On the generalized fractional derivatives and their Caputo modification

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "On the generalized fractional derivatives and their Caputo modification"

Transcript

1 Aville online t J. Nonliner Sci. Appl., 0 207), Reserch Article Journl Homepge: On the generlized frctionl derivtives nd their puto modifiction Fhd Jrd, Thet Adeljwd, Dumitru Blenu,c, Mthemtics Deprtment, Fculty of Arts nd Sciences, Çnky University, 06790, Etimesgut, Ankr, Turkey. Deprtment of Mthemtics nd Physicl Sciences, Prince Sultn University, P. O. Bo 66833, 586 Riydh, Sudi Ari. c Institute of Spce Sciences, Mgurele-Buchrest, Romni. ommunicted y X. J. Yng Astrct In this mnuscript, we define the generlized frctionl derivtive on A n γ[, ], the spce of functions defined on [, ] such tht γ f A[, ], where γ d d. We present some of the properties of generlized frctionl derivtives of these functions nd then we define their puto version. c 207 All rights reserved. Keywords: Riemnn-Liouville frctionl derivtives, puto frctionl derivtives, Hdmrd frctionl derivtives, puto-hdmrd frctionl derivtives, generlized frctionl integrl, generlized puto frctionl derivtives. 200 MS: 26A33, 34A08.. Introduction nd preliminries The frctionl clculus is n importnt developing field in oth pure nd pplied mthemtics [6, 20, 2]. Mny rel world prolems hve een investigted within the frctionl derivtives, prticulrly puto frctionl derivtive is etensively nd successfully used in mny rnches of sciences nd engineering [, 8 20]. We recll tht the system hving memory effect re etter descried within frctionl differentil opertors minly due to the non-loclity of these opertors [, 6, 9 2]. However, the non-loclity hs vrious forms. Therefore, the reserchers try to generlize the frctionl opertors to cpture the hidden spects of the rel non-locl phenomen. On the other hnd, mny reserchers work on frctionl integrls nd derivtives with non-locl nd non-singulr kernels [7, 9, 7, 22, 23]. One of the trends in frctionl is the discrete frctionl opertors which re proved to hve good pplictions in vrious fields [ 4, 6, 0]. From the clssicl frctionl clculus, we recll [6, 20, 2]. The left Riemnn-Liouville frctionl integrl of order α > 0 strting from hs the following form I α f)) Γα) t) α ft)dt. orresponding uthor Emil ddresses: fhd@cnky.edu.tr Fhd Jrd), tdeljwd@psu.edu.s Thet Adeljwd), dumitru@cnky.edu.tr Dumitru Blenu) doi: /jns Received

2 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), The right Riemnn-Liouville frctionl integrl of order α > 0 ending t > is defined y I α f)) Γα) t ) α ft)dt. The left Riemnn-Liouville frctionl derivtive of order α > 0 strting t is given elow D α f)) d d )n I n α f)), n [α] +. The right Riemnn-Liouville frctionl derivtive of order α > 0 ending t ecomes D α f)) d d )n I n α f)). The left puto frctionl of order α > 0 strting from hs the following form D α f)) I n α f n) )), n [α] +. The right puto frctionl derivtive of order α > 0 ending t ecomes D α f)) In α ) n f n) )). The Hdmrd type frctionl integrls nd derivtives were introduced in [5] s: The left Hdmrd frctionl integrl of order α > 0 strting from hs the following form J α f)) Γα) ln ln t) α ft)dt. The right Hdmrd frctionl integrl of order α > 0 ending t > is defined y J α f)) Γα) ln t ln ) α ft)dt. The left Hdmrd frctionl derivtive of order α > 0 strting t is given elow D α f)) d d )n I n α f)), n [α] +. The right Hdmrd frctionl derivtive of order α > 0 ending t ecomes D α f)) d d )n I n α f)). The uthors in [8, 2] defined the puto-hdmrd frctionl derivtives s: The left puto-hdmrd frctionl of order α > 0 strting from hs the following form D α f)) D α [ft) δ k f) log t )k ]), δ d d, nd in the spce A n δ [, ] {g : [, ] : δ [g)] A[, ]} equivlently y D α f)) J n α d d )n f)), n [α] +.

3 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), The right frctionl derivtive of order α > 0 ending t ws defined y D α f)) D α [ft) nd the spce A n δ [, ] equivlently y ) k δ k f) log t )k ]), D α f)) Jn α d d )n f)). For <, c R nd p <, define the function spce X p c, ) { ) /p f : [, ] R : f X p c t c ft) p dt } <. t For p, f X p c ess sup t [t c ft) ]. The generlized left nd right frctionl integrls in the sense of Ktugmpol) re defined y [3] nd I α, f)) Γα) I α, f)) Γα) t t ) α ft) dt t, ) α ft) dt t, respectively. In [3] it ws shown tht the integrl opertor I α, is ounded on the function spce X p c, ), c. Indeed, Also, the semigroup property nd I α, f X p c K f X p c, K α Γα) / u u c α ) α du, 0. I α, I µ, f I α+µ, f, f X p c, ), α > 0, µ > 0, p <, 0, ),, c R, c. The left nd right generlized frctionl derivtives of order α re defined y [4] D α, f)) γ n I n α, f)) γ n D α, f)) γ)n I n α, f)) γ)n t t ) n α ft) dt t, ) n α ft) dt t, respectively, where > 0. The uthors in [5] did define the puto version of the generlized frctionl derivtives. From the mthemticl view, we hve to consider the frctionl derivtives of functions elonging to specific spces. In this spect, this will help us to tret efficiently the numericl solutions of differentil equtions involving the generlized frctionl derivtives. The min purpose of this rticle is to present the generlized frctionl derivtives of solute differentile continuous nd differentile continuous functions nd consider some of their properties tht will led us to define the puto modifiction of these derivtives. The orgniztion of the pper is s follows. In Section 2, we present the generlized frctionl derivtives of functions in the spces A n γ[, ] nd n γ[, ]. In Section 3, we define the puto version of generlized frctionl derivtives. Section 4 contins the conclusion.

4 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), The generlized frctionl derivtives on the spce A n γ[, ] nd n γ[, ] From sic nlysis we recll tht f A[, ] is the spce of solutely continuous functions on [, ] if nd only if f) c + ϕt)dt, ϕt) L, ) see lso [6,..5]). Let s denote the spce of ll continuous rel Bnch-) vlued functions on [, ] y [, ] endowed with the norm f sup [,] f),. is the solute vlue in the rel line or the norm in the Bnch spce. Net we introduce spce of weighted continuous functions in which continuity t is not stressed. For 0 ɛ <, we define ɛ, [, ] {f :, ] R : ) ɛ f) [, ]}, 0, endowed with the norm f ɛ, ) ɛ f). ɛ, [, ] {f :, ] R : log log ) ɛ f) [, ]}, 0, endowed with the norm f ɛ, f ɛ,log log log ) ɛ f). The convention tht 0, [, ] [, ] is used. Definition 2.. Let [, ] e finite intervl, 0 ɛ < nd A[, ] e the set of solute continuous functions on [, ]. Then, we define A n γ[, ] n γ,ɛ[, ] { f : [, ] nd γ f A[, ], γ d }, A d γ[, ] A[, ]. { f : [, ] nd γ f [, ], γ n f ɛ, [, ], γ d }, d endowed with the norm f n γ,ɛ γk f + γ n f ɛ,. The convention n γ,0 [, ] n γ[, ] endowed with the norm f n γ n γk f is used. Lemm 2.2. Assume 0. A function f A n γ[, ] if nd only if f is presented in the form f) n )! t ) γ n f)t) t dt + γ k f)) Proof. Since f A n γ[, ], from Definition 2., γ f A[, ]. Hence one cn write γ f) for some function g L [, ] nd c 0 is constnt. Dividing oth sides of 2.2) y nd then integrting gives γ n 2 f) t t gu)du + c 0 )dt Dividing oth sides of 2.3) y nd then integrting once more yields γ n 3 f) t Repeting the sme procedure n 3 times, one gets f) t ) k. 2.) gt)dt + c 0, 2.2) ) 2 gt) 2 dt + c 0 2 t )gt)dt ) + c 0 + c. 2.3) ) 2 + c ) + c 2. ) gt) n )! dt + c k ) n k. 2.4) n k )!

5 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), It is cler from 2.) tht γ n f) g) nd from the proof tht c k γ n f), k 0,,, n. This ws the proof of the necessity. To proof the sufficiency it is enough to pply the opertor γ n to oth sides of 2.). We should mention tht Lemm 2.2 cn e dpted to the cse of the right integrtion s f) n )! t ) ) n γ n f)t) t dt + ) k γ k f)) ) k. Notice tht if we let 0 in the representtion 2.) then we get the representtion 3.) in [5] with µ 0. An nlogous lemm cn e written for the spce n γ,ɛ[, ] s follows. Lemm 2.3. Assume 0. A function f n γ,ɛ[, ] if nd only if f is presented in the form f) n )! t ) gt)dt + ) k, c k 2.5) where gt) ɛ, [, ]. Moreover, g) γn f)) nd c k γk f)). In prticulr, f n γ[, ] if nd only if f is presented in the form of 2.5), where gt) [, ]. Proof. The proof is similr to the proof of Lemm 2.2. Notice tht if we let 0 in the representtion 2.5) then we get the representtion..29) in [6]. Also, if we let in the representtions 2.) nd 2.5), respectively, then, we get the representtions..8) nd..23) in [6], respectively. Now we present formul for the generlized frctionl derivtives of functions in the spce f A n γ[, ]. Theorem 2.4. Let Reα) > 0, n Reα) + nd f A n γ[, ] or f n γ[, ]. Then the generlized frctionl derivtives of f eist lmost everywhere nd cn e represented in the form D α, f) D α, )n f) t ) n α γ n g)t)dt γ k f)) ) k α, t + 2.6) Γk α + ) t ) n α γ n g)t)dt t + ) k γ k f)) Γk α + ) ) k α. 2.7) Proof. Here we prove 2.6). Eqution 2.7) cn e proved similrly. Apply D α, to oth sides of eqution 2.4), then using property 2.) one gets t D α, f) n )! γn{ t ) n α t u ) γ n f)u)du u ) k α. + γ k f)) Γk α + ) Reversing the order of integrtion one gets D α, f) n )! γn{ t ) n α t u ) γ n f)u)dt u t ) k α. + γ k f)) Γk α + ) dt } t du } u

6 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), Using the chnge of vrile v t u, one otins u D α, f) n )! γn{ u ) 2n α γ n f)u)du } u v) n α v dv 0 γ k f)) ) 2.8) k α. + Γk α + ) Evluting the second integrl in 2.8), one gets D α, Γn) f) Γ2n α)n )! γn{ u ) 2n α γ n f)u)du } u γ k f)) ) 2.9) k α. + Γk α + ) Now pplying the opertor γ n on the integrl, 2.9) ecomes D α, f) u ) n α γ n f)u)du γ k f)) u + Γk α + ) ) k α. Theorem 2.5. Let α > β > 0, p nd c R. Then for f X p c, ) we hve D β, I α, f I α β, f, nd D β, Proof. If β m positive integer, then we hve Now, if m < β m we hve D m, I α, f) γ m[ Γα) γ m [ Γα ) γ m 2[ Γα 2). Γα m) I α m, f). I α, f Iα β, f. t ) α ft)dt ] t t ) α 2 ft)dt ] t t ) α 3 ft)dt ] t t ) α m ft)dt t D β, I α, f γ m I m β, I α, f γ m I α+m β, f I α β, f. This ws the end of the proof of the first formul. The second cn e proved in similr wy. Theorem 2.6 [4]). Let α > 0, p nd c R. Then for f X p c, ) where > 0, > 0, we hve D α, I α, f f, nd D α, I α, f f. Theorem 2.7. Let Reα) > 0, n [ Reα)], f L, ) nd I α, f A n γ[, ] I α, f An γ[, ]). Then n I α, D α, D α j, f) ) α j, )f) f) Γα j + ) j

7 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), Proof. I α, Dα, n )f) f) ) j D α j, f) ) α j. 2.0) Γα j + ) j I α, D α, )f) t ) α D α, ft) dt Γα) t t ) α γ n I n α, f)t) dt Γα) t [ t ) αγ γ n I n α, f)t) dt ] Γα + ) t [ t ) α d ) ] γ γ Γα + ) dt I n α, f)t) dt. Now integrting y prts repetedly leds to [ I α, D α, )f) γ Γα n + ) n j t ) α n I n α, ft) dt γ n j I n α, ))f) Γα + 2 j) [ γ I α n+, I n α, f) ) α j+ ] By using the semigroup property Theorem 4..) in [3], one otins n j t γ n j I n α, f))) Γα + 2 j) ) α j+ ]. [ I α, D α, )f) γ I, f) n j D α j, f) Γα + 2 j) ) α j+ ]. The result is reched fter pplying the opertor γ to the integrl. 2.0) is proved nlogously Lemm 2.8. Let Reα) 0 nd Reβ) > 0. Then, D α, t ) β ) ) D α, t D α, t t D α, ) β ) ) Γβ) Γβ α) Γβ) Γβ α) ) β α, 2.) ) β α, ) α i ) ) 0, i, 2,, [Reα)] +, 2.2) ) α i ) ) 0, i, 2,, [Reα)] +. Proof. Here we prove 2.) nd 2.2). The rest of the results re proved nlogously. D α, t ) β ) d ) n [ t ) n α t ) β dt ] d t

8 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), d ) n [ ) n α+β u) n α u β du ], where u t d 0 ) Γβ) d ) n [ ) n α+β ] Γβ + n α) using properties of the et function) d Γβ) Γβ + n α) ) β α Γβ) ) β α. Γβ + n α) Γβ α) Γβ α) This ws the end of the proof of 2.). Now, D α, t ) α i) d ) n [ d d d Γα i + ) Γn i + ) t ) n α t ) α i dt ] t ) n [ ) n i u) n α u α i du 0 d ) n [ ) n i ] 0. d The limiting cse 0 in Lemm 2.8 will led to the Hdmrd frctionl formuls with replced with ln/) nd ) replced with ln/). Also, the cse will result in the Riemnn- Liouville s formuls. ) 3. puto modifiction of the generlized frctionl derivtive Below we present the definition of the generlized puto frctionl derivtive of ny order which is different from the definition stted in [3]. Definition 3.. Let Reα) 0 nd n [Reα)] +. If f A n γ[, ], where 0 < < <, we define the left nd right generlized puto frctionl derivtives of f of order α y D α, f) D α,[ ft) D α, [ f) Dα, ft) γ k f) ) k γ k f) t t respectively. In cse 0 < Reα) <, we hve D α, f) D α,[ ] ft) f) ), ) k ] ), 3.) ) k ] ), nd D α, [ ] f) Dα, ft) f) ). Theorem 3.2. Let Reα) 0, n [Reα)] + nd f A n γ[, ], where 0 < < <. Then,. If α / N 0, D α, f) D α, f) t t ) n α γ n f)t)dt t I n α, γ n f)), 3.2) ) n α ) n γ n f)t)dt I n α, γ n f)). 3.3) t

9 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), If α N Prticulrly, D α, f γ n f, D 0, f f, D α, f )n γ n f. 3.4) D 0, f f. Proof. 3.2) nd 3.3) re consequences of Theorem 2.4. Now, when α n we hve f) I n, γ n f)) + γ k f) t ) k. From Lemm 2.2, one gets D α, f γ n f. The second prt of 3.4) cn e proved likewise. Theorem 3.3. Let Reα) 0, n [Reα)] + nd f n γ[, ], where 0 < < <. Then, D α, f nd D α, f cn e represented s in 3.2) nd 3.3), respectively if α / N 0. If α N, 3.4) holds. Moreover D α, f nd D α, f re continuous on [, ] nd Proof. The representtion of since we hve D α, f) 0, D α, f ) ) D α, f nd D α, f cn e proved s in the proof of Theorem 2.4. Now, D α, f) t ) n α γ n f)t)dt t, D α, γ n f f n Reα). n Reα)) Thus the continuity is proved. The identities in 3.5) hold since D α, γ n f f n Reα), 3.6) n Reα)) nd D α, f γ n f n Reα). 3.7) n Reα)) Theorem 3.4. Let Reα) 0, n [Reα)] +. If α / N, D α, is ounded from the spce n γ[, ] to the spce [, ] {g [, ] : g) 0} nd D α, is ounded from the the spce n γ[, ] to the spce [, ] {g [, ] : g) 0} nd nd If α N, D α, nd D α, D α, γ n f n γ f n Reα), 3.8) n Reα)) D α, f γ n f n γ n Reα). 3.9) n Reα)) re ounded from the spce n γ[, ] to the spce [, ] nd D n, f f n γ, D n, f f n γ. 3.0) Proof. Equtions 3.8) nd 3.9) follow from 3.6) nd 3.7), respectively. strightforwrd. The inequlities in 3.0) re

10 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), Below we stte the inverse properties. Theorem 3.5. Let Reα) 0, n [Reα)] + nd f [, ].. If Reα) 0 or α N, then 2. If Reα) 0 nd Reα) N, then D α, I α, f) f), D α, Iα, f) f). 3.) D α, I α, f) f) I α+ n, f) ) n α, 3.2) Proof. From 3.), one hs D α, Iα, Iα+ n, f) f) f) ) n α. 3.3) D α, I α, f) D α, I α, γ k I α, f)) ) k. f) 3.4) Γk α + ) From Theorem 2.7 nd Theorem 3.2 one hs γ k I α, )f I α k, f nd D α, I α, f f, respectively. Thus 3.4) reds D α, I α, I α k, )f) ) k. f) f) 3.5) Γk α + ) On the other hnd, it should e esy to verify tht I α k, )f) 0, ecuse of the following estimte I α k, f ) Reα) k. f) 3.6) Γα k)reα) k) This is the end of the proof of the first identity in 3.). The second identity is proved in similr wy. Now if α m + iβ, β 0, then we hve n m + 2 nd γ k I α, )f I α k, f is vlid when k 0,, 2,, m. Becuse of the estimte 3.6) we hve I α k, )f) 0, k 0,, 2,, m. Sustituting in 3.5), we get 3.2). 3.3) is proved similrly. Theorem 3.6. Let f A n γ[, ] or n γ[, ] nd α. Then I α, D α, f) f) I α, D α, In prticulr, if 0 < α, we hve f) f) γ k f)) ) k γ k f)) I α, D α, f) f) f), I α, ) k, ) k. D α, f) f) f). 3.7) Proof. The proof is done y using the semigroup property [3, Theorem 4.] nd Theorem 2.7 α n) I α, D α, f) I α, I n α, γ n f I n, γ n f) Eqution 3.7) cn e proved nlogously. γ k f)) ) k.

11 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), Net we present the composition rule for two generlized puto frctionl derivtives. Theorem 3.7. Let f A m+n γ [, ], 0 < < <, α 0 nd β 0 such tht n < α n nd m < β m. Then D α, D β, f) D α+β, f). Proof. Let us ssume tht m n. Thus m n + k, k 0,, 2,, m n. Then the proof cn e done y using Theorem 2.7, Theorem 3.2 nd [3, Theorem 4.]. In fct, D α, D β, f) I n α, γ n I m β, γ m f) I n α, γ n I n+k β, γ n+k f) I n α, γ n I n β, I k, γ n+k f) I n α, D β, I k, γ n+k f) I n α β, I β, D β, I k, γ n+k f)γ n+k f) I n α β,[ n I k, γ n+k γ n j I n β, I k, γ n+k f)) ) j ] f) Γβ j + ) I n α β,[ I k, γ n+k f) j n j I n α β,[ ] I k, γ n+k f) 0 I n+k α β, γ n+k f) D α+β, f). Eqution 3.7) is proved using similr rguments. γ n j D β, f)) Γβ j + ) ) j ] Lemm 3.8. Let Reα) > 0, n [Reα) + ] + nd Reβ) > 0. Then D α, t ) β ) Γβ) ) β α, Γβ α) Reβ) > n, D α, t ) β ) Γβ) ) β α, Γβ α) Reβ) > n. 3.8) Proof. D α, t ) β ) Γβ) t Γβ n) Γβ) ) β α Γβ n) Γβ) Γβ n) Γβ) ) β α. Γβ α) Eqution 3.8) cn e proved likewise. t ) n α t 0 ) n α [ t d dt ) β dt t ) n t ) β ] dt t u) n α u β du, u t ) β α Γβ n) Γβ α) differentition inside the integrl) using properties of the et function) Lemm 3.9. D α, ) k 0, D α, ) k) 0, k 0,, 2,, n.

12 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), Prticulrly Proof. D α, t The rest formuls cn e proved similrly. D α, ) 0, D α, ) 0. ) k) I n α,[ t d dt) n t ) k ] ) I n α, [0]) 0. From Definition 3. nd Lemm 3.8, we cn set the following reltion etween generlized puto nd Riemnn derivtives: Theorem 3.0. For nd α > 0 nd 0, we hve nd D α, f) D α, f) D α, γ k f) Γk + α) ) k α, f) Dα, f) k )γ k f) Γk + α) ) k α. At lst, we give the reltion etween the generlized puto frctionl derivtives nd the known ones. Theorem 3.. Let α, Reα) > 0 nd n [Reα)] +. Then lim 0 lim 0 lim lim D α, f) D α, f) D α, f) D α, f) t) n α f n) t)dt D α f). 3.9) t) n α ) n f n) t)dt D α f). 3.20) log log t) n α t d dt )n f)t) dt t D α f). 3.2) log t log ) n α ) n t d dt )n f)t) dt t D α f). 3.22) Proof. The limits in 3.9) nd 3.20) re evluted replcing y 0 directly. While, the limits in 3.20) nd 3.2) re evluted y using the L Hôspitl rule. It should e noted tht the derivtives on the right hnd sides in 3.9) nd 3.20) re respectively the left nd right puto derivtives [6, 20]. While, the derivtives on the right hnd sides in 3.2) nd 3.22) re respectively the left nd right puto-hdmrd derivtives developed in [8] nd [2]. 4. onclusions The fundmentl issue of the frctionl opertors nd their generlized versions is to define them correctly in the right spce of functions. In this pper, we defined the generlized frctionl derivtives of functions in the spces of solutely differentile continuous nd differentile continuous functions. Since puto derivtives descrie etter some physicl prolems involving memory effect, we defined the puto version of the generlized frctionl derivtives. We elieve tht this puto

13 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), version of the generlized frctionl derivtive would e useful for reserchers working on modeling rel world phenomen descried y frctionl opertors. Finlly, we noticed tht the limiting cse s 0 leds to the Hdmrd nd puto-hdmrd results y noting tht lim 0 ) ln ) nd lim 0 ) ln ). Also, the cse will result in Riemnn-Liouville s nd puto frctionl derivtives. References [] T. Adeljwd, Dul identities in frctionl difference clculus within Riemnn, Adv. Difference Equ., ), 6 pges. [2] T. Adeljwd, On delt nd nl puto frctionl differences nd dul identities, Discrete Dyn. Nt. Soc., ), 2 pges. [3] T. Adeljwd, D. Blenu, Frctionl differences nd integrtion y prts, J. omput. Anl. Appl., 3 20), [4] T. Adeljwd, D. Blenu, Discrete frctionl differences with nonsingulr discrete Mittg-Leffler kernels, Adv. Difference Equ., ), 8 pges. [5] R. Almeid, A. B. Mlinowsk, T. Odzijewicz, Frctionl differentil equtions with dependence on the puto- Ktugmpol derivtive, J. omput. Nonliner Dyn., 206), pges. [6] F. M. Atıcı, S. Şengül, Modeling with frctionl difference equtions, J. Mth. Anl. Appl., ), 9. [7] M. puto, M. Frizio, A new definition of frctionl derivtive without singulr kernel, Progr. Frct. Differ. Appl., 205), [8] Y. Y. Gmo F. Jrd, D. Blenu, T. Adeljwd, On puto modifiction of the Hdmrd frctionl derivtives, Adv. Difference Equ., ), 2 pges., 3 [9] F. Go, X.-J. Yng, Frctionl Mwell fluid with frctionl derivtive without singulr kernel, Therm. Sci., ), S87 S877. [0]. Goodrich, A.. Peterson, Discrete frctionl clculus, Springer, hm, 205). [] R. Hilfer Ed.), Applictions of frctionl clculus in physics, World Scientific Pulishing o., Inc., River Edge, NJ, 2000). [2] F. Jrd, T. Adeljwd, D. Blenu, puto-type modifiction of the Hdmrd frctionl derivtives, Adv. Difference Equ., ), 8 pges., 3 [3] U. N. Ktugmpol, New pproch to generlized frctionl integrl, Appl. Mth. omput., 28 20), , 2, 3, 3, 3 [4] U. N. Ktugmpol, A new pproch to generlized frctionl derivtives, Bull. Mth. Anl. Appl., 6 204), 5., 2.6 [5] A. A. Kils, Hdmrd-type frctionl clculus, J. Koren Mth. Soc., ), , 2 [6] A. A. Kils, H. M. Srivstv, J. J. Trujillo, Theory nd pplictions of frctionl differentil equtions, North-Hollnd Mthemtics Studies, Elsevier Science B.V., Amsterdm, 2006)., 2, 2, 3 [7] J. Losd, J. J. Nieto, Properties of new frctionl derivtive without singulr kernel, Progr. Frct. Differ. Appl., 205), [8] J. T. Mchdo, V. Kirykov, F. Minrdi, Recent history of frctionl clculus, ommun. Nonliner Sci. Numer. Simul., 6 20), [9] R. L. Mgin, Frctionl clculus in ioengineering, Begell House Pulishers, T, 2006). [20] I. Podluny, Frctionl differentil equtions, An introduction to frctionl derivtives, frctionl differentil equtions, to methods of their solution nd some of their pplictions, Mthemtics in Science nd Engineering, Acdemic Press, Inc., Sn Diego, A, 999)., 3 [2] S. G. Smko, A. A. Kils, O. I. Mrichev, Frctionl integrls nd derivtives, Theory nd pplictions, Edited nd with foreword y S. M. Nikolskiĭ, Trnslted from the 987 Russin originl, Revised y the uthors, Gordon nd Brech Science Pulishers, Yverdon, 993). [22] X.-J. Yng, D. Blenu, H. M. Srivstv, Locl frctionl integrl trnsforms nd their pplictions, Elsevier/Acdemic Press, Amsterdm, 206). [23] X.-J. Yng, F. Go, J. A. Tenreiro Mchdo, D. Blenu, A new frctionl derivtive involving the normlized sinc function without singulr kernel, ArXiv, ), pges.

INTEGRAL INEQUALITY REGARDING r-convex AND

INTEGRAL INEQUALITY REGARDING r-convex AND J Koren Mth Soc 47, No, pp 373 383 DOI 434/JKMS47373 INTEGRAL INEQUALITY REGARDING r-convex AND r-concave FUNCTIONS WdAllh T Sulimn Astrct New integrl inequlities concerning r-conve nd r-concve functions

Διαβάστε περισσότερα

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals: s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =

Διαβάστε περισσότερα

Solutions_3. 1 Exercise Exercise January 26, 2017

Solutions_3. 1 Exercise Exercise January 26, 2017 s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],* Studies in Mthemtil Sienes Vol. 5, No.,, pp. [9 97] DOI:.3968/j.sms.938455.58 ISSN 93-8444 [Print] ISSN 93-845 [Online] www.snd.net www.snd.org Osilltion of Nonliner Dely Prtil Differene Equtions LIU Gunghui

Διαβάστε περισσότερα

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval AMS B Perturbtion Methods Lecture 4 Copyright by Hongyun Wng, UCSC Emple: Eigenvlue problem with turning point inside the intervl y + λ y y = =, y( ) = The ODE for y() hs the form y () + λ f() y() = with

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

Research Article The Study of Triple Integral Equations with Generalized Legendre Functions

Research Article The Study of Triple Integral Equations with Generalized Legendre Functions Hindwi Pulishing Corportion Astrct nd Applied Anlysis Volume 28, Article ID 395257, 2 pges doi:.55/28/395257 Reserch Article The Study of Triple Integrl Equtions with Generlized Legendre Functions B. M.

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Some definite integrals connected with Gauss s sums

Some definite integrals connected with Gauss s sums Some definite integrls connected with Guss s sums Messenger of Mthemtics XLIV 95 75 85. If n is rel nd positive nd I(t where I(t is the imginry prt of t is less thn either n or we hve cos πtx coshπx e

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

A GENERALIZATION OF MITTAG-LEFFLER FUNCTION AND INTEGRAL OPERATOR ASSOCIATED WITH FRACTIONAL CALCULUS

A GENERALIZATION OF MITTAG-LEFFLER FUNCTION AND INTEGRAL OPERATOR ASSOCIATED WITH FRACTIONAL CALCULUS Journl of Frctionl Clculus nd Applictions, Vol. 3. July 212, No. 5, pp. 1-13. ISSN: 29-5858. http://www.fcj.webs.com/ A GENERALIZATION OF MITTAG-LEFFLER FUNCTION AND INTEGRAL OPERATOR ASSOCIATED WITH FRACTIONAL

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK STEPHEN HANCOCK Chpter 6 Solutions 6.A. Clerly NE α+β hs root vector α+β since H i NE α+β = NH i E α+β = N(α+β)

Διαβάστε περισσότερα

ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS

ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS Irnin Journl of Fuzzy Systems Vol. 14, No. 6, 2017 pp. 87-102 87 ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS B. M. UZZAL AFSAN Abstrct. The min purpose of this pper is to estblish different types

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Characterization of non-differentiable points in a function by Fractional derivative of Jumarrie type

Characterization of non-differentiable points in a function by Fractional derivative of Jumarrie type Chrcteriztion of non-differentible points in function by Frctionl derivtive of Jumrrie type Uttm Ghosh (), Srijn Sengupt(), Susmit Srkr (), Shntnu Ds (3) (): Deprtment of Mthemtics, Nbdwip Vidysgr College,

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS Dedicted to Professor Octv Onicescu, founder of the Buchrest School of Probbility LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS G CARISTI nd M STOKA Communicted by Mrius Iosifescu

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Lecture 5: Numerical Integration

Lecture 5: Numerical Integration Lecture notes on Vritionl nd Approximte Metods in Applied Mtemtics - A Peirce UBC 1 Lecture 5: Numericl Integrtion Compiled 15 September 1 In tis lecture we introduce tecniques for numericl integrtion,

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

On the k-bessel Functions

On the k-bessel Functions International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,

Διαβάστε περισσότερα

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique. Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

On the fractional derivatives of radial basis functions

On the fractional derivatives of radial basis functions On the frctionl derivtives of rdil bsis functions Mrym Mohmmdi Robert Schbck b Deprtment of Mthemticl Sciences Isfhn University of Technology Isfhn 84156-83111 Irn b Institut für Numerische und Angewndte

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2. etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du) . Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Local existence for an impulsive fractional neutral integro-differential system with Riemann Liouville fractional derivatives in a Banach space

Local existence for an impulsive fractional neutral integro-differential system with Riemann Liouville fractional derivatives in a Banach space Klmni et l. Advnces in Difference Equtions 28) 28:6 https://doi.org/.86/s3662-8-866-6 R E S E A R C H Open Access Locl existence for n impulsive frctionl neutrl integro-differentil system with RiemnnLiouville

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

«Βιοδοκιμές αποτελεσματικότητας ουσιών φυτικής προέλευσης επί του δορυφόρου της πατάτας Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)»

«Βιοδοκιμές αποτελεσματικότητας ουσιών φυτικής προέλευσης επί του δορυφόρου της πατάτας Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)» ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΑΓΡΟΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΥΠΟΔΟΜΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ Εργαστήριο Γεωργικής Ζωολογίας & Εντομολογίας Αθήνα 2015 «Βιοδοκιμές αποτελεσματικότητας

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Mittag-Leffler Functions and Fractional Calculus

Mittag-Leffler Functions and Fractional Calculus Chpter 2 Mittg-Leffler Functions nd Frctionl Clculus [This chpter is bsed on the lectures of Professor R.K. Sxen of Ji Nrin Vys University, Jodhpur, Rjsthn, Indi.] 2. Introduction This section dels with

Διαβάστε περισσότερα

Weyl-Titchmarsh type formula for periodic Schrödinger operator with Wigner-von Neumann potential

Weyl-Titchmarsh type formula for periodic Schrödinger operator with Wigner-von Neumann potential Weyl-Titchmrsh type formul for periodic Schrödinger opertor with Wigner-von Neumnn potentil Pvel Kursov nd Sergey Simonov Abstrct Schrödinger opertor on the hlf-line with periodic bckground potentil perturbed

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

The k-bessel Function of the First Kind

The k-bessel Function of the First Kind International Mathematical Forum, Vol. 7, 01, no. 38, 1859-186 The k-bessel Function of the First Kin Luis Guillermo Romero, Gustavo Abel Dorrego an Ruben Alejanro Cerutti Faculty of Exact Sciences National

Διαβάστε περισσότερα

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices Lanzos and iorthogonalization methods for eigenvalues and eigenvetors of matries rolem formulation Many prolems are redued to solving the following system: x x where is an unknown numer А a matrix n n

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

CHAPTER 3 MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS

CHAPTER 3 MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS CHAPTER 3 MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS [ThischpterisbsedonthelecturesofProfessorR.K.SxenofJiNrinVysUniversity, Jodhpur, R jsthn.] 3.. Introduction This section dels with Mittg-Leffler

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα