Solanum. Lycopersicon. Capsicum. Tomato. Family: Solanaceae (Nightshade Family) L. esculentum var. commune. Nutritive Value.
|
|
- Βηθεσδά Τρικούπη
- 6 χρόνια πριν
- Προβολές:
Transcript
1 تضم البطاطس الباذنجان الطماطم الفلفل Solanum Lycopersicon Capsicum Family: Solanaceae (Nightshade Family) الطماطم Tomato األھمية الغذائية العوامل البيئية مواعيد الزراعة L. esculentum var. commune العروة الصيفية المبكرة العروة النيلية العروة الصيفية العادية العروة الشتوية Indeterminate tomato طبيعة النمو فى الطماطم Determinate tomato Tomato Nutritive Value Tomato (Lycopersicon esculentum), raw,nutrition value per 100 g.(source: USDA National Nutrient database) Principle Nutrient Value Percentage of RDA Energy 18 Kcal % 1 Carbohydrates 3.9 g % 3 Protein 0.9 g % 1.6 Total Fat 0.2 g % 0.7 Cholesterol 0 mg % 0 Dietary Fiber 1.2 g % 3 Vitamins Folates 15 g % 4 Niacin mg % 4 Pyridoxine mg % 6 Thiamin mg % 3 Vitamin A 833 IU % 28 Vitamin C 13 mg % 21.5 Vitamin E 0.54 mg % 4 Vitamin K 7.9 g % 6.5 Electrolytes Sodium 5 mg %1< Potassium 237 mg % 5 Minerals Calcium 10 mg % 1 Iron 0.3 mg % 4 Magnesium 11 mg % 3 Manganese 0.15 mg % 6.5 Phosphorus 24 mg % 3 Zinc 0.17 mg % 1.5 Phyto-nutrients Carotene-ß 449 g -- Carotene-α 101 g -- Lutein-zeaxanthin 123 g -- Lycopene 2573 g -- 1
2 ب( ج( د( كمية التقاوي طريقة الزراعة عمليات الخدمة الري الترقيع العزيق التسميد 3 سماد عضوي للفدان تضاف عند ا عداد الا رض للزراعة. ا ( ( م ( 120 كجم نيتروجين. ( 45 كجم خامس ا كسيد الفوسفور. ( 72 كجم ا كسيد البوتاسيوم. النضج الحصاد المحصول الفرز والتعبي ة التخزين الا نضاج والتلوين الصناعي 2
3 العيوب التجارية في الطماطم تعفن قمة الثمرة Rot) (Blossom End الجيوب والثمار المشوهة لفحة الشمس التشقق عدم إنتظام التلوين البطاطس Potato or Irish Potato Solanum tuberosum L. 3
4 ب( ج( ا غراض الاستهلاك: فى صناعة الدقيق. تستخدم البطاطس في عدة صور: 2- غذاء للماشية. 1- تقاوي. غذاء للا نسان: ا ( ( استخدام مباشر. ( حفظ في العلب مجففة مجمدة في الصناعة: ا ( ( ا نتاج بعض الا حماض. ( ا نتاج النشا (د) (ب) ا نتاج الكحول. بيي ات غذاي ية للكاي نات الدقيقة. القيمة الغذاي ية للبطاطس التكاثر الموطن الا صلي العوامل البيي ية أسباب تدھور التقاوي محليا وضرورة استيرادھا طور الراحة التنبيت األخضر (تحضير التقاوي) السيادة القمية التقاوي المستخدمة في الزراعة في مصر خلوها من الا مراض وخاصة الفيروسية منها. ا لا تكون التقاوي ضامرة. خالية من الا صناف الا خرى (منتقاة). ا ن تحتوي على نسبة عالية من النبت وقت الزراعة. ا ن يكون حجم الدرنة ودرجة نضجها مناسب لجودة المحصول. 4
5 ب( ج( د( ميعاد الزراعة كمية التقاوي طرق الزراعة.1 العروة الصيفية 750 كيلو جرام للفدان الزراعة بالعفير.1.2 العروة النيلية الزراعة بالترديم (طريقة.2 العروة الشتوية (المحيرة) المحراث).3 الزراعة الحراتي.3 الري الترقيع العزيق 3 سماد بلدي قديم يضاف أثناء تجھيز األرض للزراعة. (أ) م ( وحدة آزوت تضاف على 3 دفعات: عند الزراعة وبعد تكامل اإلنبات ثم بعد الدفعة الثانية بأسبوعين مع مراعاة أن األصناف المتأخرة تستجيب أكثر للتسميد اآلزوتي. ( وحدة خامس أكسيد الفوسفور 8) 10 : أجولة 50] كجم] للجوال) سوبر فوسفات %15 تضاف مناصفة على دفعتين مع السماد البلدي أثناء التجھيز والثانية مع الزراعة. ( وحدة أكسيد البوتاسيوم تضاف دفعة واحدة بعد اإلنبات في صورة سلفات البوتاسيوم. النضج الحصاد المحصول العلاج التجفيفي الفرز والتعبي ة تخزين محصول البطاطس الباذنجان Eggplant Solanum melongena 5
6 الموطن الا صلي Eggplant Nutritive Value العوامل البيي ية التكاثر كمية التقاوي ميعاد الزراعة عروة صيفية مبكرة: تزرع البذور في المشتل في شهر ديسمبر مع وقايتها من البرد ثم تشتل في الا رض المستديمة خلال شهر فبراير خاصة في صعيد مصر وتعطي بشاي ر محصوها في نهاية ا بريل وا واي ل مايو. عروة صيفية: تزرع البذور في المشتل في شهر فبراير وتشتل في شهري مارس وا بريل وتعطي محصولها ابتداء ا من شهر يونية وهي تزرع في جميع ا نحاء مصر. عروة نيلية: تزرع بذورها في المشتل في شهر يونية مع حماية المشتل والبادرات الصغيرة من الحرارة. وتشتل في شهر يوليو وا واي ل ا غسطس لتعطي محصولها في ا كتوبر ونوفمبر ويمكن تعقير نباتاتها لتعطي محصولا مبكر ا في نهاية الشتاء وا واي ل الربيع ا ي في فبراير ومارس حيث تكون ا سعار الباذنجان مرتفعة وتجرى عملية التعقير على الصنف البلدي الا سود الطويل لا نه يتحمل الحرارة المنخفضة نسبي ا. طريقة الزراعة عمليات الخدمة الري الترقيع العزيق التسميد النضج الحصاد المحصول تعقير الباذنجان ا نتاج البذور زراعة األصناف معزولة عن بعضھا. يجب أن تؤخذ البذور من نباتات الزراعة الصيفية المبكرة حيث تأخذ النباتات حجمھا الطبيعي. يتم حصاد الثمار 2 3 مرات لدفع النباتات إلى تكوين مجموع خضري قوي ثم يوقف الحصاد وھذا يساعد على تكوين ثمار جيدة ممتلئة بالبذور. يتم المرور في الحقل الستبعاد النباتات المخالفة للصنف والغير مرغوبة في مراحل مبكرة من عمر النبات. تترك الثمار على النباتات حتى اكتمال النضج وتأخذ لون أصفر برونزي وتجمع الثمار على دفعات وتترك في مكان ظليل حتى تلين. تقطع الثمار طوليا بسكين ويستعان بالماء لفصل البذور عن اللحم وتجفف في مكان ظليل. ويعطي الفدان حوالي 200 كيلوجرام من البذور. 6
7 الفلفل Pepper Capsicum annum (frutisense) الموطن الا صلي الا حتياجات البيي ية التكاثر كمية التقاوي العروة الصيفية المبكرة: وتسمى العروة البدرية وتشتل نباتاتها في فبراير ومارس وتعطي بشاي ر محصولها في مايو وتنجح في مصر الوسطى. العروة الصيفية العادية: تشتل نباتاتها في مارس وا بريل وتعطى محصولها في يونيه وهي ذات محصول غزير وتنجح في شمال الدلتا والمناطق الساحلية. العروة النيلية: تشتل نباتاتها في يوليه وا غسطس ويبدا في حصاد ثمارها من منتصف ا كتوبر تنجح في الدلتا والمناطق الساحلية ويمكن تعقير نباتات هذه العروة كما في الباذنجان. طريقة الزراعة عمليات الخدمة النضج الحصاد المحصول التعقير 7
8 ألغراض الزينة والتغذية التلقيح في الفلفل ذاتي مع وجود نسبة مرتفعة من التلقيح الخلطي بالحشرات لذا يجب زراعة األصناف بمسافة ال تقل عن كيلوا متر عند الرغبة في إنتاج التقاوي الجيدة منعا من تدھور صفات األصناف. توالى النباتات بالرعاية والخدمة وإزالة النباتات غير المرغوبة والمخالفة في الصنف في مراحل مبكرة من عمر النبات. يتم حصاد النباتات 2 3 مرة حيث تستطيع النباتات تكوين مجموع خضري قوي ثم تترك الثمار دون حصاد حتى اكتمال النضج الفسيولوجي واحمرار القرون. تجمع الثمار على دفعات وتشق القرون وتستخرج منھا البذور وتغسل وتجفف ويقدر متوسط محصول الفدان من البذور بحوالي كجم. التصنيع زراعات غير تقليدية 8
RDA of Vitamins and Minerals
RDA of Vitamins and Minerals Nutrient/ Ingredient RDA Life Stage Group 5 0-6 mo 50% - - 6 7-12mo 50% - - 8 12 4-8y 250% 500% - 20 9-13y 250% 500% - 25 14-18y 250% 500% - 30 19-30y 250% 500% 30 31-50y 250%
( ) ( ) ( ) ( ) v n ( ) ( ) ( ) = 2. 1 فان p. + r بحيث r = 2 M بحيث. n n u M. m بحيث. n n u = u q. 1 un A- تذآير. حسابية خاصية r
نهايات المتتاليات - صيغة الحد العام - حسابية مجمع متتابعة لمتتالية ) ( متتالية حسابية أساسها + ( ) ملاحظة - متتالية حسابية + أساسها ( ) متتالية حسابية S +... + + ه الحد الا ل S S ( )( + ) S ه عدد المجمع
Εμπορική αλληλογραφία Παραγγελία
- Κάντε μια παραγγελία ا ننا بصدد التفكير في اشتراء... Επίσημη, με προσοχή ا ننا بصدد التفكير في اشتراء... يس ر نا ا ن نضع طلبي ة مع شركتك... يس ر نا ا ن نضع طلبي ة مع شركتك... Επίσημη, με πολλή ευγενεία
( ) ( ) ( ) ( ) ( )( ) z : = 4 = 1+ و C. z z a z b z c B ; A و و B ; A B', A' z B ' i 3
) الحدة هي ( cm ( 4)( + + ) P a b c 4 : (, i, j ) المستي المرآب منسب إلى المعلم المتعامد المتجانس + 4 حل في مجمعة الا عداد المرآبة المعادلة : 0 6 + من أجل آل عدد مرآب نصع : 64 P b, a أ أحسب (4 ( P ب عين
Recommendations for Maintaining Postharvest Quality of Potato: (Immature early crop)
( حقاي ق في دقاي ق ) البطاطس المبكرة التوصيات للمحافظة على مواصفات الجودة بعد الحصاد Recommendations for Maintaining Postharvest Quality of : (Immature early crop) Trevor V. Suslow and Ron Voss, Department
ی ا ک ل ا ه م ی ل ح ر
ل- ال ج ه) ن و م ن م د ر م ت ک ر ا ش م د ر ک و ر ا ب ر ه ش ه د و س ر ف ا ه ت ف ا ب ز ا س و ن ) س و ل ا چ ر ه ش 6 ه ل ح م : د ر و م 1 ل م آ م ظ ع ل ال ج ر و ن د ح ا و م ال س ا د ا ز آ ه ا گ ش ن ا د ر ه
( ) ( ) ( ) = ( 1)( 2)( 3)( 4) ( ) C f. f x = x+ A الا نشطة تمرين 1 تمرين تمرين = f x x x د - تمرين 4. نعتبر f x x x x x تعريف.
الثانية سلك بكالوريا علوم تجريبية دراسة الدوال ( A الا نشطة تمرين - حدد رتابة الدالة أ- ب- و مطاريفها النسبية أو المطلقة إن وجدت في الحالات التالية. = ج- ( ) = arctan 7 = 0 = ( ) - حدد عدد جذور المعادلة
( ) [ ] الدوران. M يحول r B و A ABC. 0 2 α فان C ABC ABC. r O α دورانا أو بالرمز. بالدوران r نكتب -* النقطة ' M إلى مثال لتكن أنشي 'A الجواب و 'B
الدران I- تعريف الدران 1- تعريف لتكن O نقطة من المستى المجه P α عددا حقيقيا الدران الذي مرآزه O زايته من P نح P الذي يربط آل نقطة M بنقطة ' M ب: M = O اذا آانت M ' = O - OM = OM ' M O اذا آان - OM ; OM
Ακαδημαϊκός Λόγος Εισαγωγή
- سا قوم في هذه المقالة \ الورقة \ الا طروحة بدراسة \ فحص \ تقييم \ تحليل Γενική εισαγωγή για μια εργασία/διατριβή سا قوم في هذه المقالة \ الورقة \ الا طروحة بدراسة \ فحص \ تقييم \ تحليل للا جابة عن هذا
ی ن ل ض ا ف ب ی ر غ ن ق و ش ه ی ض ر م ی ) ل و ئ س م ه د ن س ی و ن ( ا ی ن ل ض ا ف ب ی ر غ 1-
ر د ی ا ه ل ی ب ق ی م و ق ب ص ع ت ای ه ی ر ی گ ت ه ج و ی ل ح م ت ا ح ی ج ر ت ر ی ث أ ت ل ی ل ح ت و ن ی ی ب ت زابل) ن ا ت س ر ه ش ب آ ت ش پ ش خ ب و ی ز ک ر م ش خ ب : ی د ر و م ه ع ل ا ط م ( ن ا ر ا ی ه
الجزء الثاني: "جسد المسيح الواحد" "الجسد الواحد )الكنيسة(" = "جماعة المؤمنين".
اجلزء الثاين من حبث )ما هو الفرق بني الكلمة اليواننية )سوما )σῶμά بقلم الباحث / مينا سليمان يوسف. والكلمة اليواننية )ساركس σάρξ ((!. الجزء الثاني: "جسد المسيح الواحد" "الجسد الواحد )الكنيسة(" = "جماعة
ر ک ش ل ن س ح ن د م ح م ب ن ی ز ن. ل و ئ س م ه د ن س ی و ن ( ی ر ک ش ل &
ن- س ح ی ژ ر ن ا ل ا ق ت ن ا ر د ر ا و ی د ي ر ي گ ت ه ج و د ی ش ر و خ ش ب ا ت ه ی و ا ز و ت ه ج ه ط ب ا ر ل ی ل ح ت ) ر ال ر ه ش ي د ر و م ه ع ل ا ط م ( ي ر ي س م ر گ ي ا ه ر ه ش ر د ن ا م ت خ ا س ل خ
التتبع الزمني لتحول آيمياي ي سرعة التفاعل تمارين مرفقة بالحلول فيزياء تارودانت التمرين الا ول: يتفاعل أيون ثيوآبريتات ثناي ي أوآسيد الكبريت مع أيونات الا وآسونيوم وفق المعادلة الكيمياي ية التالية: H S
يط... األعداد المركبة هذه التمارين مقترحة من دورات البكالوريا من 8002 إلى التمرين 0: دورة جوان 8009 الموضوع األول التمرين 8: دورة جوان
األعداد المركبة 800 هذه التمارين مقترحة من درات البكالريا من 800 إلى 800 المضع األل التمرين 0: حل في مجمعة األعداد المركبة المعادلة: = 0 i ( + i) + نرمز للحلين ب حيث: < ( عدد حقيقي ) 008 - بين أن ( المستي
( D) .( ) ( ) ( ) ( ) ( ) ( ) الا سقاط M ( ) ( ) M على ( D) النقطة تعريف مع المستقيم الموازي للمستقيم على M ملاحظة: إذا آانت على أ- تعريف المستقيم ) (
الا سقاط القدرات المنتظرة *- الترجمة المتجهية لمبرهنة طاليس 1- مسقط نقطة مستقيم D مستقيمين متقاطعين يجد مستقيم حيد مار من هذا المستقيم يقطع النقطة يازي في نقطة حيدة ' ' تسمى مسقط نقطة من المستى تعريف )
ة من ي لأ م و ة بي ال ع ج 2 1
ج ا م ع ة ن ا ي ف ا أل م ن ي ة ل ل ع ل و م ا ل ع ر ب ي ة = = =m ^ á _ Â ª ^ = I = } _ s ÿ ^ = ^ È ƒ = I = ø _ ^ = I = fl _ Â ª ^ = I = Ó É _ Î ÿ ^ = = =KÉ ^ Ñ ƒ d = _ s Î = Ñ π ` = f = π à ÿ ^ Ñ g ƒ =
Acceptance Sampling Plans. مقدمة المستهلك.
الباب الخامس ضبط الجودة عن طريق خطط الفحص و عينات القبول Acceptance Sampling Plans د. محمد عيشوني أستاذ مساعد قسم التقنية الميكانيكية - ٢٠٠٤ m_aichouni@yahoo.co.uk مقدمة تقتني الشرآات الصناعية المواد الخام
1 (). ().. : : -. ".() 2 IRBID - 1 AJLOUN AL MAFRAQ AL BALQA MADABA AL KARAK AT TAFILAH AMMAN MAAN AZ ZARQA 3680000.000000 3930000.000000 3940000.000000 3950000.000000 3960000.000000 3970000.000000 3980000.000000
( ) / ( ) ( ) على. لتكن F دالة أصلية للدالة f على. I الدالة الا صلية للدالة f على I والتي تنعدم في I a حيث و G دالة أصلية للدالة حيث F ملاحظات ملاحظات
الا ستاذ محمد الرقبة مراآش حساب التكامل Clcul ntégrl الدال الا صلية (تذآير آل دالة متصلة على مجال تقبل دالة أصلية على. الدالة F هي الدالة الا صلية للدالة على تعني أن F قابلة للا شتقاق على لكل من. F لتكن
( ) تعريف. الزوج α أنشطة. لتكن ) α ملاحظة خاصية 4 -الصمود ليكن خاصية. تمرين حدد α و β حيث G مرجح
. المرجح القدرات المنتظرة استعمال المرجح في تبسيط تعبير متجهي إنشاء مرجح n نقطة 4) n 2 ( استعمال المرجح لا ثبات استقامية ثلاث نقط من المستى استعمال المرجح في إثبات تقاطع المستقيمات استعمال المرجح في حل
و ر ک ش ر د را ن ندز ما ن تا ا س ی یا را
ی ش ه و ژ پ ی- م ل ع ه م ا ن ل ص ف ) ی ا ه ق ط ن م ی ز ی ر ه م ا ن ر ب ( ا ی ف ا ر غ ج 6931 زمستان 1 ه ر ا م ش م ت ش ه ل ا س 7 3 2-9 4 2 : ص ص ی د ن ب ه ن ه پ و ی ن ا ه ج د ی ش ر و خ ش ب ا ت ن ا ز ی م
du R d uc L dt إذن: u L duc d u dt dt d q q o O 2 tc
ة I) التذبذبات الحرة في دارة RCعلى التوالي: ) تعريف: الدارةRCعلى التوالي هي دارة تتكون من موصل أومي مقاومته R ومكثف سعته C ووشيعة مقاومتها r ومعامل تحريضها. تكون التذبذبات حرة في دار RC عندما لا يتوفر
بحيث ان فانه عندما x x 0 < δ لدينا فان
أمثلة. كل تطبيق ثابت بين فضائين متريين يكون مستمرا. التطبيق الذاتي من أي فضاء متري الى نفسه يكون مستمرا..1.2 3.اذا كان f: R R البرهان. لتكن x 0 R و > 0 ε. f(x) = x 2 فان التطبيق f مستمرا. فانه عندما x
Analysis of Variance معين.
١ ١- الغرض من تحليل التباين تحليل التباين Aalyss of Varace دراس ة وتحلي ل أث ر متغي ر أو أآث ر م ن المتغي رات الوص فية Qualtatve عل ى متغي ر آم ي.Quattatve ويك ون م ن أه داف التحلي ل المقارن ة ب ين متوس
Le travail et l'énergie potentielle.
الشغل و الطاقة الوضع التقالية Le travail et l'énergie potentielle. الا ستاذ: الدلاحي محمد ) السنة الا ولى علوم تجريبية (.I مفهوم الطاقة الوضع الثقالية: نشاط : 1 السقوط الحر نحرر جسما صلبا كتلتھ m من نقطة
abs acces acces Sample test results. Actual results may vary. Antioxidants B-Vitamins Minerals Order Today At Results Overview
Order Today At www.accesalabs. Antioxidants B-Vitamins Minerals Vitamin C Pyridoxine - Biotin Vitamin A / Carotenoids Vitamin E / Tocopher α-lipoic A Co T ami B1 cer R bo a n - B2 N acin - B3 Results Overview
Οι 6 πυλώνες της πίστης: Μέρος 6 Πίστη Θειο διάταγμα (Κάνταρ Πεπρωμένο) اإليمان بالقدر. Άχμαντ Μ.Ελντίν
Οι 6 πυλώνες της πίστης: Μέρος 6 Πίστη Θειο διάταγμα (Κάνταρ Πεπρωμένο) الركن السادس من أركان اإليمان بالقدر اإليمان: Άχμαντ Μ.Ελντίν Διπλωματούχος Ισλαμικής Θεολογίας www.islamforgreeks.org Τζαμί «Σάλαφ
Οι 5 πυλώνες της πίστης: Μέρος 2 Πίστη στους αγγέλους
Οι 5 πυλώνες της πίστης: Μέρος 2 Πίστη στους αγγέλους أركان اإلميان - الركن الثاين : اإلميان ابملالئكة Άχμαντ Μ. Ελντίν Διπλωματούχος Ισλαμικής Θεολογίας www.islamforgreeks.org - Τζαμί «Σάλαφ ους Σαάλιχ»
ﻲﻧوﺮﺘﻜﻟﻹا ﻞﯿﻤﻟا : فﺮﻋ
عرف المیل الا لكتروني ج هو مقياس لقابلية الذرة على استقبال الا لكترون اشرح تدرج المیل الا لكتروني في الجدول الدوري ١- في الدورات ٢- في اموعات باستثناء الغازات النبيلة يزداد الميل الا لكتروني بزيادة العدد
ﺔﻴﻭﻀﻌﻟﺍ ﺕﺎﺒﻜﺭﻤﻟﺍ ﻥﻴﺒ ﺕﻼﻴﻭﺤﺘﻟﺍ لﻭﺤ ﺔﻴﺯﻴﺯﻌﺘ ﺔﻗﺎﻁﺒ
بطاقة تعزيزية حول التحويلات بين المركبات العضوية مبتدي ا من الاسيتلين ) الا يثاين ( وضح بالمعادلات الكيمياي ية مع ذكر شروط التفاعل كيف يمكنك س ١ : الحصول على : ( ٣ اسيتات الفينيل ) ( ) الفينول ٢ ميثيل
X 1, X 2, X 3 0 ½ -1/4 55 X 3 S 3. PDF created with pdffactory Pro trial version
محاضرات د. حمودي حاج صحراوي كلية العلوم الاقتصادية والتجارية وعلوم التسيير جامعة فرحات عباس سطيف تحليل الحساسية في البرمجة الخطية غالبا ما ا ن الوصول ا لى الحل الا مثل لا يعتبر نهاية العملية التي استعملت
قوانين التشكيل 9 الةي ر السام ظزري 11/12/2016 د. أسمهان خضور سنستعمل الرمز (T,E) عوضا عن قولنا إن T قانون تشكيل داخلي يعرف على المجموعة E
ظزري 45 قوانين التشكيل 9 11/12/2016 8 الةي ر السام د. أسمهان خضور صاظعن الاحضغض الثاخطغ operation) (the Internal binary تعريف: ا ن قانون التشكيل الداخلي على المجموعة غير الخالية ( E) E يعر ف على ا نه التطبيق.
تمرين 1. f و. 2 f x الجواب. ليكن x إذن. 2 2x + 1 لدينا 4 = 1 2 أ - نتمم الجدول. g( x) ليكن إذن
تمرين تمارين حلل = ; دالتين عدديتين لمتغير حقيقي حيث = + - حدد مجمعة تعريف الدالة - أعط جدل تغيرات لكل دالة من الدالتين - أ) أنقل الجدل التالي أتممه - D ب) حدد تقاطع C محر الافاصيل ( Oi ج ( المنحنيين C
AR_2001_CoverARABIC=MAC.qxd :46 Uhr Seite 2 PhotoDisc :έϯμϟ έϊμϣ ΔϟΎϛϮϟ ˬϲϠϨϴϛ. : Ω έύδθϟ ϰϡϋ ΔΜϟΎΜϟ ΓέϮμϟ
PhotoDisc :. : "." / /. GC(46)/2 ا ول ا ء ا ر ا و ا آ (٢٠٠١ ا ول/د آ ن ٣١ ) آ ر ا د ا و آ ت د ار ا ه ا ا ا آ ر ر أ ا أذر ن آ ا ر ا ا ر ا ر ا ا ة ا ردن آ ا ر ا و أر ا ر ا آ أ ن ا ر ا ا ر أ ا ر آ ر ا رغ
١٤ أغسطس ٢٠١٧ العمليات الحسابية الا ساسية مع الا شع ة ٢ ٥
ح اب الا شع ة (ال هات) ١٤ أغسطس ٢٠١٧ ال ات ٢ الا شع ة ١ ٣ العمليات الحسابية الا ساسية مع الا شع ة ٢ ٥ هندسة الا شع ة ٣ ٩ الضرب التقاطعي - Product) (eng. Cross ٤ ١ ١ الا شع ة يمكننا تخي ل الا عداد الحقيقية
( ) ( ) ( ) - I أنشطة تمرين 4. و لتكن f تمرين 2 لتكن 1- زوجية دالة لكل تمرين 3 لتكن. g g. = x+ x مصغورة بالعدد 2 على I تذآير و اضافات دالة زوجية
أ عمميات حل الدال العددية = [ 1; [ I أنشطة تمرين 1 لتكن دالة عددية لمتغير حقيقي حيث أدرس زجية أدرس رتابة على آل من[ ;1 [ استنتج جدل تغيرات دالة زجية على حيز تعريفها ( Oi ; ; j 1 استنتج مطاريف الدالة إن
=fi Í à ÿ ^ = È ã à ÿ ^ = á _ n a f = 2 k ÿ ^ = È v 2 ح حم م د ف ه د ع ب د ا ل ع ز ي ز ا ل ف ر ي ح, ه ف ه ر س ة م ك ت ب ة ا مل ل ك ف ه د ا ل و
ت ص ح ي ح ا ل م ف ا ه ي م fi Í à ÿ ^ = È ã à ÿ ^ = á _ n c f = 2 k ÿ ^ = È v ك ت ب ه ع ض و ه ي ئ ة ا ل ت د ر ي س ب ا مل ع ه د ا ل ع ا يل ل ل ق ض ا ء ط ب ع و ق ف فا هلل ع ن ا ل ش ي خ ع ب د ا هلل ا جل د
Προσωπική Αλληλογραφία Επιστολή
- Διεύθυνση Κυρ. Ιωάννου Οδ. Δωριέων 34 Τ.Κ 8068, Λάρνακα Ελληνική γραφή διεύθυνσης: Όνομα Παραλήπτη Όνομα και νούμερο οδού Ταχυδρομικός κώδικας, Πόλη. السي د ا حمد رامي ٣٣٥ شارع الجمهوري ة القاهرة ١١٥١١
ﺎﻔﺘﻟﺍ ﻲﻔﻨﺼ ﺭﺎﻤﺜ ﻰﻠﻋ ﺔﺴﺍﺭﺩﻟﺍ ﺕﺫ
مº ملة العلوم الزراعية العراقية 41(6):70-61 2010 المستخلص المعاملة ب والا ضرار الفسلية لثمار التفاح نمير نيب فاضل قسم البستنة وهندسة الحداي ق / كلية الزراعة والغابات امعة الموصل/ العراق سرفراز فتاح البامرني
ATLAS green. AfWA /AAE
مج م و ع ة ا لم ن ت ج ا ت K S A ا إل ص د ا ر ا ل د و ل ي ٠ ١ مج م و ع ة ا لم ن ت ج ا ت ٠ ٣ ج و ھ ر ة( ع د ت خ ص ص ة م TENVIRONMENTALLY FRIENDLY PRODUC ح د د ة م ا ل ھ و ي ة و ا ال ب ت ك ا ر و ا ل ط م و
ا ت س ا ر د ر ا ب غ و د ر گ ه د ی د پ ع و ق و د ن و ر ی ی ا ض ف ل ی ل ح ت ی ه ا ب ل و ت ب ن
ه) د ن س ی و ن ی ش ه و ژ پ ی- م ل ع ه م ا ن ل ص ف ) ی ا ه ق ط ن م ی ز ی ر ه م ا ن ر ب ( ا ی ف ا ر غ ج 7 9 3 1 ن ا ت س ب ا ت 3 ه ر ا م ش م ت ش ه ل ا س 7 9-9 0 1 : ص ص ن ا ت س ا ر د ر ا ب غ و د ر گ ه د ی
)الجزء األول( محتوى الدرس الددراتالمنتظرة
األعداد العقدية )الجزء األل ) 1 ثانية المنصر الذهبي التأهيلية نيابة سيدي البرنصي - زناتة أكا يمية الدار البيضاء الكبرى األعدا القددية )الجزء األل( األستاذ تباعخالد المستى السنة الثانية بكالريا علم تجريبية
پژ م ی عل ام ه ص لن ف
ی ش ه و ژ پ ی- م ل ع ه م ا ن ل ص ف ی ن ا س ن ا ی ا ی ف ا ر غ ج ر د و ن ی ا ه ش ر گ ن 5931 تابستان م و س ه ر ا م ش م ت ش ه ل ا س ی ر ا س ر ه ش ی ی ا ض ف ی د ب ل ا ک ه ع س و ت ل ی ل ح ت و ی س ر ر ب د ا ژ
Εμδεικηικέπ Ημεοήζιεπ Ποξζλήσειπ (Guideline Daily Amounts, GDAs)
Εμδεικηικέπ Ημεοήζιεπ Ποξζλήσειπ (Guideline Daily Amounts, GDAs) Οη Γκδεηθηηθέξ Ημενήζηεξ Πνμζιήρεηξ(Guideline Daily Amounts, GDAs) είκαη έκαξ μδεγόξ γηα ημ ζοκμιηθό πμζό εκένγεηαξ θαη ζνεπηηθώκ μοζηώκ
حركة دوران جسم صلب حول محور ثابت
حركة دوران جسم صلب حول محور ثابت I تعريف حركة الدوران لجسم صلب حول محور ثابت 1 مثال الجسم (S) في حركة دوران حول محور ثابت : النقطتين A و B تتحركان وفق داي رتين ممركزتين على المحور النقطتين M و N المنتميتين
- سلسلة -2. f ( x)= 2+ln x ثم اعط تأويل هندسيا لهاتين النتيجتين. ) 2 ثم استنتج تغيرات الدالة مع محور الفاصيل. ) 0,5
تارين حلل ف دراسة الدال اللغاريتمية السية - سلسلة - ترين ]0,+ [ لتكن f الدالة العددية للمتغير الحقيقي المعرفة على المجال بما يلي f ( )= +ln. (O, i, j) منحنى الدالة f في معلم متعامد ممنظم + f ( ) f ( )
(215) ﺔﻳﺪﻬﳉﺍ ﺕﺍﺮﻳﺎﻌﳌﺍ : ﺮﺸﻋ ﺚﻟﺎﺜﻟﺍ ﻞﺼﻔﻟﺍ يزازﻬﻟا ﷲا دﺑﻋ نﺑ رﻣﻋ د. /دادﻋإ
(215) الفصل الثالث عشر المعايرات الجهدية (216) الفصل الثالث عشر المعايرات الجهدية تعتمد المع ايرات الجھدي ة عل ى تتب ع تغي ر جھ د القط ب الكش اف Electrode) (Indicator المغم ور ف ي محل ول اإللكترولي ت المطلوب
ﻙﻼﻬﺘﺴﻻﺍ ﺩﻴﺸﺭﺘ ﻰﻟﺇ ﻭﻋﺩﻴ ﻡﻼﺴﻹﺍ
الا سلام يدعو ا لى ترشيد الاستهلاك الكفاءة المستهدفة : القدرة على اجتناب السلوكيات غير الرشيدة في الاستهلاك والتزام الاعتدال. المراجع الخاصة بهذا الدرس: المسلم في عالم الاقتصاد. تربية النشء المسلم. دور
تصميم الدرس الدرس الخلاصة.
مو شرات الكفاءة:- يحدد مجال المرا ة المستوية. الدروس التي ينبغي مراجعتها: المتوسط). - الانتشار المستقيم للضوء(من دروس الا رسال الثالث للسنة الا ولى من التعليم - قانونا الانعكاس (الدرس الثالث من ا الا رسال
********************************************************************************** A B
1 : 013/03/ : - - - 04 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.com/site/faresfergani 1
امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية
ثانویة عین معبد المستوى : ثالثة ) تقني ریاضي علوم ( التاریخ: 014/03/06 المدة : 3 ساعا ت التمرين الا ول: (06 ن) امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية في الدارة الكهرباي ية التالية مولد توتره ثابت
BINOMIAL & BLCK - SHOLDES
إ س ت ر ا ت ي ج ي ا ت و ز ا ر ة ا ل ت ع ل ي م ا ل ع ا ل ي و ا ل ب ح ث ا ل ع ل م ي ج ا م ع ة ا ل د ك ت و ر م و ال ي ا ل ط ا ه ر س ع ي د ة - ك ل ي ة ا ل ع ل و م ا ال ق ت ص ا د ي ة ا ل ت س ي ي ر و ا ل ع ل
م ح ق ق س ا خ ت ه () ک ا ر ش ن ا س- ف ص ل ن ا م ه ر ه ب ر ی و م د ي ر ي ت آ م و ز ش ي د ا ن ش گ ا ه آ ز ا د ا س ال م ي و ا ح د گ ر م س ا ر س ا ل ه ش ت م. ش م ا ر ه 1 ب ه ا ر 3 9 3 1 ص ص -8 6 1 1 3 4 1
( ) ( ) [ [ ( ) ( ) ( ) =sin2xcosx ( ) lim. lim. α; ] x حيث. = x. x x نشاط 3 أ- تعريف لتكن. x نهاية l في x 0 ونرمز لها ب ب- خاصية نهاية على اليمين في
الاشتقاق تطبيقاته دراسة الدال www.woloj.com - الاشتقاق في نقطة- الدالة المشتقة ( A أنشطة نشاط باستعمال التعريف ادرس اشتقاق الدالة في حدد العدد المشتق في إن جد ثم حدد معادلة المماس أ نصف المماس لمنحنى الدالة
الوحدة 04 الدرس الشكل - 2. E pp. E : Energie, p : potentielle, p : (de) pesanteur. P r. F r. r P. z A إلى. z B. cb ca AB AB
المستوى : السنة الثانية ثانوي الطاقة الكامنة الوحدة 4 حسب الطبعة 3 / للكتاب المدرسي GUZOURI Lycée aaal Oan ماذا يجب أن أعرف حتى أقول : إني استوعبت هذا الدرس - يجب أن أعرف مدلول الطاقة الكامنة الثقالية
مادة الرياضيات 3AC أهم فقرات الدرس (1 تعريف : نعتبر لدينا. x y إذن
أهم فقرات الدرس معادلة مستقيم مادة الرياضيات _ I المعادلة المختصرة لمستقيم غير مواز لمحور الا راتيب ( تعريف ; M ( التي تحقق المتساوية m + هي مستقيم. مجموعة النقط ( المتساوية m + تسمى المعادلة المختصرة
-1 المعادلة x. cosx. x = 2 M. و π. π π. π π. π π. حيث π. cos x = إذن حيث. 5π π π 5π. ] [ 0;π حيث { } { }
الحساب المثلثي الجزء - الدرس الا ول القدرات المنتظرة التمكن من تمثيل وقراءة حلول معادلة أو متراجحة مثلثية على عدد الساعات: 5 الداي رة المثلثية الدورة الثانية k k I- المعادلات المثلثية cos x = a - المعادلة
الا متحان الوطني الموحد ) الدورة الا ستدراآية 2008) مسلك علوم الحياة والا رض+ التصحيح التمرين الا ول: ) 4 نقط ( http://www.dafatir.com http://svtlycee.21.forumer.com/ تعتبر جزيي ة ATP مصدرا طاقيا يستعمل
3005 تحضير 7.7 -ثناي ي آلوروبايسايكلو 1,4, صفر, هبتان (7.7 دايكلورونورآارين ( من الهكسين الحلقي
3005 تحضير 7.7 -ثناي ي آلوروبايسايكلو 1,4, صفر, هبتان (7.7 دايكلورونورآارين ( من الهكسين الحلقي + CHCl 3 NaOH tri-n-propylamine CCl 2 + HCl C 6 H 10 (82.1) (119.4) NaOH C 9 H 21 N C 7 H 10 Cl 2 (40.0)
**********************************************************************************
1 : 013/03/ : - - - 04 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.com/site/faresfergani تاريخ
Α Εκπαιδευτική Περίοδος Ακαδημαϊκού Έτους 2016/2017 Πανεπιστημίου Αλεξανδρείας Αιγύπτου Μάθημα Επιλογής Β Τάξης του Τμήματος Ελληνορωμαϊκών Σπουδών
ا ب ارا Coursebook - Explaining the Intro of the 2 ح Συντονισμός & Διδασκαλία: Μιχάλης Γ. Σολομωνίδης Σελίδα: 1/ مفاهيم تمهيدية - Έννοιες Εισαγωγικές الصوتيات): ٢ با نه العلم الخاص بدراسة الا صوات اللغويةمن
[ ] [ ] ( ) ( ) ( ) ( ) ( ) I و O B بالنسبة ل AC) ( IO) ( بالنسبة C و S M M 1 -أنشطة: ليكن ABCD معين مرآزه O و I و J منتصفي
O ( AB) تحيلات في المستى القدرات المنتظرة - التعرف على تقايس تشابه الا شكال استعمال الا زاحة التحاآي التماثل. - استعمال الا زاحة التحاآي التماثل في حل مساي ل هندسية. [ AD] التماثل المحري التماثل المرآزي
الكتاب الثاني الوحدة 07. q q (t) dq R dq q الدرس الثاني : الاهتزازات الكهرباي ية الدرس حالة تفريغ المكث فة. (2) عند. t = 0 اللحظة.
GUZOUR Aek Maraval Oran الكتاب الثاني الوحدة 7 التطورات غير الرتيبة التطو رات الا هتزازية الدرس الثاني الاهتزازات الكهرباي ية أفريل 5 ما يجب أن أعرفه حتى أقول إني استوعبت هذا الدرس وعدم دورية يجب أن أعرف
ANTIGONE Ptolemaion 29Α Tel.:
Ενημερώσου για τα τις δράσεις μας μέσα από τη σελίδα του 123help.gr και κάλεσε στο 2310 285 688 ή στείλε email στο info@antigone.gr για περισσότερες πληροφορίες. Get informed on ANTIGONE s activities through
( ) ( ) ( OPMQ) ( ) المستقيم في المستوى 1- معلم إحداثيتا نقطة و و ( ) أفصول و. y أآتب الشكل مسقط M على ) OI (
المستقيم في المستى القدرات المنتظرة *- ترجمة مفاهيم خاصيات الهندسة التالفية الهندسة المتجهية باسطة الاحداثيات *- استعمال الا داة التحليلية في حل مساي ل هندسية. I- معلم مستى احداثيتا نقطة تساي متجهتين شرط
أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي
أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي 4102 4102 تذكر أن :1- قانون نيوتن الثاني : 2- في حال كان الجسم متزن أو يتحرك بسرعة ثابتة أوساكن فإن
Εισαγωγή στη Διατροφή
Εισαγωγή στη Διατροφή Ενότητα 10η ΑΝΟΡΓΑΝΑ ΣΥΣΤΑΤΙΚΑ Όνομα καθηγητή: Μ. ΚΑΨΟΚΕΦΑΛΟΥ Όνομα καθηγητή: Α. ΖΑΜΠΕΛΑΣ Τμήμα: Επιστήμης τροφίμων και διατροφής του ανθρώπου ΣΤΟΧΟΙ ΤΟΥ ΜΑΘΗΜΑΤΟΣ Στόχος (1): Η παρουσίαση
( ) ( ) 27,5.10 1,35.10 = 5, = 0,3. n C V mol ( ) M NaHCO max. n( CO ) n CO. 2 exp 2. Page 1
الكيمياء صحيح الفرض المنزلي 01 السنة الثانية علوم فيزياي ية 1 نوع التفاعل : تفاعل حمض قاعدة. التعليل : لا ن حمض الا يثانويك آحمض برونشتد قادر على إعطاء بروتون + H و أيون هيدروجينو آربونات آقاعدة برونشتد
( ) ( ) ( ) ( ) تمرين 03 : أ- أنشيء. ب- أحسب ) x f ( بدلالة. ب- أحسب ) x g ( تعريف : 1 = x. 1 = x = + x 2 = + من x بحيث : لتكن لكل. لكل x من.
عمميات حل الدال العددية السنة الا لى علم تجريبية علم رياضية تذآير : إشارة دالة تا لفية ثلاثية الحدد طريقة المميز المختصر ( 4 ): ( ) I- زجية دالة عددية : -( أنشطة : تمرين 0 : أدرس زجية الدالة العددية في
با نها خماسية حيث: Q q الدخل. (Finite Automaton)
الخامس الفصل اللغات الصورية والا وتومات A = Q F Σ Fnte Automaton 1. الا وتومات المنتهي تعريف: نعر ف "الا وتومات المنتهي" حيث: با نها خماسية Q: مجموعة منتهية من الحالات. Q ندعوها الحالة الابتداي ية. Q وندعوها
R f<å< Úe ãñ Úe nü êm åø»ò Úe. R núe êm oòaúe Àg»ò Úe Rãûe Úe óè»ò Úe Ãóå e nü»ò Úe : / م
لمشايخ الحقيقة أقطاب الطريقة: R f
التمرين األول: )80 نقاط( - 1 أ- إيجاد الصيغ نصف المفصلة للمركبات:. M 1 D C B A 3,75 B: CH 3 CH 2 CH 3 C CH 3 A: CH 3. C: CH 3 CH CH 3 Cl CH CH CH 3
بكالوراي ال د و ر ة االسحثنائية: الشعبة: تقين رايوي املدة: 4 سا و 4 د عناصر اإلجابة )الموضوع األول( مج أزة م ج م و ع,5 التمرين األول: )8 نقاط( -I - أ- إيجاد الصيغ نصف المفصلة للمركبات:. M D B A A: H H
األستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية
http://benmoussamathjimdocom/ 55:31 5342-3-41 يم السبت : األستاذ: بنمسى محمد ثانية: عمر بن عبد العزيز المستى: 1 علم رياضية إحداثيات نقطة بالنسبة لمعلم - إحداثيات متجهة بالنسبة ألساس: األساس المعلم في الفضاء:
الخلاصة المقدمة والمخلات.
المساحة المثلى لمزارع البيوت البلاستيكية لمحصول الخيار في محافظة صلاح الدين للموسم الا نتاجي.2010 حسن ثامر زنزل السامراي ي قسم الاقتصاد والا رشاد الزراعي - آلية الزراعة - جامعة تكريت الخلاصة يهدف هذا البحث
ت خ ی م آ ر ص ا ن ع ز ا ن ا گ د ن ن ک د ی د ز ا ب ی د ن م ت ی ا ض ر ی س ر ر ب د
ه ت خ م آ ر ص ا ع ز ا ا گ د ک د د ز ا ب د م ت ا ض ر س ر ر ب د ال م ج ر ب ر گ ش د ر گ ب ا ر ا ز ا ب خالر امر ا ر ا ا ر ه ت ا ر ه ت ه ا گ ش ا د ت ر د م ه د ک ش ا د ا گ ر ز ا ب ت ر د م ه و ر گ ر ا د ا ت س
1/ الزوايا: المتت امة المتكاملة المتجاورة
الحصة األولى الز وايا القدرات المستوجبة:* تعر ف زاويتين متكاملتين أو زاويتين متتام تين. * تعر ف زاويتين متجاورتين. المكتسبات السابقة:تعريف الزاوية كيف نستعمل المنقلة لقيس زاوية كيف نرمز للزاوية 1/ الزوايا:
MANAGING AUTHORITY OF THE OPERATIONAL PROGRAMME EDUCATION AND INITIAL VOCATIONAL TRAINING
MINISTRY OF NATIONAL EDUCATION AND RELIGIOUS AFFAIRS MANAGING AUTHORITY OF THE OPERATIONAL PROGRAMME EDUCATION AND INITIAL VOCATIONAL TRAINING EUROPEAN COMMUNITY Co financing European Social Fund (E.S.F.)
ن ا ر ا ن چ 1 ا ی ر و ا د ی ل ع د م ح م ر ی ا ف و ی د ه م ی
ه) ع ل ا ط م ی ش ه و ژ ی-پ م ل ع ه م ا ن ل ص ف ) ی ا ه ق ط ن م ی ز ی ر ه م ا ن ر ب ( ا ی ف ا ر غ ج 1396 بهار 2 ه ر ا م ش م ت ف ه ل ا س 111 132- ص: ص ي ر گ ش د ر گ ي ت م ا ق ا ز ك ا ر م د ا ج ي ا ی ا ر
Πρόταση αλλαγής μέγιστων επιτρεπόμενων ορίων μικροθρεπτικών στοιχείων σε συμπληρώματα διατροφής
Πρόταση αλλαγής μέγιστων επιτρεπόμενων ορίων μικροθρεπτικών στοιχείων σε συμπληρώματα διατροφής ΕΘΝΙΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΦΑΡΜΑΚΩΝ Τμήμα Ε Προϊόντων Ειδικής Διατροφής, Συμπληρωμάτων Διατροφής ΕΙΣΑΓΩΓΙΚΑ Τα συμπληρώματα
ثناي ي القطبRL (V ) I (A) 0,1 0,2 0,3 0,4 0,5 0,6
ثناي ي القطب التوجيهات: I التوتر بين مربطي الوشيعة : 1) تعريف الوشيعة : الوشيعة ثناي ي قطب يتكون من أسلاك النحاس ملفوفة بانتظام حول اسطوانة عازلة ( واللفات غير متصلة فيما بينها لا ن الا سلاك مطلية بمادة
2) CH 3 CH 2 Cl + CH 3 O 3) + Br 2 4) CH 3 CHCH 3 + KOH.. 2- CH 3 CH = CH 2 + HBr CH 3 - C - CH C 2 H 5 - C CH CH 3 CH 2 OH + HI
اكتب الناتج العضوي في كل من التفاعلات الا تية : 5 مساعد (400-300) س C + 2H عامل 2. ضوء CH 4 + Cl 2 CH 3 NH 2 + HCl أكتب صيغة المركب العضوي الناتج في كل من التفاعل الا تية : 2) CH 3 CH 2 Cl + CH 3 3) +
. Solanum tuberosum L. المستخلص
تا ثير ملوحة مياه الري والرش ب (البرولين والارجنين) في نمو وحاصل البطاطا. Solanum tuberosum L. محمد سلمان محمد صبيح عبد الوهاب الحمداني* *أستاذ قسم البستنة و هندسة الحداي ق آلية الزراعة جامعة ديالى جمهورية
Isomorphism-invariants and their applications in testing for isomorphism between finitely presented groups
014 مجلة جامعة دمشق للعلوم الا ساسية المجلد (30) العدد الثاني الصفات الثابتة بالتماثل وتطبيقها في التحقق من تماثل الزمر منتهية التمثيل () (1) نضال جبيلي و عبد اللطيف هنانو تاريخ الا يداع 013/03/5 قبل للنشر
منى جايد العيداني قسم الفيزياء - كلية العلوم /جامعة البصرة ISSN
مجلة أبحاث البصرة(العلميات) العدد الثاني والثالثون, الجزء الثالث - (00) استقرارية الصفات الضوي ية لاغشية CdS:Al المحضرة بطريقة الرش الكيمياي ي الحراري قسم الفيزياء - كلية العلوم /جامعة البصرة ISSN 87-95
تايضاير و مولع يئاهن Version 1.1 اي ل
ر ي ا ض ي ا ت نهائي علم Version أ ج ل م ن ب د ا ي ة ح س ن ة ك م ا ل ح ا م د ي 0 الدرجة الثانية... عمميات على الدال... 3 قاعد احلساب على املتباينات... تطبيقات...6 a مع 0 p() = a + b + c p() = a [( + b )
Personal عزيزي فادي ا بي العزيز \ ا مي العزيزة خالي \ عمي كمال العزيز مرحبا يا فادي ا هلا يا فادي فادي عزيزي \ عزيزتي
- Opening عزيزي فادي Informal, standard way of addressing a friend ا بي العزيز \ ا مي العزيزة Informal, standard way of addressing your parents Αγαπητέ Ιωάννη, Αγαπητέ πατέρα / Αγαπητή μητέρα, خالي \ عمي
بسم اهلل الرمحن الرحيم
مدونة أ. محمد فياض للفيزياء mfayyad03.blogspot.com بسم اهلل الرمحن الرحيم الوحدة األوىل : كمية التحرك اخلطي الفصل األول : كمية التحرك اخلطي والدفع ي عر ف الطالب كال من كمية التحرك والدفع ومتوسط قوة الدفع..
الشروط والا حكام: اتصالات الجهة المنظمة: اتصالات مصر 1- المدة والمشاركة
الشروط والا حكام: اتصالات تمديد فترة النصف "رحلة مسابقة مليون" الجهة المنظمة: اتصالات مصر 1- المدة والمشاركة 1.1 مسابقة رحلة النصف مليون" هي خدمة مبنية على الرساي ل القصيرة وتحت ا شراف وزارة التضامن الاجتماعي
ج ن: روحا خل ل ب وج یم ع س ن
ک ت ک ج ک ک ره ب ب وس ت ج ن: روحا خل ل ب وج یم ع س ن فهرست ر و و وش 20 21 22 23 24 رت ر د داری! ر ر ر آ ل 25 26 27 28 28 29 ای ع 30 ا ارد ط دی ن وش 34 36 37 38 39 ذوب ن ر گ آ گ ۀ آب اران ع م و د ل 40 41
التطورات الرتيبة الوحدة 05 التمرين 27 : النظام الانتقالي : النظام الداي م. 10 m/s. من البيان τ = 1 s. t (s) التمرين 28 P= = 44, , 445 Π= ρ = =
-i الكتاب الا ول التطورات الرتيبة الوحدة 5 تطور جملة ميكانيكية تمارين الكتاب GUEZOURI Aek lycée Maraal - Oran ( / ) التمرين 7 حسب الطبعة الشكل المعطى في الكتاب يوافق دافعة أرخميدس مهملة وقوة الاحتكاك للكتاب
د ا ر م د و م ح م ر ی ا ر ی ح ب د ی م ح ن ن ا م ر ه ق ا ر ا س د
ه) ع ل ا ط م ی ی ا ت س و ر ی ا ه ه ا گ ت ن و ک س ی د ب ل ا ک ی ه ع س و ت ر ب م و د ی ا ه ه ن ا خ ش ق ن ) ک ن و ی ا ت س و ر م ر ی م س ن ا ت س ر ه ش : ی د ر و م 1 ی د ا ر م د و م ح م ر و ن م ا ی پ ه ا گ
ءﺎﺼﺣﻹا ﻒﻳرﺎﻌﺗ و تﺎﺤﻠﻄﺼﻣ - I
الا حصاء I - I مصطلحات و تعاريف - الساآنة الا حصاي ية: الساآنة الا حصاي ية هي المجموعة التي تخضع لدراسة إحصاي ية وآل عنصر من هذه المجموعة يسمى فردا أو وحدة إحصاي ية. ميزة إحصاي ية أو المتغير الا حصاي ي:
ر گ ش د ر گ ت ع ن ص ة ع س و ت ر ب ن آ ش ق ن و ی ی ا ت س و ر ش ز ر ا ا ب ت ف ا ب ی ز ا س ه ب )
ی ش ه و ژ یپ م ل ع ه م ا ن ل ص ف ) ی ا ه ق ط ن م ی ز ی ر ه م ا ن ر ب ( ا ی ف ا ر غ ج 1396 بهار 2 ه ر ا م ش م ت ف ه ل ا س 191 209 ص: ص ی ر گ ش د ر گ ت ع ن ص ة ع س و ت ر ب ن آ ش ق ن و ی ی ا ت س و ر ش ز ر
مثال: إذا كان لديك الجدول التالي والذي يوضح ثلاث منحنيات سواء مختلفة من سلعتين X و Yوالتي تعطي المستهلك نفس القدر من الا شباع
- هذا الا سلوبعلى أنه لا يمكن قياس المنفعة بشكل كمي بل يمكن قياسها بشكل ترتيبي حسب تفضيلات المستهلك. يو كد و يقوم هذا الا سلوب على عدد من الافتراضات و هي:. قدرة المستهلك على التفضيل. -العقلانية و المنطقية.
الملخص مقدمة. من الطرق هما الطرق المباشرة Direct methods. Lamotte وBourliere (1975) حيث اعتبرا أن. متقاربة,convergent بينما تتميز طريقة Ben
ا مكانية استخدام نظرية التقريبات المتعاقبة لتحليل مقاييس النمو الطولي للا سماك خير الدين ولد محمد عبد االله * الملخص تتضمن هذه الدراسة عرضا و تطبيقا لا مكانية استخدام نظرية التقريابت المتعاقبة successive
Noyau,masse et énergie
النوى الكتلة والطاقة Noyau,masse et énergie I التكافو "آتلة طاقة" علاقة إنشتاين توصل العالم إنشتاين من خلال الميكانيك النسبوية الخاصة سنة 905 م إلى أن هناك تكافو بين الكتلة والطاقة. تمتلك آل مجموعة آتلتها
الهندسة ( )( ) مذكرة رقم 14 :ملخص لدرس:الجداءالسلمي مع تمارين وأمثلةمحلولة اھافواراتاة ارس : ( ) ( ) I. #"ر! :#"! 1 :ااءا&%$: v
الهندسة مذكرة رقم :ملخص لدرس:الجداءالسلمي مع تمارين أمثلةمحللة اھافاراتاة ارس : EFiEG EF EG ( FEG) 6 EF EG ( FEG) 6 FEG 6 ( FEG ) 6 I. #"ر! :#"! :ااءا&%$: u u : اى.( ) H ا ادي C ا u ا#اءا! ھا#د ا! ا(ي
ا عداد ا شراف د.عصام احمد الخطيب
جامعة النجاح الوطنية كلية الدراسات العليا دراسة وباي ية حول ا ثر المياه على الصحة في محافظة طوباس ا عداد بكر ابو حجلة ا شراف د. يحي فيضي د.عصام احمد الخطيب قدمت هذه الدراسة استكما لا لمتطلبات درجة الماجستير
توازن الذخل المومي الفصل الرابع أ. مروه السلمي
1 توازن الذخل المومي الفصل الرابع 2 سنتعرف ف اآلت : على الفصل هذا توازن الدخل القوم التوازن ف جانب الطلب ف االقتصاد أثر التغ ر ف األسعار على توازن الدخل التوازن والتوظف الكامل - الفجوة االنكماش ة - الفجوة