On spherically symmetric motions of a viscous compressible barotropic and selfgravitating gas

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "On spherically symmetric motions of a viscous compressible barotropic and selfgravitating gas"

Transcript

1 J. math. fluid. mech ), /99-, DOI.7/s9-3- c 29 Bikhäuse Velag Basel/Switzeland Jounal of Mathematical Fluid Mechanics On spheically symmetic motions of a viscous compessible baotopic and selfgavitating gas Benad Ducomet, Šáka Nečasová and Alexis Vasseu SUMMARY. We conside the Cauchy poblem fo the equations of spheically symmetic motions in R 3, of a selfgavitating baotopic gas, with possibly non monotone pessue law, in two diffeent situations: in the fist one we suppose that the viscosities µρ), and λρ) ae density-dependent and satisfy the Besch-Desjadins condition, in the second one we conside constant densities. In the two cases, we pove that the poblem admits a global weak solution, povided that the polytopic index γ satisfy γ >. Mathematics Subject Classification 2). 76N,35Q3. Keywods. spheically symmetic motion, selfgavitating gas, non monotone pessue law, density-dependent viscosities.. Intoduction We conside the Navie-Stokes-Poisson system in R 3 fo a compessible isentopic gas with density-dependent viscosities t ρ + divρ v) =, t ρ v) + divρ v v) div 2µρ)D v)) λρ)div v) + P ρ Φ =, Φ = 4πGρ..) Hee ρ is the density, v is the velocity, Φ is the Newtonian gavitational potential G > is the Newton constant), P is the pessue, D is the stain tenso with D v) = /2 v + t v).

2 2 Benad Ducomet, Šáka Nečasová and Alexis Vasseu JMFM The pessue P ρ) is elated to the density ρ by a geneal baotopic constitutive law see 4] fo motivations) satisfying { P C R + ), P ) =, a zγ b P z) az γ + b fo all z,.2) fo thee constants a >, b and γ >. Following Mellet and Vasseu 3], we suppose that µ and λ ae two viscosity coefficients satisfying µρ) = µ Ψρ), λρ) = 2µ ρψ ρ) Ψρ)),.3) whee Ψ is an inceasing function of ρ. The viscosity coefficients satisfy the constaints intoduced in 3] µ ρ) m, µ) λ ρ) m µ ρ), mµρ) 2µρ) + 3λρ) m µρ),.4) fo suitable positive constants µ, m, m and m. We also assume the uppe bound µρ) Cρ γ 2,.5) fo a positive constant C, the physical meaning of.5) follows fom the behavio of the tempeatue dependence of gaseous viscosity µ Cθ /2 and the baotopic equivalence θ Cρ γ see 3]). If γ 3, we also equie that lim inf ρ fo some ε >. We also define the auxiliay functions φ and Π µρ) >,.6) +ε ρ γ 3 ρφ ρ) = Ψ ρ), Πρ) := ρ ρ P z) z 2 dz. We want to solve the Cauchy poblem.) fo t > with initial conditions ρ t= = ρ x), ρ v t= = m x), on R 3..7) We focus on spheically symmetic solutions satisfying ρ x, t) = ρ x, t) and vx, t) = v x, t), and we study weak solutions fo the above poblem with x x

3 Vol ) on spheically symmetic motions 3 popeties ρ L, T ); L R 3 ) L γ R 3 ) ), ρ L, T ); H R 3 ) ), ρ v L, T ], L 2 R 3 )) ) 3, )) 9 9 µρ) D v) L 2, T ); W, loc R 3 ), λρ) div v L 2, T ); W, loc R ))) 3..8) We also assume the following conditions on the initial data ρ x) ρ x ) and m x) = m x ) x x : ρ on, m = on {x R 3 ρ x) = }, ρ L R 3 ) L γ R 3 ), ρ /2 µρ ) L 2 R 3 ), m 2 ρ L R 3 )..9) Fo any τ τ 2, the weak solution ρ, v) on R 3, T ] must satisfy, fo any test function ζ Cc R 3, T ]), the weak continuity equation τ 2 τ2 ρζ dx ρζ t + ρ v ζ) dx,.) R 3 R 3 τ = τ and fo any test function η Cc 2 R 3, T ]) ) 3 such that η, T ) =, the weak momentum equation T T m ηx, ) dx+ ρ v η t + v v : η) dx dt+ P ρ) div η dx dt R 3 R 3 R 3 T T + µρ) v ) η dx dt + 2µ ρ) ρ v j i ρ i η j dx dt R 3 R 3 T + µρ) v ) div η) dx dt R 3 T + 2 ρ µ T ρ)v i j ρ i ζ i dx dt + λρ) v ) div η) dx dt R 3 R 3 T T + ρ λρ) v ) ρ div η) dx dt = 4πGρ ρ η dx dt..) R 3 R 3 In this fomula, the five last tems in the left-hand side ae equested in ode to povide a igoous meaning to the viscous contibution in the equation of motion see 8]), and the ight hand side is a shotened notation fo T ) ρy, t) 4πGρ R 3 R x y dy η dx dt. 3 It is known afte 4] that the Cauchy poblem fo the system.)-.7) admits a enomalized) weak solution, when the viscosity coefficients ae positive constants, povided that the pessue P ρ) behaves like Cρ γ fo lage ρ, with

4 4 Benad Ducomet, Šáka Nečasová and Alexis Vasseu JMFM γ > 3/2. Let us obseve that the estiction on γ is the same as in the nongavitating case 7]. In 5] it was poved that the poblem.)-.7) admits also a weak solution when the viscosity coefficients ae density dependent functions elated by Besch- Desjadins elations ], povided that the pessue P ρ) behaves like Cρ γ fo lage ρ with a smalle γ > 4/3. In this last case, the estiction on γ was equested in ode to contol the gavitational tem. On the othe hand, in ecent woks, S. Jiang and P. Zhang ] in the enomalized case with constant viscosities), Z. Guo, Q. Jiu, Z. Xin 9] and T. Zhang, D. Fang 8] fo density dependent viscosities) poved that the Cauchy poblem fo the spheically symmetic vesion of the non-gavitating Navie-Stokes system also admits a weak solution, in the pue baotopic case P ρ) = Cρ γ when the condition γ > is achieved. In the pesent pape we show that the Cauchy poblem fo the spheically symmetic Navie-Stokes-Poisson system admits in both cases fo density dependent viscosities o in the enomalized case with constant viscosities) a weak solution, fo a geneal pessue law given by.2), without loss of γ i.e. with the optimal condition γ > ). In the density-dependent case Sections 2) we follow the stategy of Zhang and Fang 8] see also ]): fist conside the poblem.).7) when R 3 is eplaced by the ball B, R) then pass to the limit R. Moeove, as fa as the spheical symmety is concened with the classical divegence at the oigin, it is also equested to emove the oigin, and finally one is led to solve the poblem.).7) in the shell B ε,r := B, R)\B, ε) and pass to the limits ε, R ). In the enomalized case with constant viscosities Section 3) we adapt the poof of S. Jiang and P. Zhang ] to the Navie-Stokes-Poisson system with non-monotone pessue. 2. The density-dependent case The spheically symmetic vesion of.) eads ρ t + ρv) + 2ρv =, ρv t + vv ) = P + λ + 2µ) v + 2v )) 4µ v + ρf, 2.) in the domain, T ] R + fo the density ρ, t) and the velocity v, t). The Newton foce is now f, t) := Φ, t), whee the gavitational potential is easily computed as the suitable solution of the ode 2 2 Φ ) = 4πGρ.

5 Vol ) on spheically symmetic motions 5 One gets Φ, t) = with the kenel fo s, K, s) = 4πG fo s. s We conside Diichlet bounday conditions and initial conditions K, s)ρs, t)s 2 ds, 2.2) 2.3) v, t) =, fo t >, 2.4) ρ t= = ρ ), ρv t= = m ), on R ) Then ou main esult is the following Theoem 2.. Suppose that the initial data satisfy.9) and that T is an abitay positive numbe. Then fo any γ >, the poblem 2.)2.4)2.5) possesses a global weak solution satisfying.8) togethe with popeties.) and.). 2.. A pioi estimates fo appoximate solutions We follow the stategy of 8]: to get fist unifom bounds fo the density in an appoximate poblem depending on numbes < ε << and R >>, then pass to the limit ε, R ). So we conside the petubed poblem t ρ + divρ v) =, t ρ v) + divρ v v) div 2µ ε ρ)d v)) λ ε ρ)div v) + P ρ Φ =, Φ = 4πGρ, 2.6) in the tuncated domain B ε,r, T ], with the petubed viscosity coefficients µ ε ρ) = µρ) + 2 ερθ, λ ε ρ) = λρ) + θ ) ερ θ, 2.7) whee µ ε and λ ε have been adjusted in ode to satisfy elation.3) and θ 2/3, ). We want to solve 2.6) in B ε,r, T ], with Diichlet bounday conditions fo t >, and initial conditions ρ v Bε,R =, 2.8) ρ t= = ρ x), ρ v t= = m x), on B ε,r. 2.9)

6 6 Benad Ducomet, Šáka Nečasová and Alexis Vasseu JMFM The spheically symmetic vesion of 2.6) eads now ρ t + ρv) + 2ρv =, ρv t + vv ) = P + λ ε + 2µ ε ) v + 2v )) 4µ ε v ρf ɛ, in the domain ε, T ], with ε := ε, R), fo the tuncated Newton foce We supplement 2.) with and egulaized initial data f ε, t) := 4πG 2 ε ρs, t)s 2 ds. 2.) vε, t) = vr, t) =, fo t >, 2.) ρ t= = ρ,ε,r j δ, v t= = v,ε,r j δ, on ε, 2.2) whee j δ is a standad mollifie, and the tuncated data ae ρ ε) + ε fo, ε], ρ,ε,r ) = ρ ) + ε fo ε, R], ρ R) + ε fo R, ), and v,ε,r ) = fo, ε + 2δ], m ) fo ε + 2δ, R 2δ], ρ ) + ε fo R 2δ, ). We suppose now that ε R 3 and we denote by ρ ε,r,δ, v ε,r,δ ) the solution of the poblem 2.)2.)2.2). Finally in ode to extact convegent subsequences it is convenient to extend ρ ε,r,δ, v ε,r,δ ) to the whole space by setting ρ ε,r,δ, t) = ρ ε,r,δ, t) fo ε, R], 2.3) else, and ṽ ε,r,δ, t) = v ε,r,δ, t) fo ε, R], else, 2.4) and in ode to simplify the notations we denote in the following by ρ n, v n ) the appoximate solution ρ εn,r nn,δ n, ṽ εn,r n,δ n ), fo sequences ε n, R n, δ n, when n. In the same stoke, we wite n := ε n, R n ], µ n := µ εn ρ n ), λ n := λ εn ρ n ) and P n := P ρ n ). In the following, fo any measuable set ω := :=, ) and p, we denote by L p ω) the weighted Lebesgue space } L p ω) := {f L ploc ω) ; f) p 2 d <, ω

7 Vol ) on spheically symmetic motions 7 and we adopt the analogous notations H m ω) and W m,p ω) fo the coesponding weighted Sobolev spaces We begin with enegy-entopy estimates. Lemma 2.2. Thee exists a constant C independent on n such that, fo any t, T ]. ρ n 2 d C. 2.5) 2. ) 2 d + t 3. If 2 3λ n + 2µ n ) 2 ρ nv n ) 2 + Π n ρ n Φ n ] 2 3λ n + 2µ n 2 v n ) + 2µ n vn 2 d dτ C, 3λ n + µ n 2.6) 2 ρ v ) 2 + Πρ ) 2 ρ Φρ ) ] dx <, the following estimates hold ρ n v n L,T ;L 2 )) C, ρ n L,T ;L γ )) C, 2.7) µ n v n ) L 2,T ;L 2 )) C, µ n v n L 2,T ;L 2 )) C, 2.8) ρ L,T ;L )) C. 2.9) Poof.. Integating the fist equation 2.) and using bounday conditions gives 2.5). 2. Noting D t := t + v, using the identity ρ nd t φ 2 d = d dt ρ nφ 2 d valid fo any function φ smooth on, T ], multiplying the second equation 2.) by v n 2 and integating by pats, we get d dt 2 ρ nvn 2 + Π n ) 2 ρ nφ n 2 d = λ n + 2µ n ) 2 v n ) ] 2 2 4µ n vn) 2 2.2) Using the notations w = 2 v n, a = λ n + 2µ n and b = µ n one checks that the integand in the ight-hand side ewites λ n + 2µ n ) 2 v n ) 2 2 4µ n v 2 n) = 2 Obseving that the numbe ζ := 3a 4b 4a aw 2 8b ww + 2b 2 w2 = 2 6aζ3 4ζ) 3 aζw ζ ] aw 2 8b ww + 2b 2 is positive, we have w a 2ζ w 3 w2 ]. 33 4ζ) 3 2ζ whee all the tems in the ight hand side ae positive afte.4). Plugging into 2.2) and integating in t, we get 2.6). 3. Afte.2) one obseve that fo a C >. Πρ n ) Cρ γ n ρ n log ρ n ρ n ), ] d. ] 2 w,

8 8 Benad Ducomet, Šáka Nečasová and Alexis Vasseu JMFM Let us estimate the gavitational enegy. E n t) = ρ n Φρ n ) 2 d 2 = s 2 ρ n s, t)k, s) 2 ρ n, t) ds d+ 2 2 We get fist B = 2 ρ n, t) s 2 ρ n s, t) ds d ρ n, t) s 2 ρ n s, t) ds d+ 2 ρ n, t) 2 2 Now using Hölde inequality, we bound A as follows 2 ρ n, t) ) γ γ d s 2 ρ n s, t)k, s) 2 ρ n, t) ds d =: A+B. 2 ρ n, t) s 2 ρ n s, t)k, s) 2 ρ n, t) ds d ) γ γ sρ n s, t) ds d s 2 ρ n s, t) ds d 2 ρ n, t) 2 L ). γ ) s 2 ρ n s, t)k, s) ds) γ d. By convexity, the fist integal in the ight-hand side is bounded by ρ n, t) L ). Fo the second one, we note that the kenel K is homogeneous of degee and satisfies, fo γ > K, s) s γ ds <, so we can apply an inequality of Hady-Littlewood-Polya see 6] p. 27) γ ) s 2 ρ n s, t)k, s) ds) γ ) d C s 2γ ρ γ γ ns, t) ds C Finally, using 2.5), we get E n t) C + ρ γ n, t) L )). We conclude fom the pevious estimates that Πρ n ) ρ n Φρ n )] 2 d C s 2 ρ γ n ds ) s 2 ρ γ γ ns, t) ds. ) ] s 2 ρ n log ρ n ds s 2 ρ γ γ n ds. As the log is subdominant and γ >, we end with the lowe bound Πρ n ) ρ n Φρ n )] 2 d C s 2 ρ γ n ds C. 2.2) Plugging 2.2) into 2.6) and taking.4) into account gives immediately the inequalities 2.7), 2.8) and 2.9) by inspection. We have the following spheical vesion of the Besch-Desjadins entopy estimate see ])

9 Vol ) on spheically symmetic motions 9 Lemma 2.3. Thee exists a constant C independent on n such that, fo any t, T ]. ρ n v n + 2µ φρ n )) ) 2 2 d + 2 t +2µ P ρ n )Ψ ρ n ) ρ n) ) 2 t +2µ Π n 2 d ρ n 2 d dτ 2µ t ρ n Φ n 2 d Ψ Φ 2 d 2 v n ) ) 2 + 4vn 2 ] Ψn d dτ C, 2.22) with Ψ n := Ψρ n ). 2. If 2 ρ v + 2µ φρ )) ) 2 2 d <, the following estimates hold ρ n φ ρ n ) L,T ;L 2 )) C, 2.23) µ nρ n )ρ γ 2 n ρ n ) L 2,T ;L 2 )) C, 2.24) µ n ρ n ) v n L 2,T ;L 2 )) C. 2.25) Poof.. In the poof of this estimate, we omit the explicit n dependence. Fist multiplying the fist equation 2.) by φ and deivating with espect to, we get φ t + vφ + v φ + ρφ 2 2 v ) ] =. Multiplying by 2 ρφ, using the continuity equation and integating in, we get d ρφ 2 2 dt 2 d + ρφ 2 v 2 d + φ ρ 2 2 v ) ] Ψ 2 d =. 2.26) Fom the second equation 2.), we have ρv t + vv ) λ + 2µ) 2 2 v ) ] v 4µ + P + ρf =, which ewites, by using.3) ρv t +vv ) 2µ Ψ 2 2 v ) ] +2µ Ψ v 2µ ρψ Ψ) 2 2 v ) ] +P +ρf =. Multiplying by ρ Ψ 2 and integating, we obtain v t +vv )Ψ 2 d 2µ Ψ 2 2 v ) ] Ψ ρ 2 d+2µ Ψ ρψ ) 2 2 v ) ] Ψ ρ 2 d Ψ 2 +2µ ρ v 2 Ψ P d + 2 d Ψ Φ 2 d =. 2.27) ρ Multiplying 2.26) by 2µ and adding the esult to 2.27), we get v t + vv )Ψ 2 d + µ d 2ρφ 2 2 dt 2 d 2µ Ψ 2 2 v ) ] Ψ ρ 2 d

10 Benad Ducomet, Šáka Nečasová and Alexis Vasseu JMFM +2µ Checking the identity 2µ Ψ Ψ ρψ ) 2 2 v ) ] Ψ ρ 2 d + 2µ + P Ψ ρ2 ρ 2 d 2 2 v ) one gets finally v t + vv )Ψ 2 d + µ 2 ] Ψ ρ 2 d = 2µ +2µ Ψ 2 2 v ) The fist integal in 2.28) ewites t + vv )Ψ v 2 d = d vψ 2 d dt whee A ewites A = d vψ 2 d dt Ψ Φ 2 d =. Ψ 2 2 v ) ] Ψ 2 d Ψ ρψ ) 2 2 v ) ] ] Ψ 2 d, Ψ ρ 2 d d 2ρφ 2 dt 2 d + P Ψ ρ2 ρ 2 d Ψ Φ 2 d =. 2.28) v Ψ t ) 2 d + vv Ψ 2 d =: A, 2.29) 2 2 v ) ] 2 ρψ d 2 2 v) vρ Ψ d+ vv Ψ ρ 2 d =: U + U 2 + U 3 + U ) Computing the tem U 3, we obtain U 3 = vv Ψ ρ 2 d + 2 v 2 ) Ψ d, so we get A = d dt vψ 2 d 2 2 v ) ] 2 ρψ Ψ) d 2 2 v 2 +2v 2 )Ψ d. 2.3) Plugging into 2.29), we have vψ 2 d 2 2 v ) ] 2 ρψ Ψ) 2 d t + vv )Ψ v 2 d = d dt 2 v 2 + 2v 2 )Ψ d. 2.32) Fom 2.2) we have d dt 2 ρv2 + Π 2 ρφ so d dt ) 2 d = λ + 2µ) 2 v) ] 2 ] 2 4µv 2 ) d, ρ v2 2 2 d+2µ 2 2 v ) ] 2 ρψ Ψ) 2 d+ d Π 2 d d ρφ 2 d dt dt

11 Vol ) on spheically symmetic motions = 2µ 2 2 v ) ] 2 Ψ 2 d + 4µ v 2 ) Ψ d. 2.33) Now plugging 2.32) into 2.28) gives d vψ 2 d 2 dt 2 v ) ] 2 ρψ Ψ) 2 d 2 v 2 + 2v 2 )Ψ d + µ d 2ρφ 2 2 dt 2 d + P Ψ ρ2 ε ρ 2 d Ψ Φ 2 d =. 2.34) Multiplying this elation by 2µ gives d 2µ 2 dt ρφ 2 ) + 2µ vψ 2 d + 2µ P Ψ ρ2 ρ 2 d 2µ Ψ Φ 2 d 2µ 2 2 v ) ] 2 ρψ Ψ) 2 d = 2µ 2 v 2 + 2v 2 )Ψ d, 2.35) whee the integand in the last integal is positive. Finally, adding 2.35) to 2.33), integating in time and estoing the n dependence gives 2.22). 2. Obseving that afte Poisson equation Ψ Φ 2 d = ρψ 2 d, and using.5) togethe with 2.6) into 2.22), we get immediately the inequalities 2.23), 2.24) and 2.25) by inspection. Lemma 2.4. The sequence {ρ γ n} n N is bounded in L 5/3, T ; L 5/3 )). Poof. Afte 2.9) and 2.24), ρ γ/2 n is bounded in L 2, T ; H n )) and then ρ γ n is bounded in L 2, T ; L 3 n )). As, afte 2.9), ρ γ n is also bounded in L, T ; L n )), using Hölde inequality ρ γ n is also bounded in L 5/3, T ; L 5/3 n )), and then see 2.3) and 2.4)) in L 5/3, T ; L 5/3 )). Lemma 2.5. If ρ + v 2 ) log + v 2 ) L )), then the sequence {ρ n v 2 n log + v 2 n)} n N is bounded in L, T ; L )). Poof. Recalling the identity d ρ n F 2 d = ρ n F t + vf ) 2 d, dt n n and choosing F = 2 + v2 n) log + vn), 2 we get d dt n 2 ρ n+vn) 2 log+vn) 2 2 d = v n + log + v 2 n ) ) ρ n v n ) t + v n v n ) ] 2 d. n Then multiplying the momentum equation by v n + log + v 2 n ) ) 2 and integating by pats, we have d dt n 2 ρ n + vn) 2 log + vn) 2 2 d = v n + log + vn))p 2 ρ n )) 2 d n

