News from NRQCD. Matthias Steinhauser TTP Karlsruhe Dresden, July 3,
|
|
- Κύμα Ακρίδας
- 6 χρόνια πριν
- Προβολές:
Transcript
1 News from NRQCD Matthias Steinhauser TTP Karlsruhe Dresden, July 3, 2014 KIT University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association
2 Outline Introduction a 3 to 3 loops c v to 3 loops Γ(Υ(1S) l + l NNNLO positronium HFS Summary Matthias Steinhauser News from NRQCD 2
3 Physical quantities energy levels and wave function of bound states E q q [NNNLO: Penin,Steinhauser 02; Kiyo,Sumino 03; Beneke,Kiyo,Schuller 05] M Υ(1S) = 2m b + E b b(n = 1) m b E res = 2m t + E t t(n = 1)+δ Γt E res m t Υ sum rules m b [Penin,Pivovarov 98; Hoang 98; Melnikov,Yelkhovsky 98,..., Penin,Zerf 14] Γ(Υ(1S) l + l ), NNNLO σ(e + e NLO t t), NNNLO R NNLO LO NNNLO NNNLO c3 0 NNLL [Pineda,Signer 07; Hoang,Stahlhofen 13,... ] Comparison of pqcd and LQCD s [Beneke,Kiyo,Schuller 08] [Necco,Sommer 01,Pineda 02,Sumino 05,..., Brambilla,Vairo,Garcia i Tormo,Soto 09, Donnellan,Knechtli,Leder,Sommer 10] Matthias Steinhauser News from NRQCD 3
4 Framework: potential NRQCD scales: mass, m: hard momentum, mv: soft energy, mv 2 : ultrasoft Λ QCD potential quarks: ultrasoft gluons: { E p mv 2 p mv { E k mv 2 k mv 2 1 E p p 2 2m 1 E 2 k k 2 QCD NRQCD pnrqcd (potential non-relativistic QCD) integrate out hard scale m from QCD [Caswell,Lepage 86; integrate out all scales from NRQCD except potential quarks and ultrasoft gluons Bodwin,Braaten,Lepage 95] [Beneke,Smirnov 97; Pineda,Soto 98; Brambilla,Pineda,Soto,Vairo 00] alternative formulation: velocity NRQCD (vnrqcd) [Luke,Manohar,Rothstein 00; Hoang,Stewart 03] Matthias Steinhauser News from NRQCD 4
5 Effective Hamiltonian to N 3 LO [Gupta,Radford 81,...,Manohar 97,...,Kniehl,Penin,Smirnov,Steinhauser 02,...,Beneke,Kiyo,Schuller 13] ( p H = (2π) 3 2 δ( q) m p ) 4 + 4m 3 C c (α s )V C ( q )+C 1/m (α s )V 1/m ( q ) [ ] + πc Fα s (µ) m 2 C δ (α s )+C p (α s ) p 2 + p q 2 C s (α s ) S 2 Static potential: V C ( q ) = 4πC Fα s( q ) q 2 C c 3 loops 1/m potential: V 1/m ( q ) = π2 C F α 2 s ( q ) m q C 1/m 2 loops Breit potential: 1/m 2 C δ,p,s 1 loop q = p p q Matthias Steinhauser News from NRQCD 5
6 Static potential Matthias Steinhauser News from NRQCD 6
7 Static potential V C [ = 4πC Fα s ( q ) q 2 1 [Appelquist,Politzer 75,Susskind 77] Matthias Steinhauser News from NRQCD 7
8 Static potential V C [ = 4πC Fα s ( q ) 1+ α s( q ) q 2 4π a 1 [Appelquist,Politzer 75,Susskind 77] [Fischler 77;Biloire 80] Matthias Steinhauser News from NRQCD 7
9 Static potential V C [ = 4πC Fα s ( q ) 1+ α s( q ) q 2 4π a 1 + ( ) αs ( q ) 2 a 2 4π [Appelquist,Politzer 75,Susskind 77] [Fischler 77;Biloire 80] [Peter 96;Schröder 98] Matthias Steinhauser News from NRQCD 7
10 Static potential V C [ = 4πC Fα s ( q ) 1+ α ( ) s( q ) q 2 4π a αs ( q ) a 2 4π ( ) αs ( q ) 3 ) ] + (a 3 + 8π 2 3A µ2 C ln + 4π q 2 [Appelquist,Politzer 75,Susskind 77] [Fischler 77;Biloire 80] [Peter 96;Schröder 98] [Smirnov,Smirnov,Steinhauser 08; Smirnov,Smirnov,Steinhauser 09; Anzai,Kiyo,Sumino 09] Matthias Steinhauser News from NRQCD 7
11 Static potential V C [ = 4πC Fα s ( q ) 1+ α ( ) s( q ) q 2 4π a αs ( q ) a 2 4π ( ) αs ( q ) 3 ( ( )) ] 1 + a 3 + 8π 2 CA 3 µ2 + ln + 4π 3ǫ q 2 IR divergence [Appelquist,Dine,Muzinich 77] (in naive perturbation theory ) pnrqcd: ultra-soft contribution: (us)-gluons and (Q Q) bound states as dynamical degrees of freedom IR finite result [Brambilla,Pineda,Soto,Vairo 99; Kniehl,Penin,Smirnov,Steinhauser 02] Finite physical quantities: V QCD (r) = V pert QCD +δvus QCD static energy ( lattice) energy levels of (q q) system: E q q = n H n +δe US q q H.O. log-contributions to V: [Pineda,Soto 00; Brambilla,Garcia i Tormo,Soto,Vairo 07] Matthias Steinhauser News from NRQCD 7
12 Numerical results V C( q ) = 4πCFαs( q ) [ 1+ αs q 2 π ( nl) ( ) 2 αs ( ) nl n 2 l + π ( αs π ) 3 ( ) (1) nl n 2 l n 3 l + ] n l α (n l) s 1 loop 2 loop 3 loop charm bottom top static potential for other colour configurations: [Kniehl,Penin,Schroder,Smirnov,Steinhauser 05; Anzai,Kiyo,Sumino 10; Collet,Steinhauser 11; Prausa,Steinhauser 13; Anzai,Prausa,Smirnov,Smirnov,Steinhauser 13] Matthias Steinhauser News from NRQCD 8
13 Matthias Steinhauser News from NRQCD 9
14 c v to 3 loops QCD NRQCD j µ v = Qγ µ Q ji = φ σ i χ jv i = c v (µ) ji + dv(µ) φ σ i 6m D 2 χ+... Q 2 Z 2 Γ v = c v Z2 Z 1 v Γ v +... Γ v : Γ v 1 Z2 1 Z 2 : Zv = 1+O(α 2 s) [Melnikov,v.Ritbergen 00] [Marquard,Mihaila,Piclum,Steinhauser 07] Matthias Steinhauser News from NRQCD 10
15 c v c v = 1+ αs π c(1) v c (1) v c (2) v c (3),n l v c (3),n h v c (3) v [Källen, Sarby 55] + ( α s ) 2 (2) π c v [Czarnecki,Melnikov 97; Beneke,Signer,Smirnov 97] [Marquard,Piclum,Seidel,Steinhauser 06] [Marquard,Piclum,Seidel,Steinhauser 08] [Marquard,Piclum,Seidel,Steinhauser 14] + ( α s ) 3 (3) π c v +O(αs) 4 (a) (b) (c) (d) (e) (f) (g) (h) massive vertices on-shell quarks: q 2 1 = q2 2 = M2 Q (q 1 + q 2 ) 2 = 4M 2 Q (a) (b) (c) (d) Matthias Steinhauser News from NRQCD 11
16 e + e t threshold NNLO LO NNNLO R 0.8 NNNLO c NLO 0.2 Only c (3),n l v s included [Beneke,Kiyo,Schuller 08] Matthias Steinhauser News from NRQCD 12
17 Some technical details... automatic generation of Feynman diagrams, apply projector, reduce scalar products in numerator,... (many) scalar integrals reduction to 100 master integrals withcrusher [Marquard,Seidel] compute MIs withfiesta [Smirnov,Tentyukov 08; Smirnov,Smirnov,Tentyukov 11; Smirnov 13] q1 q2 ( = e3ǫγ E m 4 Q ( ) µ 2 3ǫ m 2 Q (3) ǫ (1) ǫ (2) (4)ǫ+O(ǫ 2 ) simpler integrals also known analytically add uncertainties of individual integrals in quadrature multiply final uncertainty by factor 5 ( 5σ ) ) Matthias Steinhauser News from NRQCD 13
18 Checks finiteness n l contribution gauge parameter independence (ξ 1 ) change basis of MIs coefficient default basis alternative basis [CF 3] c FFF 36.55(0.11) 36.61(2.93) [CF 2C A] c FFA (0.17) (2.91) [C F CA 2] c FAA 97.81(0.08) 97.76(2.05) c (3) v (n l = 4) (0.4) 1621(23) c (3) v (n l = 5) (0.4) 1507(23) (factor 5 not yet included) Matthias Steinhauser News from NRQCD 14
19 Z v ( ) α (nl) 2 ( s (µ) CFπ Z 2 1 v = 1+ π ǫ 12 CF + 1 ) ( ) α (nl) 3 8 CA s (µ) + C Fπ 2 π { [ ( C F 144ǫ ln 2+ 5 ) ] 1 48 Lµ ǫ [ ( C F C A 864ǫ ) ] 5 1 ln Lµ ǫ [ + C 2 A 1 ( 2 16ǫ ) ] 1 1 ln Lµ ǫ [ ( 1 + Tn l C F 54ǫ 25 ) ( 1 + C 2 A 324ǫ 36ǫ 37 )] 2 432ǫ } + C F Tn h 1 60ǫ +O(α 4 s) analytic result from [Beneke,Signer,Smirnov 98; Kniehl,Penin,Smirnov,Steinhauser 02; Marquard,Piclum,Seidel,Steinhauser 06; Beneke,Kiyo,Penin 07] (numerical) agreement better than 1% L µ = lnµ 2 /m 2 Z 2 Γ v = c v Z2 Z 1 v Γ v Matthias Steinhauser News from NRQCD 15
20 Results for c v [Marquard,Piclum,Seidel,Steinhauser 14] c v (µ = m Q ) = α s π +[ n l] ( αs ) 2 π + [ ] ( 2091(2) n l 0.82nl 2 α s π + singlet terms ) 3 MS scheme; µ = m Q large corrections singlet terms: small ( 3% of c (2) ) at 2 loops (for axial-vector, scalar, pseudo-scalar current) [Kniehl,Onishchenko,Piclum,Steinhauser 06] Matthias Steinhauser News from NRQCD 16
21 Application: height of σ(e + e t t) 1.4 LO, NLO, NNLO R s (GeV) [Hoang,Beneke,Melnikov,Nagano,Ota,Penin,Pivovarov,Signer,Smirnov,Sumino,Teubner,Yakovlev,Yelkhovsky 00] Matthias Steinhauser News from NRQCD 17
22 Application: height of σ(e + e t t) ( q 2 g µν + q µ q ν ) Π(q 2 ) = i dx e iqx 0 Tj µ (x)j ν(0) 0 [ Π(q 2 ) E En = Nc Z n mQ 2 E Z ( ) ] n (E+i0) t = cv 2 E 1 m t c v cv + dv ψ 3 1 (0) 2 Z t (µ)/z t LO(µ S ) NNLO NNNLO NNNLO (ferm.) NLO LO µ (GeV) Matthias Steinhauser News from NRQCD 17
23 Γ(Υ(1S) l + l ) Matthias Steinhauser News from NRQCD 18
24 Γ(Υ(1S) l + l ) Υ(1S) meson: simplest heavy quark bound state Γ(Υ(1S) l + l ) exp = 1.340(18) kev Γ(Υ(1S) l + l ) = 4πα2 9m 2 b ( ψ 1 (0) 2 c v [c v E 1 cv m b + dv 3 ) +... ] d v : matching constant of sub-leading b b current ψ 1 (0) wave function of the (b b) system ψ LO 1 (0) 2 = 8m3 b α3 s 27π M Υ(1S) = 2m b + E 1 E p,lo 1 = (4m b αs)/9 2 many building blocks necessary; most recent ones: c v [Marquard,Piclum,Seidel,Steinhauser 14] ψ 1 (0): ultrasoft contribution [Beneke,Kiyo,Penin 07] ψ 1 (0): single- and double-potential insertions [Beneke,Kiyo,Schuller 08 13] O(ǫ) term of 2-loop 1/(m b r 2 ) pnrqcd potential [Peinin,Smirnov,Steinhauser 13] NLL: [Pineda 01]; NNLL-approx: [Pineda,Signer 07];... Matthias Steinhauser News from NRQCD 19
25 Result Γ(Υ(1S) l + l ) pole = 2 5 α 2 α 3 [ s mb ( 1+α s ( L)+ α s lnαs L L 2) +α 3 s ( a b2ǫ cf 134.8(1) cg lnα s ln 2 α s +( lnα s) L L L 3) ] +O(α 4 s) µ=3.5 GeV = 2 5 α 2 α 3 s mb 3 5 [ αs α 2 s +( a b2ǫ cf 134.8(1) cg ) α 3 s +O(α 4 s) ] = 2 5 α 2 α 3 s mpole b 3 5 [ ] = [1.04±0.04(α s) (µ)] kev 2 5 α 2 α 3 s = mps b [ ] 3 5 = [1.08±0.05(α s) (µ)] kev L = ln[µ/(m b C F α s )], C F = 4/3 Matthias Steinhauser News from NRQCD 20
26 Γ(Υ(1S) l + l ): µ dependence PS Matthias Steinhauser News from NRQCD 21
27 Γ(Υ(1S) l + l ): µ dependence PS Matthias Steinhauser News from NRQCD 21
28 Γ(Υ(1S) l + l ): µ dependence PS Matthias Steinhauser News from NRQCD 21
29 Γ(Υ(1S) l + l ): µ dependence PS NNNLO NNLO NLO LO Matthias Steinhauser News from NRQCD 21
30 Γ(Υ(1S) l + l ): µ dependence PS NNNLO NNLO NLO LO Matthias Steinhauser News from NRQCD 21
31 Γ(Υ(1S) l + l ): α s dependence PS NNLO NNNLO NLO LO Matthias Steinhauser News from NRQCD 22
32 Γ(Υ(1S) l + l ): PS vs. OS PS OS NNNLO 1 NNNLO NNLO 0.6 NNLO NLO LO NLO LO PS NNLO NNNLO NLO LO OS NNLO NNNLO NLO LO Matthias Steinhauser News from NRQCD 23
33 Result Γ(Υ(1S) l + l ) pole = [1.04±0.04(α s ) (µ)] kev Γ(Υ(1S) l + l ) PS = [1.08±0.05(α s ) (µ)] kev Γ(Υ(1S) l + l ) exp = [1.340±0.018] kev third-order perturbative result is 30% too low possible explanation: sizeable non-perturbative contribution Matthias Steinhauser News from NRQCD 24
34 Non-perturbative contribution 1. δ np ψ 1 (0) 2 = ψ LO 1 (0) π 2 K [Leutwyler 81,Voloshin 82] K = αs π G2 m 4 b (αscf)6 αs π G2 = GeV 4 δ np Γ ll (Υ(1S)) = 1.67 pole /2.20 PS kev? value of αs π G2? scale of α s? dimension-6 condensate contribution [Pineda 97] Matthias Steinhauser News from NRQCD 25
35 Non-perturbative contribution 1. δ np ψ 1 (0) 2 = ψ LO 1 (0) π 2 K [Leutwyler 81,Voloshin 82] K = αs π G2 m 4 b (αscf)6 2. M Υ(1S) = 2m b + E p π2 425 m b(α s C F ) 2 K use PS scheme perturbation theory converges [Beneke,Kiyo,Schuller 05] charm effects [Hoang 00] δ np Γ ll (Υ(1S)) = 4α2 α s δm np Υ(1S) [ (α s)±0.42(m b ) (µ)±0.12(m c)] kev? m MS b = GeV GeV δ np Γ ll (Υ(1S)) 0.3 kev Matthias Steinhauser News from NRQCD 25
36 Non-perturbative contribution 1. δ np ψ 1 (0) 2 = ψ LO 1 (0) π 2 K [Leutwyler 81,Voloshin 82] K = αs π G2 m 4 b (αscf)6 2. M Υ(1S) = 2m b + E p π2 425 m b(α s C F ) 2 K use PS scheme perturbation theory converges [Beneke,Kiyo,Schuller 05] charm effects [Hoang 00] δ np Γ ll (Υ(1S)) = 4α2 α s δm np Υ(1S) [ (α s)±0.42(m b ) (µ)±0.12(m c)] kev? m MS b = GeV GeV δ np Γ ll (Υ(1S)) 0.3 kev Summary: perturbation theory: solid prediction non-perturbative contribution: unclear Matthias Steinhauser News from NRQCD 25
37 Matthias Steinhauser News from NRQCD 26
38 Positronium hyperfine splitting ν = E (e + e ) E (e + e ) precise test of QED Experiment: (1 6) GHz [Mills et al ] (74) GHz [Ritter et al. 84] 2.7σ (16) stat. (13) syst. GHz [Ishida et al. 13] ( ) Zeeman HFS 1+4q2 1 q B non-thermalized positronium? material effects? non-uniform B field?... Matthias Steinhauser News from NRQCD 27
39 Comparison experiment theory from [Ishida et al. 13] Matthias Steinhauser News from NRQCD 28
40 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders { ν = ν LO 1 α ( 32 π ln 2 ( ) α 2 [ π ] 56 ζ(3) 3 2 ( ) α 3 } + D π ( π2 + α 3 π ln2 α+ ) 5 14 α2 lnα π2 ) ( ln 2 ln 2 ) α 3 π lnα Matthias Steinhauser News from NRQCD 29
41 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] ζ(3) 3 2 ( ) α 3 } + D π ( ) 7 ln α2 lnα ( π2 + α 3 π ln2 α π2 ) ( ln 2 ln 2 ) α 3 π lnα [Pirenne 47] Matthias Steinhauser News from NRQCD 29
42 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] ζ(3) 3 2 ( ) α 3 } + D π ( ) 7 ln α2 lnα ( π2 + α 3 π ln2 α π2 ) ( ln 2 ln 2 ) α 3 π lnα [Brodsky,Erickson 66;... ; Hoang,Labelle,Zebarjad 97; Czanecki,Melnikov,Yelkhovsky 99] Matthias Steinhauser News from NRQCD 29
43 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] ζ(3) 3 2 ( ) α 3 } + D π ( ) 7 ln α2 lnα ( π2 + α 3 π ln2 α π2 ) ( ln 2 ln 2 ) α 3 π lnα [Karshenboim 93] Matthias Steinhauser News from NRQCD 29
44 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] ζ(3) 3 2 ( ) α 3 } + D π ( ) 7 ln α2 lnα ( π2 + α 3 π ln2 α π2 ) ( ln 2 ln 2 ) α 3 π lnα [Kniehl,Penin 00; Hill 01; Melnikov,Yelkhovsky 01] Matthias Steinhauser News from NRQCD 29
45 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders ν = ν LO { 1 α π ( ) α 2 [ 1367 π ] ( ) 7 ln α2 lnα ( π ) 84 π2 ln ζ(3) 3 ( α 3 2 π ln2 α ) α 3 7 ln 2 π lnα ( ) α 3 } ( ) α 3 + D = (41) GHz+ ν LO D π π error estimate: D from muonium atom [Nio,Kinoshita 97] Matthias Steinhauser News from NRQCD 29
46 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 me 2 Higher orders { ν = ν LO 1 α ( 32 π ln 2 ( ) α 2 [ π ] 56 ζ(3) 3 2 ( ) α 3 } + D π ( π2 + α 3 π ln2 α+ ) 5 14 α2 lnα π2 ) ( ln 2 ln 2 ) α 3 π lnα [Adkins,Fell 14] light-by-light 2γ exchange contribution to D: tiny Matthias Steinhauser News from NRQCD 29
47 Theory ν LO = [ 1 + ] 1 3 sct 4 ann α 4 me 2 H HFS S 2 Higher orders ν = ν LO { 1 α π + ( ) α 2 [ 1367 π ] ζ(3) 3 2 ( ) α 3 } + D π m 2 e ( ) 7 ln α2 lnα ( π2 + α 3 π ln2 α+ aim: 1-γ annihilation contribution to D at O(α 6 m e ): 1-γ annihilation contribution 32% non-annihilation 47% π2 ) ( ln 2 ln 2 ) α 3 π lnα Matthias Steinhauser News from NRQCD 29
48 Dann 1 γ : 1-γ annihilation contribution pnrqed dimensional regularization QED part of c v Π γγ (q 2 = 4m 2 e) computed up to 3 loops...+δ us π c QED v δ us : ultra-soft contribution [Marcu 11]; QCD: [Beneke,Kiyo,Penin 07] Matthias Steinhauser News from NRQCD 30
49 D 1 γ ann : result D 1 γ ann = 84.8±0.5 ν th = GHz = (22) GHz error estimate: size of the evaluated 1-γ annihilation contribution moves closer to [Ishida et al. 13] ν exp = (16) stat. (13) syst. GHz Matthias Steinhauser News from NRQCD 31
50 D 1 γ ann : result D 1 γ ann = 84.8±0.5 ν th = GHz = (22) GHz error estimate: size of the evaluated 1-γ annihilation contribution moves closer to [Ishida et al. 13] ν exp = (16) stat. (13) syst. GHz 95% from ultra-soft contribution: D 1 γ,us ann 3π2 7 δus o Assumption: also non-annihilation correction is dominated by ultra-soft contribution: D 1 γ,us sct 4π2 7 δus o 106 D tot 191 ν th = GHz agreement within 1σ with [Ishida et al. 13] Matthias Steinhauser News from NRQCD 31
51 Conclusions a 3, c v to 3 loops Γ(Υ(1S) l + l ) to NNNLO positronium HFS: 1 γ annihilation to O(α 7 m e ) Coming soon: e + e t t at NNNLO Matthias Steinhauser News from NRQCD 32
Large β 0 corrections to the energy levels and wave function at N 3 LO
Large β corrections to the energy levels and wave function at N LO Matthias Steinhauser, University of Karlsruhe LCWS5, March 5 [In collaboration with A. Penin and V. Smirnov] M. Steinhauser, LCWS5, March
The static quark potential to three loops in perturbation theory
The static quark potential to three loops in perturbation theory Alexander V. Smirnov a, Vladimir A. Smirnov b, Matthias Steinhauser c a Scientific Research Computing Center of Moscow State University,
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample
Higher order corrections to H. production. Nikolaos Kidonakis. production channels. Higher-order corrections. Charged Higgs production at the LHC
igher order correcions o producion Nikolaos Kidonakis (Kennesaw Sae Universiy) producion channels igher-order correcions Charged is producion a he LC N. Kidonakis, c arged 008, Uppsala, Sepember 008 Charged
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Theory predictions for the muon (g 2): Status and Perspectives
Theory predictions for the muon (g 2): Status and Perspectives Matthias Steinhauser Mass 2018, Odense, May 29 June 1, 2018 TTP KARLSRUHE KIT University of the State of Baden-Wuerttemberg and National Laboratory
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
A manifestly scale-invariant regularization and quantum effective operators
A manifestly scale-invariant regularization and quantum effective operators D. Ghilencea Corfu Summer Institute, Greece - 8 Sep 2015 E-print: arxiv:1508.00595 sponsored by RRC grant - project PN-II-ID-PCE-2011-3-0607
O(a 2 ) Corrections to the Propagator and Bilinears of Wilson / Clover Fermions
O(a 2 Corrections to the ropagator and Bilinears of Wilson / Clover Fermions Martha Constantinou Haris anagopoulos Fotos Stylianou hysics Department, University of Cyprus In collaboration with members
L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28
L. F avart I.I.H.E. Université Libre de Bruxelles H Collaboration HERA at DESY CLAS Workshop Genova - 4-8 th of Feb. 9 CLAS workshop Feb. 9 - L.Favart p./8 e p Integrated luminosity 96- + 3-7 (high energy)
Hadronic Tau Decays at BaBar
Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Wavelet based matrix compression for boundary integral equations on complex geometries
1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Low Frequency Plasma Conductivity in the Average-Atom Approximation
Low Frequency Plasma Conductivity in the Average-Atom Approximation Walter Johnson & Michael Kuchiev Physical Review E 78, 026401 (2008) 1. Review of Average-Atom Linear Response Theory 2. Demonstration
Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling
1th AIAA/CEAS Aeroacoustics Conference, May 006 interactions Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Interaction M. Glesser 1, A. Billon 1, V. Valeau, and A. Sakout 1 mglesser@univ-lr.fr
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
The Spiral of Theodorus, Numerical Analysis, and Special Functions
Theo p. / The Spiral of Theodorus, Numerical Analysis, and Special Functions Walter Gautschi wxg@cs.purdue.edu Purdue University Theo p. 2/ Theodorus of ca. 46 399 B.C. Theo p. 3/ spiral of Theodorus 6
AdS black disk model for small-x DIS
AdS black disk model for small-x DIS Miguel S. Costa Faculdade de Ciências da Universidade do Porto 0911.0043 [hep-th], 1001.1157 [hep-ph] Work with. Cornalba and J. Penedones Rencontres de Moriond, March
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Th, Ra, Rn, Po, Pb, Bi, & Tl K x-rays. Rn Kα1. Rn Kα2. 93( 227 Th)/Rn Kβ3. Ra Kα2. Po Kα2 /Bi K α1 79( 227 Th)/Po Kα1. Ra Kα1 /Bi K β1.
Page -1-10 8 10 7 10 6 10 5 10 4 334 ( Th) Counts/Channel 10 3 10 2 10 1 49 ( Th)/ 50 ( Th)/ 50 ( Fr) 0 100 200 300 400 500 600 700 800 900 1000 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 Channel
Aluminum Electrolytic Capacitors (Large Can Type)
Aluminum Electrolytic Capacitors (Large Can Type) Snap-In, 85 C TS-U ECE-S (U) Series: TS-U Features General purpose Wide CV value range (33 ~ 47,000 µf/16 4V) Various case sizes Top vent construction
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Andreas Peters Regensburg Universtity
Pion-Nucleon Light-Cone Distribution Amplitudes Exclusive Reactions 007 May 1-4, 007, Jefferson Laboratory Newport News, Virginia, USA Andreas Peters Regensburg Universtity in collaboration with V.Braun,
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
Aluminum Electrolytic Capacitors
Aluminum Electrolytic Capacitors Snap-In, Mini., 105 C, High Ripple APS TS-NH ECE-S (G) Series: TS-NH Features Long life: 105 C 2,000 hours; high ripple current handling ability Wide CV value range (47
A NLO Calculation of pqcd: Total Cross Section of P P W + + X. C. P. Yuan. Michigan State University CTEQ Summer School, June 2002
A NLO Calculation of pqcd: Total Cross Section of P P W X C. P. Yuan Michigan State University CTEQ Summer School, June Outline. Parton Model Born Cross Section. Factorization Theorem How to organize a
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F
ifting Entry Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYAN 1 010 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu ifting Atmospheric
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Non-Gaussianity from Lifshitz Scalar
COSMO/CosPA 200 September 27, 200 Non-Gaussianity from Lifshitz Scalar Takeshi Kobayashi (Tokyo U.) based on: arxiv:008.406 with Keisuke Izumi, Shinji Mukohyama Lifshitz scalars with z=3 obtain super-horizon,
Hartree-Fock Theory. Solving electronic structure problem on computers
Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli
Solution of the NLO BFKL Equation and γ γ cross-section at NLO
Solution of the NLO BFKL Equation and γ γ cross-section at NLO Giovanni Antonio Chirilli The Ohio State University Santa Fe - NM 13 May, 014 G. A. Chirilli (The Ohio State Uni.) NLO BFKL solu. & NLO γ
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
D-term Dynamical SUSY Breaking
D-term Dynamical SUSY Breaking Nobuhito Maru (Keio University) with H. Itoyama (Osaka City University) arxiv: 1109.76 [hep-ph] 7/6/01 @Y ITP workshop on Field Theory & String Theory Introduction SUPERSYMMETRY
Renormalization in Field Theories
UPPSALA UNIVERSITY PROJECT 1 HP Renormalization in Field Theories Author: Alexander Söderberg Supervisors: Lisa Freyhult March 3, 15 Abstract: Several different approaches to renormalization are studied.
Discretization of Generalized Convection-Diffusion
Discretization of Generalized Convection-Diffusion H. Heumann R. Hiptmair Seminar für Angewandte Mathematik ETH Zürich Colloque Numérique Suisse / Schweizer Numerik Kolloquium 8 Generalized Convection-Diffusion
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density
The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density 5..29 Radek Wojtak Nicolaus Copernicus Astronomical Center collaboration: Ewa Łokas, Gary Mamon, Stefan
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.
PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D
UV fixed-point structure of the 3d Thirring model
UV fixed-point structure of the 3d Thirring model arxiv:1006.3747 [hep-th] (PRD accepted) Lukas Janssen in collaboration with Holger Gies Friedrich-Schiller-Universität Jena Theoretisch-Physikalisches
Lukasz STAWARZ. on Behalf of the Fermi LAT Collaboration.
e-mail: kataoka.jun@waseda.jp 169 8555 3 4 1 739 8526 1 3 1 e-mail: fukazawa@hep01.hep1.hiroshima.u.ac.jp Lukasz STAWARZ 252 5210 3 1 1 e-mail: stawarz@astro.isas.jaxa.jp e-mail: rsato@astro.isas.jaxa.jp
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Surface Mount Aluminum Electrolytic Capacitors
FEATURES CYLINDRICAL V-CHIP CONSTRUCTION LOW COST, GENERAL PURPOSE, 2000 HOURS AT 85 O C NEW EXPANDED CV RANGE (up to 6800µF) ANTI-SOLVENT (2 MINUTES) DESIGNED FOR AUTOMATIC MOUNTING AND REFLOW SOLDERING
Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.
Low Impedance, For Switching Power Supplies Low impedance and high reliability withstanding 5000 hours load life at +05 C (3000 / 2000 hours for smaller case sizes as specified below). Capacitance ranges
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009
Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο Δεκέμβριος 2009 Μονάδες Energy [E] ev, kev, MeV, GeV, TeV, PeV, 10 0, 10 3, 10 6, 10 9, 10 12, 10 15 1eV = 1.6 10 19 J ev είναι πιο χρήσιμη στη φυσική
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Local Approximation with Kernels
Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider
SPONTANEOUS GENERATION OF GEOMETRY IN 4D
SPONTANEOUS GENERATION OF GEOMETRY IN 4D Dani Puigdomènch Dual year Russia-Spain: Particle Physics, Nuclear Physics and Astroparticle Physics 10/11/11 Based on arxiv: 1004.3664 and wor on progress. by
Computing the Gradient
FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,
Dark matter from Dark Energy-Baryonic Matter Couplings
Dark matter from Dark Energy-Baryonic Matter Coulings Alejandro Avilés 1,2 1 Instituto de Ciencias Nucleares, UNAM, México 2 Instituto Nacional de Investigaciones Nucleares (ININ) México January 10, 2010
Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ
Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction
() () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract
Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR
Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR Dieter Van den Bleeken arxiv.org/submit/1828684 Supported by Bog azic i University Research Fund Grant nr 17B03P1 SCGP 10th March 2017
8.324 Relativistic Quantum Field Theory II
8.324 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 200 Lecture 2 3: GENERAL ASPECTS OF QUANTUM ELECTRODYNAMICS 3.: RENORMALIZED LAGRANGIAN Consider the Lagrangian
Surface Mount Multilayer Chip Capacitors for Commodity Solutions
Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF
Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry
Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry 5th Titan Workshop at Kauai, Hawaii April 11-14, 2011 Seol Kim Outer Solar System Model Ices with
Προλεγόµενα. Σπύρος Ευστ. Τζαµαρίας
Προλεγόµενα Σπύρος Ευστ. Τζαµαρίας 2016 1 S.I. UNITS: kg m s Natural Units δεν είναι ιδιαίτερα «βολικές» για τους υπολογισµούς µας αντί αυτών χρησιµοποιούµε Natural Units που βασίζονται σε θεµελιώδεις
/T interactions and chiral symmetry
/T interactions and chiral symmetry Emanuele Mereghetti Los Alamos National Lab January 3th, 015 ACFI Workshop, Amherst Introduction M T BSM probing CP with EDM entails physics at very different scales
4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity
1.- Introduction. 2.- Higgs physics 3.- hhh at one loop level in SM 4.- Littlest Higgs Model with T-parity 5.- hhh at one loop in LHM with T-parity 7.- Conclusions Higgs Decay modes at LHC Direct measurement
An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 An experimental and theoretical study of the gas phase kinetics of atomic chlorine
CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS
FEATURE Operating Temperature: -55 ~ +155 C 3 Watts power rating in 1 Watt size, 1225 package High purity alumina substrate for high power dissipation Long side terminations with higher power rating PART
Structure constants of twist-2 light-ray operators in the triple Regge limit
Structure constants of twist- light-ray operators in the triple Regge limit I. Balitsky JLAB & ODU XV Non-perturbative QCD 13 June 018 I. Balitsky (JLAB & ODU) Structure constants of twist- light-ray operators
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Chap. 6 Pushdown Automata
Chap. 6 Pushdown Automata 6.1 Definition of Pushdown Automata Example 6.1 L = {wcw R w (0+1) * } P c 0P0 1P1 1. Start at state q 0, push input symbol onto stack, and stay in q 0. 2. If input symbol is
Œ. Ì,,.. Ê Ï,,,. ˆ Ò±μ,,,. ³ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Š Ì ± Í μ ²Ó Ò Ê É É ³. ²Ó-, ²³ - É, Š Ì É
Ó³ Ÿ. 3.., º 6(83).. 89Ä83 ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ. ˆŸ ˆ Š ƒ ˆŸ ƒ ˆ Šˆ ˆ ˆŸ Œ. Ì,,.. Ê Ï,,,. ˆ Ò±μ,,,. ³ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Š Ì ± Í μ ²Ó Ò Ê É É ³. ²Ó-, ²³ - É, Š Ì É ² É Î ± ÒÎ ² Ò Ô ² É μ μ É ² É μ μ μ ÉμÖ
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Moments of Structure Functions in Full QCD
Moments of Structure Functions in Full QCD John W. Negele Lattice 2000 Collaborators MIT Dmitri Dolgov Stefano Capitani Richard Brower Andrew Pochinsky Jefferson Lab Robert Edwards Wuppertal SESAM Klaus
Matrix Hartree-Fock Equations for a Closed Shell System
atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
MECHANICAL PROPERTIES OF MATERIALS
MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain
Capacitors - Capacitance, Charge and Potential Difference
Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal
Supporting Information
SUPPORTING INFORMATION FOR: Trialkylstibine complexes of boron, aluminium, gallium and indium trihalides: synthesis, properties and bonding Victoria K. Greenacre, William Levason and Gillian Reid Chemistry,
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
Eulerian Simulation of Large Deformations
Eulerian Simulation of Large Deformations Shayan Hoshyari April, 2018 Some Applications 1 Biomechanical Engineering 2 / 11 Some Applications 1 Biomechanical Engineering 2 Muscle Animation 2 / 11 Some Applications
NLO BFKL and anomalous dimensions of light-ray operators
NLO BFKL and anomalous dimensions of light-ray operators I. Balitsky JLAB & ODU (Non)Perturbative QFT 13 June 013 (Non)Perturbative QFT 13 June 013 1 / Outline Light-ray operators. Regge limit in the coordinate
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Three coupled amplitudes for the πη, K K and πη channels without data
Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status