9 2 T 9 t 2 = 9 t ( 9 t t c 2 t. .,Gurtin Pipkin [6 ],Coleman [7 ] , Guyer Krumhansl [9 ] . Tavernier [8 ] . Tzou [13,14], .
|
|
- Κορνήλιος Ζωγράφου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Π2008Π57 (07) Π ACTA PHYSICA SINICA Vol. 57,No. 7,July,2008 ν 2008 Chin. Phys. Soc. g (, ) ( ; ),,. (). (),,.,,,,,,,.,, CV,,,. :,,, PACC: 4410, 6370, 0340G [1 ],, [2 ].,.,,,, [3 ].,,,,,.,. Cattaneo [4 ],Vernotte [5 ]., q + 9 q = - K T, (1) (1) CV, q, T, K, t,. (1),,. 1 9 T + 1 c 2 t 9 2 T 2 = 2 T, (2) = KΠ( c p ), c t = Π.,,.,Gurtin Pipkin [6 ],Coleman [7 ] CV. Tavernier [8 ], Guyer Krumhansl [9 ] Maurer [10 ] Boltzmann, CV., Bai Lavine [11 ] Kgrner Bergmann [12 ] CV. Tzou [13,14],, q T, q q = - K q T - K ( T 9 T), (3) g E2mail : edu. cn
2 T + q 9 2 T 2 = 2 T + 9 ( 2 T) T. (4) ( s), (4),,,.,Π,,Xu Guo [15 ],Masuda [16 ],Antaki [17 ],Cho Juhng [18 ], Fan Lu [19 ] Zhang [20 ].,Brorson [21 ], Tang Araki [22 ].,, Lepri [23 ],, ( ),Narayan [24 ],. Maruyama [25 ],. Livi [26 ],. 21, ,19 40,,, [27 ].,, [1 ],,,.,,.. [28 ],, E = Mc 2 = M v 2 Πc 2 c2 = E v 2 Πc 2, (5), M,, M 0,, c, v, E, E 0. (5),,. ( ), (5) E k = E - E 0 g 1 2 M 0 v 2, (6a) M k = M - M 0 g 1 2 M 0 v 2 c 2, (6b) E k = 1 2 M 0 v 2, M k.,v ν c M M 0 M k..,,,, M = M 0 + M h, (7a) M h = E h c 2 = V h, (7b) M 0, E h,,,,, M h,, h,. 31 [29 ] (5), (6).,,,
3 7 : 4275, m = m 0 + m h, gm = m 0 + gm h, (8) m h = 1 2 m 0 v 2 3 c 2, gm h = 1 2 m 0 v 2 3 c 2, (9) m 0, m h, gm, v 2 3, 1 2 m 0 v 2 3, m h.,:1),. v 3, v 2 3.,.,,.. 2),,,,,. [29 ].,., p = 1 3 n mv 3 v 3 = 1 3 n m 0 v n m h v 2 3 = p 0 + p h, (10) p 0, p h, p. (8) (10) p h = 5 18 h =C v TΠc 2. p h p h ν p 0, nm 0 c 2 ( v 2 3 ) 2. (11) = 5 3 h RT, (12) p = p 0 + p h = h RT. (13) p p 0 = 0 RT. (14),, p h ν p 0,.,.,, ( ),( ).. 41 [30 ] p = - 9 E 0 9V + E D0 V, (15), p V, E D0,,.,,, [31 ], [32 ] (15), p 0 = E D0 V. (16), Dulong2Pefit, E D0 = M 0 CT = 3 R mol T = 3 M 0 RT, (17) M 0, R. (17),M 0 ( ) E D0, CT, (, ). (17) (16) p 0 = 3 0 RT = 0 CT, (18) C, 0,, (18),.,.,,.., M h = E D0 c 2 = M 0 CT c 2. (19),CT,
4 , d E h = M h d ( CT) = M 0 C 2 c 2 Td T, (20a) T E h = d E h = 1 2 M h ( CT). (20b) 0 (18), ( ) p h = E h V = 3 2 h RT = 0 ( CT) 2 2 c 2, (21) h =CTΠc 2,.,, p = p 0 + p h, p h ν p 0. (22),,,, ,,. ( ) q = 0 CTu h, (23) q, 0 CT, u h., q h = q c 2 = 0 CT c 2 u h = h u h, (24) q h, u h.,,,.,, 9 h + div( 9 h U h ) = 0. (25) t (25).,1 ( T 1 > T 2 ), (25) 1 h u h = q h = const, (26) ( ), h,, u h2 u h1 = h1 = T 1, h2 T 2 u h2 > u h1, (27)., ( ) [32 ] 9 U h h + U h U h + P h + f h = 0, (28),,,., ( ),,. (23) 9 u h 9 u h 9 x = = 1 9 q q 9 T - 0 CT 0 CT 2, (29a) 1 9 q 0 CT 9 x - q 9 T 0 CT 2 9 x. (29b) 9 p h 9 x = 0 C 2 T 9 T 9 x = h C 9 T 9 x. (29c) c 2 ().
5 7 : 4277,,,. f = u h, (30),(29), (30) (28), K C h K 9 q Kq 9 T 0 C 2 - T 0 C 2 T 2 - Kq 2 9 T 2 0 C 3 T 3 9 x Kq 9 q C 3 T 2 9 x =K 9 T 9 x - Kc C 3 T 2 q. (31a) CV, K 0 C 2 T = a = (32) CT,(31a) 9 q t 9 ( 0 CT) - u h = - K 9 T 9 x - Kc C 3 T 2 q, + t u h 9 q 9 x - u h 9 ( 0 CT) 9 x (31b),,,, (31b). ( ) ( ), (31) ( ),. 5131,,,,., (28) p h + f h = 0, (33a). (30) (31), (33a) K d T d x + K 2 h Cc 2 q = 0. (33b),, = K c2 C 2 h, (34) (31b) () 9 q 9 ( 0 CT) t - u 9 h t = K 9 T 9 x + t u h 9 q 9 x - u h 9 ( 0 CT) 9 x - q. (31c), (31c) q = - K d T d x - q K = d T d x. (35) :.,,, ( ) (28) (,, )., () ( 1),, CV,,(31c),,,,. C u d u h h d x = - K d T d x - q, (36a), K d T d x + q = Kq 2 d T 2 0 C 3 T 3 d x, q = q C 3 T 3 K d T d x. (36b) (36c), q 2. K a = C 3 T 3 K, q = - K a d T d x, (36d)
6 q2 2 0 C 3 T 3.,, T 1 = 400 K, T 2 = 300 K, q = 10 6 WΠm 2, q2 2 0 C 3 T ν 1,,.,,,,,,, (36d)., 20 K,70 K, K = 5000 WΠmK, m., WΠm 2,,,,. (36c) 2.,,,,... Onsager [33 ], Kaliski,CV [34 ].,,,, ( ),( (31c) ),, (31c),q T,. (1) (31c) CV,, ( ) ( ). (31c) 9 2 T T 2 qk 9 2 T + t t 2 0 C 3 v T 2 9 x = 1 - K 9 2 T 2 0 C 3 v T 3 (37) 0 C v t 9 x 2 q 2 CV (2),,. CV,, 3, y z, x L, T 0,T w., :x 3 = xπl,t 3 = TΠT 0, t 3 = tπ CV,(1),,(2), (2),,,, s, 3 T 3 w = 013,
7 7 : 4279 CV 4,4 (a), (b), (c) (d) 013,016, (a), CV,,CV,,,.,, 4 (b),, 4 (c) (d)., CV,, [11,12 ], CV,,, CV,CV (), (, ),.,,,.,CV,. 21,,.,, ( ). 31,,,,,
8 ,.,,,,,,. 41,,. CV,,. [1] Fourier J 1955 Analytical Theory of Heat ( New York : Dover Publications) [2] Eckert E R G, Drake R M; Hang Q ( Trans) 1983 Heat and Mass Transfer (Beijing : Science Press) (in Chinese) [, ; () 1983 ( : ) ] [3] Dampier W C 2001 A History of Science and Its Relatios with Philosophy and Religion ( Guilin : Guangxi Normal University Press) [ ; 2001 ( : ) ] [4] Cattaneo C 1948 Atti. Sem. Mat. Fis. Univ. Modena 3 3 [5] Vernotte P 1958 C. R. Acad. Sci [6] Gurtin M E, Pipkin A C 1968 Arch. Ration Mech. Anal [7] Coleman B D, Fabrizio M, Owen D R 1982 Arch. Ration Mech. Anal [8] Tavernier J 1962 C. R. Acad. Sci [9] Guyer R A, Krumhansl JA 1966 Phys. Rev [10] Maurer M J 1969 J. Appl. Phys [11] Bai C, Lavine A S 1995 J. Heat Transfer [12] Kgrner C, Bergmann H W 1998 Appl. Phys. A [13] Tzou D Y 1995 ASME J. Heat Transfer [14] Tzou D Y 1997 Macro to microscale heat transfer : the lagging behavior (Washington : Taylor & Francis) [15] Xu Y S, Guo Z Y 1995 Int. J. Heat Mass Transfer [16] Masuda K, Okuma O, Nishizawa T, Kanaji M, Matsumura T, Tang D W, Araki N 1996 Int. J. Heat Mass Transfer [17] Antaki P J 1998 Int. J. Heat Mass Transfer [18] Cho C J, Juhng W N 2000 J. Korean Phys. Soc [19] Fan Q M, Lu W Q 2002 Int. J. Heat Mass Transfer [20] Zhang H W, Zhang S, Guo X, Bi J Y 2005 Int. J. Solids Struct [21] Brorson S D, Fujimoto J G, Ippen E P 1987 Phys. Rev. Lett [22] Tang D W, Araki N 1996 Int. J. Heat Mass Transfer [23] Lepri S, Livi R, Politi A 1997 Phys. Rev. Lett [24] Narayan O, Ramaswamy S 2002 Phys. Rev. Lett [25] Maruyama S 2002 Physica B [26] Livi R, Lepri S 2001 Nature [27] Shen X J 1985 Probe into the Essence of Heat (Beijing : Beijing Publishing House) (in Chinese) [ 1985 ( : ) ] [28] Einstein A, Lorentz H A, Minkowski H, Weyl H 1952 The principle of relativity (New York : Dover Publications) [29] Guo Z Y 2006 J. Eng. Thermophys (in Chinese) [ ] [30] Tien C L ; Gu Y Q ( Trans) 1987 Statistical thermodynamics (Beijing : Tsinghua University Press) (in Chinese) [; 1987 ( :) ] [31] Du L J, Xi T G; Wang M H ( Trans) 1987 Introduction to solid thermophysical properties : theory and measurement (Beijing : China Metrology Publishing House) (in Chinese) [,; 1987 :( : ) ] [32] Guo Z Y, Cao B Y, Zhu H Y, Zhang Q G 2007 Acta Phys. Sin (in Chinese) [ ] [33] Onsager L 1931 Phys. Rev [34] Kaliski S 1965 Bull. Acad. Pol. Sci. XIII 211
9 7 : 4281 A general heat conduction law ba sed on the concept of motion of thermal ma ss Guo Zeng2Yuan g Cao Bing2Yang ( Department of Engineering Mechanics, Tsinghua University, Beijing , China) (Received 1 November 2007 ; revised manuscript received 5 December 2007) Abstract Based on the mass2energy relation in Einstein s relativity theory, thermal energy has equivalent mass, which is referred to as thermal mass. The concepts of phonon gas mass in solids and thermon gas mass in gases are then introduced. Based on these concepts, the momentum conservation equation, including driving force, resistance and inertial force, for the thermal mass motion is established using Newtonian mechanics. Since the heat conduction is just the motion of the thermal mass (phonon gas or thermon gas) in a medium, the momentum conservation equation for thermal mass is a general heat conduction law which can unify the description of heat conduction under various conditions. The momentum conservation equation reduces to Fourier s heat conduction law when the heat flux is not very high so that the inertial force of the thermal mass can be ignored. For micro2πnano2 scale heat conduction, the heat flux may be very high and the inertial force due to the spatial velocity variation can not be ignored. Therefore, the heat conduction deviates from Fourier s law, i. e. non2fourier phenomenon takes place even under steady state conditions. In such cases, the thermal conductivity can not be calculated by the ratio of the heat flux to the temperature gradient. Under ultra fast heat conduction conditions, the inertial force of the thermal mass must be taken into consideration and the momentum conservation equation for the thermal mass motion leads to a damped wave equation. Compared with the CV model, the general heat conduction law includes the inertial force due to the spatial velocity variation. Thus the physically impossible phenomenon of negative temperatures induced by the thermal wave superposition described by CV model, is elliminated, which demonstrates that the present general law of heat conduction based on thermal mass motion is more reasonable. Keywords : Fourier heat conduction law, general heat conduction law, motion of thermal mass, non2fourier heat conduction PACC: 4410, 6370, 0340G g E2mail : edu. cn
, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H
57 6 2008 6 100023290Π2008Π57 (06) Π3486208 ACTA PHYSICA SINICA Vol. 57,No. 6,June,2008 ν 2008 Chin. Phys. Soc. 3 1) 2) 1) g 1) (, 130033) 2) (, 100049) (2007 9 11 ;2007 11 14 ),Littrow,,.,., Litrrow.
LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing
2003 61 3, 435 439 ACTA CHIMICA SINICA Vol 61, 2003 No 3, 435 439 2 ΞΞ ( 400715), 2, 2, 2, 3/ 2 2,, 2,, Ne w Methods for the Determination of the Inclusion Constant between Procaine Hydrochloride and 2Cyclodextrin
Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin
2005 63 Vol. 63, 2005 23, 2169 2173 ACTA CHIMICA SINICA No. 23, 2169 2173 a,b a a a *,a ( a 130012) ( b 133002), 26 K A 1.98 10 4, 1.01 10 3, 1.38 10 3, 5.97 10 4 7.15 10 4 L mol 1, n 1.16, 0.86, 1.19,
X g 1990 g PSRB
e-mail: shibata@provence.c.u-tokyo.ac.jp 2005 1. 40 % 1 4 1) 1 PSRB1913 16 30 2) 3) X g 1990 g 4) g g 2 g 2. 1990 2000 3) 10 1 Page 1 5) % 1 g g 3. 1 3 1 6) 3 S S S n m (1/a, b k /a) a b k 1 1 3 S n m,
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Approximation Expressions for the Temperature Integral
20 7Π8 2008 8 PROGRSS IN CHMISRY Vol. 20 No. 7Π8 Aug., 2008 3 3 3 3 3 ( 230026),,,, : O64311 ; O64213 : A : 10052281X(2008) 07Π821015206 Approimation pressions for the emperature Integral Chen Haiiang
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Investigation on Fast Determination of Trace N2Nitrosamines Assisted by Microwave Radiation
2002 60 5, 876 881 ACTA CHIMICA SINICA Vol 60, 2002 No 5, 876 881 Ξ ( 210093), NOBr NO x ( x < 2),, CrO 3, NO x ( x < 2) NO 2, 90 %, (TEA) (76 % 96 %) ; 2 10-8 mol/ L /,, 3 min, ( ),, Investigation on
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
2.1
181 8588 2 21 1 e-mail: sekig@th.nao.ac.jp 1. G ab kt ab, (1) k 8pGc 4, G c 2. 1 2.1 308 2009 5 3 1 2) ( ab ) (g ab ) (K ab ) 1 2.2 3 1 (g ab, K ab ) 1 t a S n a a b a 2.3 a b i (t a ) 2 1 2.4 1 g ab ab
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
N 2 O + , Fermi, . N 2 O + . Larzilliere (FIBLAS), O + ( 4 S) + N 2 ( X 1 + ) NO + ( X 1 +, v) ], N 2 O + ( A 2 + )
53 4 2004 4 100023290Π2004Π53 (04) Π1027207 ACTA PHYSICA SINICA Vol 53,No 4,April,2004 ν 2004 Chin Phys Soc A 2 + 3 g (,, 230026) (, 230031) (2003 6 10 ;2003 7 9 ) 360155 nm N 2 O (3 + 1) X 2 3Π2,1Π2 (000)
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method
Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Kensaku FUJII Isao WAKABAYASI Tadashi UJINO Shigeki KATO Abstract FUJITSU TEN Limited has developed "TOYOTA remium Sound System"
Space-Time Symmetries
Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ Νικόλας Χριστοδούλου Λευκωσία, 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;
28 1 2006 1 RESOURCES SCIENCE Vol. 28 No. 1 Jan. 2006 :1007-7588(2006) 01-0002 - 07 20 1 1 2 (11 100101 ; 21 101149) : 1978 1978 2001 ; 2010 ; ; ; : ; ; 24718kg 1) 1990 26211kg 260kg 1995 2001 238kg( 1)
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
DuPont Suva 95 Refrigerant
Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
Higher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
ACTA PHYSICA SINICA nm NO + ( X 1 + ) + N ( 4 S) = 8, 9) + N( 4 S) NO + ( X 1 +, v = 0, 1) + N ( 2 D), [7,8 ]
53 6 2004 6 100023290Π2004Π53 (06) Π1759207 ACTA PHYSICA SINICA Vol 53 No 6 June 2004 ν 2004 Chin Phys Soc N 2 O + A 2 + 3 g ( 230026) (2003 7 24 ;2003 10 13 ) 360155nm N 2 O (3 + 1) (REMPI) X 2 (000)
,,. ,,, . 2 PACC: 4265S,4265J. I s, I b. I s e Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.
52 2 2003 2 100023290Π2003Π52 (02) Π0377206 ACTA PHYSICA SINICA Vol 52,No 2,February,2003 ν 2003 Chin Phys Soc 3 2 g (, 510275) (2002 1 12 ;2002 6 26 ), 2,,, : 2,,, PACC: 4265S,4265J 11, 2,,, ;, 2 3 :
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
CuS * CuS. THz. CuS. THz-TDS. CuS. 1 THz = 33 cm - 1. THz. PACS Ci Bd. CuS. THz. THz. CuS. CuS. THz. http / / wulixb. iphy. ac.
Acta Phys Sin Vol 60 No 2 2011 027802 CuS * 1 1 2 2 1 1 1 100081 2 100190 2010 2 8 2010 3 20 THz CuS THz CuS Lorentz Durde-Smith THz CuS CuS Lorentz Drude-Smith PACS 78 20 Ci 73 63 Bd 1 cm - 1 6 9 CuS
Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water
31 1 2010 1 ENVIRONMENTAL SCIENCE Vol. 31,No. 1 Jan.,2010, 3, (,, 100084) :,.,, ( Microcystis aeruginosa),3 (A 2 O ) 10 6 ml - 1,> 0139 d - 1. A 2 O222,. TP ( K max ) ( R max ), Monod. :; ; ; ; :X173 :A
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil
8 7 011 7 Journal of Highway and Transportation Research and Development Vol. 8 No. 7 Jul. 011 100-068 011 07-0014 - 05 1 1. 0009. 710064 k 0 Merchant 4 Merchant U416. 1 + 6 A Stress Relaxation Test and
Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog
J. Jpn. Soc. Soil Phys. No. +*-, p.-3.1,**0 ** * *** Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog Toshiki FUJIMOTO*, Ippei IIYAMA*, Mai SAKAI*, Osamu
ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ & ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG
Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
4, Cu( II), Zn( II)
2004 62 22, 2259 2264 ACTA CHIMICA SINICA Vol 62, 2004 No 22, 2259 2264 4,52 292 Cu( II), Zn( II) Ξ Ξ ( 710069) 4,52 292 (dafo) Cu( II), Zn( II) [ Cu(dafo) 2 (H 2 O) 2 ] (NO 3 ) 2 [ Zn(dafo) 2 (H 2 O)
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog
Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
DuPont Suva 95 Refrigerant
Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
MATSEC Intermediate Past Papers Index L. Bonello, A. Vella
2009 MATSEC Intermediate Past Papers Index Louisella Bonello Antonia Vella The Junior College Physics Department 2009 MATSEC INTERMEDIATE PAST PAPERS INDEX WITH ANSWERS TO NUMERICAL PROBLEMS by Louisella
8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,
31 2003 8 (FENXI HUAXUE) 8 Chinese Journal of Analytical Chemistry 976 980 22( 82 252 272 )21,82 23,62 3 (, 510631) 22(82 252 272 )21,82 23,62 (BSA), 8Q5SAC BSA 298K, 35 40 6. 1 10 5 LΠmol 8Q5SAC, ph =
Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media
28 1 2009 3 Vol128 No11 GLOBAL GEOLOGY Mar1 2009 : 1004 5589 (2009) 01 0098 05 P 1, 1, 2, 1 1., 130026; 2., 100027 :,,,, 1%,,, 12187%,, : ; ; ; : P63114 : A Abstract: Error ana lysis of P2wave non2hyperbolic
17 min R A (2009) To probe into the thermal property the mechanism of the thermal decomposition and the prospective
( 31001) (CDZ)CDZCDZ GAMSSCDZCDZ (DSC)CDZCDZ (G) DakinCDZ 1 1 CDZ a =173.9 kj mol min -1 CDZ 17 min A=.69 10 A=1.175 10 17 R97.14A1007-7693(009)1-1019-05 a =17.3 kj mol 1 Mechanism and Kinetics of hermal
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
2. Chemical Thermodynamics and Energetics - I
. Chemical Thermodynamics and Energetics - I 1. Given : Initial Volume ( = 5L dm 3 Final Volume (V = 10L dm 3 ext = 304 cm of Hg Work done W = ext V ext = 304 cm of Hg = 304 atm [... 76cm of Hg = 1 atm]
Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements
5 5 2012 10 Chinese Optics Vol. 5 No. 5 Oct. 2012 1674-2915 2012 05-0525-06 - * 100190-14 - - 14. 51 μm 81. 4 μm - 1. 64 μm / O436. 1 TH703 A doi 10. 3788 /CO. 20120505. 0525 Correction of chromatic aberration
Research on Economics and Management
36 5 2015 5 Research on Economics and Management Vol. 36 No. 5 May 2015 490 490 F323. 9 A DOI:10.13502/j.cnki.issn1000-7636.2015.05.007 1000-7636 2015 05-0052 - 10 2008 836 70% 1. 2 2010 1 2 3 2015-03
Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
33 2 2011 4 Vol. 33 No. 2 Apr. 2011 1002-8412 2011 02-0096-08 1 1 1 2 3 1. 361005 3. 361004 361005 2. 30 TU746. 3 A Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο
Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil
J. Jpn. Soc. Soil Phys. No. +*0, p.- +*,**1 Eh * ** Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil Daisuke MURAKAMI* and Tatsuaki KASUBUCHI** * The United Graduate
(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)
Acta Phys. Sin. Vol. 6, No. 5 () 553 (II) * (, 543 ) ( 3 ; 5 ),,,,,,,, :,,, PACS: 5.45. a, 45..Hj 3,, 5., /,,, 3 3 :,,, ;, (memory hereditary),,, ( ) 6 9 ( ) 3 ( ) 6 3.,, Deng 4,5,,,,, * ( : 758,936),
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ιπλωµατική Εργασία του φοιτητή του τµήµατος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών
MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)
1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations
Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]
d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic
MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:
MnZn JFE No. 8 5 6 p. 32 37 MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer FUJITA Akira JFE Ph. D. FUKUDA Yutaka JFE NISHIZAWA Keitarou JFE TOGAWA Jirou MnZn Fe2O3 1 C NiO
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
STEAM TABLES. Mollier Diagram
STEAM TABLES and Mollier Diagram (S.I. Units) dharm \M-therm\C-steam.pm5 CONTENTS Table No. Page No. 1. Saturated Water and Steam (Temperature) Tables I (ii) 2. Saturated Water and Steam (Pressure) Tables
Advance in Nanorealgar Studies
21 5 2009 5 PROGRESS IN CHEMISTRY Vol. 21 No. 5 May, 2009 1 1 2 3 (1. 430074 ; 2. 430074),,, ;,, : O61316 ; R284 : A : 10052281X(2009) 0520934206 Advance in Nanorealgar Studies Ye Xiaochuan 1 Yang Xiangliang
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Supplementary Information for
Supplentary Information for Aggregation induced blue-shifted ission molecular picture from QM/MM study Qunyan Wu, a Tian Zhang, a Qian Peng,* b Dong Wang, a and Zhigang Shuai* a a Key Loratory of Organic
N 2. Temperature Programmed Surface Reaction of N 2Nitrosonornicotine on Zeolites and Molecular Sieves
2003 61 3, 376 381 ACTA CHIMICA SINICA Vol 61, 2003 No 3, 376 381 N 2 Ξ Ξ ( 210093), N 2 (NNN) NNN ; NNN :NNN N N O NNN, N 2,,,, Temperature Programmed Surface Reaction of N 2Nitrosonornicotine on Zeolites
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
PACS: a, L
* 1)2) 1) 2) 1) (, 710062 ) 2) (, 710062 ) ( 2011 8 23 ; 2011 9 8 ) k k + 1(k = 1, 2), k k + 1 Chay k k + 1, ; 0 1,., :,,, PACS: 05.45. a, 87.19.L 1,,, [1]., [2].,,, [3 26].,, [3 5].,, [6,7],,, [6] [7].,
VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )
22 1 2002 1 Vol. 22 No. 1 Jan. 2002 Proceedings of the CSEE ν 2002 Chin. Soc. for Elec. Eng. :025828013 (2002) 0120017206 VSC 1, 1 2, (1., 310027 ; 2., 250061) STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction
() () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΦΟΡΟΛΟΓΙΑ Ο.Ε. ΕΙΣΗΓΗΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ: κ. ΟΥΡΑΝΟΥ ΕΡΜΙΟΝΗ ΣΠΟΥΔΑΣΤΡΙΕΣ: ΔΕΜΕΤΖΟΥ ΑΓΛΑΪΑ
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ
Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η προβολή επιστημονικών θεμάτων από τα ελληνικά ΜΜΕ : Η κάλυψή τους στον ελληνικό ημερήσιο τύπο Σαραλιώτου
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers
1/5 Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Deendent Polymers by Yukio SANOMURA Hydrostatic ressure deendence in mechanical behavior of olymers is studied for the constitutive
Δυνατότητα Εργαστηρίου Εκπαιδευτικής Ρομποτικής στα Σχολεία (*)
Δυνατότητα Εργαστηρίου Εκπαιδευτικής Ρομποτικής στα Σχολεία (*) Σ. Αναγνωστάκης 1, Α. Μαργετουσάκη 2, Π. Γ. Μιχαηλίδης 3 Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης Πανεπιστημίου Κρήτης 1 sanagn@edc.uoc.gr,
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Jordan Form of a Square Matrix
Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
ADVANCED STRUCTURAL MECHANICS
VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
LiNbO 3, , LiNbO 3. , 50 nj. 2 mm 2 mm. . SU28 [14 ],Polymer [15 ] (LiNbO 3 ) Ti : Sapphire Hz, PACC: 4255R, 4262A, 4265
56 10 2007 10 100023290Π2007Π56 (10) Π5821206 ACTA PHYSICA SINICA Vol 56,No 10,October,2007 ν 2007 Chin Phys Soc 3 g (,, 430074) (2007 1 4 ;2007 2 4 ),,,, 2 m 170 nj, 400 nm, 100 nj,17 800 nm, 200 nm,,
2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _
41 Vol.41, No. 01 RARE METAL MATERIALS AND ENGINEERING March 01 Pb O 4 PbO ( 710049) SnO -Sb Pb O 4 Pb O 4 100.5 h 970 h XRF XRD SEM Pb O 4 PbO PbO TG146.1 + A 100-185X(01)0-046-05 [1,] 1 PbO PbO Sn-Sb
Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler
EΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler Συντάκτης: ΜΑΡΗΣ