12 2 Benad Ducomet, Šáka Nečasová and Alexis Vasseu JMFM + v n +log+vn) λ 2 n + 2µ n ) ] 2 2 v n ) n 2 d+ 4v n +log+v 2 v n n)µ n ) n 2 d 4πGv n + log + vn)ρ 2 n Φ n ) 2 d. n Using enegy estimates and.3), we get ] 2 d dt n 2 ρ n + vn) 2 log + vn) 2 2 d + m µ n n 2 2 v n ) 2 d v n +log+vn))p 2 ρ n )) 2 d n 4πGv n +log+vn)ρ 2 n Φ n ) 2 d =: I+J. n 2.36) Using.2) and Cauchy-Schwaz, the fist contibution in the ight-hand side of 2.36) is bounded as follows I = v n + log + vn))p 2 2 d µ n n 2 v n ) ] 2 d+ n 2 m and the last integal is bounded by n ρ n log + v 2 n ) ] 2 η +C + log + v n 2n)) P ρ n) 2 2 d, µ n ) η 2 2 d n ρ η 2 n µ n P 2 n ) 2 2 η n µ n 2 d fo any < η < 2. One checks that the fist integal is bounded afte pevious estimates, and the second one is also bounded povided that 2γ < 5γ 3 i.e. γ < 3. When γ > 3, the same esult holds if condition.6) is satisfied. So fo any γ > Fo the second contibution in 2.36), one has J C v n + log + vn) 2 ) ρ n, τ) n 2 η 2 I C. 2.37) ρ n s, τ) s 2 ds d C ρ n vnd, 2 n so using.3) J µ n vnd ) n Plugging 2.37) and 2.38) in 2.36), integating on, t) and using 2.6), we find that n 2 ρ n + vn) 2 log + vn) 2 2 d C, which ends the poof, by taking 2.3) and 2.4) into account. ] v n ) 2 d,

13 Vol ) on spheically symmetic motions Poof of Theoem 2. Following vebatim the stategy of 8], the poof of Theoem 2. is achieved in the same way as in 3] by showing fist the convegence of the density and the pessue, then impoving the convegence of ρ n v 2 n, poving the convegence of the momentum, showing the stong convegence of ρ n 2 v n ) and finally the convegence of diffusion tems. We only sketch the poof heeafte, only stessing the specific oles played by gavitation and pessue, and we efe to 8] fo complete details. ) Convegence of the density. Lemma 2.6. The sequence {ρ n } is bounded in L, T ; L p )) fo any p, and up to an extacted subsequence fo any q, 3). ρ n ρ stongly in C, T ; L q loc )), 2.39) Poof. Fom Lemma 2.3, one get sup t,t ] ρ n H n) C, so afte 2.3), the sequence { ρ n } is bounded in L, T ; L β )) fo β 2, 6]. So {ρ n } is bounded in L, T ; L 3 )) and {ρ n v n } is bounded in L, T ; L 3/2 )) afte Lemma 2.2. Using the continuity equation, { t ρn } ɛn K,Rn N is bounded in L, T ; W,3/2 K, N)), fo any K N 6. As ρ n ) = 2 ρ n ρ n ), we find that {ρ n ) } is bounded in L, T ; L 3/2 K, N)) fo ɛ n K and R n N. This implies, afte Aubin-Lions lemma that ρ n ρ stongly in C, T ; L 3/2 K, N)). Using finally the splitting ρ n ρ L,T ;L 3/2,N)) C K ρ n ρ L,T ;L 3, K )) + ρ n ρ L,T ;L 3/2 K,N)), we get the popety. 2) Convegence of the pessue and the gavitational foce. As a diect consequence of Lemma 2.4 and 2.6, we have Lemma 2.7. Fo γ > P ρ n ) conveges stongly to P ρ) in L loc, T ); L loc)), ρ n Φ n ) conveges stongly to ρφ in L loc, T ); L loc)). 3) Convegence of the momentum. Lemma 2.8. Up to extacted subsequences. ρ n v n m stongly in L loc, T ; L loc)) L 2, T ; L β loc )), fo any β < 3/2.

14 4 Benad Ducomet, Šáka Nečasová and Alexis Vasseu JMFM 2. ρn v n m ρ stongly in L 2 loc, T ; L 2 loc)), whee m ρ = when m =. In paticula m = a.e. on {ρ, t) = }, and thee exists a function v, t) such that m, t) = ρ, t)v, t). Poof. The second pat of the Lemma follows diectly fom 3] and we omit the poof. As { ρ n } is bounded in L, T ; L 2 L 6 )) and { ρ n v n } is bounded in L, T ; L 2 )), we get that {ρ n v n } is bounded in L, T ; L L 3/2 )). 2.4) Using the identity ρ n v n ) = 2 ρ n v n ρ n ) + ρ n ρn v n ) and Lemma 2.5, we see that { ρ n v n ) } ɛn K,Rn N is bounded in L, T ; L K, N)). In paticula the sequence {ρ n v n } ɛn K,Rn N is bounded in L 2, T ; W, K, N)). As {ρ n } ɛn K,Rn N is bounded in L, T ; L K, N)), we see that { t ρ n v n )} ɛn K,Rn N is bounded in L 2, T ; W 2,3/2 K, N)), so using the Aubin-Lions Lemma ρ n v n m stongly in L 2, T ; L β K, N)), fo any β, 3/2). Fom 2.4), we get also that fo any β, 3/2). ρ n v n m stongly in L 2, T ; L β, N)), 4) Convegence in the weak fomulation. In ode to complete the poof of Theoem 2., the last point is to check that the pai ρ, v) is actually a weak solution of 2.). In othe wods we must check that if ρ, v) is the limit of the sequence {ρ n }, {v n }) obtained in Lemma 2.6 and 2.8, then ρ and v satisfy elations.) and.). The fact that ρ, v) satisfy elation.) is aleady poved in 8] see Poposition 3.5). Let ψ C, T ] with ψ, t) = and ψ, T ) = be a test function such that Supp ψ, t), N]. Multiplying the second equation 2.) by 2 ψ and integating on, T ], we have t ρ n v n ψ t + ρ n vnψ 2 + P ρ n ) ψ + 2ψ )) 2 d dt

15 Vol ) on spheically symmetic motions 5 t T + + t t 2µρ n ) v n ) ψ + 2v ) nψ 2 d dt 2ɛ n ρ θ n λρ n ) + θɛ n P ρ n )) + ɛ n 2 v n ) ψ + v n ψ + v nψ v n ) + 2v n ) d dt ) ψ + 2ψ ρ,ɛn,r n, )v,ɛn,r n, )ψ, ) 2 d ) 2 d dt P ρn ) 2µρ n ) + λρ n ) + θɛ n ρ θ ) ] n vn ) ɛn, t) ɛ 2 n ψɛ n, t) dt = t ρ n Φρ n )) ψ 2 d dt, 2.4) fo any n such that ɛ n K and R n N. Following vebatim 8] one can pass to the limit n in all of the tems of the left-hand side in 2.4). Note in paticula that lim n T P ρn ) 2µρ n ) + λρ n ) + θɛ n ρ θ ) ] n vn ) ɛn, t) ɛ 2 n ψɛ n, t) dt =. Moeove, afte Lemma 2.7, one also gets that the same holds fo the gavitational tem in the ight hand side t t ρ n Φρ n )) ψ 2 d dt ρ Φρ)) ψ 2 d dt, when n, which ends the poof of Theoem The constant viscosities case Fo constant viscosities, the spheically symmetic vesion of.) eads ρ t + ρv) + 2ρv =, ρv t + vv ) = P + λ + 2µ) v + 2v )) 3.) ρφ, in the domain, T ], T ], ) fo the density ρ, t) and the velocity v, t). The gavitational potential is given as peviously by 2.2) and 2.3). We conside Diichlet bounday condition at the oigin and initial conditions v, t) =, fo t >, 3.2) ρ t= = ρ ), ρv t= = m ), on R ) We ecall that ρ, v) is a weak solution of 3.)3.2)3.3) if

16 6 Benad Ducomet, Šáka Nečasová and Alexis Vasseu JMFM. ρ a.e. and fo any T > see.8)) ρ L, T ; L γ )), ρv 2 L, T ; L )), v L, T ; L v )), L, T ; L )), ) ) ) ) ρ C, T ]; L γ 2γ γ+ loc ), ρv C, T ]; L w loc ), w 3.4) whee, ), and the index w means that the coesponding L p space is endowed with the weak topology. 2. Fo any t 2 t and any test function η CR ) see.) and.)) t 2 t2 ρη 2 d ρη t + ρvη ) 2 d =. 3.5) ρvη 2 d t 2 t2 t t t t ρvη t + ρv 2 η + P η + 2η )) t2 +λ + 2µ) v η + 2vη ) t 2 t2 +4πG η, t)ρ, t) t The following esult holds 2 d dt 2 d dt ρs, t) s 2 ds 2 d dt =. 3.6) Theoem 3.. Suppose that T is an abitay positive numbe and that the initial data satisfy and ρ L )) L γ )), 3.7) m L 2γ γ+ ), m 2 ρ L )). 3.8) Then fo any γ >, the poblem 3.)3.2)3.3) possesses a global weak solution satisfying 3.4) togethe with popeties 3.5) and 3.6). In the constant viscosities case, exta estimates on the density gadient using Besch-Desjadins inequality ae no moe available and one must ely on the oiginal Lions-Feieisl method 2] 8] 5] see 4]). Following ], we conside appoximate solutions in the spiit of Section 3 and pass to the limit. As in the density dependent case, we only concentate on the ole of gavitation and pessue, efeing to the pape of Jiang and Zhang ] fo futhe details.

17 Vol ) on spheically symmetic motions Appoximate poblem and pioi estimates Adapting the appoximating scheme of Hoff ] to the self-gavitating situation, we define in ɛ ɛ, ) the mollified data ρ ) ɛ ) := ) ] 2/γ ρ 2/γ j ɛ/2 ) + ɛe 2, 3.9) ρ ) ɛ m ) ɛ ) := m ) ] j ɛ/2 ), 3.) ρ 2/γ and ) m ) ɛ v ) ɛ ) := χ ɛ ), 3.) ρ ) ɛ whee ɛ >, j is the standad Fiedich mollifie and χ ɛ C ) is a cut-off such that if ɛ, χ ɛ ) = if 2ɛ. Then denoting by δ ɛ and δ ɛ,r the step functions if ɛ, if ɛ o R, δ ɛ ) =, δ ɛ,r ) = if > ɛ. if ɛ < < R, fo a R >, one checks that, unifomly in R {δ ɛ ρ ) ɛ ρ ɛe 2)} in L γ ), {δ ɛ ρ ) ɛ ρ ɛe 2)} in L ), and {δ ɛ,r ρ ) ɛ v ) ɛ m )} in L 2γ γ+ ), when ɛ, fo any γ >. We conside the appoximate poblem ρ ɛ ) t + ρ ɛ v) + 2ρ ɛv ɛ =, ρ ɛ v ɛ ) t + v ɛ v ɛ ) ) = P ρ ɛ ) + λ + 2µ) v ɛ ) + 2v )) ɛ ρ ɛ Φ ɛ ), 3.2) in the domain, T ] ɛ fo the density ρ ɛ and the velocity v ɛ. The appoximate gavitational potential is Φ ɛ, t) = with K is given by 2.3). We conside Diichlet bounday condition ɛ K, s)ρ ɛ s, t)s 2 ds, 3.3) v ɛ, ɛ) =, fo t >, 3.4)

18 8 Benad Ducomet, Šáka Nečasová and Alexis Vasseu JMFM and initial conditions Then we have ρ ɛ t= = ρ ) ɛ ), ρ ɛ v ɛ t= = m ) ɛ ), on ɛ. 3.5) Poposition 3.2. Suppose that ɛ and T ae abitay positive numbes and that the initial data satisfy ρ L )) L γ )), 3.6) and m L 2γ γ+ ), m 2 ρ L )). 3.7) Then fo any γ >, the exteio poblem 3.2)3.4)3.5) possesses a weak solution such that and ɛ ρ ɛ >, ρ ɛ C, T ; L γ loc ɛ)), v ɛ C, T ; L 2 )) C, T ; H )), 2 ρ ɛv ɛ ) 2 + ) 2 Πρ ɛ) 2 3λ + 2µ d + 2 whee C > does not depend on ɛ. t 2 v ɛ ) ) 2 + v 2 ] ɛ d dτ C, ɛ 3.8) The poof is a diect consequence of ]: the gavitational contibution is bounded a pioi due to the coe pesence, and the subdominent contibution in the pessue see.2)) is contolled as above by mass consevation. In ode to get pecompactness of the sequences {ρ ɛ }, {v ɛ }, as we have no moe diect infomation on the gadient of ρ ɛ, we need impoved L p L q ) estimates on ρ ɛ itself fo p, q lage enough, which is the matte of the following esult. Lemma Fo any test function φ C ) with φ) = O 3 ) as, thee exists a constant C independent on ɛ such that T ρ ɛ ) 2γ φ 4 d dt C, 3.9) ɛ 2. Let γ > 3/2. Fo any T > and fo any test function ψ C ) with φ and φ) = O 3 ) as, thee exists a constant C independent on ɛ such that T ρ ɛ ) γ+θ ψ d dt C, 3.2) ɛ fo any < θ < γ. Poof. In the poof of these estimates, we omit the explicit ɛ dependence.. Multiplying by φ and integating on, ) the momentum equation ρv) t ρv 2) + P = λ + 2µ) 2 2 v ) ) ρφ =, 3.2)

19 Vol ) on spheically symmetic motions 9 with Φ ρ) = 4πGρ 2 ɛ ρs, τ) s2 ds, we get φp = λ + 2µ) 2 2 v ) φ ρv2 φ + t ρvφ ds 2ρv 2 φ + ds + λ + 2µ) s 2 s s 2 v ) φ ds + s Multiplying this equality by ρ γ and obseving afte ] that P + ρv 2 )φ s ds ρφ s φ ds. 3.22) ρ γ ) t + vρ γ ) + 2γvργ = γ)v ρ γ, holds in D, T ) ɛ ) which implies, by multiplying by ρφv ds, that + ρ γ + ) ρφv ds t = ρ γ γ )v ρ γ + 2γvργ ) ρφv ds we get φp ρ γ = λ + 2µ) 2 2 v ) φργ + ρ γ ] γ )v ρ γ + 2γvργ +λ + 2µ)ρ γ t ) + vρ γ ρφv ds ] ρφv ds + v 2 ρ γ+ φ, ) ) ρφv ds + vρ γ ρφv ds t ρφv ds ρ γ P + ρv 2 )φ s ds + ρ γ s 2 s 2 v ) s φ s ds + ρ γ ρφ s φ ds. 2ρv 2 φ s Then multiplying by φ 3 and integating on, T ) ɛ, we obtain T T φp ρ γ φ 3 d dt = λ + 2µ) φ 3 2 ɛ ɛ 2 v ) φργ d dt T ) T ) + φ ρ 3 γ ρφv ds d dt + φ vρ 3 γ ρφv ds d dt ɛ t ɛ T ] + φ γ 3 )v ρ γ + 2γvργ ρφv ds d dt ɛ T T φ 3 ρv 2 φ s ds d dt + φ 3 ρ γ 2ρv 2 φ ds d dt ɛ ɛ s T +λ + 2µ) φ 3 ρ γ s 2 ɛ s 2 v ) φ s s ds d dt T T 9 φ 3 ρ γ P φ s ds d dt + φ 3 ρ γ ρφ s φ ds d dt =: J k. ɛ ɛ k= 3.23) ds

20 2 Benad Ducomet, Šáka Nečasová and Alexis Vasseu JMFM Afte ] one knows that fo any η > 7 T J k η φρ 2γ φ 4 d dt + C η. 3.24) ɛ k= Using.2) one gets fo a R > such that Supp φ, R] T R T R J 8 a φ 3 ρ γ ρ γ s 2 ds d dt + b φ 3 ρ γ ρs 2 ds d dt C. ɛ ɛ 3.25) In the same stoke T J 9 4πG φ 3 ρ γ ρφ s ɛ s 2 ρα, t) α 2 dα ds d dt ɛ η T φρ 2γ φ 4 d dt + T 2 ɛ 2η ρ L ) φ 2 ρ φ ds d dt ɛ s η T φρ 2γ φ 4 d dt + C η. 3.26) 2 ɛ Afte.2) the left-hand side of 3.23) can be estimated as follows T φp ρ γ φ 3 d dt T T ρ 2γ φ 4 d dt b ρ γ+ φ 4 d dt. ɛ aγ ɛ ɛ As x ηx γ + C η, we get T φp ρ γ φ 3 d dt ɛ aγ T ɛ ρ 2γ φ 4 d dt bη T ɛ ρ 2γ φ 4 d dt C η. Plugging this last inequality togethe with 3.25) and 3.26) into 3.23) and choosing η such that + b 2 )η = gives 3.9). 2aγ 2. The poof follows the same scheme as the pevious one. Let φ C ) be a test function such that φ on Supp ψ. Multiplying 3.22) by ψρ θ fo θ > and obseving afte ] that ρ θ ) + vρ θ) + 2θvρθ = θ)v t ρ θ, holds in D, T ) ɛ ) fo any θ >, we get ψp ρ θ = λ + 2µ) 2 2 v ) ψρθ + ρ θ ψ ] + θ )v ρ θ ψ + 2θvρθ ψ +λ + 2µ)ρ θ ψ ) ρφv ds + vρ θ ψ t ρφv ds ρ θ P +ρv 2 )φ s ds+ρ θ ψ s 2 s 2 v ) s φ s ds + ρ θ ψ ρφ s φ ds. ) ρφv ds 2ρv 2 φ s ds

21 Vol ) on spheically symmetic motions 2 Then integating on, T ) ɛ, we obtain T T ψp ρ θ d dt = λ + 2µ) 2 ɛ ɛ 2 v ) ψρθ d dt T ) T ) + ψ ρ θ ρφv ds d dt + ψ vρ θ ρφv ds d dt ɛ t ɛ T ] + ψ θ )v ρ θ + 2θvρθ ρφv ds d dt ɛ T T ψ ρv 2 φ s ds d dt + ψ ρ θ 2ρv 2 φ ds d dt ɛ ɛ s T +λ + 2µ) ψ ρ θ s 2 ɛ s 2 v ) s φ s ds d dt T T ψρ θ P φ s ds d dt + ψ ρ θ ρφ s φ ds d dt ɛ ɛ 9 =: I k. 3.27) k= Afte ] one knows that fo any η > 7 T I k η ψρ γ+θ d dt + C η. 3.28) ɛ k= Using.2) one gets fo a R > such that Supp φ, R] T R T R I 8 a ψρ γ ρ γ s 2 ds d dt + b ψρ γ ρs 2 ds d dt C. ɛ ɛ 3.29) In the same stoke T I 9 4πG ψ ρ θ ρφ s ɛ s 2 ρα, t) α 2 dα ds d dt ɛ η T φρ 2γ ψ d dt + T 2 ɛ 2η ρ L ) ψ ρ φ ds d dt ɛ s η T ψρ γ+θ d dt + C η. 3.3) 2 ɛ Afte.2) the left-hand side of 3.27) can be estimated as peviously T ψ P ρ θ d dt T T ψ ρ γ+θ d dt b ψ ρ θ+ d dt. ɛ aγ ɛ ɛ As x ηx γ + C η, we get T ψ P ρ θ d dt T T ψ ρ γ+θ d dt bη ψ ρ γ+θ d dt C η. ɛ aγ ɛ ɛ

22 22 Benad Ducomet, Šáka Nečasová and Alexis Vasseu JMFM Plugging this last inequality togethe with 3.29) and 3.3) into 3.27) and choosing η such that + b 2 )η = gives 3.2). 2aγ 3.2. Poof of Theoem 3. As in Section 2, we conside the extension to the pai ρ ɛ, v ɛ ) defined as ρ ɛ, t) = ρ ɛ, t) fo ɛ, ), 3.3) else, and ṽ ɛ, t) = v ɛ, t) fo ɛ, ), else, 3.32) and we denote by ρ ɛ, v ɛ ) this extension, by simplicity. Afte the enegy inequality, thee exist extacted sequences such that moeove afte enegy inequality ρ ɛ ρ weak in L, T ; L γ loc )), ρ ɛ ρ weak in L 2γ, T ; L 2γ loc )), v ɛ v weak in L 2, T ; H loc)), ρ L, T ; L γ )) L 2γ, T ; L 2γ loc )), v, v L 2, T ; L 2 )). In ode to complete the poof of Theoem 3., we have finally to pove that the couple ρ, v) satisfies the system 3.). Using Lemma 3.3 and poceeding exactly as Jiang and Zhang in ] one poves the following popeties of the weak limits. Fo any < θ < γ, one has ρ θ P ρ) ρ θ P ρ) + 3λ + 2µ)ρ θ v = w lim 2. Fo any < θ < such that 2 ɛ { θ + + 6θ + θ 2 ) γ } 3λ + 2µ)ρ θ ɛ v ɛ ), 3.33) ρ θ ρ θ L 2 θ, T ; L 2 θ, )), 3.34) fo any < θ < γ. 3. The limits ρ and v satisfy the enegy inequality 2 ρv2 + ) 2 Πρ) 2 3λ + 2µ t d + 2 v 2 + v 2] d dτ C, 3.35) 2 moeove ρ, ρ θ ) θ L, T ; L )). 3.36)

23 Vol ) on spheically symmetic motions 23 In paticula, passing to the limit into 3.2), we find that ρ, v) satisfies in D, T ) ) the system ρ t + ρv) + 2ρv =, ρv) t + ρv 2 + P ] + 2ρv2 = λ + 2µ) v + 2v )) ρφ. 3.37) As popety 3.34) excludes the concentation of mass at the oigin, the end of the poof is vebatim the same as that of Theoem. in ]. Acknowlegment Š. N. was suppoted by the Gant Agency of the Czech Republic n. 2/8/2 and by the Academy of Sciences of the Czech Republic, Institutional Reseach Plan N. AVZ953. The last pat of pape was done duing he stay in Cea, Apajon. She would like to thank fo hospitality of Pof. Ducomet and his collegues duing he stay thee. A.V. was patially suppoted by Nečas Cente fo Mathematicall Modelling LC652 financed by MŠMT. Refeences ] D. Besch, B. Desjadins. Some diffusive capillay models of Koteweg type. C. R. Acad. Sci. Pais, Section Mécanique 24; 332: ] D. Besch, B. Desjadins, D. Géad-Vaet. On compessible Navie-Stokes equations with density dependent viscosities in bounded domains. J. Math. Pues Appl. 27; 87: ] S. Chapman, T.G. Cowling. The mathematical theoy of non-unifom gases, Cambidge Univesity Pess, ] B. Ducomet, E. Feieisl, A. Petzeltová, I. Staškaba. Global in time weak solutions fo compessible baotopic self-gavitating fluid, Discete and Continuous Dynamical Systems 24; :3 3. 5] B. Ducomet, Š. Nečasová, A. Vasseu. On global motions of a compessible baotopic and self-gavitating gas with density-dependent viscosities, Submitted. 6] B. Ducomet, A. Zlotnik, Viscous compessible baotopic symmetic flows with fee bounday unde geneal mass foce, Pat I: Unifom-in-time bounds and stabilization, Mathematical Methods in the Applied Sciences 28 25) ] E. Feieisl. Compessible Navie-Stokes Equations with a Non-Monotone Pessue Law, Jounal of Diff. Equ. 22; 84: ] E. Feieisl. Viscous and/o heat conducting compessible fluids, in Handbook of mathematical fluid dynamics, Vol, S. Fiedlande and D. See Ed., Noth-Holland, 22. 9] Z. Guo, Q. Jiu, Z. Xin. Spheically symmetic isentopic compessible flows with density-dependent viscosity coefficients. SIAM J. Math. Anal. 28; 39: ] D. Hoff. Spheically symmetic solutions of the Navie-Stokes equations fo compessible, isothemal flow with lage discontinuous initial data. Indiana Univ. Math. J. 992; 4:

24 24 Benad Ducomet, Šáka Nečasová and Alexis Vasseu JMFM ] S. Jiang, P. Zhang. On spheically symmetic solutions of the compessible isentopic Navie-Stokes equations. Comm. Math. Phys. 2; 25: ] P.L. Lions. Mathematical topics in fluid mechanics, Vol 2: Compessible models, Oxfod Univesity Pess, ] A. Mellet, A. Vasseu. On the baotopic compessible Navie-Stokes equations. Comm. Patial Diffeential Equations 27; 32: ] A. Mellet, A. Vasseu. Existence and uniqueness of global stong solutions fo one-dimensional compessible Navie-Stokes equations. SIAM J. Math. Anal. 28; 39: ] A. Novotný, I. Staškaba. Intoduction to the mathematical theoy of compessible flow, Oxfod Univesity Pess, 24. 6] E. Stein. Singula integals and diffeentiability popeties of functions, Pinceton Univesity Pess, 97. 7] T. Zhang, D. Fang. Global behavio of spheically symmetic Navie-Stokes equations with density-dependent viscosity. J. Diffeential Equations 27; 236: ] T. Zhang, D. Fang. A note on spheically symmetic isentopic compessible flows with density-dependent viscosity coefficients. Nonlinea Analysis: Real Wold Applications in pess) Benad Ducomet CEA, DAM, DIF F-9297 Apajon, Fance benad.ducomet@cea.f Šáka Nečasová Mathematical Institute AS ČR Žitna 25, 5 67 Paha, Czech Republic matus@math.cas.cz Alexis Vasseu Depatment of Mathematics, Univesity of Texas at Austin Univesity Station C2 TX, USA vasseu@math.utexas.edu

Analytical Expression for Hessian

Analytical Expression for Hessian Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that

Διαβάστε περισσότερα

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2 Cylindical and Spheical Coodinate Repesentation of gad, div, cul and 2 Thus fa, we have descibed an abitay vecto in F as a linea combination of i, j and k, which ae unit vectos in the diection of inceasin,

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

THE BLOWUP OF SOLUTIONS FOR 3-D AXISYMMETRIC COMPRESSIBLE EULER EQUATIONS

THE BLOWUP OF SOLUTIONS FOR 3-D AXISYMMETRIC COMPRESSIBLE EULER EQUATIONS H. Yin Q. Qiu Nagoya Math. J. Vol. 154 (1999, 157 169 THE BLOWUP OF SOLUTIONS FOR 3-D AXISYMMETRIC COMPRESSIBLE EULER EQUATIONS HUICHENG YIN QINGJIU QIU Abstact. In this pape, fo thee dimensional compessible

Διαβάστε περισσότερα

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0 TRIGONOMETRIC IDENTITIES (a,b) Let s eview the geneal definitions of tig functions fist. (See back cove of you book) θ b/ θ a/ tan θ b/a, a 0 θ csc θ /b, b 0 sec θ /a, a 0 cot θ a/b, b 0 By doing some

Διαβάστε περισσότερα

Laplace s Equation in Spherical Polar Coördinates

Laplace s Equation in Spherical Polar Coördinates Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1

Διαβάστε περισσότερα

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the

Διαβάστε περισσότερα

Fundamental Equations of Fluid Mechanics

Fundamental Equations of Fluid Mechanics Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Matrix Hartree-Fock Equations for a Closed Shell System

Matrix Hartree-Fock Equations for a Closed Shell System atix Hatee-Fock Equations fo a Closed Shell System A single deteminant wavefunction fo a system containing an even numbe of electon N) consists of N/ spatial obitals, each occupied with an α & β spin has

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d PHYS851 Quantum Mechanics I, Fall 2009 HOMEWORK ASSIGNMENT 11 Topics Coveed: Obital angula momentum, cente-of-mass coodinates Some Key Concepts: angula degees of feedom, spheical hamonics 1. [20 pts] In

Διαβάστε περισσότερα

4.2 Differential Equations in Polar Coordinates

4.2 Differential Equations in Polar Coordinates Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations

Διαβάστε περισσότερα

Example 1: THE ELECTRIC DIPOLE

Example 1: THE ELECTRIC DIPOLE Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2

Διαβάστε περισσότερα

The Laplacian in Spherical Polar Coordinates

The Laplacian in Spherical Polar Coordinates Univesity of Connecticut DigitalCommons@UConn Chemisty Education Mateials Depatment of Chemisty -6-007 The Laplacian in Spheical Pola Coodinates Cal W. David Univesity of Connecticut, Cal.David@uconn.edu

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)

Διαβάστε περισσότερα

1 3D Helmholtz Equation

1 3D Helmholtz Equation Deivation of the Geen s Funtions fo the Helmholtz and Wave Equations Alexande Miles Witten: Deembe 19th, 211 Last Edited: Deembe 19, 211 1 3D Helmholtz Equation A Geen s Funtion fo the 3D Helmholtz equation

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Product of two generalized pseudo-differential operators involving fractional Fourier transform

Product of two generalized pseudo-differential operators involving fractional Fourier transform J. Pseudo-Diffe. Ope. Appl. 2011 2:355 365 DOI 10.1007/s11868-011-0034-5 Poduct of two genealized pseudo-diffeential opeatos involving factional Fouie tansfom Akhilesh Pasad Manish Kuma eceived: 21 Febuay

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

A bound from below for the temperature in compressible Navier-Stokes equations

A bound from below for the temperature in compressible Navier-Stokes equations A bound from below for the temperature in compressible Navier-Stokes equations Antoine Mellet, Alexis Vasseur September 5, 7 Abstract: We consider the full system of compressible Navier-Stokes equations

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

ANTENNAS and WAVE PROPAGATION. Solution Manual

ANTENNAS and WAVE PROPAGATION. Solution Manual ANTENNAS and WAVE PROPAGATION Solution Manual A.R. Haish and M. Sachidananda Depatment of Electical Engineeing Indian Institute of Technolog Kanpu Kanpu - 208 06, India OXFORD UNIVERSITY PRESS 2 Contents

Διαβάστε περισσότερα

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems. Physics 55 Fll 25 Pctice Midtem Solutions The midtem will e 2 minute open ook, open notes exm. Do ll thee polems.. A two-dimensionl polem is defined y semi-cicul wedge with φ nd ρ. Fo the Diichlet polem,

Διαβάστε περισσότερα

Blowup of regular solutions for radial relativistic Euler equations with damping

Blowup of regular solutions for radial relativistic Euler equations with damping 8 9 Ö 3 3 Sept. 8 Communication on Applied Mathematics and Computation Vol.3 No.3 DOI.3969/j.issn.6-633.8.3.7 Õ Îµ Ï̺ Eule»²Ö µ ÝÙÚ ÛÞ ØßÜ ( Ñ É ÉÕ Ñ 444 Î ÇÄ Eule ± ÆÃ ¼ Û Â Þ Û ¾ ³ ÇÄ Eule ± Å Å Þ Å

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

Exercise, May 23, 2016: Inflation stabilization with noisy data 1 Monetay Policy Henik Jensen Depatment of Economics Univesity of Copenhagen Execise May 23 2016: Inflation stabilization with noisy data 1 Suggested answes We have the basic model x t E t x t+1 σ 1 ît E

Διαβάστε περισσότερα

Some Basic Boundary Value Problems for. Complex Partial Differential Equations. in Quarter Ring and Half Hexagon

Some Basic Boundary Value Problems for. Complex Partial Differential Equations. in Quarter Ring and Half Hexagon Some Basic Bounday Value Poblems fo Complex Patial Diffeential Equations in Quate Ring and Half Hexagon DISSERTATION des Fachbeeichs Mathematik und Infomatik de Feien Univesität Belin zu Elangung des Gades

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

Curvilinear Systems of Coordinates

Curvilinear Systems of Coordinates A Cuvilinea Systems of Coodinates A.1 Geneal Fomulas Given a nonlinea tansfomation between Catesian coodinates x i, i 1,..., 3 and geneal cuvilinea coodinates u j, j 1,..., 3, x i x i (u j ), we intoduce

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

Tutorial Note - Week 09 - Solution

Tutorial Note - Week 09 - Solution Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 29, Article ID 189768, 12 pages doi:1.1155/29/189768 Research Article Existence of Positive Solutions for m-point Boundary

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE 4 AND SOME NEW P-Q ETA-FUNCTION IDENTITIES

A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE 4 AND SOME NEW P-Q ETA-FUNCTION IDENTITIES A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE AND SOME NEW P-Q ETA-FUNCTION IDENTITIES S. Bhagava Chasheka Adiga M. S. Mahadeva Naika. Depatent of

Διαβάστε περισσότερα

GLOBAL WEAK SOLUTIONS TO COMPRESSIBLE QUANTUM NAVIER-STOKES EQUATIONS WITH DAMPING

GLOBAL WEAK SOLUTIONS TO COMPRESSIBLE QUANTUM NAVIER-STOKES EQUATIONS WITH DAMPING GLOBAL WEAK SOLUTIOS TO COMPRESSIBLE QUATUM AVIER-STOKES EQUATIOS WITH DAMPIG ALEXIS F. VASSEUR AD CHEG YU Abstract. The global-in-time existence of weak solutions to the barotropic compressible quantum

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by 5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Weak solution to compressible hydrodynamic flow of liquid crystals in 1-D

Weak solution to compressible hydrodynamic flow of liquid crystals in 1-D Weak solution to compressible hydrodynamic flow of liquid crystals in 1-D Shijin Ding Changyou Wang Huanyao Wen Abstract We consider the equation modeling the compressible hydrodynamic flow of liquid crystals

Διαβάστε περισσότερα

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection Mitsuharu ÔTANI Waseda University, Tokyo, JAPAN One Forum, Two Cities: Aspect of Nonlinear PDEs 29 August, 211 Mitsuharu

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Global weak solution to the viscous two-phase model with finite energy

Global weak solution to the viscous two-phase model with finite energy Global weak solution to the viscous two-phase model with finite energy Alexis Vasseur Huanyao Wen Cheng Yu April 23, 217 Abstract In this paper, we prove the existence of global weak solutions to the compressible

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

MA 342N Assignment 1 Due 24 February 2016

MA 342N Assignment 1 Due 24 February 2016 M 342N ssignment Due 24 February 206 Id: 342N-s206-.m4,v. 206/02/5 2:25:36 john Exp john. Suppose that q, in addition to satisfying the assumptions from lecture, is an even function. Prove that η(λ = 0,

Διαβάστε περισσότερα

Lecture 26: Circular domains

Lecture 26: Circular domains Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains

Διαβάστε περισσότερα

The Friction Stir Welding Process

The Friction Stir Welding Process 1 / 27 The Fiction Sti Welding Pocess Goup membes: Kik Fase, Sean Bohun, Xiulei Cao, Huaxiong Huang, Kate Powes, Aina Rakotondandisa, Mohammad Samani, Zilong Song 8th Monteal Industial Poblem Solving Wokshop

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα