VANISHING VISCOSITY SOLUTIONS OF THE COMPRESSIBLE EULER EQUATIONS WITH SPHERICAL SYMMETRY AND LARGE INITIAL DATA

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "VANISHING VISCOSITY SOLUTIONS OF THE COMPRESSIBLE EULER EQUATIONS WITH SPHERICAL SYMMETRY AND LARGE INITIAL DATA"

Transcript

1 Repot no. OxPDE-15/ VANISHING VISCOSITY SOLUTIONS OF THE COMPRESSIBLE EULER EQUATIONS WITH SPHERICAL SYMMETRY AND LARGE INITIAL DATA by Gui-Qing Chen Univesity of Oxfod nd Mikhil Peepelits Univesity of Houston Oxfod Cente fo Nonline PDE Mthemticl Institute, Univesity of Oxfod Andew Wiles Building, Rdcliffe Obsevtoy Qute, Woodstock Rod, Oxfod, UK OX 6GG Febuy 15

2 VANISHING VISCOSITY SOLUTIONS OF THE COMPRESSIBLE EULER EQUATIONS WITH SPHERICAL SYMMETRY AND LARGE INITIAL DATA GUI-QIANG G. CHEN AND MIKHAIL PEREPELITSA Abstct. We e concened with spheiclly symmetic solutions of the Eule equtions fo multidimensionl compessible fluids, which e motivted by mny impotnt physicl situtions. Vious evidences indicte tht spheiclly symmetic solutions of the compessible Eule equtions my blow up ne the oigin t cetin time unde some cicumstnce. The centl fetue is the stengthening of wves s they move dilly inwd. A longstnding open, fundmentl poblem is whethe concenttion could fom t the oigin. In this ppe, we develop method of vnishing viscosity nd elted estimte techniques fo viscosity ppoximte solutions, nd estblish the convegence of the ppoximte solutions to globl finite-enegy entopy solution of the isentopic Eule equtions with spheicl symmety nd lge initil dt. This indictes tht concenttion does not fom in the vnishing viscosity limit, even though the density my blow up t cetin time. To chieve this, we fist constuct globl smooth solutions of ppopite initil-boundy vlue poblems fo the Eule equtions with designed viscosity tems, ppoximte pessue function, nd boundy conditions, nd then we estblish the stong convegence of the viscosity ppoximte solutions to finite-enegy entopy solutions of the Eule equtions. 1. Intoduction We e concened with the existence theoy fo spheiclly symmetic globl solutions of the Eule equtions fo multidimensionl isentopic compessible fluids: { t ρ + x ρv =, 1.1 ρv t + x ρv v + x p =, whee ρ is the density, p the pessue, v R n the velocity, t R, x R n, nd x is the gdient with espect to x R n. The constitutive pessue-density eltion fo polytopic pefect gses is p = pρ = κρ γ, whee γ > 1 is the dibtic exponent nd, by scling, the constnt κ in the pessuedensity eltion my be chosen s κ = γ 1 /4γ without loss of genelity. Fo the spheiclly symmetic motion, ρt, x = ρt,, vt, x = ut, x, = x Mthemtics Subject Clssifiction. 35Q31; 35L65; 76N1; 35D3; 76M45. Key wods nd phses. Viscosity solutions, globl solutions, spheicl symmety, Eule equtions, compessible fluids, isentopic, multidimensionl, vnishing viscosity, finite enegy, concenttion, stong convegence, ppoximte solutions, compctness fmewok. 1

3 GUI-QIANG G. CHEN AND MIKHAIL PEREPELITSA Then the functions ρ, m = ρ, ρu e govened by the following Eule equtions with geometicl tems: { t ρ + m + n 1 m =, t m + m ρ + pρ + n 1 m ρ =. 1.3 The existence theoy fo spheiclly symmetic solutions ρ, vt, x to 1.1 though fom 1. is equivlent to the existence theoy fo globl solutions ρ, mt, to 1.3. Fo ny poblem with constnt velocity v t infinity, i.e., lim x vt, x = v, we my ssume without loss of genelity tht v =, o equivlently, lim ut, =, by the Glilen invince. The study of spheiclly symmetic solutions cn dte bck 195s, which e motivted by mny impotnt physicl poblems such s flow in jet engine inlet mnifold nd stell dynmics including gseous sts nd supenove fomtion. In pticul, the simility solutions of such poblem hve been discussed in lge litetue cf. [9, 13, 3, 4, 6], which e detemined by singul odiny diffeentil equtions. The centl fetue is the stengthening of wves s they move dilly inwd. Vious evidences indicte tht spheiclly symmetic solutions of the compessible Eule equtions my blow up ne the oigin t cetin time unde some cicumstnce. A longstnding open, fundmentl poblem is whethe concenttion could fom t the oigin, tht is, the density becomes delt mesue t the oigin, especilly when focusing spheicl shock is moving inwd the oigin cf. [9, 3, 6]. Some pogess hs been mde fo solving this poblem in ecent decdes. The locl existence of spheiclly symmetic wek solutions outside solid bll t the oigin ws discussed in Mkino-Tkeno [1] fo the cse 1 < γ 5 3 ; lso see Yng [7]. A shock cptuing scheme ws intoduced in Chen-Glimm [6] fo constucting ppoximte solutions to spheiclly symmetic entopy solutions fo γ > 1, whee the convegence poof ws limited to be loclly in time. A fist globl existence of entopy solutions including the oigin ws estblished in Chen [5] fo clss of L Cuchy dt of bitily lge mplitude, which model outgoing blst wves nd lge-time symptotic solutions. Also see Slemod [4] fo the esolution of the spheicl piston poblem fo isentopic gs dynmics vi self-simil viscous limit, nd LeFloch-Westdickenbeg [17] fo compctness fmewok to ensue the stong compctness of spheiclly symmetic ppoximte solutions with unifom finite-enegy noms fo the cse 1 < γ 5 3. The ppoch nd ides developed in this ppe cn yield indeed the globl existence of finite-enegy entopy solutions of the compessible Eule equtions with spheicl symmety nd lge initil dt fo the genel cse γ > 1, bsed on ou elie esults in [8]. To estblish the existence of globl entopy solutions to 1.3 with initil dt: ρ, m t= = ρ, m, 1.4 we develop method of vnishing viscosity nd elted estimte techniques fo viscosity ppoximte solutions, nd estblish the convegence of the viscosity ppoximte solutions to globl finite-enegy entopy solution. To chieve this, we fist constuct globl smooth solutions of ppopite initil-boundy vlue poblems fo the Eule equtions with designed viscosity tems, ppoximte pessue function, nd boundy conditions, nd then we estblish the stong convegence of the viscosity ppoximte solutions to n entopy solution of the Eule equtions 1.3, which is equivlent to 1.1 vi eltion

4 GLOBAL SOLUTIONS TO THE EULER EQUATIONS WITH SPHERICAL SYMMETRY Fo simplicity of pesenttion, we focus ou nlysis on the physicl egion 1 < γ 3 thoughout the ppe, though the convegence gument lso woks fo ll γ > 1. The viscosity tems nd ppoximte pessue function e designed to ppoximte the Eule equtions e s follows: whee { ρt + m + n 1 m t + m ρ m = ε ρ + n 1 ρ + p δρ + n 1 m ρ ε n 1 n 1 ρ, = ε m + n 1 m ε n 1 n 1 m, 1.5 p δ ρ = κρ γ + δρ, δ = δε >, with ε, 1] nd δε s ε in n ppopite ode. Notice tht the positive tem δρ is dded into p δ ρ to void the possibility of fomtion of cvittion of the solutions to the viscous system 1.5. Fo shllow wte flow, γ =, so tht the tem δρ cn be dopped. We conside 1.5 on cylinde Q ε = R +, b, with R + = [,, := ε, 1, b := bε > 1, nd with the boundy conditions: lim ε =, lim ε bε =, ε ρ, m = =,, ρ, m =b = ρ, fo t > 1.6 fo some ρ := ρε >, nd with ppopite ppoximte initil functions: ρ, m t= = ρ ε, m ε fo < < b, 1.7 stisfying the conditions in Theoem 1.1 below. A pi of mppings η, q : R + R R is clled n entopy-entopy flux pi o entopy pi, fo shot of system 1.3 if the pi stisfies the line hypebolic system: qu = ηu m ρ m + pρ, 1.8 whee = ρ, m is the gdient with espect to U = ρ, m fom now on. Futhemoe, ηρ, m is clled wek entopy if η =. 1.9 ρ= u=m/ρ fixed An entopy pi is sid to be convex if the Hessin ηρ, m is nonnegtive in the egion unde considetion. Fo exmple, the mechnicl enegy η ρ, m sum of the kinetic nd intenl enegy nd the mechnicl enegy flux q ρ, m: η ρ, m = 1 m ρ + κργ γ 1, q ρ, m = 1 m 3 ρ + κγ γ 1 mργ 1, 1.1 fom specil entopy pi of system 1.3, nd η ρ, m is convex in the egion ρ.

5 4 GUI-QIANG G. CHEN AND MIKHAIL PEREPELITSA Any wek entopy pi fo the Eule system 1.3 cn be expessed by with λ = 3 γ γ 1 η ψ ρ, m = ρ q ψ ρ, m = ρ nd the geneting function ψs. ψ m ρ + ρθ s[1 s ] λ + ds, 1.11 m ρ + θρθ sψ m ρ + ρθ s[1 s ] λ + ds, 1.1 Theoem 1.1. Assume tht ρ, m L 1 loc R +, with ρ, is of finite enegy: m + κργ n 1 L 1 R ρ γ 1 Let δ, ρ = δε, ρε, ε, 1 with lim ε δ, ρ =, stisfy ρ γ b n + δ ε bn M, 1.14 fo some M < independent of ε, 1]. If ρ ε, mε is sequence of smooth functions with the following popeties: i ρ ε > ; ii ρ ε, mε stisfies 1.6 nd n 1 m ε = =, 1.15 nd, t = b, m ε, = ε n 1 m n 1 ρ ε ε,, ρ ε + p δ ρ ε = ε n 1 n 1 m ε ; 1.16 iii ρ ε, mε ρ, m.e. R + s ε, whee we undestnd ρ ε, mε s the zeo extension of ρ ε, mε outside, b; iv b m ε + κρε γ γ 1 n 1 d m ρ + κργ γ 1 n 1 d s ε, ρ ε then, fo ech fixed ε >, thee is unique globl clssicl solution ρ ε, m ε t, of with initil dt ρ ε, mε so tht thee exists subsequence still lbeled ρε, m ε tht conveges.e. t, R + := R + R + nd in L p loc R + L q loc R +, p [1, γ + 1, q [1, 3γ+1 γ+3, s ε, to globl finite-enegy entopy solution ρ, m of the Eule equtions 1.3 with initil condition 1.7 in the following sense: i Fo ny φ C R + with φ t, =, ρφt + mφ n 1 ddt + R + ii Fo ll φ C R +, with φt, = φ t, =, mφt + m ρ φ + pρφ + n 1 φ n 1 ddt + R + ρ φ, n 1 d = ; m φ, n 1 d = ;

6 GLOBAL SOLUTIONS TO THE EULER EQUATIONS WITH SPHERICAL SYMMETRY 5 iii Fo.e. t t 1, η ρ, mt, n 1 d η ρ, mt 1, n 1 d η ρ, m n 1 d; 1.17 iv Fo ny convex function ψs with subqudtic gowth t infinity nd ny entopy pi η ψ, q ψ defined in , η ψ n 1 t + q ψ n 1 + n 1 n mη ψ,ρ + m ρ η ψ,m q ψ 1.18 in the sense of distibutions. Remk 1.1. Theoem 1.1 indictes tht thee is no concenttion fomed in the vnishing viscosity limit of the viscosity ppoximte solutions to the globl entopy solution of the compessible Eule equtions 1.3 with initil condition 1.7, which is of finite-enegy with monotonic decesing in time 1.17 nd obeys the entopy inequlity Remk 1.. To chieve 1.14, it suffices to choose δ = εb k 1 nd ρ = b k fo ny k 1 n nd k n γ.. Globl Existence of Unique Clssicl Solution of the Appoximte Eule Equtions with Atificil Viscosity The equtions in 1.5 fom qusiline pbolic system fo ρ, m. In this section, we show the existence of unique smooth solution ρ, m, equivlently ρ, u with u = m ρ, nd mke some estimtes of the solution whose bounds my depend on the pmete ε, 1] except the enegy bound E below. Fo β, 1, let C +β [, b] nd C +β,1+ β Q T be the usul Hölde nd pbolic Hölde spces, whee Q T = [, T ], b cf. [14]. Fo simplicity, we will dop the ε dependence of the involved functions in this section. Theoem.1. Let ρ, m C +β [, b] with inf b ρ > nd stisfy 1.6 nd Then thee exists unique globl solution ρ, m of poblem fo γ 1, 3] such tht ρ, m C +β,1+ β QT with inf t, Q T ρt, > fo ll T >. The nonline tems in 1.5 hve singulities when ρ = o m =. To estblish Theoem.1, we deive pioi estimtes fo geneic solution in C,1 Q T with ρ, 1 ρ, m ρ L Q T <, showing by this tht the solution tkes vlues in egion detemined pioi wy fom the singulities. With the pioi estimtes, the existence of the solution cn be deived fom the genel theoy of the qusiline pbolic systems, by suitble lineiztion techniques; see Section 5 nd Theoem 7.1 in Ldyzhenskj- Solonnikov-Ultsev [14]. The pioi estimtes e obtined by the following guments: Fist we deive the estimtes bsed on the blnce of totl enegy. Then, in Lemm., we use the mximum pinciple fo the Riemnn invints nd the totl enegy estimtes to show tht the L nom of u = m ρ depends linely on the L nom of ρ γ 1/. This is in tun used in Lemm.3 to close the highe enegy estimtes fo ρ, m. With tht, we obtin the pioi uppe bound ρ in L nd, by using Lemm. gin, the pioi bounds of the

7 6 GUI-QIANG G. CHEN AND MIKHAIL PEREPELITSA L noms of m nd u. Finlly, to show the positive lowe bound fo ρ, we obtin n estimte on t u t, L dt. We poceed now with the deivtion of the pioi estimtes. Let ρ, m, with ρ >, be C,1 Q T solution of with Enegy Estimte. As usul, we denote by η δ = m ρ + h δρ, qδ = m3 ρ + mh δ ρ,.1 s the mechnicl enegy pi of system 1.5 with ε =, whee h δ ρ := ρe δ ρ fo the intenl enegy e δ ρ := ρ p δ s ds. s Note tht ρ, is the only constnt equilibium stte of the system. Fo the mechnicl enegy pi ηδ, q δ in.1, we denote η δ ρ, m = η δ ρ, m η δ ρ, η δ ρ ρ, ρ ρ,. s the totl enegy eltive to the constnt equilibium stte ρ,. Poposition.1. Let b E := sup η δ ρε, m ε n 1 d <. ε> Then, fo the viscosity ppoximte solution ρ, m = ρ, ρu detemined by Theoem.1 fo ech fixed ε >, we hve whee sup t [,T ] b 1 ρu + h δ ρ, ρ n 1 d +ε Q T h δ ρ ρ + ρ u + n 1 ρu n 1 ddt E,.3 h δ ρ, ρ = h δ ρ h δ ρ h δ ρρ ρ c 1ρρ θ ρ θ, θ = γ 1,.4 fo some constnt c 1 = c 1 ρ, γ >. Futhemoe, fo ny t [, T ], the mesue of set {ρt, > 3 ρ} is less thn c E fo some c = c ρ, γ >. Poof. We multiply the fist eqution in 1.5 by η δ ρ n 1, the second in 1.5 by η δ m n 1, nd then dd them up to obtin η δ n 1 t + q δ η δ ρ ρ, m n 1 tht is, = ε n 1 ρ + n 1 ρ η δ ρ ηδ ρ ρ, + ε n 1 m + n 1 m η δ m, η δ n 1 t + q δ η δ ρ ρ, m n 1 + n 1εmη δ m n 3 = ερ n 1 η δ ρ η δ ρ ρ, + εm n 1 η δ m..5

8 GLOBAL SOLUTIONS TO THE EULER EQUATIONS WITH SPHERICAL SYMMETRY 7 Integting both sides of.5 ove fo ny t, T ] nd using the boundy conditions 1.6, we hve b η δ n 1 d + ε ρ, m η δ ρ, m + m ρ n 1 ddt = E. Note tht ρ, m η δ ρ, m is positive qudtic fom tht domintes h δ ρ ρ nd ρ u so tht b η δ n 1 d + ε δ + κγρ γ ρ + ρ u + n 1 ρu n 1 ddt E..6 Q T Estimte.6 lso implies b sup t [,T ] ρu + h δ ρ, ρ n 1 d E. The function h δ ρ, ρ is positive, qudtic in ρ ρ fo ρ ne ρ, nd gows s ρ mx{γ,} fo lge vlues of ρ. In pticul, thee exists c 1 = c 1 ρ, γ > such tht.4 holds. Thus, fo ny t [, T ], the mesue of set {ρt, > 3 ρ} is less thn c E fo some c >. With the bsic enegy estimte.3, we hve Lemm.1. Thee exists C = Cε, T, E > such tht T ρt, mx{,γ} L,b dt C..7 Poof. In the cse tht the mesue of set {ρt, > 3 ρ} is zeo, we hve the unifom uppe bound 3 ρ fo ρt,. Othewise, fo, b, let, b be the closest to point such tht ρt, = 3 ρ. Clely, c ρe. With such choice of, we hve Then estimte.6 yields ρ γ t, ρ γ t,.8 γ ρ γ 1 t, yρ y t, y dy 1 C ρ γ t, yy n 1 b 1 dy ρ γ t, y ρ y t, y y n 1 dy b 1 C ρ γ t, ρ t, n 1 d..9 T ρt, γ L,b dt C,.1 whee C stnds fo geneic function of the pmetes: γ, ε, δ, T, E, nd ρ. Repeting the gument with ρ insted of ρ γ, we conclude.7. Fom now on, the constnt C > is univesl constnt tht my depend on the pmete ε > in..3, while the constnt M > below is nothe univesl constnt independent of the pmete ε s E fom 3, though both of them my lso depend on T >, E, nd othe pmetes; we will lso specify thei dependence wheneve needed.

9 8 GUI-QIANG G. CHEN AND MIKHAIL PEREPELITSA.. Mximum Pinciple Estimtes. Futhemoe, we hve Lemm.. Thee exists C = C, T, E such tht, fo ny t [, T ], whee u L C u + Rρ L,b + u Rρ L,b + Rρ L,.11 Rρ = ρ p δ s ds..1 s Poof. Conside system 1.5. The chcteistic speeds of system 1.5 without tificil viscosity tems e λ 1 = u p δ ρ, λ = u + p δ ρ, nd the coesponding ight-eigenvectos e [ ] 1 1 =, λ1 = [ 1 λ The Riemnn invints w, z, defined by the conditions w 1 = nd z =, e given by w = m ρ + Rρ, with R defined in.1. They e qusi-convex: ]. z = m ρ Rρ, w w w, z z z,.13 whee is the Hessin with espect to ρ, m nd = m, ρ. Let us multiply the fist eqution in 1.5 by w ρ ρ, m, the second in 1.5 by w m ρ, m, nd dd them to obtin w t + λ w + n 1 u p δ ρ = ε ρ w ρ + m w m + εw + n 1ε w 1 mw m, whee λ is s bove. Then w t + n 1ε λ w εw = ερ, m wρ, m n 1 u p δ ρ n 1ε u. We wite ρ, m = α w + β w, with Then we cn futhe wite α = w w, β = ρ w m m w ρ w. w t + λw εw = εβ w w w n 1 u p δ ρ n 1ε u,.14

10 whee GLOBAL SOLUTIONS TO THE EULER EQUATIONS WITH SPHERICAL SYMMETRY 9 λ = λ By setting n 1ε wt, = wt, n 1 + εα w w w w + εβ w w w w. t p δ ρτ, uτ, + εuτ, L dτ,,b nd using the qusi-convexity popety.13 nd the clssicl mximum pinciple pplied to the pbolic eqution.14, we obtin o mx mx w mx w + Rρ L,b +C ρ, Similly, we hve mx z mx z + Rρ L,b +C Since ρ, it follows tht w mx { mx w, mx w},,b [,t] {} {b} t t mx u mx w + mx z + Rρ L,b,b + C t By.7 nd mx{1, γ 1} < 4γ, we hve T Then we conclude.11 fom Lowe Bound on ρ. 1+ ρτ, 1 mx{1,γ 1} L,b uτ, L,b dτ. 1+ ρτ, 1 mx{1,γ 1} L,b uτ, L,b dτ. 1 + ρτ, 1 mx{1,γ 1} L,b ρτ, 1 mx{1,γ 1} L dτ C. uτ, L,b dτ..15 Lemm.3. Thee exists C = C ρ, u L,b, ρ, m H 1,b, γ such tht b ρ + m d + ρ + m ddt C..16 Q T sup t [,T ] Poof. We multiply the fist eqution in 1.5 by ρ nd the second by m to obtin ρ + m t ε ρ + m + ρ t ρ + m t m n 1 = m ρ mρ ρu + p δ m n 1 ρu m + n 1ε ρ ρ + n 1ε m m.

11 1 GUI-QIANG G. CHEN AND MIKHAIL PEREPELITSA We integte this ove to obtin b ρ + m t d + ε ρ + m ddt Q t = m ρ + n 1 mρ ddt + ρu Q + p δ m ddt t ρu + n 1 Qt m ε ρ m ρ ddt n 1ε m ddt..17 We now estimte the tem Q T ρu + p m ddt fist. Conside p δ ρρ m ddτ m ddτ + C δρ + κγρ γ 1 ρ ddτ t 1 m ddτ + C + ρτ, γ b L ρ d dτ,.18 whee > will be chosen lte. Conside ρu m = u ρ m + ρuu m. We estimte u ρ m ddτ m ddτ + C m ddτ + C t t Using the unifom estimtes.11, we obtin uτ, 4 L b uτ, 4 L b ρ τ, d dτ h δ ρ ρ τ, d dτ. uτ, 4 L,b u 4 L Q τ C ρ,, ρ, u L,b 1 + ρ mx{1,γ 1} L Q τ..19 Inseting this into the bove inequlity, we hve u ρ m ddτ m ddτ + C t 1 + sup ρs, mx{1,γ 1} L s [,τ] b On the othe hnd, using the estimte simil to.8, we cn wite h δ ρ ρ τ, d dτ. ρt, mx{4,γ+} L C 1 + b ρ t, d fo t [, T ]..

12 GLOBAL SOLUTIONS TO THE EULER EQUATIONS WITH SPHERICAL SYMMETRY 11 Using. nd γ 1, 3], we obtin u ρ m ddτ m ddτ +C t 1 + sup s [,τ] b ρ s, d b Futhemoe, we hve ρuu m ddτ m ddτ +C t ρu τ, L Aguing s in.19 nd., we obtin ρu τ, L C 1 + sup Inseting this into., we obtin ρuu m ddτ m ddτ +C t 1 + sup s [,τ] b s [,τ] b C 1 + sup s [,τ] h δ ρ ρ τ, d dτ..1 b ρτ, u τ, d dτ.. ρs, mx{,γ} L ρ s, d b Combining.18,.1, nd.4, we obtin ρu + p m ddτ m ddτ t +C Φ 1 τ 1 + sup s [,τ] whee Φ 1 τ = b ρ s, d..3 ρτ, u τ, d dτ..4 b h δ ρ ρ τ, + ρτ, u τ, d ρ s, d dτ, is n L 1, T function with the nom depending on, ε, nd E ; see.3 nd.7.

13 1 GUI-QIANG G. CHEN AND MIKHAIL PEREPELITSA Conside now ρu Qt m ddτ m ddτ + C m ddτ + C t t ρu τ, L 1 + sup s [,τ] b b ρu τ, d dτ ρ s, d dτ, whee, in the lst inequlity, we hve used.3 nd.3. All the othe tems in.17 cn be estimted by simil guments. Thus, we obtin b sup ρ τ, s + m τ, s d + ε ρ + m ddτ τ [,t] ρ + m ddτ + C t 1 + Φτ 1 + sup s [,τ] b ρ s, + m s, d dτ, whee Φτ = Φ 1 τ + ρτ, mx{,γ} L. Choosing smll enough nd using the Gonwll-type gument nd Lemm.1, we complete the poof. As coolly, we cn fist bound ρ L Q T, which follows diectly fom.16 nd., nd then bound u L Q T fom Lemm.. Lemm.4. Thee exists n pioi bound fo ρ, u L Q T in tems of the pmetes T, E, ρ, u L,b, nd ρ, u H 1,b. Define ϕρ = { 1 ρ ρ ρ 1 ρ +, ρ ρ < ρ,, ρ > ρ. Lemm.5. Thee exists C > depending on ϕρ L 1,b nd the othe pmetes of the poblem such tht b sup t [,T ] ϕρt, d + QT ρ ρ 3 ddt C..5 Poof. Indeed, multiplying the fist eqution in 1.5 by ϕ ρ, we hve ϕ t + uϕ ε ϕ + n 1ε ρ = 1 ρ 1 ρ ρ 3 χ {ρ< ρ} u χ {ρ< ρ} + n 1 ρu 1 ρ 1 ρ χ{ρ< ρ} + n 1ε 1 ρ 1 ρ ρ χ {ρ< ρ}.

14 GLOBAL SOLUTIONS TO THE EULER EQUATIONS WITH SPHERICAL SYMMETRY 13 Integting the bove eqution in t, nd using the boundy conditions 1.6, we hve b ρ sup ϕρ d + εn 1 t [,T ] Q T {ρ< ρ} ρ 3 ddt 1 Q T {ρ< ρ} ρ 1 ρ u ddt + n 1 1 ρu Q T {ρ< ρ} ρ 1 ρ ddt n 1ε 1 + ρ Q T {ρ< ρ} ρ 1 ρ ddt = I 1 + I + I 3..6 Integting by pts, we hve I 1 ρ u ρ ε 8 Q T {ρ< ρ} Q T {ρ< ρ} ρ ρ 3 ddt + C ε Q T {ρ< ρ} u ρ ddt. Since ρ 1 ϕρ fo smll ρ, u is bounded in L, nd {ρt, ρ} is bounded independently of T, then the lst tem in the bove inequlity is bounded by C 1 + ϕρ ddt. Q T Thus, we hve I 1 Q T {ρ< ρ} Q T {ρ< ρ} Also, by the simil guments, n 1 I = nd Q T {ρ< ρ} I 3 C Q T {ρ< ρ} Q T {ρ< ρ} ρ u ddt ρ ρ ρ 3 ρu ρ u ρ ddt + C ερ ρ ddt ρ ρ 3 ddt C ddt + C 1 + ϕρ ddt..7 Q T 1 + ϕρ ddt,.8 Q T 1 + ϕρ ddt..9 Q T Combining the lst thee estimtes in.6, choosing > sufficiently smll, nd using the Gonwll-type inequlity, we obtin the pioi estimte we need. Then we hve the following estimte: T 1 ρt, dt C 1 + ρ L,b Q T ρ 3 ddt 1 ϕρ ddt 1/ Q T C 1 + QT ρ ρ 3 ddt 1..3

15 14 GUI-QIANG G. CHEN AND MIKHAIL PEREPELITSA Lemm.6. Thee exists C > depending on ϕρ L 1,b nd the othe pmetes s in Lemm.4 such tht T m ρ, ρ ρ, u t, dt C,.31 L,b nd C 1 ρt, C..3 Poof. Indeed, by the Sobolev embedding nd.3, we hve T m t, T ρt, dt m t, L L,b,b ρ 1 t, L,b dt T b 1 C m d 1 + b ρ ρ 3 d 1 dt, which is bounded by.16 nd.5. The estimte fo ρ ρ is the sme. The estimte fo u follows fom u = m ρ uρ ρ, the estimtes bove, nd Lemm.4. Now we cn obtin unifom estimte fo v = 1 ρ. Notice tht v veifies the inequlity: v t + εn 1 u v εv n 1u u + v. By the mximum pinciple, we hve mx v C mx { v L Q,b, v } e C T u,uτ, L,b dτ C mx { v L,b, v }, T.33 by Lemm.4 nd.31. The estimtes in Lemm.4 nd.33 e the equied pioi estimtes. The poof of Theoem.1 is completed. 3. Poof of Theoem 1.1 In this section, we povide complete poof of Theoem 1.1. As indicted elie, the constnt M is univesl constnt, independent of ε >, fom now on A Pioi Estimtes Independent of ε. We will need the following estimte. Lemm 3.1. Let l =,, n 1, nd 1, 1]. Thee exists M = Mγ, 1, E such tht, fo ny T >, b sup ρt, γ l d M 1 + ρ γ b n. 3.1 t [,T ] 1 Poof. The poof is bsed on the enegy estimte.3. Let êρ = ρ γ ρ γ γ ρ γ 1 ρ ρ. Using the Young inequlity, we find tht thee exists Mγ > such tht ρ γ Mγ êρ + ρ γ.

16 Then we hve GLOBAL SOLUTIONS TO THE EULER EQUATIONS WITH SPHERICAL SYMMETRY 15 b Since < ε < 1 < bε <, we hve b 1 êρt, l d 1 l+1 n b ρ γ l d M 1 êρ l d + ρ γ b l+1 1. sup τ [,t] b η δ ρτ,, mτ, n 1 d 1 1 n E, by Poposition.1 fo E, independent of ε, which implies tht, fo ll l =,, n 1, b ρ γ l d M 1 n 1 E + ρ γ b n M 1 + ρ γ b n. 1 Lemm 3.. Thee exists M = MT, independent of ε, such tht T b ρ 3 y n 1 dydt M 1 + bn ε Poof. Conside fist the cse γ 1,. We estimte ε T b ρ 3 y n 1 dydt Mε T M + Mε M + Mε = M + Mε M + ε sup ρ 3 γ t, dt,b T b T b T b T b fo ny, b. 3. ρ 3 3γ ρ γ y dydt ρ 6 3γ y n 1 1 dydt ρ 6 3γ y n 1 γ y n 1 γ 3 dydt ρ 3 y n 1 dydt, whee, in the lst inequlity, we hve used the Jensen inequlity. It follows fom the bove computtion tht T b ε ρ 3 y n 1 dydt MT fo ll, b, which ives t 3.. Let now γ [, 3]. Fist, we notice tht since b > 1. sup t [,T ] b b 1 ρ y n 1 dy sup ρ γ n 1 γ b γ 1 d y n 1 γ dy t [,T ] Mb nγ 1 γ Mb n

17 16 GUI-QIANG G. CHEN AND MIKHAIL PEREPELITSA Then we gue s bove: T b ρ 3 y n 1 dydt T sup,b Mb n 1 + = Mb n 1 + ρ t, b T b T b Mb n ε + T Mb n ε ρ y n 1 dy dt ρ ρ dydt ρ γ γ ρ ρy dydt b ρ 4 γ y n 1 1 dydt M bn ε, whee, in the lst inequlity, we hve used the Jensen inequlity with powes nd the enegy estimte.3. γ γ 4 Lemm 3.3. Let K be compct subset of, b. Then, fo T >, thee exists M = MK, T independent of ε such tht T ρ γ+1 + δρ 3 ddt M. 3.3 Poof. We divide the poof into five steps. K 1. Let ω be smooth positive, compctly suppoted function on, b. We multiply the momentum eqution in 1.5 by ω to obtin ρuω t + ρu + p δ ω + n 1 ρu ω ε ωm + n 1 m = ρu + p δ εm + n 1 m ω. 3.4 Integting 3.4 in ove, b yields whee b ρuω dy b + t b f 1 = n 1 y b γ 4 γ nd ρu ω dy + εω m + n 1 m = ωρu + p δ + f 1, 3.5 ρu + p δ εm y + n 1 m ω y dy. y. Multiplying 3.5 by ρ nd using the continuity eqution 1.5, we hve b ρ ρuω dy t + ρu + n 1 ρm ερ + n 1 b ρ ρuω dy +ρ n 1 y = ρ u + ρp δ ω + ρf 1, ρu ω dy + ερω m + n 1 m

18 GLOBAL SOLUTIONS TO THE EULER EQUATIONS WITH SPHERICAL SYMMETRY 17 nd ρ b ρuω dy t + ρu b ρuω dy + ε ρ + n 1 b ρ ρuω dy + ρω m + n 1 m = ρp δ ω + f, 3.6 whee Notice tht f = ρf 1 n 1 ρm b b ρuω dy ρ n 1 ρu ωdy. y ρ + n 1 b ρ ρuω dy + ρω m + n 1 m b n 1 b = ρ ρuω dy ρuρ ω ρ ρuω dy n 1 ρ uω + n 1 b ρ ρuω dy + ρ u ω + ρuρ ω + n 1 ρ uω = b ρ ρuω dy n 1 b ρ uω ρ ρuω dy +ρ u ω + n 1 b ρ ρuω dy. It then follows tht b ρ ρuω dy t + ρu n 1 ε ρ b b ρuω dy ρuω dy ε ρ + ερ u ω b ρuω dy ερ uω = p δ ρω + f 3, 3.7 whee f 3 = f ε n 1 ρ b ρuω dy. 3. We multiply 3.7 by ω to obtin ρω b b +ε ρω ρuω dy t + ρuω +ερ u ω + ερ uωω b ρuω dy ε ω ρ ρuω dy ερ uω ε b n 1 ρω b ρuω dy ρuω dy = p δ ρω + f 4, 3.8 b n 1 whee f 4 = ωf 3 + ρuω ρuω dy ρω b ρuω dy.

19 18 GUI-QIANG G. CHEN AND MIKHAIL PEREPELITSA We integte 3.8 ove [, T ] [, b] to obtin δρ 3 + κρ γ+1 ω ddt Q T = ερ u ω + ερ uωω ddt Q T b b T + ρω ρuω dy d f 4 ddt Q T ε ρ 3 ω ddt + εm ρ u ω + ρ u ω ddt Q T Q T b b T + ρω ρuω dy d f 4 ddt Q T ε ρ 3 ω ddt + Msupp ω, T, E. 3.9 Q T The lst inequlity follows esily fom.3.6 nd the fomul fo f Clim: Thee exists M = Msupp ω, T, E such tht ε ρ 3 ω ddt M + Mε ρ γ+1 ω ddt. 3.1 If γ, the clim is tivil. Let γ < β 3. We estimte ε ρ β ω dxdt 3.11 Q T ε sup ρ β γ ω ρ γ ddt supp ω Q T supp ω εm sup ρ β γ ω supp ω εm ρ β γ γ γ ρ ω ddt + εm ρ β γ ω ω ddt Q T Q T εm ρ γ ddt + ρ γ ω ddt + ρ β 3γ ω ddt Q T supp ω Q T Q T M 1 + ε ρ β 3γ ω ddt. 3.1 Q T If β 3γ γ + 1, the estimte of the clim follows. Othewise, since β 3γ < β note tht β 3, we cn itete 3.11 with β eplced by β 3γ nd impove 3.11: ε ρ β ω ddt M 1 + ε ρ 4β 9γ ω ddt Q T Q T If 4β 9γ is still lge thn γ + 1, we itete the estimte gin. In this wy, we obtin ecuence eltion β n = β n 1 3γ, β = β 3, nd the estimte ε ρ β ω ddt Mn 1 + ε ρ βnγ ω ddt. Q T Q T

20 GLOBAL SOLUTIONS TO THE EULER EQUATIONS WITH SPHERICAL SYMMETRY 19 Solving the ecuence eltion, we obtin β n = n β 3γ n 1 1. Fo some n, the expession is less thn γ+1 note tht β 3. Then the expected estimte is obtined. 5. Now etuning to 3.9, we hve Q T ρ γ+1 + δρ ω ddt Msupp ω, T, E fo ll smll ε >. The following lemm holds fo wek entopies η lso cf. [1]. Lemm 3.4. Let η ρ, m be the mechnicl enegy of system 1.3, nd let η ψ, q ψ be n entopy pi with the geneting function ψs stisfying sup ψ s <. s Then, fo ny ρ, m R + nd ny vecto ā = 1,, ā ηā M ψ ā η ā fo some M ψ > Lemm 3.5. Let K, b be compct. Thee exists M = MK, T independent of ε such tht, fo ny ε >, T Poof. We divide the poof into five steps. K ρ u 3 + ρ γ+θ ddt M 1 + ρ γ b n + δ ε bn. 1. Let ˇη, ˇq be n entopy pi coesponding to ψs = 1 s s. Define ηρ, m = ˇηρ, m ρ,mˇη ρ, ρ ρ, m, qρ, m = ˇqρ, m ρ,mˇη ρ, m, m ρ + p. Note tht the entopy pi ˇη, ˇq is defined fo system 1.3 with pessue p = κρ γ, the thn p δ. Then η, q is still n entopy pi of 1.3. We multiply the continuity eqution in 1.5 by η ρ n 1, the momentum eqution 1.5 by η m n 1, nd then dd them to obtin η n 1 t + q n 1 + n 1 n ˇq + mˇη ρ + m ρ ˇη m + ˇη m ρ, pρ = ε n 1 ρ + n 1 ρ η ρ + m + n 1 m η m δρ η m n

21 GUI-QIANG G. CHEN AND MIKHAIL PEREPELITSA. It cn be checked diectly tht, fo some constnt M = Mγ >, qρ, m 1 M ρ u 3 + ρ γ+θ Mρ + ρ u + ρ γ, 3.16 ˇq + mˇη ρ + uˇη m, 3.17 ˇη m M u + ρ θ, ˇη ρ M u + ρ θ, 3.18 η M ρ + ρ u + ρ γ, ρ η ρ + u η m M ρ + ρ u + ρ γ, 3.19 nd, fo ˇη ρ + uˇη m consideed s function of ρ, u, ˇη ρ + uˇη m ρ M ρ θ 1 u + ρ θ 1, ˇη ρ + uˇη m u M u + ρ θ. 3. Also see [8] fo these inequlities. Moeove, note tht, t = b, q ρ, = ˇq ρ, = c γ ρ γ+θ, ˇη m ρ, = c 1 γ ρ θ, ˇη ρ ρ, =, 3.1 fo some positive c i γ, i =, 1, depending only on γ. 3. We integte eqution 3.15 ove, T, b to find T qτ, n 1 dτ = cθ ρ γ+θ b n 1 T + T +n 1 + n 1 T + + T b b +n 1 b T b b ηt, y η, y y n 1 dy ˇq + mˇη ρ + m ρ ˇη m y n dydτ y n ˇη m ρ, pρ p ρ dydτ εy n 1 ρ yy + n 1 y δρ η m ρ ρ y + η m u u y y n 1 dydτ T b δρ η m y n dydτ ρ y η ρ + m y + n 1 m y η m dydτ y = I I Now we estimte the tems in 3.. Clely, since ρ < 1 nd b > 1 fo smll ε >. I 1 M ρ γ+θ b n 1 M ρ γ b n, Notice tht ηρ, m η ρ, m. It then follows tht I b b By the enegy estimte.6, I t, E. ηρt,, mt, n 1 d η ρt,, mt, n 1 d.

22 GLOBAL SOLUTIONS TO THE EULER EQUATIONS WITH SPHERICAL SYMMETRY 1 The tem I 3 is nonpositive by 3.17 nd cn be dopped. Using Step, we hve I 4 t, M 1, T 1 + ρ γ b n fo ny t, [, T ] [ 1, b] Conside I 5. We wite n 1 ρ + n 1 ρ η ρ = n 1 ρ η ρ, n 1 m + n 1 m η m = n 1 m η m n 1 n 3 m η m, nd employ integtion by pts note tht η ρ ρ, = η m ρ, = to obtin I 5 = ε +ε t b t ρy η ρ y + m y η m y y n 1 dydτ n 1ε t η τ, n 1 dτ b m η m y n 3 dydτ = J 1 + J + J Using the enegy estimte.3 nd Lemm 3.4, we hve Also, using Step nd 3.1, we hve J 1 t, ME. m η m M ρ u + ρ γ + ρ η m ρ, M η ρ, m + ρ θ ρ. It follows by the enegy estimte.3 tht b J ω d Msupp ω, T 1 + ρ γ b n, fo ny nonnegtive smooth function ω with supp ω, b. We wite η = ρ η ρ + m η m = ρ η ρ + u η m + ρ η m u. Then we conside the integl b J 3 ω d = ε ρ η ρ + u η m ω n 1 ddτ n 1ε ρ η ρ + u η m ω n ddτ Q T Q T ε ρ ρ η ρ + u η m ρ + u η ρ + u η m u η m u ω n 1 ddτ. Q T Noticing tht η ρ + u η m = ˇη ρ + uˇη m + const. nd using Step nd estimtes.3.6 nd 3.1, we obtin b J 3 t, ω d M1, T, ω C ρ u 3 + ρ γ+θ ω n 1 ddτ. Q T To estimte I 6, employing tht η m ρ Mρ θ 1, η m u M, nd the enegy estimte.3, we hve I 6 M δ ε T b ρ 3 n 1 ddτ M δ ε bn M δ ε bn,

23 GUI-QIANG G. CHEN AND MIKHAIL PEREPELITSA whee we hve used the esult of Lemm 3. nd δ ε < 1 fo smll ε > in the lst inequlity. The lst tem I 7 is estimted in the simil fshion: b I 7 ω d δ Msupp ω ε bn Msupp ω δ ε bn, since δ < 1 fo smll ε >. Finlly, we multiply eqution 3. by the nonnegtive smooth function ω, integte it ove, b, nd use estimte 3.16, togethe with the bove estimtes fo I j, j = 1,, 7, nd n ppopite choice of δ to obtin ρ u 3 + ρ γ+θ ω n 1 ddτ M 1 + ρ γ b n + δ ε bn + 1 ρ u 3 + ρ γ+θ ω n 1 ddτ. This completes the poof. 3.. Wek Entopy Dissiption Estimtes. Let = ε nd b = bε. We choose ρ = ρε nd δ = δε such tht ρ γ b n + δ ε bn M unifomly in ε. 3.5 With this choice ρ, δ, the estimtes on the lemms in 3.1 e unifom in ε. Given sequence of the initil dt functions s in Theoem 1.1, denote ρ ε, m ε by the coesponding solution of the viscosity equtions 1.5 on Q ε = [, [ε, bε] with ρ = ρε s bove. Poposition 3.1. Let η, q be n entopy pi of system 1.3 with fom fo smooth, compctly suppoted function ψs on R. Then the entopy dissiption mesues ηρ ε, m ε t + qρ ε, m ε Poof. We divide the poof into seven steps. e compct in H 1 loc Denote η ε = ηρ ε, m ε, q ε = qρ ε, m ε, nd m ε = ρ ε u ε. We compute ηt ε + q ε = n 1 ρu ε ηρ ε + u ε η ε n 1 m + ε ρ ε ηρ ε + 1 mε ηε m. We notice tht ε ρ ε η ε ρ + m ε η ε m + εη ε δρ η ε m = I ε I ε I ε 1t, Mρ ε u ε 1 + ρ ε θ M ρ ε u ε + ρ ε + ρ ε γ, 3.8 bounded in L 1, T ; L 1 loc,, independent of ε ll of the functions e extended by outside, b. 3. Next, I ε = ε n 1 η ε m ε ηm ε n 1 + ε η ε =: Iε + Ib ε. 3.9

24 then Since GLOBAL SOLUTIONS TO THE EULER EQUATIONS WITH SPHERICAL SYMMETRY 3 η ε m ε η ε m M ρ ε + ρ ε u ε, I ε in L 1 loc R + s ε. 3.3 On the othe hnd, if ω is smooth nd compctly suppoted on R +, then ε ωt, ddt = ε n 1 η ε ω ddt Q ε I ε b εmsupp ω ρ ε L γ+1 supp ω ω H 1 R +. Since ρ ε L γ+1 supp ω is bounded, independent of ε see 3.3, the bove estimte shows tht Ib ε in H 1 loc R + s ε Fo I3 ε, we use Lemm.1 to obtin I ε 3 = ε ηρ ε, m ε ρ ε, m ε, ρ ε, m ε M ψ ε η ρ ε, m ε ρ ε, m ε, ρ ε, m ε. Combining 3.3 with Poposition.1 nd Lemm 3.4, we conclude tht I3 ε is unifomly bounded in L 1, T ; L 1 loc, To show tht I4 ε in H 1 loc s ε, we need the following clim, dopting the guments fom [18]. Clim: Let K, be compct subset. Then, fo ny < < 1 nd ε >, T ε 3 ρ ε ddt M ε γ + + ε In pticul, nd K T K ε 3 ρ ε ddt, εη ε in L p, T ; L p loc, fo p := 1,. γ + 1 Now we pove the clim. Fo the simplicity of nottion, we suppess supescipt ε in ll of the functions. Define { ρ ϕρ =, ρ <, + ρ, ρ, so tht ϕ ρ = χ {ρ< } ρ, ρϕ ρ ϕρ = ρ fo ρ <, ρϕ ρ ϕρ = fo ρ, whee χ A ρ is the indicto function tht is 1 when ρ A nd othewise.

25 4 GUI-QIANG G. CHEN AND MIKHAIL PEREPELITSA Let ω be nonnegtive smooth, compctly suppoted function on,. We compute fom the continuity eqution, the fist eqution, in 1.5: ϕω t + ϕuω ϕuω 1 ρ χ {ρ< } + δ χ {ρ> } ωu + n 1 ρu min{ρ, } = εϕ ωρ ε min{ρ, }ω n 1ε ρ + ω min{ρ, }ρ εω ρ χ {ρ< } Integting 3.34 ove, T,, we obtin T εω ρ χ {ρ< } ddt = ϕω T T d + ϕuω ddt + 1 T ρ T n 1 χ {ρ< } + δχ {ρ> } ωu ddt ρu min{ρ, } ddt T T n 1ε ε min{ρ, }ω ρ ddt + ω min{ρ, }ρ ddt = J J We estimte the integls on the ight: T J 1 Msupp ω + ρ ddt Msupp ω, T ; 3.36 supp ω T J ρu χ{ρ< } + + ρ u χ {ρ> } ddt supp ω T ρ + ρ u dtdt supp ω Msupp ω, T ; 3.37 J 3 3 ε T supp ω T J 4 Msupp ω J 5 ε γ ε 4 ε 4 T T T supp ω ρ + ερ u ddt Msupp ω, T ε ; 3.38 supp ω ρ γ ρ ω ddt + ε ρ + ρ u ddt Msupp ω, T ; 3.39 ερ γ ρ ddt + ε T supp ω ρ ω ddt + εmsupp ω, T T ρ ρ χ {ρ< } ω ddt supp ω ρ ω ω ddt + ε γ Msupp ω, T + ε γ Msupp ω, T. 3.4

26 GLOBAL SOLUTIONS TO THE EULER EQUATIONS WITH SPHERICAL SYMMETRY 5 Moeove, J 6 is estimted in the sme wy s J 5. Thus, estimte 3.33 is poved. Now we pove the second pt of the clim. Notice tht η M ρ η ρ + uη m + ρ u M ρ 1 + ρ θ + ρ u Let q 1, to be chosen lte on. Compute T T ε q η q ddt M ε q ρ q ddt + K + M + M + M T + ε q 1 M + M K T K T K K T T T ε q ρ ddt K ε q ρ ρ θ + ρ u q ddt ε p ρ q γ ρ ρ q + ρ 1 u q ddt K ε 3 ρ ddt K ερ γ ρ + ρ u + ερ q q ddt ε 3 ρ ddt + ε q 1 CT, K, 3.4 povided tht q = γ + 1, which holds if nd only if q = γ+1. Combining this with estimte 3.33, we ive t the conclusion of the clim. 6. Conside the lst tem I5 ε. This tem is bounded in L1, T : L 1 loc,. Indeed, fo compct set K,, using the enegy estimtes.3 nd Lemm 3., we obtin T T I 5 ddt M ψ δρ ρ ddt K K Mψ, K 1 + δ ε Mψ, K 1 + δ T ε + δ ε K T ρ 4 γ ddt K ρ 3 ddt Mψ, K 1 + δ ε + δ ε bn. Fom the choice of δ, the tem on the ight is unifomly bounded in ε. 7. Combining Steps 1 6, we conclude ηρ ε, m ε t + qρ ε, m ε = f ε + g ε, 3.43 whee f ε is bounded in L 1, T ; L 1 loc, nd g ε in W 1,q loc R + fo some q 1,. This implies tht, fo 1 < q 1 <, ηρ ε, m ε t + qρ ε, m ε e confined in compct subset of W 1,q 1 loc. 3.44

27 6 GUI-QIANG G. CHEN AND MIKHAIL PEREPELITSA On the othe hnd, using fomuls nd the estimtes in Poposition.1 nd Lemm 3.5, we obtin tht, fo ny smooth, compctly suppoted function ψs on R, ηρ ε, m ε, qρ ε, m ε e unifomly bounded in L q loc R +, fo q = γ + 1 > when γ > 1. This implies tht, fo some q >, ηρ ε, m ε t + qρ ε, m ε e unifomly bounded in W 1,q loc The intepoltion compctness theoem cf. [3, 11] indictes tht, fo q 1 > 1, q q 1, ], nd q [q 1, q, compct set of W 1,q 1 loc R + bounded set of W 1,q loc R + compct set of W 1,q loc R +, which is geneliztion of Mut s lemm in [, 5]. Combining this intepoltion compctness theoem fo 1 < q 1 <, q >, nd q = with the fcts in , we conclude the esult Stong Convegence nd the Entopy Inequlity. The pioi estimtes nd compctness popeties we hve obtined in imply tht the viscous solutions stisfy the compensted compctness fmewok in Chen-Peepelits [8]. Then the compctness theoem estblished in [8] fo the cse γ > 1 lso see LeFloch-Westdickenbeg [17] yields tht ρ ε, m ε ρ, m.e. t, R + in L p loc R + L q loc R + fo p [1, γ + 1 nd q [1, 3γ+1 γ+3. This equies the unifom bounds nd the estimte: m q = ρ q 3 u q ρ q 3 ρ u 3 + ρ γ+1 fo q = 3γ+1 γ+3. Fom the sme estimtes, we lso obtin the convegence of the enegy s ε : η ρ ε, m ε η ρ, m in L 1 loc R +. Since the enegy η ρ, m is convex function, by pssing to the limit in.6, we obtin t t 1 which implies tht, fo.e. t, η ρ, mt, n 1 ddt t 1 t R + η ρ, mt, n 1 d η ρ, m n 1 d, η ρ, m n 1 d This implies tht thee is no concenttion fomed in the density ρ t the oigin =. Futhemoe, we multiply both sides of.5 by smooth function φt C 1R + with φ =, integte it ove R +, nd pss to the limit ε to obtin η ρ, mφ t ddt, R + which, togethe with 3.46, concludes 1.17.

28 GLOBAL SOLUTIONS TO THE EULER EQUATIONS WITH SPHERICAL SYMMETRY 7 Finlly, the enegy estimtes.3.6 nd the estimtes in Lemms imply the equi-integbility of sequence of η ε ψ, qε ψ, mε ρ η ε ψ, m ε ρ ε m η ε ψ, qε ψ, fo ny ψs tht is convex with subqudtic gowth t infinity: lim s ψs s =. Pssing to the limit in 3.7 multiplied by n nd integted ginst smooth compctly function suppoted on,,, we obtin Limit in the Equtions. Let φt, be smooth, compctly suppoted function on [, [, bε, with φ t, = fo ll close to. Assume tht the viscosity solutions ρ ε, m ε e extended by outside of [ε, bε]. Multiplying the fist eqution in 1.5 by n 1 φ nd then integting it ove R +, we hve R + ρ ε φ t + m ε φ + ερ ε φ + n 1 + ρ ε φ, n 1 d =. R + φ n 1 ddt Note tht, by the enegy inequlity, 1 ρε γ n 1 d is bounded, independent of ε, which implies tht thee is no concenttion of mss t =. Pssing to the limit in the bove eqution, we deduce ρφt + mφ n 1 ddt + ρ φ, n 1 d =, R + R + which cn be extended to hold fo ny smooth, compctly suppoted function φt, on [, [,, with φ t, =. Conside now the momentum eqution in 1.3. Let φt, be smooth, compctly suppoted function on [, ε, bε. Multiplying the fist eqution in 1.5 nd then integting it ove R +, we obtin m ε φ t + mε R ρ ε φ + p δ ρ ε φ + n 1 φ + εm ε φ n 1 ddt + + m ε φ, n 1 d =. R + Pssing to the limit, we find mφ t + m ρ φ + pρ φ + n 1 φ n 1 ddt + m φ, n 1 d =. R + R + Note tht the tem contining δρ conveges to zeo by Lemm 3. since δ = δε s ε. This eqution cn be extended fo ny smooth compctly suppoted function φt, on [, [, with φt, = φ t, =, since m ρ + ργ t, n 1 L 1 loc [, [,.

29 8 GUI-QIANG G. CHEN AND MIKHAIL PEREPELITSA Acknowledgements: The esech of Gui-Qing G. Chen ws suppoted in pt by the UK EPSRC Science nd Innovtion Awd to the Oxfod Cente fo Nonline PDE EP/E357/1, the UK EPSRC Awd to the EPSRC Cente fo Doctol Tining in PDEs EP/L15811/1, the NSFC unde joint poject Gnt 17811, nd the Royl Society Wolfson Resech Meit Awd UK. The esech of Mikhil Peepelits ws suppoted in pt by the NSF Gnt DMS The uthos would like to thnk the Isc Newton Institute fo Mthemticl Sciences, Cmbidge, fo suppot nd hospitlity duing the 14 Pogmme on Fee Boundy Poblems nd Relted Topics whee wok on this ppe ws undetken. Refeences [1] Binchini, S. nd Bessn, A. Vnishing viscosity solutions of nonline hypebolic systems, Ann. of Mth., 161 5, [] Chen, G.-Q. Convegence of the Lx-Fiedichs scheme fo isentopic gs dynmics III, Act Mth. Sci. 6B 1986, 75 1 in English; 8A 1988, in Chinese. [3] Chen, G.-Q. The compensted compctness method nd the system of isentopic gs dynmics, Lectue Notes, Pepint MSRI-57-91, Bekeley, Octobe 199. [4] Chen, G.-Q. Remks on R. J. DiPen s ppe: Convegence of the viscosity method fo isentopic gs dynmics [Comm. Mth. Phys , 1 3], Poc. Ame. Mth. Soc , [5] Chen, G.-Q. Remks on spheiclly symmetic solutions of the compessible Eule equtions, Poc. Roy. Soc. Edinbugh, 17A 1997, [6] Chen, G.-Q. nd Glimm, J. Globl solutions to the compessible Eule equtions with geometicl stuctue, Commun. Mth. Phys , [7] Chen, G.-Q. nd Li, T.-H. Globl entopy solutions in L to the Eule equtions nd Eule-Poisson equtions fo isotheml fluids with spheicl symmety, Methods Appl. Anl. 1 3, [8] Chen, G.-Q. nd Peepelits, M. Vnishing viscosity limit of the Nvie-Stokes equtions to the Eule equtions fo compessible fluid flow, Comm. Pue Appl. Mth. 63 1, [9] Count, R. nd Fiedichs, K. O. Supesonic Flow nd Shock Wves, Spinge-Velg: New Yok, [1] Dfemos, C. M. Hypebolic Consevtion Lws in Continuum Physics, Spinge-Velg: Belin, 1. [11] Ding, X., Chen, G.-Q., nd Luo, P. Convegence of the Lx-Fiedichs scheme fo the isentopic gs dynmics I II, Act Mth. Sci. 5B 1985, 483-5, in English; 7A 1987, ; 8A 1989, in Chinese; Convegence of the fctionl step Lx-Fiedichs scheme nd Godunov scheme fo the isentopic system of gs dynmics, Comm. Mth. Phys , [1] DiPen, R. Convegence of the viscosity method fo isentopic gs dynmics, Commun. Mth. Phys , 1 3. [13] Gudeley, G. Stke kugelige und zylindische Vedichtungsstosse inde Nhe des Kugelmittelpunktes bzw. de Zylindechse, Luftfhtfoschung , no. 9, [14] Ldyzhenskj, O. A., Solonnikov, V. A., nd Ultsev, N. N. Line nd Qusi-line Equtions of Pbolic Type, LOMI AMS, [15] Lx, P. D. Shock wve nd entopy, In: Contibutions to Functionl Anlysis, ed. E.A. Zntonello, , Acdemic Pess: New Yok, [16] Liu, T.-P. Qusiline hypebolic system, Commun. Mth. Phys , [17] LeFloch, Ph.G. nd Westdickenbeg, M. Finite enegy solutions to the isentopic Eule equtions with geometic effects, J. Mth. Pues Appl. 88 7, [18] Lions, P.-L., Pethme, B., nd Sougnidis, P. E. Existence nd stbility of entopy solutions fo the hypebolic systems of isentopic gs dynmics in Eulein nd Lgngin coodintes, Comm. Pue Appl. Mth ,

30 GLOBAL SOLUTIONS TO THE EULER EQUATIONS WITH SPHERICAL SYMMETRY 9 [19] Lions, P.-L., Pethme, B., nd Tdmo, E. Kinetic fomultion of the isentopic gs dynmics nd p-systems, Comm. Mth. Phys , [] Mkino, T., Mizoht, K., nd Uki, S. Globl wek solutions of the compessible Eule equtions with spheicl symmety I, II, Jpn J. Industil Appl. Mth , [1] Mkino, T. nd Tkeno, S. Initil boundy vlue poblem fo the spheiclly symmetic motion of isentopic gs, Jpn J. Industil Appl. Mth , [] Mut, F. Compcité p compenstion, Ann. Scuol Nom. Sup. Pis Sci. Fis. Mt , [3] Rosselnd, S. The Pulstion Theoy of Vible Sts, Dove Publictions, Inc.: New Yok, [4] Slemod, M. Resolution of the spheicl piston poblem fo compessible isentopic gs dynmics vi self-simil viscous limit, Poc. Roy. Soc. Edinbugh, 16 A 1996, [5] Tt, L. Compensted compctness nd pplictions to ptil diffeentil equtions, Resech Notes in Mthemtics, Nonline Anlysis nd Mechnics, Heiot-Wtt Symposium, Vol. 4, Knops R.J. ed., Pitmn Pess, [6] Whithm, G. B. Line nd Nonline Wves, John Wiley & Sons: New Yok, [7] Yng, T. A functionl integl ppoch to shock wve solutions of Eule equtions with spheicl symmety, I. Commun. Mth. Phys , ; II. J. Diff. Eqs , Gui-Qing G. Chen, Mthemticl Institute, Univesity of Oxfod, Andew Wiles Building, Rdcliffe Obsevtoy Qute, Woodstock Rod, Oxfod OX 6GG, UK; Acdemy of Mthemtics nd Systems Science, Chinese Acdemy of Sciences, Beijing 119, Chin. E-mil ddess: chengq@mths.ox.c.uk Mikhil Peepelits, Deptment of Mthemtics, Univesity of Houston, 651 PGH Building, Houston, Texs , USA E-mil ddess: mish@mth.uh.edu

VANISHING VISCOSITY SOLUTIONS OF THE COMPRESSIBLE EULER EQUATIONS WITH SPHERICAL SYMMETRY AND LARGE INITIAL DATA

VANISHING VISCOSITY SOLUTIONS OF THE COMPRESSIBLE EULER EQUATIONS WITH SPHERICAL SYMMETRY AND LARGE INITIAL DATA VANISHING VISCOSITY SOLUTIONS OF THE COMPRESSIBLE EULER EQUATIONS WITH SPHERICAL SYMMETRY AND LARGE INITIAL DATA GUI-QIANG G. CHEN AND MIKHAIL PEREPELITSA Abstct. We e concened with spheiclly symmetic

Διαβάστε περισσότερα

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems. Physics 55 Fll 25 Pctice Midtem Solutions The midtem will e 2 minute open ook, open notes exm. Do ll thee polems.. A two-dimensionl polem is defined y semi-cicul wedge with φ nd ρ. Fo the Diichlet polem,

Διαβάστε περισσότερα

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

THE BLOWUP OF SOLUTIONS FOR 3-D AXISYMMETRIC COMPRESSIBLE EULER EQUATIONS

THE BLOWUP OF SOLUTIONS FOR 3-D AXISYMMETRIC COMPRESSIBLE EULER EQUATIONS H. Yin Q. Qiu Nagoya Math. J. Vol. 154 (1999, 157 169 THE BLOWUP OF SOLUTIONS FOR 3-D AXISYMMETRIC COMPRESSIBLE EULER EQUATIONS HUICHENG YIN QINGJIU QIU Abstact. In this pape, fo thee dimensional compessible

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

INTEGRAL INEQUALITY REGARDING r-convex AND

INTEGRAL INEQUALITY REGARDING r-convex AND J Koren Mth Soc 47, No, pp 373 383 DOI 434/JKMS47373 INTEGRAL INEQUALITY REGARDING r-convex AND r-concave FUNCTIONS WdAllh T Sulimn Astrct New integrl inequlities concerning r-conve nd r-concve functions

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals: s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =

Διαβάστε περισσότερα

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar

CHAPTER-III HYPERBOLIC HSU-STRUCTURE METRIC MANIFOLD. Estelar CHAPE-III HPEBOLIC HSU-SUCUE MEIC MANIOLD I this chpte I hve obtied itebility coditios fo hypebolic Hsustuctue metic mifold. Pseudo Pojective d Pseudo H-Pojective cuvtue tesos hve bee defied i this mifold.

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

Solutions_3. 1 Exercise Exercise January 26, 2017

Solutions_3. 1 Exercise Exercise January 26, 2017 s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)

Διαβάστε περισσότερα

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval AMS B Perturbtion Methods Lecture 4 Copyright by Hongyun Wng, UCSC Emple: Eigenvlue problem with turning point inside the intervl y + λ y y = =, y( ) = The ODE for y() hs the form y () + λ f() y() = with

Διαβάστε περισσότερα

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],* Studies in Mthemtil Sienes Vol. 5, No.,, pp. [9 97] DOI:.3968/j.sms.938455.58 ISSN 93-8444 [Print] ISSN 93-845 [Online] www.snd.net www.snd.org Osilltion of Nonliner Dely Prtil Differene Equtions LIU Gunghui

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

On spherically symmetric motions of a viscous compressible barotropic and selfgravitating gas

On spherically symmetric motions of a viscous compressible barotropic and selfgravitating gas J. math. fluid. mech. 99 9999), 24 422-6928/99-, DOI.7/s9-3- c 29 Bikhäuse Velag Basel/Switzeland Jounal of Mathematical Fluid Mechanics On spheically symmetic motions of a viscous compessible baotopic

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Optimal Placing of Crop Circles in a Rectangle

Optimal Placing of Crop Circles in a Rectangle Optiml Plcing of Cop Cicles in Rectngle Abstct Mny lge-scle wteing configutions fo fming e done with cicles becuse of the cicle s pcticlity, but cicle obviously cnnot tessellte plne, no do they fit vey

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

Exercise, May 23, 2016: Inflation stabilization with noisy data 1 Monetay Policy Henik Jensen Depatment of Economics Univesity of Copenhagen Execise May 23 2016: Inflation stabilization with noisy data 1 Suggested answes We have the basic model x t E t x t+1 σ 1 ît E

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 11 Topics Coveed: Obital angula momentum, cente-of-mass coodinates Some Key Concepts: angula degees of feedom, spheical hamonics 1. [20 pts] In

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

A bound from below for the temperature in compressible Navier-Stokes equations

A bound from below for the temperature in compressible Navier-Stokes equations A bound from below for the temperature in compressible Navier-Stokes equations Antoine Mellet, Alexis Vasseur September 5, 7 Abstract: We consider the full system of compressible Navier-Stokes equations

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

2 Cosmological Models with Idealized Matter

2 Cosmological Models with Idealized Matter Cosmologicl Models with Idelized Mtte. Model spces: Constuction Spces nd spcetimes of high symmety ply vey impotnt ole in cosmologicl modelbuilding, nd s emples solvble models of genel eltivity. The most

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3

[ ] ( l) ( ) Option 2. Option 3. Option 4. Correct Answer 1. Explanation n. Q. No to n terms = ( 10-1 ) 3 Q. No. The fist d lst tem of A. P. e d l espetively. If s be the sum of ll tems of the A. P., the ommo diffeee is Optio l - s- l+ Optio Optio Optio 4 Coet Aswe ( ) l - s- - ( l ) l + s+ + ( l ) l + s-

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Fundamental Equations of Fluid Mechanics

Fundamental Equations of Fluid Mechanics Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns Depth versus Rigidity in the Design of International Trade Agreements Leslie Johns Supplemental Appendix September 3, 202 Alternative Punishment Mechanisms The one-period utility functions of the home

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

1 3D Helmholtz Equation

1 3D Helmholtz Equation Deivation of the Geen s Funtions fo the Helmholtz and Wave Equations Alexande Miles Witten: Deembe 19th, 211 Last Edited: Deembe 19, 211 1 3D Helmholtz Equation A Geen s Funtion fo the 3D Helmholtz equation

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0) Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q)

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q) Online Appendix I Appendix D Additional Existence Proofs Denote B q = {q : A E A S [0, +r ]}, Bψ = {ψ : Y E A S S}, B W = {W : I E A S R}. I slightly abuse the notation by defining B q (L q ) the subset

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK STEPHEN HANCOCK Chpter 6 Solutions 6.A. Clerly NE α+β hs root vector α+β since H i NE α+β = NH i E α+β = N(α+β)

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Web Searching

HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems. Web Searching Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 6 HΥ63 - Συστήματα Ανάκτησης Πληροφοριών Infomtion Retievl (IR Systems Web Seching I: Histoy nd Bsic Notions, Cwling II: Link Anlysis Techniques

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique. Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS Dedicted to Professor Octv Onicescu, founder of the Buchrest School of Probbility LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS G CARISTI nd M STOKA Communicted by Mrius Iosifescu

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2. etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

ANTENNAS and WAVE PROPAGATION. Solution Manual

ANTENNAS and WAVE PROPAGATION. Solution Manual ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα