Applying Conditional Random Fields to Japanese Morphologiaical Analysis
|
|
- Ἐλιακείμ Γερμανός
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Conditional Random Fields 1 CREST JST {taku-kumatsu}@isnaistp kaoru@lrpititechacp Conditonal Random Fields (CRF) CRF CRF CRF CRF (HMM MEMM) CRF label bias length bias HMM MEMM 2 (L1-CRF/L2-CRF) Applying Conditional Random Fields to Japanese Morphologiaical Analysis Taku Kudo Kaoru Yamamoto Yui Matsumoto Graduate School of Information Science Nara Institute of Science and Technology CREST JST Tokyo Institute of Technology {taku-kumatsu}@isnaistp kaoru@lrpititechacp This paper presents Japanese morphological analysis based on Conditional Random Fields (CRF) Previous work in CRF assumed that observation sequence (word) boundaries were fixed However word boundaries are not clear in Japanese and hence a straightforward application of CRF is not possible We show how CRF can be applied to situations where word boundary ambiguity exists CRF offer an elegant solution to the long-standing problems in Japanese morphological analysis using HMM or MEMM First flexible feature designs for hierarchical tagsets become possible Second influences of label and length bias are minimized The former compensate weakness in HMM while the latter overcomes noticed problems in MEMM We experiment with CRF HMM and MEMM on Japanese annotated corpora and CRF outperform the other approaches 1 (eg ) Conditional Random Fields ( CRF) [8] (discriminative model) CRF Y CRF CRF [8] [18] [12] HTML [15] CRF Hidden Markov Models [13] (HMM) (eg [4]) Maximum Entropy Markov Models (MEMM) (eg [21]) CRF (eg HMM ) (generative model) NTT (taku@cslabkeclnttcop) HMM
2 x y 1 Y(x) HMM y y = MEMM ( w 1 t 1 w #y t #y ) ( #y ) label bias [8] length bias ( ŷ Y(x) 1 bias) MEMM ( ) ( bias ) y 1) ( ) 2) ( ) 22 CRF Gaussian prior (L2) Laplacian prior (L1) Laplacian prior Gaussian Prior ChaSen 2 JUMAN 3 ChaSen IPA 4 3 ( CRF ) 2 CRF ( 2 ) Penn Treebank ( ) 1) ( ) 2) 3) HMM [4] ( ) / ad-hoc 222 Label Bias Length Bias 1 Maximum Entropy Markov Models (MEMM) [ ] (eg SVMs)
3 BOS Input: (I live in Metropolis of Tokyo ) Lattice: (east) [Noun] (capital) [Noun] (Tokyo) [Noun] (Kyoto) [Noun] (Metro) [Suffix] (in) [Particle] (resemble) [Verb] (live) [Verb] 1: label bias [8] length bias (a) Label bias 04 C MEMM BOS A D EOS (Maximum Entropy Models) B 10 E P(A D x) = 06 * 06 * 10 = 036 P(B E x) = 04 * 10 * 10 = 04 P(AD x) < P(BE x) n 1 (b) Length bias 04 C (n-gram) MEMM BOS (2-gram A D EOS ) P (y x) = #y i=1 p( w i t i w i 1 t i 1 ) B 2:(a) label bias P(A D x) = 06 * 06 * 10 = 036 MEMM A-D P(B x) = 04 * 10 = 04 P(AD x) < P(B x) 2: Label bias Length bias B-E B E B-E 10 3 Conditional Random Fields Conditional Random Fields (CRF) [8] 22 2 label bias CRF MEMM ( ) MEMM CRF ( ) 1 (aka ) y x P (y x) length bias ( ) ( ) MEMM label bias length bias y = ( 2:(b)) ( w 1 t 1 w #y t #y ) x length bias length P (y x) = 1 ( #y ) exp λ k f k ( w i 1 t i 1 w i t i ) bias Z x i=1 k MEMM Z x 1 [ ] label bias ( #y ) Z length bias HMM x = exp λ k f k ( w i 1 t i 1 w i t i ) y MEMM Y(x) i=1 k f k ( w i 1 t i 1 w i t i ) i i EOS
4 2 5 E P (y x )[ Fk (y x ) ] k { Y(x) f 1234 ( w t w t ) def 1 t = & t = = 0 otherwise λ k ( Λ = {λ 1 λ K } R K ) f k forward-backward ( ) i y [ E CRF P (y x) Fk (y x)] = α i x w t fk exp( k λ k fk ) β wt y Z x { w t wt } B(x) F(y x) = {F 1 (y x) F K (y x)} F k (y x) = fk f k( w t w t ) #y i=1 f B(x) x 2 k( w i 1 t i 1 w i t i ) (bi-gram) α wt P (y x) P (y x) = 1 β wt forward-backward Z x exp(λ F(y x)) x ŷ α wt = α w ŷ = argmax P (y x) = argmax Λ F(y x) (1) t exp ( λ k f k ( w t w t ) ) w t LT ( wt ) k y Y(x) y Y(x) β wt = β w t exp ( λ k f k ( w t w t ) ) Viterbi w t RT ( wt ) k Λ F(y x) LT ( w t ) ( RT ( w t )) y w t ( ) 2 31 α CRF wbos t bos β weost eos 1 T = { x y } N =1 Z x = α weos t eos (= L Λ β wbos t bos ) L Λ = log(p (y x )) [ ( = log exp ( Λ [F(y x ) F(y x ))] )] y Y(x ) [ ] = Λ F(y x ) log(z x ) ˆΛ = argmax Λ R K L Λ (MAP) Gaussian Prior (L2-norm) [6] Laplacian Prior (L1-norm) [7] 2 6 L Λ x y y Y(x ) exp ( Λ [F(y x ) F(y x )] ) { L Λ = C log(p (y x )) 1 λ k k (L1-norm) 2 Λ F(y x ) λ k k 2 (L2-norm) Λ F(y x ) y Y(x ) L1-norm L2-norm CRF L1-CRF L2-CRF C R + CRF C δl Λ ( [ = F k (y x ) E P (y x ) Fk (y x ) ]) δλ L1-CRF k = O k E k = 0 O k = F max : C log(p (y k(y x ) k x )) (λ + k + λ k )/2 k T E k = 6 L1-norm Inequality Constraints 5 tri-gram n-gram L2-norm L1-norm (eg f k ( w i n+1 t i n+1 w i t i ))
5 where λ k = λ + k λ k st λ + k 0 λ k 0 1 F wt (y x) = I(w = w i t = t i) Karush-Kuhun-Tucker i λ + k [C (O k E k ) 1/2] = 0 λ k [C (E F k tt (y x) = I(t = t i t = t i 1 ) i O k ) 1/2] = 0 C (O k E k ) 1/2 C (O k E k ) < 1/2 λ + k λ k HMM 0 ( λ k = 0) C (O k E k ) = 1/2 0 λ k ( ) C λ k = 0 HMM L2-CRF δl Λ δλ k = C (O k E k ) λ k = 0 CRF ( ) (O k E k ) 0 λ k 0 / 2 L1-CRF L2-CRF L1-CRF L1-CRF ( CPU ) CRF SVM Boosting L2-CRF iterative scaling algorithms (eg IIS GIS [14]) CRF SVM Boosting ( (eg L-BFGS [9]) L1-CRF ) E CRF E SV M E Bo (eg L-BFGS-B [5]) [ ( E CRF = log exp ( Λ [F(y x ) F(y x )] ))] 32 CRF y Y(x ) ( ) (1) E SV M = max(0 1 Λ [F(y x ) F(y x )]) y Y(x F(y x) ) Λ E Bo = exp ( Λ [F(y x ) F(y x ) )] y Y(x ) HMM log p(w t) Altun log p(t t ) λ wt λ tt SVM HM-SVM (Hidden Markov SVM)[3] #y [2 1] log( p(w i t i )p(t i t i 1 )) i=1 y Y(x #y ) = [log p(w i t i ) + log p(t i t i 1 )] CRF SVM Boosting i=1 #y [ = I(w = w i t = t i ) log p(w t) CRF i=1 wt + ] I(t = t i t = t i 1 ) log p(t t ) 4 tt = F wt (y x) λ wt + F tt (y x) λ 41 tt CRF wt tt = Λ F(y x) ver 20 (KC) RWCP (RWCP) 2 F wt (y x) F tt (y x) L1-norm L2-norm 8 L1-norm L2-norm Boosting Support Vector Machines [17] CRF 1
6 1: KC RWCP ( 95) ( 94) ( ) JUMAN ver 361 ( ) IPADIC ver 270 (379010) 2 4 ( ) 7958 ( ) ( 1 ) ( ) ( ) 1246 (1 9 ) ( ) ( ) HMM 2 2: : f k ( w t w t ) t = p2 cf ct bw t = p2 cf ct bw KC p1 /p1 p2 /p2 cf /cf ct /ct bw /bw w bw p1 /w ( ) uni-gram 2 p2 w bw { bw p1 f 1234( w t w t ) def 1 bw = & p1 = = bw p1 p2 0 otherwise w w 2 {φ p2 } 2 {φ p2 } RWCP {φ p2 } KC bi-gram p1 p1 p2 p2 p1 p2 p1 p2 p2 cf p1 p2 p2 ct p1 p2 p2 cf ct p1 p2 p2 p1 p2 cf 2 / p2 p1 p2 ct p2 p1 p2 cf ct / / p2 cf p1 p2 cf p2 ct p1 p2 ct p2 cf p1 p2 ct p2 ct p1 p2 cf p2 cf ct p1 p2 cf ct 1 w p2 cf ct bw p1 p2 F (F β=1 ) p2 cf ct bw p1 p2 cf p2 cf ct bw p1 p2 ct 2 Recall P recision p2 cf ct bw p1 p2 cf ct F β=1 = Recall + P recision w p2 p1 p2 cf ct bw p2 cf p1 p2 cf ct bw # of correct tokens Recall = p2 ct p1 p2 cf ct bw # of tokens in training corpus p2 cf ct p1 p2 cf ct bw # of correct tokens w /w p2 cf ct bw p1 p2 cf ct bw P recision = # of tokens in system output CRF bi-gram HMM 3 1) ( ) seg: 2) top: KC MEMM 3) all: [21] JUMAN 9 L1-CRF L2-CRF C CRF C++ MEMM HMM-bigram XEON 28Ghz 40Gbyte Linux L-BFGS-B L-BFGS RWCP Extended HMM (E-HMM) E-HMM L1-CRF L2-CRF CRF E-HMM ChaSen KC RWCP 9 JUMAN - 3 F (seg/top/all) L1-CRF L2-
7 system 3: : KC F β=1 (seg / top / all)) L1-CRF (C =30) 9880 / 9814 / 9655 L2-CRF (C =12) 9896 / 9831 / 9675 HMM-bigram 9622 / 9499 / 9185 MEMM (Uchimoto 01) 9644 / 9581 / 9427 JUMAN (rule-based) 9870 / 9809 / : : RWCP sea rough waves system F β=1 (seg / top / all)) 3: MEMM ( ) L1-CRF (C =30) 9900 / 9858 / 9730 L2-CRF (C =24) 9911 / 9872 / 9765 ( ) HMM-bigram 9882 / 9810 / 9590 E-HMM (Asahara 00) 9886 / 9838 / CRF Extended-HMM 1) ( ) CRF 2) 3) HMM [4] CRF MEMM MEMM [ ] MEMM HMM CRF ( ) - HMM (JUMAN) CRF λ k 2 3 MEMM ( ) HMM L1-CRF L2-CRF Gaussian Prior L2-1 CRF 3 length bias L2-CRF L1-CRF L2-CRF CRF HMM (λ k 0 ) (JUMAN) 2 L1-CRF 1/8-1/6 length bias (L2-CRF: (KC) / (RWCP) vs L1-CRF: (KC) / (RWCP)) 31 1 L1-CRF / / 2 11 ( ) 10 MEMM 11 KC L1-norm 7MB L2-norm 47MB particle bet romance MEMMs select romanticist particle The romance on the sea they bet is particle loose MEMMs select not one s heart heart A heart which beats rough waves is
8 L1-CRF [5] Richard H Byrd Peihuang Lu Jorge Nocedal and Ci You Zhu A limited memory algorithm for bound constrained optimization SIAM Journal on Scientific Computing 16(6): [6] Stanley F Chen and Ronald Rosenfeld A gaussian prior for smoothing maximum entropy models 5 Technical report Carnegie Mellon University 1999 Conditonal Random Fields (CRF) [7] Jun ichi Kazama and Jun ichi Tsuii Evaluation (HMM and extension of maximum entropy models with MEMM) CRF inequality constraints In Proc of EMNLP pages HMM [8] John Lafferty Andrew McCallum and Fernando CRF Pereira Conditional random fields: Probabilistic models for segmenting and labeling sequence data In Proc of ICML pages MEMM label length bais [9] Dong C Liu and Jorge Nocedal On the limited memory BFGS method for large scale optimization 2 Math Programming 45(3 (Ser B)): HMM MEMM [10] Andrew McCallum Efficiently inducing features of conditional random fields In Nineteenth Conference on Uncertainty in Artificial Intelligence (UAI03) 2003 [11] Andrew McCallum Dayne Freitag and Fernando Pereira Maximum entropy markov models for information and segmentation In Proc of ICML bi-gram pages bi-gram [12] Andrew McCallum and Wei Li Early results for tri-gram n-gram named entity recognition with conditional random fields feature induction and web-enhanced lexicons In In Proc of CoNLL 2003 tri-gram [13] Fuchun Peng and Andrew McCallum Accurate information extraction from research papers using conditional random fields In Proc of HLT/NAACL 2004 L1-CRF [14] Della Pietra Stephen Vincent J Della Pietra and John D Lafferty Inducing features of random fields IEEE Transactions on Pattern Analysis and ( ) Machine Intelligence 19(4): McCallum L2-CRF [15] David Pinto Andrew McCallum Xing Wei and W Bruce Croft Table extraction using conditional [10] random fields In In Proc of SIGIR pages [16] Adwait Ratnaparkhi A maximum entropy model for part-of-speech tagging In Proc of EMNLP pages MEMM E-HMM [17] Gunnar Rätsch Robust Boosting via Convex Op- PhD thesis Department of Computer CRL NAIST timization Science University of Potsdam 2001 [18] Fei Sha and Fernando Pereira Shallow parsing with conditional random fields In Proc of HLT- NAACL pages [1] Yasemin Altun and Thomas Hofmann Large margin methods for label sequence learning In Proc of EuroSpeech 2003 [2] Yasemin Altun Mark Johnson and Thomas Hofmann Investigating loss functions and optimization methods for discriminative learning o f label sequences In Proc of EMNLP pages [3] Yasemin Altun Ioannis Tsochantaridis and Thomas Hofmann Hidden markov support vector machines In Proc of ICML pages [4] Masayuki Asahara and Yui Matsumoto Extended models and tools for high-performance part-ofspeech tagger In Proc of COLING pages [19] Kiyotaka Uchimoto Chikashi Nobata Atsushi Yamada and Hitoshi Isahara Satoshi Sekine Morphological analysis of a large spontaneous speech corpus in Japanese In Proc of ACL pages [20] Kiyotaka Uchimoto Chikashi Nobata Atsushi Yamada Satoshi Sekine and Hitoshi Isahara Morphological analysis of the spontaneous speech corpus In Proc of COLING pages [21] Kiyotaka Uchimoto Satoshi Sekine and Hitoshi Isahara The unknown word problem: a morphological analysis of Japanese using maximum entropy aided by a dictionary In Proc of EMNLP pages
[15], [16], [17] [6] [2] [5] Jiang [6] 2.1 [6], [10] Score(x, y) y ( 1) ( 1 ) b e ( 1 ) b e. O(n 2 ) 2.3. 2.2 Jiang [6] (word lattice reranking)
1,a) 1 2 10 1. [6] [1], [6], [8], [10], [11] 2 n n+1 C 2 O(n 2 ) 1 153-8505 4-6-1 a) kaji@tkl.iis.u-tokyo.ac.jp [10] [19], [23] [6] [6] (3 ) 10 (1) (2) 3 c 2012 Information Processing Society of Japan
{takasu, Conditional Random Field
DEIM Forum 2016 C8-6 CRF 700 8530 3 1 1 700 8530 3 1 1 101 8430 2-1-2 E-mail: pobp52cw@s.okayama-u.ac.jp, ohta@de.cs.okayama-u.ac.jp, {takasu, adachi}@nii.ac.jp Conditional Random Field 1. Conditional
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)
1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e) 1. [11], [15] 1 Nara Institute of Science and Technology a) akabe.koichi.zx8@is.naist.jp b) neubig@is.naist.jp c) ssakti@is.naist.jp d) tomoki@is.naist.jp
Automatic extraction of bibliography with machine learning
Automatic extraction of bibliography with machine learning Takeshi ABEKAWA Hidetsugu NANBA Hiroya TAKAMURA Manabu OKUMURA Abstract In this paper, we propose an extraction method of bibliography using support
(String-to-Tree ) KJ [11] best 1-best 2. SMT 2. [9] Brockett [2] Mizumoto [10] Brockett [2] [10] [15] ê = argmax e P(e f ) = argmax e M m=1 λ
1,a) 1,b) 2 2 Shared Task 4 n-best 1-best 1. Web SNS Lang-8 *1 GIN- GER *2 2 HOO 2011 2012 [7], [8] CoNLL Shared Task 2013 [14] 2014 CoNLL Shared Task 1 Rozovskaya and Roth [16] Tajiri [19] Rozovskaya
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
Applying Markov Decision Processes to Role-playing Game
1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
Detection and Recognition of Traffic Signal Using Machine Learning
1 1 1 Detection and Recognition of Traffic Signal Using Machine Learning Akihiro Nakano, 1 Hiroshi Koyasu 1 and Hitoshi Maekawa 1 To improve road safety by assisting the driver, traffic signal recognition
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
SocialDict. A reading support tool with prediction capability and its extension to readability measurement
SocialDict 1 2 2 2 Web SocialDict A reading support tool with prediction capability and its extension to readability measurement Yo Ehara, 1 Takashi Ninomiya, 2 Nobuyuki Shimizu 2 and Hiroshi Nakagawa
[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1
1,a) Bayesian Approach An Application of Monte-Carlo Tree Search Algorithm for Shogi Player Based on Bayesian Approach Daisaku Yokoyama 1,a) Abstract: Monte-Carlo Tree Search (MCTS) algorithm is quite
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;
ISSN1000-0054 CN11-2223/N ( ) 2014 54 12 JTsinghuaUniv(Sci& Technol), 2014,Vol.54, No.12 4/20 1529-1533,, (,, (), 100084) [1-2] :,,,,,,,, :, 0.3~ [3] 0.8BLEU,, : ; ; [4], ; :TP391.2 :A, :1000-0054(2014)12-1529-05,
Bayesian modeling of inseparable space-time variation in disease risk
Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]
Re-Pair 1 1 Re-Pair Re-Pair Re-Pair Re-Pair 1. Larsson Moffat [1] Re-Pair Re-Pair (Re-Pair) ( ) (highly repetitive text) [2] Re-Pair [7] Re-Pair Re-Pair n O(n) O(n) 1 Hokkaido University, Graduate School
EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.
Baum-Welch Step by Step the Baum-Welch Algorithm and its Application Jin ichi MURAKAMI EM EM EM Baum-Welch Baum-Welch Baum-Welch Baum-Welch, EM 1. EM 2. HMM EM (Expectationmaximization algorithm) 1 3.
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
Text Mining using Linguistic Information
630-0101 8916-5 {taku-kukaoru-yayuuta-tmatsu}@isaist-naraacjp PrefixSpan : PrefixSpan Text Mining using Linguistic Information Taku Kudo Kaoru Yamamoto Yuta Tsuboi Yuji Matsumoto Graduate School of Information
DEIM Forum 2018 F3-5 657 8501 1-1 657 8501 1-1 E-mail: yuta@cs25.scitec.kobe-u.ac.jp, eguchi@port.kobe-u.ac.jp, ( ) ( )..,,,.,.,.,,..,.,,, 2..., 1.,., (Autoencoder: AE) [1] (Generative Stochastic Networks:
ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην
ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ Υποβάλλεται στην ορισθείσα από την Γενική Συνέλευση Ειδικής Σύνθεσης του Τμήματος Πληροφορικής Εξεταστική Επιτροπή από την Χαρά Παπαγεωργίου
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Εξαγωγή χαρακτηριστικών μαστογραφικών μαζών και σύγκριση
The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining
1,a) 1,b) J-POP 100 The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining Shinohara Toru 1,a) Numao Masayuki 1,b) Abstract: Chord is an important element of music
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
: Active Learning 2017/11/12
: Active Learning 2017/11/12 Contents 0.1 Introduction............................................ 2 0.2..................................... 2 0.2.1 Membership Query Synthesis..............................
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He
CS Activity 1,a) 2 2 3 CS Computer Science Activity Activity Actvity Activity Dining Eight-Headed Dragon CS Unplugged Activity for Learning Scheduling Methods Hisao Fukuoka 1,a) Toru Watanabe 2 Makoto
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
2. N-gram IDF. DEIM Forum 2016 A1-1. N-gram IDF IDF. 5 N-gram. N-gram. N-gram. N-gram IDF.
DEIM Forum 216 A1-1 N-gram IDF 565 871 1-5 E-mail: {hirakawa.maumi,hara}@it.oaka-u.ac.jp N-gram IDF IDF N-gram N-gram N-gram N-gram IDF N-gram N-gram IDF N-gram N-gram IDF Web Wikipedia 1 N-gram IDF [3]
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ Σημασιολογική Συσταδοποίηση Αντικειμένων Με Χρήση Οντολογικών Περιγραφών.
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices
No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs
GPU 1 1 NP number partitioning problem Pedroso CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA C Pedroso Python 323 Python C 12.2 Parallelizing the Number Partitioning Problem for
Simplex Crossover for Real-coded Genetic Algolithms
Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute
CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity
i-vector 1 1 1 1 i-vector CSJ i-vector Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity Fukuchi Yusuke 1 Tawara Naohiro 1 Ogawa Tetsuji 1 Kobayashi
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Bayesian Discriminant Feature Selection
1,a) 2 1... DNA. Lasso. Bayesian Discriminant Feature Selection Tanaka Yusuke 1,a) Ueda Naonori 2 Tanaka Toshiyuki 1 Abstract: Focusing on categorical data, we propose a Bayesian feature selection method
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Area Location and Recognition of Video Text Based on Depth Learning Method
21 6 2016 12 Vol 21 No 6 JOURNAL OF HARBIN UNIVERSITY OF SCIENCE AND TECHNOLOGY Dec 2016 1 1 1 2 1 150080 2 130300 Gabor RBM OCR DOI 10 15938 /j jhust 2016 06 012 TP391 43 A 1007-2683 2016 06-0061- 06
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems Multiple User Interfaces MobileSoft'16, Multi-User Experience (MUX) S1: Insourcing S2: Outsourcing S3: Responsive design
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
þÿ Ç»¹º ³µÃ ± : Ãż²» Ä Â
Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ Ç»¹º ³µÃ ± : Ãż²» Ä Â þÿãå½±¹ã ¼±Ä¹º  ½ ¼ Ãͽ  þÿ±à ĵ»µÃ¼±Ä¹º
* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***
J. Jpn. Soc. Soil Phys. No. +*2, p. +3,2,**2 * ** *** *** Influence Area of Stem Flow on a Soil of Deciduous Forest Floor by Electric Resistivity Survey and the Evaluation of Groundwater Recharge through
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Μάθηση Λανθανόντων Μοντέλων με Μερικώς Επισημειωμένα Δεδομένα (Learning Aspect Models with Partially Labeled Data) Αναστασία Κριθαρά.
Μάθηση Λανθανόντων Μοντέλων με Μερικώς Επισημειωμένα Δεδομένα (Learning Aspect Models with Partially Labeled Data) Αναστασία Κριθαρά Xerox Research Centre Europe LIP6 - Université Pierre et Marie Curie
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH
Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016
Harvard School of Engineering and Applied Sciences CS 152: Programming Languages Dynamic types, Lambda calculus machines Apr 21 22, 2016 1 Dynamic types and contracts (a) To make sure you understand the
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Arbitrage Analysis of Futures Market with Frictions
2007 1 1 :100026788 (2007) 0120033206, (, 200052) : Vignola2Dale (1980) Kawaller2Koch(1984) (cost of carry),.,, ;,, : ;,;,. : ;;; : F83019 : A Arbitrage Analysis of Futures Market with Frictions LIU Hai2long,
GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU
GPGPU Grover 1, 2 1 3 4 Grover Grover OpenMP GPGPU Grover qubit OpenMP GPGPU, 1.47 qubit On Large Scale Simulation of Grover s Algorithm by Using GPGPU Hiroshi Shibata, 1, 2 Tomoya Suzuki, 1 Seiya Okubo
HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332
,**1 The Japanese Society for AIDS Research The Journal of AIDS Research +,, +,, +,, + -. / 0 1 +, -. / 0 1 : :,**- +,**. 1..+ - : +** 22 HIV AIDS HIV HIV AIDS : HIV AIDS HIV :HIV AIDS 3 :.1 /-,**1 HIV
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Georgios Lucarelli and Ion Androutsopoulos Dept. of Informatics, Athens University of Economics and Business Patision 76, GR-104 34, Athens, Greece
A Greek Named-Entity Recognizer that Uses Support Vector Machines and Active Learning Georgios Lucarelli and Ion Androutsopoulos Dept. of Informatics, Athens University of Economics and Business Patision
ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ «ΠΑΙ ΙΚΟ ΒΙΒΛΙΟ ΚΑΙ ΠΑΙ ΑΓΩΓΙΚΟ ΥΛΙΚΟ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που εκπονήθηκε για τη
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :
A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering
Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix
«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»
ΓΔΩΠΟΝΗΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΩΝ ΣΜΗΜΑ ΑΞΙΟΠΟΙΗΗ ΦΤΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗ ΜΗΥΑΝΙΚΗ ΣΟΜΕΑ ΕΔΑΦΟΛΟΓΙΑ ΚΑΙ ΓΕΩΡΓΙΚΗ ΥΗΜΕΙΑ ΕΙΔΙΚΕΤΗ: ΕΦΑΡΜΟΓΕ ΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΣΟΤ ΦΤΙΚΟΤ ΠΟΡΟΤ «ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ
DEIM Forum 2014 A8-1, 606 8501 E-mail: {tsukuda,ohshima,kato,tanaka}@dl.kuis.kyoto-u.ac.jp 1 2,, 1. Google 1 Yahoo 2 Bing 3 Web Web BM25 [1] HITS [2] PageRank [3] Web 1 [4] 1http://www.google.com 2http://www.yahoo.com
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Information Extraction
ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ Information Extraction Information Extraction Μορφή της πληροφορίας Δομημένα δεδομένα Relational Databases (SQL) XML markup Μη-δομημένα δεδομένα
Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΧΕΔΙΑΣΜΟΥ ΟΛΟΚΛΗΡΩΜΕΝΩΝ ΚΥΚΛΩΜΑΤΩΝ ΜΕΓΑΛΗΣ ΚΛΙΜΑΚΑΣ Διπλωματική Εργασία του
A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,
Bayes, Bayes mult-armed bandt problem Bayes A Sequental Expermental Desgn based on Bayesan Statstcs for Onlne Automatc Tunng Re SUDA, Ths paper proposes to use Bayesan statstcs for software automatc tunng
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΗΛΙΚΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Διαπολιτισμική Εκπαίδευση και Θρησκευτική Ετερότητα: εθνικές και θρησκευτικές
Splice site recognition between different organisms
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS SCHOOL OF SCIENCE DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS INTERDEPARTMENTAL POSTGRADUATE PROGRAM "INFORMATION TECHNOLOGIES IN MEDICINE AND BIOLOGY"
ΑΠΟΓΡΑΦΙΚΟ ΔΕΛΤΙΟ ΔΙΔΑΚΤΟΡΙΚΗΣ ΔΙΑΤΡΙΒΗΣ ΤΙΤΛΟΣ Συμπληρώστε τον πρωτότυπο τίτλο της Διδακτορικής διατριβής ΑΡ. ΣΕΛΙΔΩΝ ΕΙΚΟΝΟΓΡΑΦΗΜΕΝΗ
ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΝΑΓΝΩΣΤΗΡΙΟ Πανεπιστημιούπολη, Κτήρια Πληροφορικής & Τηλεπικοινωνιών 15784 ΑΘΗΝΑ Τηλ.: 210 727 5190, email: library@di.uoa.gr,
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 12: Συνοπτική Παρουσίαση Ανάπτυξης Κώδικα με το Matlab Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΑΠΟΓΡΑΦΙΚΟ ΔΕΛΤΙΟ ΜΕΤΑΠΤΥΧΙΑΚΗΣ ΕΡΓΑΣΙΑΣ ΤΙΤΛΟΣ
ΕΘΝΙΚΟ & ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΑΝΑΓΝΩΣΤΗΡΙΟ Πανεπιστημιούπολη, Κτήρια Πληροφορικής & Τηλεπικοινωνιών 15784 ΑΘΗΝΑ Τηλ.: 210 727 5190, email: library@di.uoa.gr,
Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)
( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j
Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1
Maxima SCORM 1 2, 1 Muhammad Wannous 1 3, 4 2, 4 Maxima Web LMS MathML HTML5 Flot jquery JSONP JavaScript SCORM SCORM Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup
Test Data Management in Practice
Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?
22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Kensaku FUJII Isao WAKABAYASI Tadashi UJINO Shigeki KATO Abstract FUJITSU TEN Limited has developed "TOYOTA remium Sound System"
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
Abstract Storage Devices
Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD
Example of the Baum-Welch Algorithm
Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)
Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.
SIG-SWO-041-05 SPAIDA: SPARQL Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- 1 2 Takuya Adachi 1 Naoki Fukuta 2 1 1 Faculty of Informatics, Shizuoka University
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note