On the generalized fractional derivatives and their Caputo modification
|
|
- Ωσαννά Αλκιππη Βιλαέτης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Aville online t J. Nonliner Sci. Appl., 0 207), Reserch Article Journl Homepge: On the generlized frctionl derivtives nd their puto modifiction Fhd Jrd, Thet Adeljwd, Dumitru Blenu,c, Mthemtics Deprtment, Fculty of Arts nd Sciences, Çnky University, 06790, Etimesgut, Ankr, Turkey. Deprtment of Mthemtics nd Physicl Sciences, Prince Sultn University, P. O. Bo 66833, 586 Riydh, Sudi Ari. c Institute of Spce Sciences, Mgurele-Buchrest, Romni. ommunicted y X. J. Yng Astrct In this mnuscript, we define the generlized frctionl derivtive on A n γ[, ], the spce of functions defined on [, ] such tht γ f A[, ], where γ d d. We present some of the properties of generlized frctionl derivtives of these functions nd then we define their puto version. c 207 All rights reserved. Keywords: Riemnn-Liouville frctionl derivtives, puto frctionl derivtives, Hdmrd frctionl derivtives, puto-hdmrd frctionl derivtives, generlized frctionl integrl, generlized puto frctionl derivtives. 200 MS: 26A33, 34A08.. Introduction nd preliminries The frctionl clculus is n importnt developing field in oth pure nd pplied mthemtics [6, 20, 2]. Mny rel world prolems hve een investigted within the frctionl derivtives, prticulrly puto frctionl derivtive is etensively nd successfully used in mny rnches of sciences nd engineering [, 8 20]. We recll tht the system hving memory effect re etter descried within frctionl differentil opertors minly due to the non-loclity of these opertors [, 6, 9 2]. However, the non-loclity hs vrious forms. Therefore, the reserchers try to generlize the frctionl opertors to cpture the hidden spects of the rel non-locl phenomen. On the other hnd, mny reserchers work on frctionl integrls nd derivtives with non-locl nd non-singulr kernels [7, 9, 7, 22, 23]. One of the trends in frctionl is the discrete frctionl opertors which re proved to hve good pplictions in vrious fields [ 4, 6, 0]. From the clssicl frctionl clculus, we recll [6, 20, 2]. The left Riemnn-Liouville frctionl integrl of order α > 0 strting from hs the following form I α f)) Γα) t) α ft)dt. orresponding uthor Emil ddresses: fhd@cnky.edu.tr Fhd Jrd), tdeljwd@psu.edu.s Thet Adeljwd), dumitru@cnky.edu.tr Dumitru Blenu) doi: /jns Received
2 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), The right Riemnn-Liouville frctionl integrl of order α > 0 ending t > is defined y I α f)) Γα) t ) α ft)dt. The left Riemnn-Liouville frctionl derivtive of order α > 0 strting t is given elow D α f)) d d )n I n α f)), n [α] +. The right Riemnn-Liouville frctionl derivtive of order α > 0 ending t ecomes D α f)) d d )n I n α f)). The left puto frctionl of order α > 0 strting from hs the following form D α f)) I n α f n) )), n [α] +. The right puto frctionl derivtive of order α > 0 ending t ecomes D α f)) In α ) n f n) )). The Hdmrd type frctionl integrls nd derivtives were introduced in [5] s: The left Hdmrd frctionl integrl of order α > 0 strting from hs the following form J α f)) Γα) ln ln t) α ft)dt. The right Hdmrd frctionl integrl of order α > 0 ending t > is defined y J α f)) Γα) ln t ln ) α ft)dt. The left Hdmrd frctionl derivtive of order α > 0 strting t is given elow D α f)) d d )n I n α f)), n [α] +. The right Hdmrd frctionl derivtive of order α > 0 ending t ecomes D α f)) d d )n I n α f)). The uthors in [8, 2] defined the puto-hdmrd frctionl derivtives s: The left puto-hdmrd frctionl of order α > 0 strting from hs the following form D α f)) D α [ft) δ k f) log t )k ]), δ d d, nd in the spce A n δ [, ] {g : [, ] : δ [g)] A[, ]} equivlently y D α f)) J n α d d )n f)), n [α] +.
3 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), The right frctionl derivtive of order α > 0 ending t ws defined y D α f)) D α [ft) nd the spce A n δ [, ] equivlently y ) k δ k f) log t )k ]), D α f)) Jn α d d )n f)). For <, c R nd p <, define the function spce X p c, ) { ) /p f : [, ] R : f X p c t c ft) p dt } <. t For p, f X p c ess sup t [t c ft) ]. The generlized left nd right frctionl integrls in the sense of Ktugmpol) re defined y [3] nd I α, f)) Γα) I α, f)) Γα) t t ) α ft) dt t, ) α ft) dt t, respectively. In [3] it ws shown tht the integrl opertor I α, is ounded on the function spce X p c, ), c. Indeed, Also, the semigroup property nd I α, f X p c K f X p c, K α Γα) / u u c α ) α du, 0. I α, I µ, f I α+µ, f, f X p c, ), α > 0, µ > 0, p <, 0, ),, c R, c. The left nd right generlized frctionl derivtives of order α re defined y [4] D α, f)) γ n I n α, f)) γ n D α, f)) γ)n I n α, f)) γ)n t t ) n α ft) dt t, ) n α ft) dt t, respectively, where > 0. The uthors in [5] did define the puto version of the generlized frctionl derivtives. From the mthemticl view, we hve to consider the frctionl derivtives of functions elonging to specific spces. In this spect, this will help us to tret efficiently the numericl solutions of differentil equtions involving the generlized frctionl derivtives. The min purpose of this rticle is to present the generlized frctionl derivtives of solute differentile continuous nd differentile continuous functions nd consider some of their properties tht will led us to define the puto modifiction of these derivtives. The orgniztion of the pper is s follows. In Section 2, we present the generlized frctionl derivtives of functions in the spces A n γ[, ] nd n γ[, ]. In Section 3, we define the puto version of generlized frctionl derivtives. Section 4 contins the conclusion.
4 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), The generlized frctionl derivtives on the spce A n γ[, ] nd n γ[, ] From sic nlysis we recll tht f A[, ] is the spce of solutely continuous functions on [, ] if nd only if f) c + ϕt)dt, ϕt) L, ) see lso [6,..5]). Let s denote the spce of ll continuous rel Bnch-) vlued functions on [, ] y [, ] endowed with the norm f sup [,] f),. is the solute vlue in the rel line or the norm in the Bnch spce. Net we introduce spce of weighted continuous functions in which continuity t is not stressed. For 0 ɛ <, we define ɛ, [, ] {f :, ] R : ) ɛ f) [, ]}, 0, endowed with the norm f ɛ, ) ɛ f). ɛ, [, ] {f :, ] R : log log ) ɛ f) [, ]}, 0, endowed with the norm f ɛ, f ɛ,log log log ) ɛ f). The convention tht 0, [, ] [, ] is used. Definition 2.. Let [, ] e finite intervl, 0 ɛ < nd A[, ] e the set of solute continuous functions on [, ]. Then, we define A n γ[, ] n γ,ɛ[, ] { f : [, ] nd γ f A[, ], γ d }, A d γ[, ] A[, ]. { f : [, ] nd γ f [, ], γ n f ɛ, [, ], γ d }, d endowed with the norm f n γ,ɛ γk f + γ n f ɛ,. The convention n γ,0 [, ] n γ[, ] endowed with the norm f n γ n γk f is used. Lemm 2.2. Assume 0. A function f A n γ[, ] if nd only if f is presented in the form f) n )! t ) γ n f)t) t dt + γ k f)) Proof. Since f A n γ[, ], from Definition 2., γ f A[, ]. Hence one cn write γ f) for some function g L [, ] nd c 0 is constnt. Dividing oth sides of 2.2) y nd then integrting gives γ n 2 f) t t gu)du + c 0 )dt Dividing oth sides of 2.3) y nd then integrting once more yields γ n 3 f) t Repeting the sme procedure n 3 times, one gets f) t ) k. 2.) gt)dt + c 0, 2.2) ) 2 gt) 2 dt + c 0 2 t )gt)dt ) + c 0 + c. 2.3) ) 2 + c ) + c 2. ) gt) n )! dt + c k ) n k. 2.4) n k )!
5 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), It is cler from 2.) tht γ n f) g) nd from the proof tht c k γ n f), k 0,,, n. This ws the proof of the necessity. To proof the sufficiency it is enough to pply the opertor γ n to oth sides of 2.). We should mention tht Lemm 2.2 cn e dpted to the cse of the right integrtion s f) n )! t ) ) n γ n f)t) t dt + ) k γ k f)) ) k. Notice tht if we let 0 in the representtion 2.) then we get the representtion 3.) in [5] with µ 0. An nlogous lemm cn e written for the spce n γ,ɛ[, ] s follows. Lemm 2.3. Assume 0. A function f n γ,ɛ[, ] if nd only if f is presented in the form f) n )! t ) gt)dt + ) k, c k 2.5) where gt) ɛ, [, ]. Moreover, g) γn f)) nd c k γk f)). In prticulr, f n γ[, ] if nd only if f is presented in the form of 2.5), where gt) [, ]. Proof. The proof is similr to the proof of Lemm 2.2. Notice tht if we let 0 in the representtion 2.5) then we get the representtion..29) in [6]. Also, if we let in the representtions 2.) nd 2.5), respectively, then, we get the representtions..8) nd..23) in [6], respectively. Now we present formul for the generlized frctionl derivtives of functions in the spce f A n γ[, ]. Theorem 2.4. Let Reα) > 0, n Reα) + nd f A n γ[, ] or f n γ[, ]. Then the generlized frctionl derivtives of f eist lmost everywhere nd cn e represented in the form D α, f) D α, )n f) t ) n α γ n g)t)dt γ k f)) ) k α, t + 2.6) Γk α + ) t ) n α γ n g)t)dt t + ) k γ k f)) Γk α + ) ) k α. 2.7) Proof. Here we prove 2.6). Eqution 2.7) cn e proved similrly. Apply D α, to oth sides of eqution 2.4), then using property 2.) one gets t D α, f) n )! γn{ t ) n α t u ) γ n f)u)du u ) k α. + γ k f)) Γk α + ) Reversing the order of integrtion one gets D α, f) n )! γn{ t ) n α t u ) γ n f)u)dt u t ) k α. + γ k f)) Γk α + ) dt } t du } u
6 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), Using the chnge of vrile v t u, one otins u D α, f) n )! γn{ u ) 2n α γ n f)u)du } u v) n α v dv 0 γ k f)) ) 2.8) k α. + Γk α + ) Evluting the second integrl in 2.8), one gets D α, Γn) f) Γ2n α)n )! γn{ u ) 2n α γ n f)u)du } u γ k f)) ) 2.9) k α. + Γk α + ) Now pplying the opertor γ n on the integrl, 2.9) ecomes D α, f) u ) n α γ n f)u)du γ k f)) u + Γk α + ) ) k α. Theorem 2.5. Let α > β > 0, p nd c R. Then for f X p c, ) we hve D β, I α, f I α β, f, nd D β, Proof. If β m positive integer, then we hve Now, if m < β m we hve D m, I α, f) γ m[ Γα) γ m [ Γα ) γ m 2[ Γα 2). Γα m) I α m, f). I α, f Iα β, f. t ) α ft)dt ] t t ) α 2 ft)dt ] t t ) α 3 ft)dt ] t t ) α m ft)dt t D β, I α, f γ m I m β, I α, f γ m I α+m β, f I α β, f. This ws the end of the proof of the first formul. The second cn e proved in similr wy. Theorem 2.6 [4]). Let α > 0, p nd c R. Then for f X p c, ) where > 0, > 0, we hve D α, I α, f f, nd D α, I α, f f. Theorem 2.7. Let Reα) > 0, n [ Reα)], f L, ) nd I α, f A n γ[, ] I α, f An γ[, ]). Then n I α, D α, D α j, f) ) α j, )f) f) Γα j + ) j
7 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), Proof. I α, Dα, n )f) f) ) j D α j, f) ) α j. 2.0) Γα j + ) j I α, D α, )f) t ) α D α, ft) dt Γα) t t ) α γ n I n α, f)t) dt Γα) t [ t ) αγ γ n I n α, f)t) dt ] Γα + ) t [ t ) α d ) ] γ γ Γα + ) dt I n α, f)t) dt. Now integrting y prts repetedly leds to [ I α, D α, )f) γ Γα n + ) n j t ) α n I n α, ft) dt γ n j I n α, ))f) Γα + 2 j) [ γ I α n+, I n α, f) ) α j+ ] By using the semigroup property Theorem 4..) in [3], one otins n j t γ n j I n α, f))) Γα + 2 j) ) α j+ ]. [ I α, D α, )f) γ I, f) n j D α j, f) Γα + 2 j) ) α j+ ]. The result is reched fter pplying the opertor γ to the integrl. 2.0) is proved nlogously Lemm 2.8. Let Reα) 0 nd Reβ) > 0. Then, D α, t ) β ) ) D α, t D α, t t D α, ) β ) ) Γβ) Γβ α) Γβ) Γβ α) ) β α, 2.) ) β α, ) α i ) ) 0, i, 2,, [Reα)] +, 2.2) ) α i ) ) 0, i, 2,, [Reα)] +. Proof. Here we prove 2.) nd 2.2). The rest of the results re proved nlogously. D α, t ) β ) d ) n [ t ) n α t ) β dt ] d t
8 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), d ) n [ ) n α+β u) n α u β du ], where u t d 0 ) Γβ) d ) n [ ) n α+β ] Γβ + n α) using properties of the et function) d Γβ) Γβ + n α) ) β α Γβ) ) β α. Γβ + n α) Γβ α) Γβ α) This ws the end of the proof of 2.). Now, D α, t ) α i) d ) n [ d d d Γα i + ) Γn i + ) t ) n α t ) α i dt ] t ) n [ ) n i u) n α u α i du 0 d ) n [ ) n i ] 0. d The limiting cse 0 in Lemm 2.8 will led to the Hdmrd frctionl formuls with replced with ln/) nd ) replced with ln/). Also, the cse will result in the Riemnn- Liouville s formuls. ) 3. puto modifiction of the generlized frctionl derivtive Below we present the definition of the generlized puto frctionl derivtive of ny order which is different from the definition stted in [3]. Definition 3.. Let Reα) 0 nd n [Reα)] +. If f A n γ[, ], where 0 < < <, we define the left nd right generlized puto frctionl derivtives of f of order α y D α, f) D α,[ ft) D α, [ f) Dα, ft) γ k f) ) k γ k f) t t respectively. In cse 0 < Reα) <, we hve D α, f) D α,[ ] ft) f) ), ) k ] ), 3.) ) k ] ), nd D α, [ ] f) Dα, ft) f) ). Theorem 3.2. Let Reα) 0, n [Reα)] + nd f A n γ[, ], where 0 < < <. Then,. If α / N 0, D α, f) D α, f) t t ) n α γ n f)t)dt t I n α, γ n f)), 3.2) ) n α ) n γ n f)t)dt I n α, γ n f)). 3.3) t
9 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), If α N Prticulrly, D α, f γ n f, D 0, f f, D α, f )n γ n f. 3.4) D 0, f f. Proof. 3.2) nd 3.3) re consequences of Theorem 2.4. Now, when α n we hve f) I n, γ n f)) + γ k f) t ) k. From Lemm 2.2, one gets D α, f γ n f. The second prt of 3.4) cn e proved likewise. Theorem 3.3. Let Reα) 0, n [Reα)] + nd f n γ[, ], where 0 < < <. Then, D α, f nd D α, f cn e represented s in 3.2) nd 3.3), respectively if α / N 0. If α N, 3.4) holds. Moreover D α, f nd D α, f re continuous on [, ] nd Proof. The representtion of since we hve D α, f) 0, D α, f ) ) D α, f nd D α, f cn e proved s in the proof of Theorem 2.4. Now, D α, f) t ) n α γ n f)t)dt t, D α, γ n f f n Reα). n Reα)) Thus the continuity is proved. The identities in 3.5) hold since D α, γ n f f n Reα), 3.6) n Reα)) nd D α, f γ n f n Reα). 3.7) n Reα)) Theorem 3.4. Let Reα) 0, n [Reα)] +. If α / N, D α, is ounded from the spce n γ[, ] to the spce [, ] {g [, ] : g) 0} nd D α, is ounded from the the spce n γ[, ] to the spce [, ] {g [, ] : g) 0} nd nd If α N, D α, nd D α, D α, γ n f n γ f n Reα), 3.8) n Reα)) D α, f γ n f n γ n Reα). 3.9) n Reα)) re ounded from the spce n γ[, ] to the spce [, ] nd D n, f f n γ, D n, f f n γ. 3.0) Proof. Equtions 3.8) nd 3.9) follow from 3.6) nd 3.7), respectively. strightforwrd. The inequlities in 3.0) re
10 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), Below we stte the inverse properties. Theorem 3.5. Let Reα) 0, n [Reα)] + nd f [, ].. If Reα) 0 or α N, then 2. If Reα) 0 nd Reα) N, then D α, I α, f) f), D α, Iα, f) f). 3.) D α, I α, f) f) I α+ n, f) ) n α, 3.2) Proof. From 3.), one hs D α, Iα, Iα+ n, f) f) f) ) n α. 3.3) D α, I α, f) D α, I α, γ k I α, f)) ) k. f) 3.4) Γk α + ) From Theorem 2.7 nd Theorem 3.2 one hs γ k I α, )f I α k, f nd D α, I α, f f, respectively. Thus 3.4) reds D α, I α, I α k, )f) ) k. f) f) 3.5) Γk α + ) On the other hnd, it should e esy to verify tht I α k, )f) 0, ecuse of the following estimte I α k, f ) Reα) k. f) 3.6) Γα k)reα) k) This is the end of the proof of the first identity in 3.). The second identity is proved in similr wy. Now if α m + iβ, β 0, then we hve n m + 2 nd γ k I α, )f I α k, f is vlid when k 0,, 2,, m. Becuse of the estimte 3.6) we hve I α k, )f) 0, k 0,, 2,, m. Sustituting in 3.5), we get 3.2). 3.3) is proved similrly. Theorem 3.6. Let f A n γ[, ] or n γ[, ] nd α. Then I α, D α, f) f) I α, D α, In prticulr, if 0 < α, we hve f) f) γ k f)) ) k γ k f)) I α, D α, f) f) f), I α, ) k, ) k. D α, f) f) f). 3.7) Proof. The proof is done y using the semigroup property [3, Theorem 4.] nd Theorem 2.7 α n) I α, D α, f) I α, I n α, γ n f I n, γ n f) Eqution 3.7) cn e proved nlogously. γ k f)) ) k.
11 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), Net we present the composition rule for two generlized puto frctionl derivtives. Theorem 3.7. Let f A m+n γ [, ], 0 < < <, α 0 nd β 0 such tht n < α n nd m < β m. Then D α, D β, f) D α+β, f). Proof. Let us ssume tht m n. Thus m n + k, k 0,, 2,, m n. Then the proof cn e done y using Theorem 2.7, Theorem 3.2 nd [3, Theorem 4.]. In fct, D α, D β, f) I n α, γ n I m β, γ m f) I n α, γ n I n+k β, γ n+k f) I n α, γ n I n β, I k, γ n+k f) I n α, D β, I k, γ n+k f) I n α β, I β, D β, I k, γ n+k f)γ n+k f) I n α β,[ n I k, γ n+k γ n j I n β, I k, γ n+k f)) ) j ] f) Γβ j + ) I n α β,[ I k, γ n+k f) j n j I n α β,[ ] I k, γ n+k f) 0 I n+k α β, γ n+k f) D α+β, f). Eqution 3.7) is proved using similr rguments. γ n j D β, f)) Γβ j + ) ) j ] Lemm 3.8. Let Reα) > 0, n [Reα) + ] + nd Reβ) > 0. Then D α, t ) β ) Γβ) ) β α, Γβ α) Reβ) > n, D α, t ) β ) Γβ) ) β α, Γβ α) Reβ) > n. 3.8) Proof. D α, t ) β ) Γβ) t Γβ n) Γβ) ) β α Γβ n) Γβ) Γβ n) Γβ) ) β α. Γβ α) Eqution 3.8) cn e proved likewise. t ) n α t 0 ) n α [ t d dt ) β dt t ) n t ) β ] dt t u) n α u β du, u t ) β α Γβ n) Γβ α) differentition inside the integrl) using properties of the et function) Lemm 3.9. D α, ) k 0, D α, ) k) 0, k 0,, 2,, n.
12 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), Prticulrly Proof. D α, t The rest formuls cn e proved similrly. D α, ) 0, D α, ) 0. ) k) I n α,[ t d dt) n t ) k ] ) I n α, [0]) 0. From Definition 3. nd Lemm 3.8, we cn set the following reltion etween generlized puto nd Riemnn derivtives: Theorem 3.0. For nd α > 0 nd 0, we hve nd D α, f) D α, f) D α, γ k f) Γk + α) ) k α, f) Dα, f) k )γ k f) Γk + α) ) k α. At lst, we give the reltion etween the generlized puto frctionl derivtives nd the known ones. Theorem 3.. Let α, Reα) > 0 nd n [Reα)] +. Then lim 0 lim 0 lim lim D α, f) D α, f) D α, f) D α, f) t) n α f n) t)dt D α f). 3.9) t) n α ) n f n) t)dt D α f). 3.20) log log t) n α t d dt )n f)t) dt t D α f). 3.2) log t log ) n α ) n t d dt )n f)t) dt t D α f). 3.22) Proof. The limits in 3.9) nd 3.20) re evluted replcing y 0 directly. While, the limits in 3.20) nd 3.2) re evluted y using the L Hôspitl rule. It should e noted tht the derivtives on the right hnd sides in 3.9) nd 3.20) re respectively the left nd right puto derivtives [6, 20]. While, the derivtives on the right hnd sides in 3.2) nd 3.22) re respectively the left nd right puto-hdmrd derivtives developed in [8] nd [2]. 4. onclusions The fundmentl issue of the frctionl opertors nd their generlized versions is to define them correctly in the right spce of functions. In this pper, we defined the generlized frctionl derivtives of functions in the spces of solutely differentile continuous nd differentile continuous functions. Since puto derivtives descrie etter some physicl prolems involving memory effect, we defined the puto version of the generlized frctionl derivtives. We elieve tht this puto
13 F. Jrd, T. Adeljwd, D. Blenu, J. Nonliner Sci. Appl., 0 207), version of the generlized frctionl derivtive would e useful for reserchers working on modeling rel world phenomen descried y frctionl opertors. Finlly, we noticed tht the limiting cse s 0 leds to the Hdmrd nd puto-hdmrd results y noting tht lim 0 ) ln ) nd lim 0 ) ln ). Also, the cse will result in Riemnn-Liouville s nd puto frctionl derivtives. References [] T. Adeljwd, Dul identities in frctionl difference clculus within Riemnn, Adv. Difference Equ., ), 6 pges. [2] T. Adeljwd, On delt nd nl puto frctionl differences nd dul identities, Discrete Dyn. Nt. Soc., ), 2 pges. [3] T. Adeljwd, D. Blenu, Frctionl differences nd integrtion y prts, J. omput. Anl. Appl., 3 20), [4] T. Adeljwd, D. Blenu, Discrete frctionl differences with nonsingulr discrete Mittg-Leffler kernels, Adv. Difference Equ., ), 8 pges. [5] R. Almeid, A. B. Mlinowsk, T. Odzijewicz, Frctionl differentil equtions with dependence on the puto- Ktugmpol derivtive, J. omput. Nonliner Dyn., 206), pges. [6] F. M. Atıcı, S. Şengül, Modeling with frctionl difference equtions, J. Mth. Anl. Appl., ), 9. [7] M. puto, M. Frizio, A new definition of frctionl derivtive without singulr kernel, Progr. Frct. Differ. Appl., 205), [8] Y. Y. Gmo F. Jrd, D. Blenu, T. Adeljwd, On puto modifiction of the Hdmrd frctionl derivtives, Adv. Difference Equ., ), 2 pges., 3 [9] F. Go, X.-J. Yng, Frctionl Mwell fluid with frctionl derivtive without singulr kernel, Therm. Sci., ), S87 S877. [0]. Goodrich, A.. Peterson, Discrete frctionl clculus, Springer, hm, 205). [] R. Hilfer Ed.), Applictions of frctionl clculus in physics, World Scientific Pulishing o., Inc., River Edge, NJ, 2000). [2] F. Jrd, T. Adeljwd, D. Blenu, puto-type modifiction of the Hdmrd frctionl derivtives, Adv. Difference Equ., ), 8 pges., 3 [3] U. N. Ktugmpol, New pproch to generlized frctionl integrl, Appl. Mth. omput., 28 20), , 2, 3, 3, 3 [4] U. N. Ktugmpol, A new pproch to generlized frctionl derivtives, Bull. Mth. Anl. Appl., 6 204), 5., 2.6 [5] A. A. Kils, Hdmrd-type frctionl clculus, J. Koren Mth. Soc., ), , 2 [6] A. A. Kils, H. M. Srivstv, J. J. Trujillo, Theory nd pplictions of frctionl differentil equtions, North-Hollnd Mthemtics Studies, Elsevier Science B.V., Amsterdm, 2006)., 2, 2, 3 [7] J. Losd, J. J. Nieto, Properties of new frctionl derivtive without singulr kernel, Progr. Frct. Differ. Appl., 205), [8] J. T. Mchdo, V. Kirykov, F. Minrdi, Recent history of frctionl clculus, ommun. Nonliner Sci. Numer. Simul., 6 20), [9] R. L. Mgin, Frctionl clculus in ioengineering, Begell House Pulishers, T, 2006). [20] I. Podluny, Frctionl differentil equtions, An introduction to frctionl derivtives, frctionl differentil equtions, to methods of their solution nd some of their pplictions, Mthemtics in Science nd Engineering, Acdemic Press, Inc., Sn Diego, A, 999)., 3 [2] S. G. Smko, A. A. Kils, O. I. Mrichev, Frctionl integrls nd derivtives, Theory nd pplictions, Edited nd with foreword y S. M. Nikolskiĭ, Trnslted from the 987 Russin originl, Revised y the uthors, Gordon nd Brech Science Pulishers, Yverdon, 993). [22] X.-J. Yng, D. Blenu, H. M. Srivstv, Locl frctionl integrl trnsforms nd their pplictions, Elsevier/Acdemic Press, Amsterdm, 206). [23] X.-J. Yng, F. Go, J. A. Tenreiro Mchdo, D. Blenu, A new frctionl derivtive involving the normlized sinc function without singulr kernel, ArXiv, ), pges.
INTEGRAL INEQUALITY REGARDING r-convex AND
J Koren Mth Soc 47, No, pp 373 383 DOI 434/JKMS47373 INTEGRAL INEQUALITY REGARDING r-convex AND r-concave FUNCTIONS WdAllh T Sulimn Astrct New integrl inequlities concerning r-conve nd r-concve functions
Oscillatory integrals
Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)
Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:
s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =
Solutions_3. 1 Exercise Exercise January 26, 2017
s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*
Studies in Mthemtil Sienes Vol. 5, No.,, pp. [9 97] DOI:.3968/j.sms.938455.58 ISSN 93-8444 [Print] ISSN 93-845 [Online] www.snd.net www.snd.org Osilltion of Nonliner Dely Prtil Differene Equtions LIU Gunghui
AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval
AMS B Perturbtion Methods Lecture 4 Copyright by Hongyun Wng, UCSC Emple: Eigenvlue problem with turning point inside the intervl y + λ y y = =, y( ) = The ODE for y() hs the form y () + λ f() y() = with
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα
Research Article The Study of Triple Integral Equations with Generalized Legendre Functions
Hindwi Pulishing Corportion Astrct nd Applied Anlysis Volume 28, Article ID 395257, 2 pges doi:.55/28/395257 Reserch Article The Study of Triple Integrl Equtions with Generlized Legendre Functions B. M.
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Some definite integrals connected with Gauss s sums
Some definite integrls connected with Guss s sums Messenger of Mthemtics XLIV 95 75 85. If n is rel nd positive nd I(t where I(t is the imginry prt of t is less thn either n or we hve cos πtx coshπx e
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
The k-α-exponential Function
Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
A GENERALIZATION OF MITTAG-LEFFLER FUNCTION AND INTEGRAL OPERATOR ASSOCIATED WITH FRACTIONAL CALCULUS
Journl of Frctionl Clculus nd Applictions, Vol. 3. July 212, No. 5, pp. 1-13. ISSN: 29-5858. http://www.fcj.webs.com/ A GENERALIZATION OF MITTAG-LEFFLER FUNCTION AND INTEGRAL OPERATOR ASSOCIATED WITH FRACTIONAL
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK
SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK STEPHEN HANCOCK Chpter 6 Solutions 6.A. Clerly NE α+β hs root vector α+β since H i NE α+β = NH i E α+β = N(α+β)
ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
Irnin Journl of Fuzzy Systems Vol. 14, No. 6, 2017 pp. 87-102 87 ON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS B. M. UZZAL AFSAN Abstrct. The min purpose of this pper is to estblish different types
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Characterization of non-differentiable points in a function by Fractional derivative of Jumarrie type
Chrcteriztion of non-differentible points in function by Frctionl derivtive of Jumrrie type Uttm Ghosh (), Srijn Sengupt(), Susmit Srkr (), Shntnu Ds (3) (): Deprtment of Mthemtics, Nbdwip Vidysgr College,
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS
Dedicted to Professor Octv Onicescu, founder of the Buchrest School of Probbility LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS G CARISTI nd M STOKA Communicted by Mrius Iosifescu
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.
Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν
Lecture 5: Numerical Integration
Lecture notes on Vritionl nd Approximte Metods in Applied Mtemtics - A Peirce UBC 1 Lecture 5: Numericl Integrtion Compiled 15 September 1 In tis lecture we introduce tecniques for numericl integrtion,
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
On the k-bessel Functions
International Mathematical Forum, Vol. 7, 01, no. 38, 1851-1857 On the k-bessel Functions Ruben Alejandro Cerutti Faculty of Exact Sciences National University of Nordeste. Avda. Libertad 5540 (3400) Corrientes,
To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.
Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
On the fractional derivatives of radial basis functions
On the frctionl derivtives of rdil bsis functions Mrym Mohmmdi Robert Schbck b Deprtment of Mthemticl Sciences Isfhn University of Technology Isfhn 84156-83111 Irn b Institut für Numerische und Angewndte
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.
etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)
. Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Local existence for an impulsive fractional neutral integro-differential system with Riemann Liouville fractional derivatives in a Banach space
Klmni et l. Advnces in Difference Equtions 28) 28:6 https://doi.org/.86/s3662-8-866-6 R E S E A R C H Open Access Locl existence for n impulsive frctionl neutrl integro-differentil system with RiemnnLiouville
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!
Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity
CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution
2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
«Βιοδοκιμές αποτελεσματικότητας ουσιών φυτικής προέλευσης επί του δορυφόρου της πατάτας Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae)»
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΣΧΟΛΗ ΑΓΡΟΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΥΠΟΔΟΜΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ Εργαστήριο Γεωργικής Ζωολογίας & Εντομολογίας Αθήνα 2015 «Βιοδοκιμές αποτελεσματικότητας
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is
Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Mittag-Leffler Functions and Fractional Calculus
Chpter 2 Mittg-Leffler Functions nd Frctionl Clculus [This chpter is bsed on the lectures of Professor R.K. Sxen of Ji Nrin Vys University, Jodhpur, Rjsthn, Indi.] 2. Introduction This section dels with
Weyl-Titchmarsh type formula for periodic Schrödinger operator with Wigner-von Neumann potential
Weyl-Titchmrsh type formul for periodic Schrödinger opertor with Wigner-von Neumnn potentil Pvel Kursov nd Sergey Simonov Abstrct Schrödinger opertor on the hlf-line with periodic bckground potentil perturbed
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
The k-bessel Function of the First Kind
International Mathematical Forum, Vol. 7, 01, no. 38, 1859-186 The k-bessel Function of the First Kin Luis Guillermo Romero, Gustavo Abel Dorrego an Ruben Alejanro Cerutti Faculty of Exact Sciences National
Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices
Lanzos and iorthogonalization methods for eigenvalues and eigenvetors of matries rolem formulation Many prolems are redued to solving the following system: x x where is an unknown numer А a matrix n n
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1
Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
Intuitionistic Fuzzy Ideals of Near Rings
International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type
Noname manuscript No. will be inserted by the editor Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type Victor Nijimbere Received: date / Accepted: date Abstract
DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS
GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
CHAPTER 3 MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS
CHAPTER 3 MITTAG-LEFFLER FUNCTIONS AND FRACTIONAL CALCULUS [ThischpterisbsedonthelecturesofProfessorR.K.SxenofJiNrinVysUniversity, Jodhpur, R jsthn.] 3.. Introduction This section dels with Mittg-Leffler
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx