Local existence for an impulsive fractional neutral integro-differential system with Riemann Liouville fractional derivatives in a Banach space

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Local existence for an impulsive fractional neutral integro-differential system with Riemann Liouville fractional derivatives in a Banach space"

Transcript

1 Klmni et l. Advnces in Difference Equtions 28) 28:6 R E S E A R C H Open Access Locl existence for n impulsive frctionl neutrl integro-differentil system with RiemnnLiouville frctionl derivtives in Bnch spce Plniyppn Klmni *,DumitruBlenu 2,3 nd Mni Mllik Arjunn * Correspondence: klmn@gmil.com Deprtment of Mthemtics, C. B. M. College, Coimbtore, Indi Full list of uthor informtion is vilble t the end of the rticle Equl contributors Abstrct In this mnuscript, we investigte sort of frctionl neutrl integro-differentil equtions with impulsive outcomes nd extend the formul of generl solutions for the impulsive frctionl neutrl integro-differentil system in Bnch spce. By using the nlysis of the limit cse nd the opertor generting compct semigroup, we derive the min results. Finlly, n exmple is discussed to illustrte the efficiency of the results. MSC: Primry 3A8; 35R2; secondry 5J5; 3A3 Keywor: Frctionl differentil equtions; RiemnnLiouville frctionl derivtives; Impulsive Introduction Frctionl clculus is field of mthemtics study tht grows out of trditionl definitions of clculus integrl nd derivtive opertors in much the sme wy frctionl exponents re n outgrowth of exponents with integer vlue. The concept of frctionl frctionl derivtives nd integrls) is populrly believed to hve stemmed from question rised in the yer 695 by Mrquis de L Hopitl 66) to Gottfried Wilhelm Leibniz 666), which sought the mening of Leibniz s currently populr) nottion dn y dx n for the derivtive of order n N when n ; tht is, Wht if n is frctionl?. In his reply, 2 dted 3 September 695, Leibniz wrote to L Hopitl s follows: This is n pprent prdox from which, one dy, useful consequences will be drwn. Tht is, d 2 x re going to be dequte x dx : x. It is typiclly cknowledged tht integer-order derivtives nd integrls hve cler physicl nd geometric interprettions. However, just in cse of frctionl-order integrtion nd differentition, tht represent n pce growing field ech in theory nd in pplictions to plnet issues, it is not thus. Since the looks of the thought on differentition nd integrtion of rbitrry not necessry integer) order, there ws not ny cceptble geometric nd physicl interprettion of those opertions for some three hundred yers. In 22], it is shown tht geometric interprettion of frctionl integrtion is Shdows on the The Authors) 28. This rticle is distributed under the terms of the Cretive Commons Attribution. Interntionl License which permits unrestricted use, distribution, nd reproduction in ny medium, provided you give pproprite credit to the originl uthors) nd the source, provide link to the Cretive Commons license, nd indicte if chnges were mde.

2 Klmni etl. Advnces in Difference Equtions 28) 28:6 Pge 2 of 26 wlls nd its physicl interprettion is Shdows of the pst. Frctionl differentil equtions bbrevited, FDEs) nd integro-differentil equtions hve gined wide importnce s result of their pplictions in numerous fiel like physics, mechnics, control theory, nd engineering, one will crete relevnce to the books 2,, 22, 29] nd lso the ppers 5,, 2, 25, 26, 332]. The definitions of RiemnnLiouville bbrevited RL) FDEs or integrl initil conditions ply very importnt role in some frctionl problems within the world. Heymns nd Podlubny 9] verified tht it hd been ttinble to ttribute physicl desiring to initil conditions expressed in terms of RL frctionl derivtives or integrls on the sector of the viscoelsticity. For more detils, one cn see, 5, 6, 9, 2]. In ddition, the specultion of impulsive differentil equtions seems to be nturl description of mny rel processes subject to sure perturbtions whose length is negligible s compred with the overll length of the method, such chnges re going to be firly well pproximted s being quick chnges of stte, or inside the design of impulses. This methodology ten to be extr fittingly sculptured by impulsive differentil equtions, which llow for discontinuities inside the evolution of the stte, considered in such fiel s drugs, biology, engineering science, chemicl technology, etc. Therefore, it ppers fscinting to check the frctionl impulsive differentil nd integro-differentil equtions. Furthermore, impulsive frctionl evolution systems with the Cputo frctionl derivtive with completely different conditions were studied by severl uthors, one cn see,, 8, 2, 23, 2]. However, bundnt less is thought regrding the impulsive frctionl evolution systems with RL frctionl derivtive, see, 8, 28]. In specific, the following frctionl order integro-differentil eqution in Bnch spce using the Cputo frctionl derivtive: C D α t ut)aut)f t, ut)) qt s)gt, us)), t, t t k, u ttk I k ut k )), k,...,m, u) u X, ws mentioned by Gou nd Li 8], nd they estblished the locl nd globl existence of mild solution to n impulsive frctionl semiliner integro-differentil eqution with noncompct semigroup. In 8],Liu nd Bin gve the pproximte controllbilityof n impulsive RL frctionl system with the help of the Bnch contrction principle in Bnch spce. Liu et l. ] estblished the pproximte controllbility of impulsive frctionl neutrl evolution equtions with RL frctionl derivtives by using the Bnch contrction principle. Lter, Zhng et l. 28] nlyzed the generl solution of impulsive systems with RL frctionl derivtives by using limit cse s impulse ten to zero). However, locl existence for impulsive frctionl neutrl integro-differentil equtions with RL hs not been fully investigted in the literture. Inspired by the bove-mentioned works, we investigte the following impulsive frctionl integro-differentil eqution with RL frctionl derivtive of the form L D γ t wt)d t, wt) )] A wt)l t, wt) ) qt s)p t, ws) ), I t, T], t t k, k,...,m,.)

3 Klmni etl. Advnces in Difference Equtions 28) 28:6 Pge 3 of 26 I γ w tt k I γ w t k ) γ I w t k ) )) Ik w t k,.2) )] wt)d t, wt) t w H,.3) I γ where L D γ t < γ < ) represents the RL frctionl derivtive of order γ nd I γ denotes the RL integrl of order γ. Throughout this pper, we tke I,T] is n opertionl intervl. Let A : DA ) H H be the infinitesiml genertor of c semigroup T t)} t in Bnch spce H. There exists constnt M suchtht T t) M, D, L, P : I H H, q : I H nd I k : H H re pposite continuous functions. t < t <,...,<t m T.HereI γ wt k )lim ɛ Iγ wt k ɛ)ndi γ wt k )lim ɛ Iγ wt k ɛ) denote the right nd left limits of I γ wt)tt t k,respectively. For impulsive system.).3), we hve L D γ t wt)dt, wt))] lim I,...,I m }.).3) I γ A wt)l t, wt)) qt s)pt, ws)), t, T], wt)dt, wt))] t w H..) As result, it implies tht there exists hidden condition } lim the solution of impulsive system.).3) I,...,I m the solution of system.) }..5) Consequently, the definition of solution for impulsive frmework.).3) isgivenbelow. Definition. Let wt):,t] H be the solution of the frctionl structure.).3) if I γ wt)dt, wt))] t w,theproblem L D γ t wt)dt, wt))] A wt)l t, wt)) qt s)pt, ws)) for ech t, T] is proved, the impulsive conditions Iγ w tt k I k wt k )) here k,...,m) re fulfilled, the confinement of wt) totheintervlt k, t k ] here k,...,m) is continuous, nd therefore condition.5) hol. The rest of this pper is composed s follows. In Sect. 2, we present some preliminries which will be used to prove our necessry nd sufficient conditions. In Sect. 3, the existence of solutions for problem.).3) is nlyzed under pproprite fixed point techniques. In Sect., s finlpoint, exmplesregiven toillustrteourresults. 2 Preliminries In this preliminry, we tend to recll some bsic definitions, lemms, nd theorem which will be used throughout this pper. The norm of Bnch spce H is denoted by H. Let CI, H) represent the Bnch spce of ll H-vlued continuous functions from I to H with the norm w C sup t I wt) H.Sostooutlinethemilolutionofproblem

4 Klmni etl. Advnces in Difference Equtions 28) 28:6 Pge of 26.).3), we tend to dditionlly tke the Bnch spce C γ I, H) w CI, H) : t γ wt) CI, H)} with the norm w Cγ sup t γ wt) H, t I }. Obviously, the spce C γ is Bnch spce. In order to outline the mild solutions of system.).3), we lso consider the Bnch spce PC γ I, H) w :t t k ) γ wt) PC γ I, H) is continuous from left nd hs right limits t t t, t 2,...,t m }} w PCγ mx sup t t k,t k ] t t k ) } γ wt) H : k,,...,m. Definition 2. 3]) Let A be the infinitesiml genertor of n nlytic semigroup T t)} t of uniformly bounded liner opertors on H.If ρa ), where ρa )isthe resolvent set of A,thenfor<η, it is possible to define the frctionl power A η s closed liner opertor on its domin DA η ). For n nlytic semigroup T t)} t,the following properties will be used.. There is M such tht M : sup t, ) T t) <. 2. For ny η, ],thereexistsm η >ensuring tht A η T t) M η, <t T. tη For dditionl detils regrding the semigroup theory nd frctionl powers of opertors, we dvise the reder to refer to 2]. Currently, we offer few bsic definitions nd results of the frctionl clculus theory tht hppen to be used in ddition s chunk of this mnuscript. Definition 2.2 ]) The frctionl integrl of order γ with the lower limit for function f is determined s I γ t f t) f s), t >,γ >, Γ γ ) t s) γ given the right prt is point-wise described on, ), where Γ ) is the gmm function. Definition 2.3 ]) The RL derivtive of order γ with the lower limit for function f L I, H)ischrcterize d n L D γ t f t) Γ n γ ) dt n f s), t >,n <γ < n. t s) nγ Consider the initil vlue problem D γ wt)a wt)f t, wt)), I γ w)w, w C γ C nd Rγ ), ), t, T],

5 Klmni etl. Advnces in Difference Equtions 28) 28:6 Pge 5 of 26 is equivlent to the following nonliner Volterr integrl eqution of the second kind: wt) w Γ γ ) t )γ Γ γ ) t s) γ A ws)f s, ws) )]. The piecewise function for.).3)isgivenby wt) Γ γ ) Iγ w t k ) t tk ) γ D t, wt) ) Γ γ ) t k t s) γ A ws)λ s) ], where Λ s)l s, ws)) qs τ)pτ, wτ)) dτ, t t k, t k ], k,,...,m,with I γ w t k ) γ I w t k ) )) k w t k. By Definition 2.3,wehve D γ wt)d t, wt) )] ) D γ Γ γ ) Iγ w t k ) t tk ) γ D γ Γ γ ) t s) γ A ws)λ s) ] ) t k d t η) γ I γ Γ γ )Γ γ ) dt w t ) k η tk ) γ dη t k Γ γ )Γ γ ) ) d η t η) γ η s) γ A ws)λ s) ] ) dη dt t k d t γ η t η) η s) γ A ws)λ s) ] ) dη Γ γ ) dt t k Γ γ ) t k D γ η η s) γ A ws)λ s) ] ) Γ γ ) t k D γ I γ A wt)l t, wt) ) A wt)l t, wt) ) qt s)p s, ws) ) ]) qt s)p s, ws) ), where ndt t k, t k ]. So, wt) fulfills the condition of frctionl differentil frmework.).3),nd it does not fulfill condition.5). In this wy, we ccept tht wt) is n pproximte solution for the exct solution of impulsive frmework.).3).

6 Klmni etl. Advnces in Difference Equtions 28) 28:6 Pge 6 of 26 Theorem 2. Suppose tht ξ is constnt nd. wt) is generl solution of model.).3) if nd only if wt) fulfills the frctionl integrl eqution Γ γ ) t )γ wt) k i w Γ γ ) t )γ Γ γ ) w t s)γ )A ws)λ s)],, t ], Γ γ ) t s)γ A ws)λ s)] i wt i )) t t Γ γ ) i ) γ k i ξ i wt i )) Γ γ ) )w t ) γ t s)γ A ws)λ s)] w i A ws)λ s)] )t t i ) γ t i t s) γ )A ws)λ s)] }, where nd t t k, t k ], given tht the integrl in 2.) exists. 2.) Proof Necessity : First we re ble to simply verify tht eqution 2.)fulfills the shrouded condition.5). Next, tking the RL frctionl derivtive to eqution 2.) foreveryt t k, t k ], k,,...,m,weget D γ )] wt)d t, wt) D γ w t )γ Γ γ ) k D γ i ) w t ) γ ) D γ Γ γ ) ) i wt i k )) t t i ) γ D γ Γ γ ) i Λ s) ] ) t t i ) γ t s) γ A ws)λ s) ] ) ξ i wt i )) Γ γ ) t s) γ A ws)λ s) ] w t s) γ A ws)λ s) ] } ) t i i A ws) A wt)λ t) ) k t ξ )) i w t i A wt)λ t) ) t A wt) Λ t) ) t t i ]t t k,t k ] A wt)l t, wt) ) i qt s)p s, ws) ) ). t t k,t k ] Therefore, eqution 2.) fulfills the RL frctionl derivtive of model.).3). Using 2.)foreveryt k, k,2,...,m,wehve I γ w t k ) γ I Γ γ ) w t k ) Γ γ ) } t η) γ wη) dη t t k } t η) γ wη) dη k w t k )) ξ k w t k )) w tt k A ws)λ s) )

7 Klmni etl. Advnces in Difference Equtions 28) 28:6 Pge of 26 w k k w t k )). A ws)λ s) ] ) A ws)λ s) ) } t k t t k Therefore, eqution 2.) fulfills the impulsive conditions of model.).3). Then eqution 2.) stisfies the conditions of system.).3)with. Sufficiency : We demonstrte tht the solutions of frmework.).3) fulfillcondition 2.) by scientific induction. By Definition 2.2,the solution ofmodel.).3) fulfills wt) By 2.2), we hve w Γ γ ) t )γ Γ γ ) I γ w t ) γ I w t ) )) w t )) t w w t A ws)λ s) ], nd the pproximte solution wt), t t, t 2 ]isdefinedby wt) Γ γ ) Iγ w t ) t t ) γ D t, wt) ) Γ γ ) Γ γ ) w t t s) γ A ws)λ s) ] D t, wt) ) Γ γ ) t s) γ A ws)λ s) ],, t ]. 2.2) A ws)λ s) ] w t )) ) t t ) γ with e t)wt)wt), t t, t 2 ]. By lim wt) lim wt )) wt )) Γ γ ) t t s) γ A ws)λ s) ], t t, t 2 ], w Γ γ ) t )γ D t, wt) ) t s) γ A ws)λ s) ] w t )) } w Γ γ ) t )γ D t, wt) ) Γ γ ) Λ s) ], t t, t 2 ]. t s) γ A ws) We get lim e } t) lim wt)wt) wt )) wt )) w Γ γ ) t )γ Γ γ ) t s) γ A ws)λ s) ]

8 Klmni etl. Advnces in Difference Equtions 28) 28:6 Pge 8 of 26 Then we ssume Γ γ ) t t ) γ w Γ γ ) A ws)λ s) ] ) t t s) γ A ws)λ s) ]. e t)σ ))) w t lim e t) wt )) σ wt ))) w t ) γ t s) γ A ws)λ s) ] Γ γ ) w A ws)λ s) ] ) t t ) γ t s) γ A ws) t Λ s) ] }, where the function σ ) is n undetermined function with σ ). Thus, wt)wt)e t) σ ))) w t Γ γ ) w t ) γ t s) γ A ws) Λ s) ] ) )) w t t t ) γ σ )))] w t w ) Using 2.3), we get A ws)λ s) ] ) t t ) γ σ )))] w t t s) γ A ws)λ s) ] } D t, wt) ), t t, t 2 ]. 2.3) t I γ w t 2 ) γ I w t 2 ) )) 2 w t 2 )) )) t2 w w t 2 w t 2 A ws)λ s) ], nd the pproximte solution wt), t t 2, t 3 ]isgivenby wt) Γ γ ) Iγ w t 2 ) t t2 ) γ D t, wt) ) Γ γ ) Γ γ ) w t 2 t s) γ A ws)λ s) ] 2 A ws)λ s) ] w t )) 2 w t 2 )) ) )t t 2 ) γ D t, wt) ) Γ γ ) t 2 t s) γ A ws)λ s) ]

9 Klmni etl. Advnces in Difference Equtions 28) 28:6 Pge 9 of 26 for t t 2, t 3 ]. Similrly, we get wt)wt)e 2 t) σ ))) ))) ] w t σ 2 w t Γ γ ) 2 w t ) γ t s) γ A ws)λ s) ] ) )) w t t t ) γ 2 w t 2 )) t t2 ) γ σ w t )))] w A ws)λ s) ] ) t t ) γ σ )))] w t t s) γ A ws)λ s) ] t σ )))] 2 2 w t 2 w A ws)λ s) ] ) t t 2 ) γ σ )))] 2 w t 2 t s) γ A ws)λ s) ] } t 2 D t, wt) ), t t 2, t 3 ]. 2.) Moreover, letting t 2 t,wehve D γ wt)dt, wt))] A wt)l t, wt)) lim t 2 t qt s)pt, ws)), γ, ), t, t 3], t t nd t t 2, I γ w tt k I γ wt k )Iγ wt k ) kwt k )), k,2, I γ wt)dt, wt))] t w H D γ wt)dt, wt))] A wt)l t, wt)) qt s)pt, ws)), γ, ), t, t 3]ndt t, I γ w tt I γ wt )Iγ wt )Iγ wt 2 )Iγ wt 2 ) wt )) 2wt )), I γ wt)dt, wt))] t w H. Using 2.3)nd2.), we hve σ 2 )σ )σ 2 ). Tking ρz)σ z), we hve ρz ω)ρz)ρω)for z, ω C.So,ρz)ξz.Thus, wt) w Γ γ ) t )γ Γ γ ) wt )) Γ γ ) t t ) γ ξ wt )) Γ γ ) t s) γ A ws)λ s) ] t s) γ A ws)λ s) ] w t ) γ

10 Klmni etl.advnces in Difference Equtions 28) 28:6 Pge of 26 w A ws)λ s) ] ) t t ) γ t s) γ A ws)λ s) ] } D t, wt) ), t t, t 2 ]. 2.5) t Continuing in this wy, we obtin, for t t k, t k ], wt) w Γ γ ) t )γ Γ γ ) k i i wt i )) t t i ) γ Γ γ ) t s) γ A ws)λ s) ] k i ξ i wt i )) w t ) γ Γ γ ) i w A ws) t s) γ A ws)λ s) ] Λ s) ] ) t t i ) γ t s) γ A ws)λ s) ] } t i D t, wt) ), t t k, t k ]. 2.6) So, the solution of system.).3) stisfies eqution 2.) with. Therefore, the impulsive system.).3) is equivlent to the integrl eqution 2.)with. Lemm 2. If nd ξ in 2.6) re given by w Γ γ ) tγ Dt, wt)) t Γ γ ) wt) t s)γ A ws)λ s)], t, t ], w Γ γ ) tγ t Γ γ ) t s)γ A ws)λ s)] k i wt i )) i t t Γ γ ) i ) γ, t t k, t k ], 2.) where Λ s)ls, ws)) qs τ)pτ, wτ)) dτ. Then, for t >,we hve where t γ T γ t)w Dt, wt)) t s)γ A T γ t s) )Ds, ws)) t s)γ T γ t s)l s, ws)) qs τ)pτ, wτ)) dτ], t, t ], wt) t γ T γ t)w Dt, wt)) t s)γ A T γ t s) )Ds, ws)) t s)γ T γ t s)l s, ws)) qs τ)pτ, wτ)) dτ] k i T γ t t i )t t i ) γ I i wt i )), t t k, t k ], T γ t)γ θξ γ θ)t t γ θ ) dθ, ξ γ θ) γ θ γ φ γ θ γ ),

11 Klmni etl.advnces in Difference Equtions 28) 28:6 Pge of 26 φ γ θ) π n )n γ n Γ nγ ) θ sinnπγ), θ, ). Here ξ n! γ is the probbility density function in, ), tht is, ξ γ θ) nd ξ γ θ) dθ. Proof The proof is very similr to the proof of 3, 32, Lemm 3., Lemm 3.3], hence here we omit it. Lemm 2.2 3, Lemm 3.2]) If t, T γ t) is liner nd bounded opertor. Tht is, for ny w H, T γ t)w M Γ γ ) w. Lemm 2.3 3, Lemm 3.5]) For ny β, ), η, ], nd for ll w DA ), there exists positive constnt M η in wy tht A T γ t)w A β T γ t)a β w, t T, nd A η T γ t) γ M ηγ 2 η), <t T. t γη Γ γ η)) Lemm 2. 2, Lemm 2.]) Assume ξ, η R, η >nd n N, nd then when t >, we hve I ξ s η ) t ξη Γ ξη) t), ξ η n, Γ η ), ξ η n. Next, we hve tendency to recll some properties of the mesure of noncompctness which will be employed in the proof of our min results. We tend to denote by ω ) the Kurtowski mesure of noncompctness on both the finite sets of H nd CI, H). For more points of interest of the mesure of noncompctness, see 3, 6]. For ny D CI, H) nd t I,letDt)ut) u D} H. IfD CI, H) isbounded,thendt) isbounded in H nd ωdt)) ωd). 3 Existence results In this re, we disply nd demonstrte the existence results for problem.).3). In view of Lemm 2., first, we define the mild solution for model.).3) with the help of probbility density function nd the Lplce trnsform. Definition 3. 2, Definition 3.]) A function w PC γ I, H) issidtobemilolution of model.).3) if the following hold: i) I γ wt)dt, wt))] t w H;

12 Klmni etl.advnces in Difference Equtions 28) 28:6 Pge 2 of 26 ii) t γ T γ t)w t s)γ A T γ t s)ds, ws)) Dt, wt)) t s)γ T γ t s)l s, ws)) qs τ)pτ, wτ)) dτ], t, t ], wt) t γ T γ t)w t s)γ A T γ t s)ds, ws)) Dt, wt)) t s)γ T γ t s)l s, ws)) qs τ)pτ, wτ)) dτ] k i T γ t t i )t t i ) γ I i wt i )), t t k, t k ]. Now, we re in position to introduce the hypotheses on frmework.).3)sfollows. H) T t), t >is strongly continuous semigroup nd continuous in the uniform opertor topology. H2) L : I H H is continuous, nd we cn discover constnts N L >in wy tht L t, w)l t, v) H N L w v H, t I, w, v H. H3) P : I H H is continuous, nd we cn discover constnts N P >such tht Pt, w)pt, v) H N P w v H, t I, w, v H. H) The function D : I H H, we cn discover constnts β, ) nd N D >in wys tht D DA β ),ndfornyw, v H, t I,thefunctionA β D, w) is strongly mesurble nd A β Dt, w) stisfies A β Dt, w)a β Dt, v) H N D w v H. H5) There exist constnts <d k < Γ γ )/M k i t i t i ) γ ], k,...,m, ensuring tht I i w)i i v) H d i w v H nd I i w) N I, w, v) H 2. H6) For ny R >nd >,thereexistsl i R, )>, i,2,3, ensuring tht for ny equicontinuous nd countble set D B R w H : w R}, ω L t, D) ) L 2 ωd), ω Pt, D) ) L 3 ωd), ω Dt, D) ) L ωd), t, ]. Remrk 3. Throughout this pper, we define few nottions: A β M nd Kγ, β) M βγ β)τ γβ. βγ γβ)

13 Klmni etl.advnces in Difference Equtions 28) 28:6 Pge 3 of 26 Theorem 3. Assume tht hypotheses H)H6) re stisfied. Then, for every w PC γ I, H), there exists τ τ w ), < τ < T, ensuring tht model.).3) hs solution w PC γ, τ ], H). Proof Since we re interested here just in locl solutions, we my ssume tht T <. By using our conditions H)H5), t >ndr >resuchthtb r w )w:t t k ) γ w w r} nd t t k ) γ L t, wt)) N L,t t k ) γ Pt, wt)) N P, t t k ) γ A β Dt, wt)) N D for t t nd w B r w )nelect τ min t Γ γ ), T, MN L q N P ) ] ) γ M Kγ, β)l D, Γ γ ) M Kγ, β) ) N MN L q D u )] } γ, 3.) N P ) where q t M sup t T qt s), u Γ γ ) w k i t i t i ) γ ]. Set Ω w PC γ, τ ], H) :t γ wt) r, t, τ ]}, thenω is closed bll in PC γ, τ ], H) with center θ nd rdius r. Consider the opertor Υ : Ω PC γ, τ ], H)definedby Υ w)t)t γ T γ t)w D t, wt) ) t s) γ A T γ t s)d s, ws) ) t s) γ T γ t s) L s, ws) ) T γ t t k )t t k ) γ )) I k w t k. <t k <t qs τ)p τ, wτ) ) ] dτ For ny w Ω nd t, τ ], by Lemm 2.2 nd Lemm 2.3,wehve t t k ) γ Υ w)t) t t k ) γ t γ Tγ t)w t tk ) γ D t, wt) ) t t k ) γ t s) γ A T γ t s)d s, ws) ) t t k ) γ t s) γ T γ t s) L s, ws) ) qs τ)p τ, wτ) ) dτ] t t k ) γ T γ t t k )t t k ) γ )) I k w t k <t k <t J j, 3.2) j

14 Klmni etl.advnces in Difference Equtions 28) 28:6 Pge of 26 where J t t k ) γ t γ Tγ t)w t tk ) γ D t, wt) ) Tγ t)w A β t tk ) γ A β D t, wt) ) M w M N D, Γ γ ) J 2 t t k ) γ t s) γ A T γ t s)d s, ws) ) t t k ) γ t s) γ A β T γ t s) A β D s, ws) ) t t k ) γ γ M βγ β) t s) γβ A β D s, ws) ) Γ γβ) Kγ, β)n D, J 3 t t k ) γ t s) γ T γ t s) L s, ws) ) t t k ) γ M t γ Γ γ ) γ qs τ)p τ, wτ) ) dτ] M Γ γ ) NL q N P ] t s) γ L s, ws) ) q P s, ws) ) ] M NL q ] N P τ γ, Γ γ ) J t t k ) γ T γ t t k )t t k ) γ )) I k w t k t t k ) γ M Γ γ ) M Γ γ ) <t k <t M Γ γ ) k t t i ) γ )) Ii w t i i k t i t i ) γ t i t i ) γ )) Ii w t i i k t i t i ) γ N I. i Using J J in eqution 3.2), we get t t k ) γ Υ w)t) M w Γ γ ) R. ] k t i t i ) γ N I i N D M Kγ, β) ) M NL q ] N P τ γ Γ γ )

15 Klmni etl.advnces in Difference Equtions 28) 28:6 Pge 5 of 26 Therefore, Υ w Ω. Now we show tht Υ is continuous from Ω into Ω. To show this, we first observe tht since L, D, ndp re continuous in I H, for ny ɛ >nd for fixed w B R w ), there exists δ w), δ 2 w) > ensuring tht for ny v B R w )ndlet δw)minδ w), δ 2 w)}.then,fornyv Ω,t t k ) γ wt)vt) < δw)ndchoose A β Kγ, β) ) ND < ɛ δw). Then we hve t t k ) γ Υ w)t)υ v)t) M Γ γ ) τ γ ] N L q ] M N P Γ γ ) md kτ γ t t k ) γ D t, wt) ) D t, vt) ) t t k ) γ t s) γ A T γ t s) D s, ws) ) D s, vs) )] t t k ) γ t s) γ T γ t s) L s, ws) ) L s, vs) )] t t k ) γ t s) γ T γ t s) ) P τ, wτ) ) P τ, vτ) )] dτ qs τ) t t k ) γ T γ t t k )t t k ) γ )) ))] I k w t k Ik v t k <t k <t A β Kγ, β) ) N D ) w v Cγ ɛ. M Γ γ ) τ γ ] N L q ] M N P Γ γ ) md kτ γ Thus, we hve tht Υ : Ω Ω is continuous opertor. Next, we demonstrte tht the opertor Υ : Ω Ω is equicontinuous. For ny w Ω nd t < t 2 τ,wegettht t 2 t k ) γ Υ w)t 2 )t t k ) γ Υ w)t ) t2 t k ) γ t γ 2 T γ t 2 )w t t k ) γ t γ T γ t )w t2 t k ) γ D t 2, wt 2 ) ) t t k ) γ D t, wt ) ) 2 t 2 t k ) γ t 2 s) γ A T γ t 2 s)d s, ws) ) t t k ) γ t s) γ A T γ t s)d s, ws) ) 2 t 2 t k ) γ t 2 s) γ T γ t 2 s) L s, ws) ) qs τ)p τ, wτ) ) ] dτ

16 Klmni etl.advnces in Difference Equtions 28) 28:6 Pge 6 of 26 t t k ) γ t s) γ T γ t s) L s, ws) ) qs τ)p τ, wτ) ) ] dτ k t 2 t k ) γ T γ t 2 t i )t 2 t i ) γ )) I i w t i t t k ) γ i k T γ t t i )t t i ) γ )) I i w t i i 9 J j, 3.3) j5 where J 5 t 2 t k ) γ t γ 2 T γ t 2 )w t t k ) γ t γ T γ t )w t 2 t k ) γ t γ 2 t γ ] T γ t 2 )w t γ t 2 t k ) γ T γ t 2 )t t k ) γ T γ t ) w M Γ γ ) t 2 t k ) γ t γ 2 t γ ] w t γ t2 t k ) γ T γ t 2 )t t k ) γ T γ t ) w, J 6 t2 t k ) γ D t 2, wt 2 ) ) t t k ) γ D t, wt ) ) t t k ) γ A β A β D t 2, wt 2 ) ) A β D t, wt ) ) t 2 t k ) γ t t k ) γ ] A β A β D t 2, wt 2 ) ) M t t k ) γ A β D t 2, wt 2 ) ) A β D t, wt ) ) M t2 t k ) γ t t k ) γ ] A β D t 2, wt 2 ) ), 2 J t 2 t k ) γ t 2 s) γ A T γ t 2 s)d s, ws) ) t t k ) γ t s) γ A T γ t s)d s, ws) ) t 2 t k ) γ t2 s) γ t s) γ ] ) A β T γ t 2 s) A β D s, ws) ) t s) γ t 2 s) γ A β T γ t 2 s) t s) γ A β T γ t s) A β D s, ws) ) 2 t 2 t k ) γ t 2 s) γ A β T γ t 2 s) A β D s, ws) ) t γ M βγ β)n D Γ γβ) t s) γ t 2 s) γ A β T γ t 2 s) t 2 s) γβγ t 2 s) γ t s) γ ] t s) γ A β T γ t s) A β D s, ws) )

17 Klmni etl.advnces in Difference Equtions 28) 28:6 Pge of 26 γ M βγ β)n t2 D t 2 t k ) γ t 2 s) γβ, Γ γβ) t 2 J 8 t 2 t k ) γ t 2 s) γ T γ t 2 s) ) L s, ws) ) qs τ)p τ, wτ) ) ] dτ t t k ) γ t s) γ T γ t s) ) L s, ws) ) qs τ)p τ, wτ) ) ] dτ M NL q ) N P t2 s) γ t s) γ ] Γ γ ) t s) γ t2 s) γ T γ t 2 s)t s) γ T γ t s) ) L s, ws) ) qs τ)p τ, wτ) ) dτ M NL q )t 2 t ) γ N P, Γ γ ) γ k J 9 t 2 t k ) γ T γ t 2 t i )t 2 t i ) γ )) I i w t i t t k ) γ M Γ γ ) i k T γ t t i )t t i ) γ )) I i w t i i k N I t2 t i ) γ t t i ) γ ] i k t t i ) γ ) t 2 t i ) γ T γ t 2 t i )t t i ) γ T γ t t i ) ] Ii w t i )). From J 5 )J 9 )ineqution3.3), we hve t 2 t k ) γ Υ w)t 2 )t t k ) γ Υ w)t ) M Γ γ ) t 2 t k ) γ t γ 2 t γ ] w t γ t 2 t k ) γ T γ t 2 )t t k ) γ T γ t ) w M t t k ) γ A β D t 2, wt 2 ) ) A β D t, wt ) ) M t2 t k ) γ t t k ) γ ] A β D t 2, wt 2 ) ) γ M βγ β)n D Γ γβ) i t s) γ t2 s) γ A β T γ t 2 s) t 2 s) γβγ t 2 s) γ t s) γ ] t s) γ A β T γ t s) A β D s, ws) ) γ M βγ β)n D Γ γβ) 2 t 2 t k ) γ t 2 s) γβ t

18 Klmni etl.advnces in Difference Equtions 28) 28:6 Pge 8 of 26 M NL q ) N P t2 s) γ t s) γ ] Γ γ ) t s) γ t2 s) γ T γ t 2 s)t s) γ T γ t s) ) L s, ws) ) qs τ)p τ, wτ) ) dτ M NL q )t 2 t ) γ N P Γ γ ) γ k N I t2 t i ) γ t t i ) γ ]] i k t t i ) γ t 2 t i ) γ T γ t 2 t i )t t i ) γ T γ t t i ) ] )) Ii w t i i st 2 t, which mens tht Υ : Ω Ω is equicontinuous. Since t 2 s) γ T γ t 2 s)t s) γ T γ t s) st 2 t becuse T γ )isstrongly continuous. Let B coυ ω). At tht point it is nything but difficult to confirm tht Υ mps B into itself nd B PC γ I, H) is equicontinuous. Now, we prove tht Υ : B B is condensing opertor. For ny E B,by8, Lemm 2.2], there exists countble set E w n } E such tht ω Υ E) ) 2ω Υ E ) ). 3.) By the equicontinuity of B,weknowthtE B is lso equicontinuous. Therefore, by 8, Lemm 2.], ssumption H6), we hve ω Υ E )t) ) ω t t k ) γ t γ T γ t)w D t, w n t) ) t s) γ A T γ t s)d s, w n s) ) t s) γ T γ t s) L s, w n s) ) T γ t t k )t t k ) γ )) )} I k w t k <t k <t qs τ)p τ, w n τ) ) ] dτ 2 A β ω t t k ) γ A β D t, w n t) )) 2ω t t k ) γ t s) γ A T γ t s)d s, w n s) ) ) 2M t Γ γ ) ω t k ) γ t s) γ T γ t s) L s, w n s) ) qs τ)p τ, w n τ) ) ] ) dτ 2 A β L ω t t k ) γ w n t) ) γ M βγ β)t γβ L ω t t k ) γ γβγ γβ)

19 Klmni etl.advnces in Difference Equtions 28) 28:6 Pge 9 of 26 )w n t) ) 2M Γ γ ) 2 M L Kγ, β)l t γ γ ω t t k ) γ L t, w n t) ) q P t, w n t) )]) M L2 q ] L 3 τ γ Γ γ ) ) ωe ). 3.5) Since Υ E ) B is bounded nd equicontinuous, we know from 8, Lemm 2.3] tht ω Υ E ) ) mx t I ω Υ E )t) ). 3.6) Therefore, from 3.), 3.)3.6), we know tht ω Υ E) ) M Kγ, β) ) ) M L L2 q ] L 3 τ γ ωe) Γ γ ) ωe). 3.) Thus, Υ : B B is condensing opertor. It follows from 8, Lemm 2.5] tht Υ hs t lest one fixed point wt ) B, which is the mild solution of model.).3) ontheintervl, τ ]. Applictions Consider the subsequent initil-boundry vlue problem of impulsive frctionl integrodifferentil model with RL frctionl derivtives: L D 3 t ] ut, x) e 2s us, x) us, x) 2 ut, x) e ts 2et ut, x) ut, x) e s, t, 2] nd t,.) 5 us, x) I u, x ) sin u, x ) ),.2) u x)i t ] ut, x) e 2s us, x) us, x) t,.3) ut,)ut, π), t, T], x, π],.) where L D 3 is the RiemnnLiouville frctionl derivtives of order 3,< 3, I is the RL integrl of order, u x) H. To study this problem, consider H L 2, π], R). Let the opertor A by A y y, with the domin DA ) y ) H : y, y re bsolutely continuous, y H, yt,)yt, π) }. Then A genertes c semigroup Tt)} t which is compct, nlytic. Besides, A cn be composed s A y n 2 y, e n e n, y DA ), n

20 Klmni etl.advnces in Difference Equtions 28) 28:6 Pge 2 of 26 2 where e n x) sin nx, x π, n,2,...,isnorthonormlbsisofh.wehve π Tt)y e n2t y, e n e n, y H, nd Tt) e t M, t. n For ech y H, A 2 y n n y, e n e n. In specific, A 2. The opertor A 2 is given by A 2 y n y, e n e n n on the spce D A ) 2 y ) H, } n y, e n e n H. n From Theorem 2., the generl solution of impulsive model.).)isobtinefol- lows: ut, x) u Γ 3 )t Γ 3 ) eτ esτ t, ], u Γ 3 )t t s) 2 us,x) 2es us,x) us,x) 5 uτ,x) dτ] Γ 3 ) e2s us,x) us,x), t s) 2 us,x) 2es us,x) us,x) eτ esτ 5 uτ,x) dτ] sin Γ 3 ) u, x) )t ) ξ sin Γ 3 ) u, x) )u t ξ Γ 3 ) sin u, x) ) ) 2 us,x) 2es us,x) us,x) Γ 3 ) e2s us,x) us,x) t s) eτ esτ 5 uτ,x) dτ] u 2 us,x) 2es us,x) us,x) eτ esτ 5 uτ,x) dτ] )t ) t s) 2 us,x) 2es us,x) us,x) eτ esτ dτ] }, t, 2]. 5 uτ,x).5) Next, it is verified tht eqution.5) stisfies the condition of system.).). Tking the RiemnnLiouville frctionl derivtive to both sides of eqution.5), we hve:

21 Klmni etl.advnces in Difference Equtions 28) 28:6 Pge 2 of 26 i) for t, ], D 3 ut, x) D 3 u e 2s Γ 3 )t Γ 3 ) e sτ ) us, x) us, x) e τ 5 uτ, x) dτ d Γ 3 )Γ 3 ) dt 2es us, x) us, x) 2 us, x) e sτ 2 ut, x) ii) for t, 2], D 3 ut, x) D 3 u e sτ t s) 2 us, x) ] ) t η) 3 u η 2es us, x) us, x) e τ e τ 5 uτ, x) dτ 2et ut, x) ut, x) e 2s Γ 3 )t Γ 3 ) e sτ 5 uτ, x) dτ ] } e ts ) us, x) us, x) e τ 5 uτ, x) dτ D 3 ξ sin u, x) ) Γ 3 ) ] t,] } t,] e s 2es us, x) us, x) η ] ) 5 us, x). η s) 2 us, x) } dη t,] t s) 2 us, x) 2es us, x) us, x) ] ) D 3 sin u t e τ Γ 3 ) 2es us, x) us, x) e sτ 5 uτ, x) dτ 2 us, x) u 2es us, x) us, x) t s) 2 us, x) 2es us, x) us, x) e sτ e τ ] }) 5 uτ, x) dτ d Γ 3 )Γ 3 ) dt 2es us, x) us, x) d Γ 3 )Γ ) dt e sτ u, x ) ) ) t ) Γ 3 ) t s) 2 us, x) ] e sτ t η) 3 u η e τ 5 uτ, x) dτ t η) 3 η ) sin η ] ) e τ ] ) 5 uτ, x) dτ t ) η s) 2 us, x) } dη t,2] ) u, x ) dη } t,2]

22 Klmni etl.advnces in Difference Equtions 28) 28:6 Pge 22 of 26 d Γ 3 )Γ ) dt η e sτ e sτ η s) e τ 5 uτ, x) dτ t η) 3 η ) 2 us, x) 2es us, x) us, x) ] u e τ ξ sin u, x) ) ] ) η ) Γ 3 ) u η 2 us, x) 2es us, x) us, x) t s) 2 us, x) 5 uτ, x) dτ 2es us, x) s us, x) e sτ e τ ] } } 5 uτ, x) dτ dη t,2] 2 us, x) 2es us, x) s us, x) e sτ e τ 5 uτ, x) dτ ξ sin u, x) ) t 2 us, x) Γ 3 ) 2es us, x) us, x) ξ sin u, x) ) t Γ 3 ) e sτ e τ } dτ 5 uτ, x) ξ sin u, x) ) d t Γ 3 ) Γ 3 )Γ ) t η) 3 u dt e sτ 2es us, x) us, x) 5 uτ, x) dτ t s) 2 us, x) 2es us, x) η us, x) e sτ e τ ] } } 5 uτ, x) dτ dη 2 ut, x) t e τ } t,2] ] ) η ) ] } ] } t,2] t,2] 2et ut, x) ut, x) e ts e s ] 5 us, x) t ξ sin u, x) ) 2 ut, x) Γ 3 ) 2et ut, x) ut, x) e ts e s ] 2 5 us, x) ut, x) 2et ut, x) t ut, x) e ts e s ] } 5 us, x) t t,2] 2 ut, x) 2et ut, x) t ut, x) e ts e s ] 5 us, x). t,2] t,2] 2 us, x) So, eqution.5) stisfies the RL frctionl derivtive condition of system.).). By Definition 2.2,weobtin I 3 u, x ) I 3 u, x ) t } Γ ) t η) 3 uη) dη t Γ ) t η) 3 uη) dη } t

23 Klmni etl.advnces in Difference Equtions 28) 28:6 Pge 23 of 26 sin u, x) ) t } Γ 3 )Γ 3 ) t η) 3 dη t ξ sin u, x ) ) Γ 3 )Γ 3 ) η η s) 3 2 us, x) 2es us, x) us, x) 2es us, x) us, x) e sτ e sτ e sτ e sτ e τ 5 uτ, x) dτ e τ 5 uτ, x) dτ t η) 3 u η ] u 2es us, x) us, x) 5 uτ, x) dτ η η s) 2 us, x) 2es us, x) s us, x) sin u, x ) ) ξ sin u, x ) ) u e τ ] ] ) η ) e sτ 2 us, x) e τ ] } 5 uτ, x) dτ dη} t 2 us, x) u 2es us, x) us, x) e τ ] ) 5 uτ, x) dτ 2 us, x) 2es us, x) s us, x) e sτ e τ 5 uτ, x) dτ sin u, x ) ). 2 us, x) ] } t Tht is, eqution.5) stisfies impulsive condition.2). Therefore, clerly eqution.5) fulfills the following limit cse: lim sin u,x) ) lim sin u,x) ) D 3 ut, x) 2 ut,x) e2s us,x) us,x) ] 2et ut,x) ut,x) t, 2] nd t, I ut, x) es ets 5 us,x), I u) t I u, x)i u, x) sin u, x) ) H, I ut, x) us,x) e2s us,x) ] t u x) H, D 3 ut, x) us,x) e2s us,x) ] 2 ut,x) 2et ut,x) ut,x) es ets 5 us,x), t, 2], e2s us,x) us,x) ] t u x) H. So, eqution.5) is the generl solution of system.).3). Chrcterize the dministrtors L, D, P : I H H nd q : I H by L t, u) 2et ut, x) ut, x),

24 Klmni etl.advnces in Difference Equtions 28) 28:6 Pge 2 of 26 e t Pt, u) 5 us, x), Dt, u) e 2s us, x) us, x), qt s)e ts nd I k u, x )) sin u, x ) ). Then the impulsive frctionl differentil system.).) cnbeconvertedintothe bstrct form problem.).3). Next, we shll show tht hypotheses H2)H5) re stisfied. For this, u, v PC γ, 2], H). i) L t, u)l t, v) 2e t u u 2et v v 2e t u u v v 2e t u v u) v) 2 u v. ii) Hypothesis H2) hol if N L 2. Pt, u)pt, v) e t 5u et 5v e t u v 5 u)5 v) e u v. 25 If N L e, condition H3) is stisfied. 25 iii) Choose β 2,wehve t A ) 2 Dt, u)a ) 2 Dt, v) e 2s u u v v e2t u v 2 u) v) e u v. 2 Here, condition H) hol with N P e 2.

25 Klmni etl.advnces in Difference Equtions 28) 28:6 Pge 25 of 26 iv) Finlly, Ik u )) I k u )) sin u, x ) ) sin v, x ) ) ) u) sin u sin u v. And Ik u) sin u, x ) ) u. From iv), we notice tht hypothesis H5) hol with d i N I. Let t I,thenwehve q sup t I t qt s) e ts e t e. Therefore, ll the conditions of Theorem 3. re verified. Hence, problem.).)hs solution in, 2]. 5 Conclusion In this mnuscript, we hve studied the locl existence for n impulsive frctionl neutrl integro-differentil system with RiemnnLiouville frctionl derivtives in Bnch spce. More precisely, by utilizing the semigroup theory, frctionl powers of opertors, nd condensing fixed point theorem, we investigte the impulsive frctionl neutrl integro-differentil system in Bnch spce. To vlidte the obtined theoreticl results, n exmple is nlyzed. The frctionl differentil equtions re very efficient to describe rel life phenomen; thus, it is essentil to extend the present study to estblish the other qulittive nd quntittive properties such s stbility nd pproximte controllbility. There re two direct issues which require further study. First, we will investigte the globl existence of mild solution to impulsive frctionl semiliner integro-differentil equtions with noncompct semigroup. Secondly, we will be devoted to studying the pproximte controllbility of impulsive frctionl neutrl integro-differentil systems with RiemnnLiouville frctionl derivtives in Bnch spce both in the cse of noncompct opertor nd norml topologicl spce. Acknowledgements The uthors re grteful to the nonymous referees for their constructive comments nd helpful suggestions. Funding Not pplicble. Avilbility of dt nd mterils Not pplicble. Competing interests The uthors declre tht they hve no competing interests.

26 Klmni etl.advnces in Difference Equtions 28) 28:6 Pge 26 of 26 Authors contributions All uthors hve equl contributions. All uthors red nd pproved the finl mnuscript. Author detils Deprtment of Mthemtics, C. B. M. College, Coimbtore, Indi. 2 Deprtment of Mthemtics nd Computer Sciences, Fculty of Arts nd Sciences, Cnky University, Ankr, Turkey. 3 Institute of Spce Sciences, Mgurele-Buchrest, Romni. Publisher s Note Springer Nture remins neutrl with regrd to jurisdictionl clims in published mps nd institutionl ffilitions. Received: 2 Jnury 28 Accepted: 3 October 28 References. Agrwl, P., Belmekki, M., Benchohr, M.: A survey on semiliner differentil equtions nd inclusions involving RiemnnLiouville frctionl derivtive. Adv. Differ. Equ. 29, Article ID ) 2. Blenu, D., Mchdo, T., Luo, J.: Frctionl Dynmics nd Control. Springer, New York 22) 3. Bns, J., Goebel, K.: Mesure of Noncompctness in Bnch Spces. Lecture Notes in Pure nd Applied Mthemtics, vol. 6. Dekker, New York 98). Chddh, A., Pndey, N.: Existence results for n impulsive neutrl integro-differentil eqution with infinite dely vi frctionl opertors. Mly J. Mt. 23), 22 2) 5. Chudhry, R., Pndey, N.: Existence results for nonliner frctionl differentil eqution with nonlocl integrl boundry conditions. Mly J. Mt. 3), ) 6. Deimling, K.: Nonliner Functionl Anlysis. Springer, New York 985). Gutm, R., Dbs, J.: Mild solution for frctionl functionl integro-differentil eqution with not instntneous impulse. Mly J. Mt. 2), 283 2) 8. Gou, H., Li, B.: Locl nd globl existence of mild solution to impulsive frctionl semiliner integro-differentil eqution with noncompct semigroup. Commun. Nonliner Sci. Numer. Simul. 2, 22 2) 9. Heymns, N., Podlubny, I.: Physicl interprettion of initil conditions for frctionl differentil equtions with RiemnnLiouville frctionl derivtives. Rheol. Act 5,65 26). Ibrhim, R., Elgn, K.: On solutions for clsses of frctionl differentil equtions. Mly J. Mt. 2),8 2). Kilbs, A., Srivstv, M., Trujillo, J.: Theory nd Applictions of Frctionl Differentil Equtions. Elsevier, Amesterdm 26) 2. Liu, H., Li, W.: Existence nd uniqueness of solutions for the nonliner impulsive frctionl differentil equtions. Commun. Nonliner Sci. Numer. Simul. 8, ) 3. Liu, H., Li, W.: On the controllbility of impulsive frctionl evolution inclusions in Bnch spces. J. Optim. Theory Appl. 56, ). Liu, H., Li, W.: Existence nd uniqueness of solutions for the nonliner impulsive frctionl differentil equtions. Commun. Nonliner Sci. Numer. Simul. 8, ) 5. Liu, H., Sun, H., Sznto, I.: Monotone itertive technique for RiemnnLiouville frctionl integro-differentil equtions with dvnced rguments. Results Mth. 63,228 23) 6. Liu, L., Lv, Y.: Existence results for RiemnnLiouville frctionl neutrl evolution equtions. Adv. Differ. Equ. 2, 83 2). Liu, X., Liu, Z., Bin, M.: Approximte controllbility of impulsive frctionl neutrl evolution equtions with RiemnnLiouville frctionl derivtives. J. Comput. Anl. Appl. 3), ) 8. Liu, Z., Bin, M.: Approximte controllbility of impulsive RiemnnLiouville frctionl equtions in Bnch spces. J. Integrl Equ. Appl. 26), ) 9. Liu, Z., Li, X.: Approximte controllbility of frctionl evolution systems with RiemnnLiouville frctionl derivtives. SIAM J. Control Optim. 53), ) 2. Ouli, A., Kndouci, A.: Existence of mild solutions result for frctionl neutrl stochstic integro-differentil equtions with nonlocl conditions nd infinite dely. Mly J. Mt. 3),3 25) 2. Pzy, A.: Semigroups of Liner Opertors nd Applictions to Prtil Differentil Equtions. Springer, New York 983) 22. Podlubny, I.: Frctionl Differentil Equtions. Acdemic Press, New York 999) 23. Selvrsu, S., Klmni, P., Mllik Arjunn, M.: Approximte controllbility of nonlocl impulsive frctionl neutrl stochstic integro-differentil equtions with stte-dependent dely in Hilbert spces. Mly J. Mt. ), ) 2. Shu, B., Xu, F.: The existence of solutions for impulsive frctionl prtil neutrl differentil equtions. J. Mth. 23, Article ID 93 23) 25. Wng, R., Zhou, Y.: Existence nd controllbility results for frctionl semiliner differentil inclusions. Nonliner Anl., Rel World Appl. 26), ) 26. Wng, R., Zhou, Y., Feckn, M.: Abstrct Cuchy problem for frctionl differentil equtions. Nonliner Dyn., ) 2. Yng, M., Wng, Q.: Approximte controllbility of RiemnnLiouville frctionl differentil inclusions. Appl. Mth. Comput. 2, ) 28. Zhng, X., Ding, W., Peng, H., Liu, Z., Shu, T.: The generl solution of impulsive systems with RiemnnLiouville frctionl derivtives. Open Mth.,253 26) 29. Zhou, Y.: Bsic Theory of Frctionl Differentil Equtions. World Scientific, Singpore 2) 3. Zhou, Y., Jio, F.: Existence of mild solutions for frctionl neutrl evolution equtions. Comput. Mth. Appl. 59, 63 2) 3. Zhou, Y., Jio, F., Li, J.: Existence nd uniqueness for frctionl neutrl differentil equtions with infinite dely. Nonliner Anl., ) 32. Zhou, Y., Zhng, L., Shen, H.: Existence of mild solutions for frctionl evolution equtions. J. Integrl Equ. Appl. 25, )

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

INTEGRAL INEQUALITY REGARDING r-convex AND

INTEGRAL INEQUALITY REGARDING r-convex AND J Koren Mth Soc 47, No, pp 373 383 DOI 434/JKMS47373 INTEGRAL INEQUALITY REGARDING r-convex AND r-concave FUNCTIONS WdAllh T Sulimn Astrct New integrl inequlities concerning r-conve nd r-concve functions

Διαβάστε περισσότερα

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],* Studies in Mthemtil Sienes Vol. 5, No.,, pp. [9 97] DOI:.3968/j.sms.938455.58 ISSN 93-8444 [Print] ISSN 93-845 [Online] www.snd.net www.snd.org Osilltion of Nonliner Dely Prtil Differene Equtions LIU Gunghui

Διαβάστε περισσότερα

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals: s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =

Διαβάστε περισσότερα

Solutions_3. 1 Exercise Exercise January 26, 2017

Solutions_3. 1 Exercise Exercise January 26, 2017 s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval AMS B Perturbtion Methods Lecture 4 Copyright by Hongyun Wng, UCSC Emple: Eigenvlue problem with turning point inside the intervl y + λ y y = =, y( ) = The ODE for y() hs the form y () + λ f() y() = with

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS

ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS Irnin Journl of Fuzzy Systems Vol. 14, No. 6, 2017 pp. 87-102 87 ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS B. M. UZZAL AFSAN Abstrct. The min purpose of this pper is to estblish different types

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

On the generalized fractional derivatives and their Caputo modification

On the generalized fractional derivatives and their Caputo modification Aville online t www.isr-pulictions.com/jns J. Nonliner Sci. Appl., 0 207), 2607 269 Reserch Article Journl Homepge: www.tjns.com - www.isr-pulictions.com/jns On the generlized frctionl derivtives nd their

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Lecture 5: Numerical Integration

Lecture 5: Numerical Integration Lecture notes on Vritionl nd Approximte Metods in Applied Mtemtics - A Peirce UBC 1 Lecture 5: Numericl Integrtion Compiled 15 September 1 In tis lecture we introduce tecniques for numericl integrtion,

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS Dedicted to Professor Octv Onicescu, founder of the Buchrest School of Probbility LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS G CARISTI nd M STOKA Communicted by Mrius Iosifescu

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique. Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2. etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Some definite integrals connected with Gauss s sums

Some definite integrals connected with Gauss s sums Some definite integrls connected with Guss s sums Messenger of Mthemtics XLIV 95 75 85. If n is rel nd positive nd I(t where I(t is the imginry prt of t is less thn either n or we hve cos πtx coshπx e

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du) . Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Oscillation criteria for third-order nonlinear neutral differential equations with distributed deviating arguments

Oscillation criteria for third-order nonlinear neutral differential equations with distributed deviating arguments Avilble online t www.tjns.com J. Nonliner Sci. Appl. 9 (206), 670 682 Reserch Article Oscilltion criteri for third-order nonliner neutrl differentil equtions with distributed deviting rguments Cuimei Jing,

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Characterization of non-differentiable points in a function by Fractional derivative of Jumarrie type

Characterization of non-differentiable points in a function by Fractional derivative of Jumarrie type Chrcteriztion of non-differentible points in function by Frctionl derivtive of Jumrrie type Uttm Ghosh (), Srijn Sengupt(), Susmit Srkr (), Shntnu Ds (3) (): Deprtment of Mthemtics, Nbdwip Vidysgr College,

Διαβάστε περισσότερα

Notes on Tobin s. Liquidity Preference as Behavior toward Risk

Notes on Tobin s. Liquidity Preference as Behavior toward Risk otes on Tobin s Liquidity Preference s Behvior towrd Risk By Richrd McMinn Revised June 987 Revised subsequently Tobin (Tobin 958 considers portfolio model in which there is one sfe nd one risky sset.

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

I Feel Pretty VOIX. MARIA et Trois Filles - N 12. BERNSTEIN Leonard Adaptation F. Pissaloux. ι œ. % α α α œ % α α α œ. œ œ œ. œ œ œ œ. œ œ. œ œ ƒ.

I Feel Pretty VOIX. MARIA et Trois Filles - N 12. BERNSTEIN Leonard Adaptation F. Pissaloux. ι œ. % α α α œ % α α α œ. œ œ œ. œ œ œ œ. œ œ. œ œ ƒ. VOX Feel Pretty MARA et Trois Filles - N 12 BERNSTEN Leonrd Adpttion F. Pissloux Violons Contrebsse A 2 7 2 7 Allegro qd 69 1 2 4 5 6 7 8 9 B 10 11 12 1 14 15 16 17 18 19 20 21 22 2 24 C 25 26 27 28 29

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

«Βιοδοκιμές αποτελεσματικότητας ουσιών φυτικής προέλευσης επί του δορυφόρου της πατάτας Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)»

«Βιοδοκιμές αποτελεσματικότητας ουσιών φυτικής προέλευσης επί του δορυφόρου της πατάτας Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)» ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΑΓΡΟΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΥΠΟΔΟΜΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ Εργαστήριο Γεωργικής Ζωολογίας & Εντομολογίας Αθήνα 2015 «Βιοδοκιμές αποτελεσματικότητας

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS Electronic Journal of Differential Equations, Vol. 28(28), No. 146, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) EXISTENCE

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 29, Article ID 189768, 12 pages doi:1.1155/29/189768 Research Article Existence of Positive Solutions for m-point Boundary

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα