non-Gaussianity from Lifshitz Scalar COSMO/CosPA 200 September 27, 200 Non-Gaussianity from Lifshitz Scalar Takeshi Kobayashi (Tokyo U.) based on: arxiv:008.406 with Keisuke Izumi, Shinji Mukohyama Lifshitz scalars with z=3 obtain super-horizon,

Διαβάστε περισσότερα

Hartree-Fock Theory. Solving electronic structure problem on computers

Hartree-Fock Theory. Solving electronic structure problem on computers Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli

Διαβάστε περισσότερα

Solution of the NLO BFKL Equation and γ γ cross-section at NLO

Solution of the NLO BFKL Equation and γ γ cross-section at NLO Solution of the NLO BFKL Equation and γ γ cross-section at NLO Giovanni Antonio Chirilli The Ohio State University Santa Fe - NM 13 May, 014 G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

D-term Dynamical SUSY Breaking

D-term Dynamical SUSY Breaking D-term Dynamical SUSY Breaking Nobuhito Maru (Keio University) with H. Itoyama (Osaka City University) arxiv: 1109.76 [hep-ph] 7/6/01 @Y ITP workshop on Field Theory & String Theory Introduction SUPERSYMMETRY

Διαβάστε περισσότερα

Renormalization in Field Theories

Renormalization in Field Theories UPPSALA UNIVERSITY PROJECT 1 HP Renormalization in Field Theories Author: Alexander Söderberg Supervisors: Lisa Freyhult March 3, 15 Abstract: Several different approaches to renormalization are studied.

Διαβάστε περισσότερα

Discretization of Generalized Convection-Diffusion

Discretization of Generalized Convection-Diffusion Discretization of Generalized Convection-Diffusion H. Heumann R. Hiptmair Seminar für Angewandte Mathematik ETH Zürich Colloque Numérique Suisse / Schweizer Numerik Kolloquium 8 Generalized Convection-Diffusion

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density 5..29 Radek Wojtak Nicolaus Copernicus Astronomical Center collaboration: Ewa Łokas, Gary Mamon, Stefan

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Queensland University of Technology Transport Data Analysis and Modeling Methodologies Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

UV fixed-point structure of the 3d Thirring model

UV fixed-point structure of the 3d Thirring model UV fixed-point structure of the 3d Thirring model arxiv:1006.3747 [hep-th] (PRD accepted) Lukas Janssen in collaboration with Holger Gies Friedrich-Schiller-Universität Jena Theoretisch-Physikalisches

Διαβάστε περισσότερα

Lukasz STAWARZ. on Behalf of the Fermi LAT Collaboration.

Lukasz STAWARZ. on Behalf of the Fermi LAT Collaboration. e-mail: kataoka.jun@waseda.jp 169 8555 3 4 1 739 8526 1 3 1 e-mail: fukazawa@hep01.hep1.hiroshima.u.ac.jp Lukasz STAWARZ 252 5210 3 1 1 e-mail: stawarz@astro.isas.jaxa.jp e-mail: rsato@astro.isas.jaxa.jp

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Surface Mount Aluminum Electrolytic Capacitors

Surface Mount Aluminum Electrolytic Capacitors FEATURES CYLINDRICAL V-CHIP CONSTRUCTION LOW COST, GENERAL PURPOSE, 2000 HOURS AT 85 O C NEW EXPANDED CV RANGE (up to 6800µF) ANTI-SOLVENT (2 MINUTES) DESIGNED FOR AUTOMATIC MOUNTING AND REFLOW SOLDERING

Διαβάστε περισσότερα

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater. Low Impedance, For Switching Power Supplies Low impedance and high reliability withstanding 5000 hours load life at +05 C (3000 / 2000 hours for smaller case sizes as specified below). Capacitance ranges

Διαβάστε περισσότερα

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009 Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Μονάδες Energy [E] ev, kev, MeV, GeV, TeV, PeV, 10 0, 10 3, 10 6, 10 9, 10 12, 10 15 1eV = 1.6 10 19 J ev είναι πιο χρήσιμη στη φυσική

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

SPONTANEOUS GENERATION OF GEOMETRY IN 4D

SPONTANEOUS GENERATION OF GEOMETRY IN 4D SPONTANEOUS GENERATION OF GEOMETRY IN 4D Dani Puigdomènch Dual year Russia-Spain: Particle Physics, Nuclear Physics and Astroparticle Physics 10/11/11 Based on arxiv: 1004.3664 and wor on progress. by

Διαβάστε περισσότερα

Computing the Gradient

Computing the Gradient FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

Dark matter from Dark Energy-Baryonic Matter Couplings

Dark matter from Dark Energy-Baryonic Matter Couplings Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010

Διαβάστε περισσότερα

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction () () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract

Διαβάστε περισσότερα

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR Dieter Van den Bleeken arxiv.org/submit/1828684 Supported by Bog azic i University Research Fund Grant nr 17B03P1 SCGP 10th March 2017

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II 8.324 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 200 Lecture 2 3: GENERAL ASPECTS OF QUANTUM ELECTRODYNAMICS 3.: RENORMALIZED LAGRANGIAN Consider the Lagrangian

Διαβάστε περισσότερα

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Surface Mount Multilayer Chip Capacitors for Commodity Solutions Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF

Διαβάστε περισσότερα

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry 5th Titan Workshop at Kauai, Hawaii April 11-14, 2011 Seol Kim Outer Solar System Model Ices with

Διαβάστε περισσότερα

Προλεγόµενα. Σπύρος Ευστ. Τζαµαρίας

Προλεγόµενα. Σπύρος Ευστ. Τζαµαρίας Προλεγόµενα Σπύρος Ευστ. Τζαµαρίας 2016 1 S.I. UNITS: kg m s Natural Units δεν είναι ιδιαίτερα «βολικές» για τους υπολογισµούς µας αντί αυτών χρησιµοποιούµε Natural Units που βασίζονται σε θεµελιώδεις

Διαβάστε περισσότερα

/T interactions and chiral symmetry

/T interactions and chiral symmetry /T interactions and chiral symmetry Emanuele Mereghetti Los Alamos National Lab January 3th, 015 ACFI Workshop, Amherst Introduction M T BSM probing CP with EDM entails physics at very different scales

Διαβάστε περισσότερα

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity 1.- Introduction. 2.- Higgs physics 3.- hhh at one loop level in SM 4.- Littlest Higgs Model with T-parity 5.- hhh at one loop in LHM with T-parity 7.- Conclusions Higgs Decay modes at LHC Direct measurement

Διαβάστε περισσότερα

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 An experimental and theoretical study of the gas phase kinetics of atomic chlorine

Διαβάστε περισσότερα

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS FEATURE Operating Temperature: -55 ~ +155 C 3 Watts power rating in 1 Watt size, 1225 package High purity alumina substrate for high power dissipation Long side terminations with higher power rating PART

Διαβάστε περισσότερα

Structure constants of twist-2 light-ray operators in the triple Regge limit

Structure constants of twist-2 light-ray operators in the triple Regge limit Structure constants of twist- light-ray operators in the triple Regge limit I. Balitsky JLAB & ODU XV Non-perturbative QCD 13 June 018 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Chap. 6 Pushdown Automata

Chap. 6 Pushdown Automata Chap. 6 Pushdown Automata 6.1 Definition of Pushdown Automata Example 6.1 L = {wcw R w (0+1) * } P c 0P0 1P1 1. Start at state q 0, push input symbol onto stack, and stay in q 0. 2. If input symbol is

Διαβάστε περισσότερα

Œ. Ì,,.. Ê Ï,,,. ˆ Ò±μ,,,. ³ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Š Ì ± Í μ ²Ó Ò Ê É É ³. ²Ó-, ²³ - É, Š Ì É

Œ. Ì,,.. Ê Ï,,,. ˆ Ò±μ,,,. ³ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Š Ì ± Í μ ²Ó Ò Ê É É ³. ²Ó-, ²³ - É, Š Ì É Ó³ Ÿ. 3.., º 6(83).. 89Ä83 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ˆ Š ƒ ˆŸ ƒ ˆ Šˆ ˆ ˆŸ Œ. Ì,,.. Ê Ï,,,. ˆ Ò±μ,,,. ³ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Š Ì ± Í μ ²Ó Ò Ê É É ³. ²Ó-, ²³ - É, Š Ì É ² É Î ± ÒÎ ² Ò Ô ² É μ μ É ² É μ μ μ ÉμÖ

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Moments of Structure Functions in Full QCD

Moments of Structure Functions in Full QCD Moments of Structure Functions in Full QCD John W. Negele Lattice 2000 Collaborators MIT Dmitri Dolgov Stefano Capitani Richard Brower Andrew Pochinsky Jefferson Lab Robert Edwards Wuppertal SESAM Klaus

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

Supporting Information

Supporting Information SUPPORTING INFORMATION FOR: Trialkylstibine complexes of boron, aluminium, gallium and indium trihalides: synthesis, properties and bonding Victoria K. Greenacre, William Levason and Gillian Reid Chemistry,

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Supplementary Appendix

Supplementary Appendix Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table

Διαβάστε περισσότερα

Eulerian Simulation of Large Deformations

Eulerian Simulation of Large Deformations Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications

Διαβάστε περισσότερα

NLO BFKL and anomalous dimensions of light-ray operators

NLO BFKL and anomalous dimensions of light-ray operators NLO BFKL and anomalous dimensions of light-ray operators I. Balitsky JLAB & ODU (Non)Perturbative QFT 13 June 013 (Non)Perturbative QFT 13 June 013 1 / Outline Light-ray operators. Regge limit in the coordinate

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα