Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ""

Transcript

1 الا متحان الوطني الموحد ) الدورة الا ستدراآية 2008) مسلك علوم الحياة والا رض+ التصحيح التمرين الا ول: ) 4 نقط ( تعتبر جزيي ة ATP مصدرا طاقيا يستعمل مباشرة في النشاط الخلوي غير أن الخلايا لا تتوفر إلا على آميات ضعيفة من هذه الجزيي ة مما يتطلب تجديدها باستمرار. بين من خلال عرض واضح ومنظم آيف يتم إنتاج ATP بواسطة التنفس وآيف يتم استعمالها أثناء التقلص العضلي. ملحوظة: لا تضمن عرضك التفاعلات الكيمياي ية.اقتصر على المراحل الا ساسية بالنسبة للتنفس مع إعطاء نواتج هذه المراحل. عناصر الا جابة: تستمد الخلية الطاقة الضرورية لنشاطها مباشرة من جزيي ة ATP ولضمان استمرار هذا النشاط تقوم الخلية بتجديد ATP انطلاقا من الطاقة الكامنة في المواد العضوية المستهلكة والتي يعتبر سكر الكليكوز أفضل المستقلبات المستهلكة لهذا الغرض.من بين طرق استهلاك المستقلب وإنتاج : ATP التنفس وهي طريقة هواي ية تتم عبر مراحل وتهدف إلى إنتاج نجد ATP آيف يتم إنتاج ATP بواسطة التنفس ( 2,5 ن) يبدأ هدم الكليكوز في الجبلة الشفافة من خلال تفاعل الانحلال Glycolyse حيث تخضع جزيي ة الكليكوز إلى انتزاع الهيدروجينات مما ينتج عن ذلك اختزال النواقل وإنتاج ATP.انحلال الكليكوز يعطي الحمض البيروفيك. تستمر عملية الهدم داخل الميتوآندري على مستوى المتاريس حيث يخضع الحمض البيروفيك تدريجيا إلى انتزاع الهيدروجين والكربون عن طريق دورة Krebs ينتج عن ذلك اختزال النواقل ) + NAD و + FAD ( وانتاج ATP وتحرير ثناي ي أوآسيد الكربون ) 2 ). CO تحتاج تفاعلات دورة Krebs إلى النواقل في حالتها المو آسدة بفضل ثناي ي الا وآسجين 0 2 تتم عملية أآسدة النواقل على مستوى السلسلة التنفسية مما يضمن استمرار تفاعلات Krebs ينتج عن ذلك إنتاج آمية مهمة من ATP مع استهلاك O 2 وتحرير الماء ) O.( H 2 آيف يتم استعمال ATP أثناء التقلص العضلي ( 1,5 ن ( تشكل جزيي ة ATP من خلال الروابط الفسفورية خزان يدخر آمية آبيرة من الطاقة يمكن للخلية استعمالها مباشرة في نشاطها بالنسبة للليف العضلي فكيف تستعمل هذه الطاقة أثناء التقلص بعد تثبيت ATP على رؤوس الميوزين وبفعل تنشيط هذا الا خير الذي يلعب دور الحافز المو دي إلى حلما ة ATP ينتج عن ذلك تحرير الطاقة. ينتج عن حلما ة ATP تحرير الطاقة اللازمة لانزلاق خييطات الا آتين حول خييطات الميوزين. التمرين الثاني: ) 8 ن ( للحصول على نباتات مزهرة ذات جودة عالية وسهلة التسويق يتم اللجوء إلى تقنيتي التهجين والا نتقاء الا صطناعي. أ تقنية التهجين: نبحث عبر هذه التقنية عن الحصول على زهيرات ) rosacées ( تزهر عدة مرات في السنة وذات أزهار وردية.من أجل ذلك تم إنجاز التزاوجين الا تيين: التزاوج الا ول: بين سلالة P 1 تزهر مرة واحدة في السنة وتعطي أزهارا حمراء وسلالة P 2 تزهر عدة مرات في السنة وتعطي أزهارا بيضاء تم الحصول على جيل F 1 مكون من نباتات آلها لا تزهر إلا مرة واحدة في السنة وتعطي أزهارا وردية. التزاوج الثاني: بين سلالة P 2 وسلالة هجينة F 1 فتم الحصول على النتاي ج التالية: 248 نبتة تزهر مرة واحدة في السنة وتعطي أزهارا بيضاء. 253 نبتة تزهر مرة واحدة في السنة وتعطي أزهارا وردية. 249 نبتة تزهر عدة مرات في السنة وتعطي أزهارا بيضاء. 250 نبتة تزهر عدة مرات في السنة وتعطي أزهارا وردية. ( 1 بناء على نتاي ج التزاوجين الا ول والثاني حدد معللا إجابتك الا نماط الوراثية للا بوين ولا فراد الجيل. F 1 ) 1,75 ت ن) استعمل الرموز التالية: B و b بالنسبة للحليل المسو ول عن اللون الا بيض. R و r بالنسبة للحليل المسو ول عن اللون الا حمر.

2 I و i بالنسبة للحليل المسو ول عن الا زهار مرة واحدة في السنة. M و m بالنسبة للحليل المسو ول عن الا زهار عدة مرات في السنة. ( 2 فسر باستعمال شبكة التزاوج نتاي جالتزاوج الثاني. ) 1,5 ن) ( 3 إذا آان الهدف هو الحصول على نسبة مهمة من النباتات التي تزهر عدة مرات في السنة وذات أزهار وردية بين باعتبار المعطيات السابقة آيف ذلك( 0,75 ن) ب تقنية الانتقاء الاصطناعي: نريد من خلال تطبيق هذه التقنية الحصول على نوع معين من النباتات المزهرة ذات أزهار بسويقات طويلة ) شمراخ طويل ) ونقدم فيما يلي مرحلتي هذه التقنية: المرحلة الا ولى: زرعت بذور نوع معين من النباتات المزهرة فتم الحصول على جماعة أولى. G 1 يمثل المبيان جانبه نتاي ج القياس الا حياي ي لطول سويقات أزهار هذه الجماعة. المرحلة الثانية: نظرالكون أغلب الا زهار المحصل عليها في الجماعة G 1 يصعب تسويقها لقصر سويقاتها تم انتقاء نباتات القسم (الفي ة) 75 cm 70 وإخضاعها للا خصاب الذاتي وتم الحصول على جماعة ثانية G 2.ويعطي الجدول الا تي النتاي ج المحصل عليها طول السويقات ب cm (وسط الفي ات) عدد الا زهار المنوال واحسب المعدل الحسابي و الانحراف النمطي المعياري ومجال الثقة: ) التردد ( 4) حدد ] σ [ X σ, X + ) 1,25 ن.( نعطي صيغة الانحراف المعياري: ( 5 مثل على ورقة تحريرك نتاي ج هذا الانتقاء بواسطة مضلع الترددات ثم ضع عليه آل من المنوال والمعدل الحسابي والانحراف النمطي المعياري ومجال الثقة.( 1,25 ن) ( 6 بين من خلال مقارنة المنوال ومجال الثقة عند الجماعتين G 1 و G 2 أن الانتقاء فعال. ) 1,5 ن ( عناصر الا جابة: ( 1 لاحظ أننا نتتبع انتقال زوجين حليليين مما يعني أن الا مر يتعلق بحالة هجونة ثناي ية.لاحظ آذلك أن أفراد الجيل F 1 بالنسبة للتزاوج الا ول متجانسون بالنسبة للصفتين معا مما يدل عن نقاوة الا بوين بالنسبة للصفتين. بالنسبة لصفة الا زهار لاحظ أن مظهر F 1 يشبه مظهر أحد الا بوين مما يدل عن وجود السيادة الحليلية المطلقة:الحليل المسو ول عن الا زهار مرة واحدة ساي د نرمز له ب I.الحليل المسو ول عن الا زهار عدة مرات في السنة متنحي نرمز له ب. m بالنسبة للمورثة المسو ولة عن لون الزهور لاحظ أن مظهر F 1 وسيط بين المظاهر الا بوية مما يدل على أن الحليلين متساويي السيادة. Allèles codominants نرمز للحليل المسو ول عن الللون الا حمر ب R وللحليل المسو ول عن اللول الا بيض ب. B ) 0,5 ن ( لاحظ أن التزاوج الراجع (التزاوج الثاني ( أعطى جيل متنوع مكون من مظهرين خارجيين أبوين ومظهرين جديدي الترآيب بنسب متقاربة مما يدل على أن الحليلات خضعت لتخليط حليلي بيصبغي أثناء الا نفصالية 2 وهذا يو آد أن الا نفصال الحليلي تم بشكل عشواي ي ومستقل ) القانون الثالث ل ( Mendel :المورثتين المدروستين مستقلتين.( 0,5 ن)

3 باستثمار الاستنتاجات السابقة لن تجد صعوبة في تحديد الا نماط الوراثية المطلوبة: بالنسبة للا بوين : 1. I //I.R//R : P. m//m,b//b : P 2 بالنسبة لا فراد الجيل. I//m,R//B : F 1 ) 0,75 ن ( ( 2 تعلم أن المورثتين مستقلتين وحيث أن أفراد الجيل F 1 مختلفو الاقتران وبفعل التخليط الحليلي البيصبغي سينتج آل واحد منهم 4 أصناف من الا مشاج بنسب متكافي ة على النحو التالي: B I :25% R m :25% B m :25% R I :25% أفراد P 1 متشابهو الا قتران وبالتالي سينتجون نوعا واحدا من الا مشاج : m B بنسبة 100% ) 0,5 ن ( تكون الشبكة المطلوبة إدن على الشكل التالي: R m R//B,m//m R I R//B,I//m B m B//B,m//m B I B//B,I//m الا مشاج B m 25%[RB,m ] 25%[RB,I ] 25%[ B,m ] 25%[ B,I ] هذه النتاي ج آما تلاحظ مطابقة للنتاي ج التجريبية المحصل عليها. ) 1 ن ( ( 3 من أجل الحصول على نباتات بزهور وردية وتزهر عدة مرات في السنة ننجز الا خصاب الداتي عند نباتات R//B,m//m دات مظهر خارجي ] RB,m ](تزهر عدة مرات في السنة وزهور وردية. ] RB,m [ RB,m ] X [ 50% B m R//B,m//m 50% R m R//R,m//m الا مشاج 50% R m B//B,m//m R//B,m//m 50% B m يتم الحصول عند آل جيل على 50% من نباتات ذات المظهر الخارجي ] RB,m [ وهي نسبة مهمة مقارنة مع بقية التزاوجات. ) 0,75 ن ( 4 الثوابت المتعلقة بالتوزيع المدروس هي آالتالي: المنوال: يعبر عن قيمة المتغير(هنا طول السويقات ( المناسب لا آبر قيمة التردد. هنا لاحظ أن أآبر قيمة التردد(عدد الا زهار) هي 150 وقيمة المتغير المناسب 63 إدن المنوال هو.(0,25 63 ن) Xifi المعدل الحسابي ) X ( يحسب بالصيغة التالية: X= أي =61, = X= 0,25) 48x40+53x68+58x88+63x150+68x88+73x55 ن ( n X σ = 61,5 7 = 34,5 الانحراف النمطي المعياري: 7σ= ) 0,5 ن) مجال الثقة: = 68, ,5 = σ Xو + نحصل على: ] 68,5 54,5 [ ) 0,25 ن ( ( 5 التمثيل البياني لنتاي ج الانتقاء:( 1,25 ن ( المنوال = 63 σ = 7 X=61,5 المنوال = 63

4 ( 6 يلاحظ أن منوال العينة قبل الانتقاء هو 48cm,العينة المنتقات لها منوال يساوي. 68cm نستنتج من هذا أن النباتات الا آثر تردد تعطي عددا مرتفعا من الا زهار ذات سويقات طويلة مقارنة مع العينة الا ولى(+ 20 ( بالنسبة للجماعة الا ولى: المعدل الحسابي يساوي 49,6 و 10=σ يعني أن 68% من أفراد الجماعة الا ولى تعطي أزهارا بسويقات تتراوح ما بين ] 59,6 [ 39,6, بالنسبة للجماعة المنتقات يظهر مجال الثقة أن 68% من الا فراد تعطي أزهارا بسويقات تتراوح ما بين ] 68,5 [ 54,5, أي ارتفاع نسبة النباتات التي تعطي أزهار بسوقيات طويلة مما يدل على أن ) 1,5 ن ( الانتقاء فعال. التمرين الثالث: (4 نقط) من المعلوم أنمرض السيدا لا يظهر عند الشخص إلا بعد مدة معينة من إصابته.لتعرف ألية استجابة الجهاز المناعي إثر الا صابة بفيروس VIH أثناء فترة ما قبل السيدا نقترح المعطيات الا تية: خلال فترة ما قبل السيدا التي تلي الا صابة بالفيروس يظل الجهاز المناعي للشخص المصاب نشيطا.تبين الوثيقة 1 تطور آل من الحمولة الفيروسية (آمية VIH في البلازما ( وتطور الاستجابة المناعتية الموجهة ضده. ( 1 استخرج من الوثيقة 1 ما يبين تنشيط الجهاز المناعي عند الشخص المصاب.( 0,5 ن) تبين الوثيقة 2 تثبيت فيروس VIH على غشاء اللمفاوية T4 وحقن محتواه داخلها.

5 ( ن 2 من أجل تتبع تكاثر فيروس VIH داخل لمفاوية ( LT4 ) T4 حضنت هذه اللمفاويات خلال 20mn في وسطين مختلفين الوسط 1 به مضادات أجسام نوعية للمستقبل CD4 والوسط 2 به مضادات أجسام غير نوعية لهذا المستقبل.بعد ذلك أضيف للوسطين فيروس VIH ذي ناسخ عكسي موسوم (أنزيم).تبين الوثيقة 3 نتاي ج تتبع قياس آمية هذا الا نزيم داخل اللمفاويات T4 في الوسطين. ( 2 فسر بتوظيف معطيات الوثيقة 2 النتاي ج الممثلة في الوثيقة 3.( 1,5 ن) ( 3 علما أن آلا من اللمفاويات T4 (الحاملة للمستقبل ( CD4 و T8 (الحاملة للمستقبل ) CD8 والبلعميات تتدخل في الا ستجابة المناعية ضد فيروس VIH وبناء على معطيات الوثاي ق 1 و 2 و 3 فسر ألية الاستجابة المناعية ضد فيروس VIH خلال فترة ما قبل السيدا( عناصر الا جابة: ( 1 تعلم أن من بين مظاهر الاستجابة المناعية إنتاج مضادات أجسام وارتفاع نسبة اللمفاويات لاحظ من خلال الوثيقة 1 انه بعد مدة من دخول الحمة وفور ارتفاع الحمولة الفيروسية ترتفع نسبة اللمفاويات Tcالموجهة ضد الخلايا المعفنة بالحمة آما يلاحظ ارتفاع نسبة مضادات أجسام ضد VIH مما يدل عن حدوث استجابة مناعية ضد الحمة ).VIH 0,5 ن ( ( 2 من خلال الوثيقة 2 يتضح أن الحمة تتطفل على LT4 بفضل قابلية البروتينات gp120 للحمة التثبيت على مستقبلات CD4 ل LT4 مما يمكننا من فهم نتاي ج الوسطين 1 و : 2 في الوسط : 1 تثبيت مضادات الا جسام النوعية على مستقبلات CD4 منع فيروس VIH من التطفل على LT4 وأنت تعلم أن الحمة لا يمكنها التكاثر إلا بداخل الخلية العاي لة هذا ما يفسر عدم تكاثر الحمة. ) 0,75 ن (

6 في الوسط 2 :عدم حدوث تفاعل بين مضادات الا جسام مع المستقبلات CD4 لا نها ليست نوعية لها مكن المستقبلات gp120 للحمة من التفاعل مع هذه المستقبلات مما سمح للحمة من التطفل على اللمفاويات T4 وهذا ما يفسر تكاثر الحمة والمعبر عنه هنا بارتفاع آمية أنزيم الناسخ العكسي. ) 0,75 ن ( ( 3 استثمار الوثيقة : 1 تطور LTc النوعية لحمة VIH يفسر بتدخل LT4 وحث اللفاويات T8 النوعية بعد الانتقاء اللمي الحث والتنشيط ثم التفريق تم بفعل وساي ط مناعتية حيث تصبح LT8 لمفاويات مهلكة للخلايا المعفنة بحمة. HIV ) 0,5 ن ( ظهور مضادات أجسام موجهة ضد HIV يرجع إلى تدخل LB وتفريقها إلى خلايا بلزمية بعد تنشيطها من طرف LT4 يرجع انخفاض الحمولة الفيروسية إلى حدها الا دنى إلى تدخل آل من الا ستجابتين المناعيتين الخلوية والخلطية. ) 0,5 ن ( تقوم اللمفاويات Tc بتدمير LT4 المعفنة بالحمة, ومنع تكاثر الحمة ) 0,5 ن ( ترتبط مضادات الا جسام بالحمة وتتشكل بذلك المرآبات المنيعة مما يحول دون انتشار الحمة وتعفن LT4 جديدة,تتدخل بعد ذلك البلعميات الكبيرة للتخلص من المرآبات المنيعة.( 0,5 ن ( التمرين الرابع: ) 4 نقط ( تعتبر الهيملايا من أآبر السلاسل الجبلية في العالم توجد بين الهند وأوراسيا وتمتد على طول الاف الكيلومترات وتعد من بين سلاسل الاصطدام.نتجت هذه السلسلة عن زحف الصفيحة الصخرية الهندية في اتجاه الشمال نحو صفيحة أوراسيا مما أدى إلى انغلاق المجال المحيطي. لتعرف بعض البنيات التكتونية والصخرية المميزة لهذه السلسلة وتحديد ظروف ومراحل تشكلها نقدم المعطيات التالية: بين الوثيقة 1 مقطعا جيولوجيا في سلسلة جبال الهيملايا. ( 1 استخرج من هذا المقطع الخصاي ص التكتونية والصخرية لسلسلة جبال الهيملايا. ) 1 ن ( تتضمن صخور المرآب الا وفيوليتي معادن مو شرة تمكن من تحديد ظروف الضغط ودرجة الحرارة التي آانت ساي دة خلال بعض مراحل تشكل هذه السلسلة الجبلية. تعطي الوثيقة 2 (الشكل أ ( صفيحة دقيقة مجهرية للميتاغابرو ) métagabbro ( وهو نوع من الصخور المتحولة المكونة للمرآب الا وفيوليتي الناتجة عن تحول الغابرو ) صخرة تنتمي للقشرة المحيطية ). يعطي الشكل(ب) من نفس الوثيقة صفيحة دقيقة لصخرة الغابرو.

7 يعطي مبيان الضغط درجة الحرارة المبين في الوثيقة 3 مجالات استقرار بعض المعادن المو شرة التي تدخل في ترآيب الصخور المتحولة المتواجدة في السلاسل الجبلية الحديثة. ( 2 قارن بين الترآيب العيداني للصفيحتين الدقيقتين واستخرج من مبيان الوثيقة 3 ظروف ومنطقة تكون الميتاغابرو.( 1 ن ( ( 3 انطلاقا من معطيات الوثاي ق 1 و 2 و 3 حدد معللا إجابتك 1 )من خلال المقطع يمكن ملاحظة عدة خصاي ص تكتونية وصخرية مميزة لسلاسل الا صطدام بشكل عام نذآر منها: وجود 3 تراآبات ممتدة في اتجاه الجنوب الغربي. ازدياد سمك القشرة القارية في هذه المنطقة يظهر ذلك من خلال عمق انقطاع MOHO (الحد الفاصل بين القشرة والرداء) والذي يتجاوز 50km مقارنة مع المناطق الا خرى وجود قشرة قارية مشوهة ومتحولة مما يوحي إلى حدوث انضغاط قوي.

8 ن 1 وجود صخور المرآب الا وفيوليتي في الشمال الشرقي يدل على طفو غلاف صخري محيطي فوق القارة. ) 1 ن 2 )من خلال الشكل (أ) من الوثيقة 2 يظهر أن الغابرو يحتوي على معادن البيروآسين والبلاجيوآلاز والشكل(ب) يظهر أن الميتاغابرو يحتوي على معادن الجادييت والكلوآوفان. 400 c و 100 c ( و من خلال الوثيقة 3 يظهر أن معدني الجادييت والكلوآوفان المميزين لصخرة المتاغابرو تكونا تحت ظروف درجة حرارة بين وضغط بين 0,6GPa و 1,5 GPa (المجال ). C هذا المجال يتناسب مع تغير الدرجة السعيرية المميزة لمناطق الطمر. ) ( 3 وجود صخور المرآب الا وفيوليتي محصور بين الصخور القارية دليل عن انغلاق محيط قديم آما تو آد التراآبات وسمك القشرة القارية المرتفع أن هذه المنطقة خضعت لقوى انضغاطية قوية هذه الخصاي ص آلها يو آد أن جبال الهيملايا ناتجة عن اصطدام غلافين صخريين وفق الا حداث التالية: زحف القارة الهندية نحو الصفيحة الا ورواسيوية هذا الزحغ صوحب بظاهرة طمر القشرة المحيطية تحت الصفيحة الا ورواسيوية. انغلاق المحيط الفاصل بين الصفيحتين وطفو جزء منه فوق الصفيحة القارية. التقاء الهامشين القاريين للهند وأسيا مع حدوث الا صطدام نتج تشكل تراآبات بفعل الا نضغاط. ) 2 ن (

التتبع الزمني لتحول آيمياي ي سرعة التفاعل تمارين مرفقة بالحلول فيزياء تارودانت التمرين الا ول: يتفاعل أيون ثيوآبريتات ثناي ي أوآسيد الكبريت مع أيونات الا وآسونيوم وفق المعادلة الكيمياي ية التالية: H S

Διαβάστε περισσότερα

( ) [ ] الدوران. M يحول r B و A ABC. 0 2 α فان C ABC ABC. r O α دورانا أو بالرمز. بالدوران r نكتب -* النقطة ' M إلى مثال لتكن أنشي 'A الجواب و 'B

( ) [ ] الدوران. M يحول r B و A ABC. 0 2 α فان C ABC ABC. r O α دورانا أو بالرمز. بالدوران r نكتب -* النقطة ' M إلى مثال لتكن أنشي 'A الجواب و 'B الدران I- تعريف الدران 1- تعريف لتكن O نقطة من المستى المجه P α عددا حقيقيا الدران الذي مرآزه O زايته من P نح P الذي يربط آل نقطة M بنقطة ' M ب: M = O اذا آانت M ' = O - OM = OM ' M O اذا آان - OM ; OM

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) v n ( ) ( ) ( ) = 2. 1 فان p. + r بحيث r = 2 M بحيث. n n u M. m بحيث. n n u = u q. 1 un A- تذآير. حسابية خاصية r

( ) ( ) ( ) ( ) v n ( ) ( ) ( ) = 2. 1 فان p. + r بحيث r = 2 M بحيث. n n u M. m بحيث. n n u = u q. 1 un A- تذآير. حسابية خاصية r نهايات المتتاليات - صيغة الحد العام - حسابية مجمع متتابعة لمتتالية ) ( متتالية حسابية أساسها + ( ) ملاحظة - متتالية حسابية + أساسها ( ) متتالية حسابية S +... + + ه الحد الا ل S S ( )( + ) S ه عدد المجمع

Διαβάστε περισσότερα

( D) .( ) ( ) ( ) ( ) ( ) ( ) الا سقاط M ( ) ( ) M على ( D) النقطة تعريف مع المستقيم الموازي للمستقيم على M ملاحظة: إذا آانت على أ- تعريف المستقيم ) (

( D) .( ) ( ) ( ) ( ) ( ) ( ) الا سقاط M ( ) ( ) M على ( D) النقطة تعريف مع المستقيم الموازي للمستقيم على M ملاحظة: إذا آانت على أ- تعريف المستقيم ) ( الا سقاط القدرات المنتظرة *- الترجمة المتجهية لمبرهنة طاليس 1- مسقط نقطة مستقيم D مستقيمين متقاطعين يجد مستقيم حيد مار من هذا المستقيم يقطع النقطة يازي في نقطة حيدة ' ' تسمى مسقط نقطة من المستى تعريف )

Διαβάστε περισσότερα

OH H O CH 3 CH 2 O C 2 H a = - 2 m/s 2. 2 gr(1 cos θ) max 1/5

OH H O CH 3 CH 2 O C 2 H a = - 2 m/s 2. 2 gr(1 cos θ) max 1/5 الكيمياء (6 نقط) - سم المرآبات الكيمياي ية التالية مع تحديد المجموعة الكيمياي ية التي ينتمي إليها آل مرآب: المرآب A المرآب B المرآب الثانوية التا هيلية الفقيه الكانوني فرض محروس رقم. 4 الدورة الثانية المستوى:

Διαβάστε περισσότερα

تمارين توازن جسم خاضع لقوتين الحل

تمارين توازن جسم خاضع لقوتين الحل تمارين توازن جسم خاضع لقوتين التمرين الأول : نربط كرية حديدية B كتلتها m = 0, 2 kg بالطرف السفلي لخيط بينما طرفه العلوي مثبت بحامل ( أنظر الشكل جانبه(. 1- ما نوع التأثير الميكانيكية بين المغنطيس والكرية

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( )( ) z : = 4 = 1+ و C. z z a z b z c B ; A و و B ; A B', A' z B ' i 3

( ) ( ) ( ) ( ) ( )( ) z : = 4 = 1+ و C. z z a z b z c B ; A و و B ; A B', A' z B ' i 3 ) الحدة هي ( cm ( 4)( + + ) P a b c 4 : (, i, j ) المستي المرآب منسب إلى المعلم المتعامد المتجانس + 4 حل في مجمعة الا عداد المرآبة المعادلة : 0 6 + من أجل آل عدد مرآب نصع : 64 P b, a أ أحسب (4 ( P ب عين

Διαβάστε περισσότερα

( ) ( ) ( ) - I أنشطة تمرين 4. و لتكن f تمرين 2 لتكن 1- زوجية دالة لكل تمرين 3 لتكن. g g. = x+ x مصغورة بالعدد 2 على I تذآير و اضافات دالة زوجية

( ) ( ) ( ) - I أنشطة تمرين 4. و لتكن f تمرين 2 لتكن 1- زوجية دالة لكل تمرين 3 لتكن. g g. = x+ x مصغورة بالعدد 2 على I تذآير و اضافات دالة زوجية أ عمميات حل الدال العددية = [ 1; [ I أنشطة تمرين 1 لتكن دالة عددية لمتغير حقيقي حيث أدرس زجية أدرس رتابة على آل من[ ;1 [ استنتج جدل تغيرات دالة زجية على حيز تعريفها ( Oi ; ; j 1 استنتج مطاريف الدالة إن

Διαβάστε περισσότερα

المادة المستوى المو سسة والكيمياء الفيزياء تمارة = C ت.ع : éq éq ] éq ph

المادة المستوى المو سسة والكيمياء الفيزياء تمارة = C ت.ع : éq éq ] éq ph 8 א א ن א ع א א ن א ع א تحديد خارج تفاعل حمض الا سكوربيك مع الماء بقياس ph O.. آتابة معادلة التفاعل H8O( q + H ( 7 ( q + l + ( q.. الجدول الوصفي H8O( q + HO ( H7O ( q HO+ l + ( q معادلة التفاعل آميات mol

Διαβάστε περισσότερα

بحيث = x k إذن : a إذن : أي : أي :

بحيث = x k إذن : a إذن : أي : أي : I شبكة الحيود: ) تعريف شبكة الحيود: حيود الضوء بواسطة شبكة شبكة الحيود عبارة عن صفيحة تحتوي على عدة شقوق غير شفافة متوازيةومتساوية المسافة فيما بينها. الفاصلة بين شقين متتاليين تسمى خطوة الشبكة ويرمز إليها

Διαβάστε περισσότερα

[ ] [ ] ( ) ( ) ( ) ( ) ( ) I و O B بالنسبة ل AC) ( IO) ( بالنسبة C و S M M 1 -أنشطة: ليكن ABCD معين مرآزه O و I و J منتصفي

[ ] [ ] ( ) ( ) ( ) ( ) ( ) I و O B بالنسبة ل AC) ( IO) ( بالنسبة C و S M M 1 -أنشطة: ليكن ABCD معين مرآزه O و I و J منتصفي O ( AB) تحيلات في المستى القدرات المنتظرة - التعرف على تقايس تشابه الا شكال استعمال الا زاحة التحاآي التماثل. - استعمال الا زاحة التحاآي التماثل في حل مساي ل هندسية. [ AD] التماثل المحري التماثل المرآزي

Διαβάστε περισσότερα

Le travail et l'énergie potentielle.

Le travail et l'énergie potentielle. الشغل و الطاقة الوضع التقالية Le travail et l'énergie potentielle. الا ستاذ: الدلاحي محمد ) السنة الا ولى علوم تجريبية (.I مفهوم الطاقة الوضع الثقالية: نشاط : 1 السقوط الحر نحرر جسما صلبا كتلتھ m من نقطة

Διαβάστε περισσότερα

ءﺎﺼﺣﻹا ﻒﻳرﺎﻌﺗ و تﺎﺤﻠﻄﺼﻣ - I

ءﺎﺼﺣﻹا ﻒﻳرﺎﻌﺗ و تﺎﺤﻠﻄﺼﻣ - I الا حصاء I - I مصطلحات و تعاريف - الساآنة الا حصاي ية: الساآنة الا حصاي ية هي المجموعة التي تخضع لدراسة إحصاي ية وآل عنصر من هذه المجموعة يسمى فردا أو وحدة إحصاي ية. ميزة إحصاي ية أو المتغير الا حصاي ي:

Διαβάστε περισσότερα

ثناي ي القطبRL (V ) I (A) 0,1 0,2 0,3 0,4 0,5 0,6

ثناي ي القطبRL (V ) I (A) 0,1 0,2 0,3 0,4 0,5 0,6 ثناي ي القطب التوجيهات: I التوتر بين مربطي الوشيعة : 1) تعريف الوشيعة : الوشيعة ثناي ي قطب يتكون من أسلاك النحاس ملفوفة بانتظام حول اسطوانة عازلة ( واللفات غير متصلة فيما بينها لا ن الا سلاك مطلية بمادة

Διαβάστε περισσότερα

( ) ( ) ( ) = ( 1)( 2)( 3)( 4) ( ) C f. f x = x+ A الا نشطة تمرين 1 تمرين تمرين = f x x x د - تمرين 4. نعتبر f x x x x x تعريف.

( ) ( ) ( ) = ( 1)( 2)( 3)( 4) ( ) C f. f x = x+ A الا نشطة تمرين 1 تمرين تمرين = f x x x د - تمرين 4. نعتبر f x x x x x تعريف. الثانية سلك بكالوريا علوم تجريبية دراسة الدوال ( A الا نشطة تمرين - حدد رتابة الدالة أ- ب- و مطاريفها النسبية أو المطلقة إن وجدت في الحالات التالية. = ج- ( ) = arctan 7 = 0 = ( ) - حدد عدد جذور المعادلة

Διαβάστε περισσότερα

- سلسلة -2. f ( x)= 2+ln x ثم اعط تأويل هندسيا لهاتين النتيجتين. ) 2 ثم استنتج تغيرات الدالة مع محور الفاصيل. ) 0,5

- سلسلة -2. f ( x)= 2+ln x ثم اعط تأويل هندسيا لهاتين النتيجتين. ) 2 ثم استنتج تغيرات الدالة مع محور الفاصيل. ) 0,5 تارين حلل ف دراسة الدال اللغاريتمية السية - سلسلة - ترين ]0,+ [ لتكن f الدالة العددية للمتغير الحقيقي المعرفة على المجال بما يلي f ( )= +ln. (O, i, j) منحنى الدالة f في معلم متعامد ممنظم + f ( ) f ( )

Διαβάστε περισσότερα

********************************************************************************** A B

**********************************************************************************   A B 1 : 013/03/ : - - - 04 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.com/site/faresfergani 1

Διαβάστε περισσότερα

تمرين 1. f و. 2 f x الجواب. ليكن x إذن. 2 2x + 1 لدينا 4 = 1 2 أ - نتمم الجدول. g( x) ليكن إذن

تمرين 1. f و. 2 f x الجواب. ليكن x إذن. 2 2x + 1 لدينا 4 = 1 2 أ - نتمم الجدول. g( x) ليكن إذن تمرين تمارين حلل = ; دالتين عدديتين لمتغير حقيقي حيث = + - حدد مجمعة تعريف الدالة - أعط جدل تغيرات لكل دالة من الدالتين - أ) أنقل الجدل التالي أتممه - D ب) حدد تقاطع C محر الافاصيل ( Oi ج ( المنحنيين C

Διαβάστε περισσότερα

المادة المستوى رياضية علوم والكيمياء الفيزياء = 1+ x f. V ph .10 COOH. C V x C. V

المادة المستوى رياضية علوم والكيمياء الفيزياء = 1+ x f. V ph .10 COOH. C V x C. V 8 n א الجزء ( تفاعل حمض آربوآسيلي مع الماء ثم مع الا مونياك - تحديد الصيغة الا جمالية لحمض آربوآسيلي - معادلة تفاعل المعايرة O H OO H n Hn OOH( HO n n ( l BB, - * حساب الترآيز المولي عند التكافو نحصل على

Διαβάστε περισσότερα

**********************************************************************************

********************************************************************************** 1 : 013/03/ : - - - 04 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.com/site/faresfergani تاريخ

Διαβάστε περισσότερα

( ) تعريف. الزوج α أنشطة. لتكن ) α ملاحظة خاصية 4 -الصمود ليكن خاصية. تمرين حدد α و β حيث G مرجح

( ) تعريف. الزوج α أنشطة. لتكن ) α ملاحظة خاصية 4 -الصمود ليكن خاصية. تمرين حدد α و β حيث G مرجح . المرجح القدرات المنتظرة استعمال المرجح في تبسيط تعبير متجهي إنشاء مرجح n نقطة 4) n 2 ( استعمال المرجح لا ثبات استقامية ثلاث نقط من المستى استعمال المرجح في إثبات تقاطع المستقيمات استعمال المرجح في حل

Διαβάστε περισσότερα

du R d uc L dt إذن: u L duc d u dt dt d q q o O 2 tc

du R d uc L dt إذن: u L duc d u dt dt d q q o O 2 tc ة I) التذبذبات الحرة في دارة RCعلى التوالي: ) تعريف: الدارةRCعلى التوالي هي دارة تتكون من موصل أومي مقاومته R ومكثف سعته C ووشيعة مقاومتها r ومعامل تحريضها. تكون التذبذبات حرة في دار RC عندما لا يتوفر

Διαβάστε περισσότερα

مادة الرياضيات 3AC أهم فقرات الدرس (1 تعريف : نعتبر لدينا. x y إذن

مادة الرياضيات 3AC أهم فقرات الدرس (1 تعريف : نعتبر لدينا. x y إذن أهم فقرات الدرس معادلة مستقيم مادة الرياضيات _ I المعادلة المختصرة لمستقيم غير مواز لمحور الا راتيب ( تعريف ; M ( التي تحقق المتساوية m + هي مستقيم. مجموعة النقط ( المتساوية m + تسمى المعادلة المختصرة

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) تمرين 03 : أ- أنشيء. ب- أحسب ) x f ( بدلالة. ب- أحسب ) x g ( تعريف : 1 = x. 1 = x = + x 2 = + من x بحيث : لتكن لكل. لكل x من.

( ) ( ) ( ) ( ) تمرين 03 : أ- أنشيء. ب- أحسب ) x f ( بدلالة. ب- أحسب ) x g ( تعريف : 1 = x. 1 = x = + x 2 = + من x بحيث : لتكن لكل. لكل x من. عمميات حل الدال العددية السنة الا لى علم تجريبية علم رياضية تذآير : إشارة دالة تا لفية ثلاثية الحدد طريقة المميز المختصر ( 4 ): ( ) I- زجية دالة عددية : -( أنشطة : تمرين 0 : أدرس زجية الدالة العددية في

Διαβάστε περισσότερα

X 1, X 2, X 3 0 ½ -1/4 55 X 3 S 3. PDF created with pdffactory Pro trial version

X 1, X 2, X 3 0 ½ -1/4 55 X 3 S 3. PDF created with pdffactory Pro trial version محاضرات د. حمودي حاج صحراوي كلية العلوم الاقتصادية والتجارية وعلوم التسيير جامعة فرحات عباس سطيف تحليل الحساسية في البرمجة الخطية غالبا ما ا ن الوصول ا لى الحل الا مثل لا يعتبر نهاية العملية التي استعملت

Διαβάστε περισσότερα

Εμπορική αλληλογραφία Παραγγελία

Εμπορική αλληλογραφία Παραγγελία - Κάντε μια παραγγελία ا ننا بصدد التفكير في اشتراء... Επίσημη, με προσοχή ا ننا بصدد التفكير في اشتراء... يس ر نا ا ن نضع طلبي ة مع شركتك... يس ر نا ا ن نضع طلبي ة مع شركتك... Επίσημη, με πολλή ευγενεία

Διαβάστε περισσότερα

Tronc CS Calcul trigonométrique Cours complet : Cr1A Page : 1/6

Tronc CS Calcul trigonométrique Cours complet : Cr1A Page : 1/6 1/ وحدات قياس زاوية الدرجة الراديان : (1 العلقة بين الدرجة والراديان: I الوحدة الكأثر استعمال لقياس الزوايا في المستويات السابقة هي الدرجة ونعلم أن قياس الزاوية المستقيمية هو 18 rd هناك وحدة لقياس الزوايا

Διαβάστε περισσότερα

- سلسلة -3 ترين : 1 حل التمرين : 1 [ 0,+ [ f ( x)=ln( x+1+ x 2 +2 x) بما يلي : وليكن (C) منحناها في معلم متعامد ممنظم

- سلسلة -3 ترين : 1 حل التمرين : 1 [ 0,+ [ f ( x)=ln( x+1+ x 2 +2 x) بما يلي : وليكن (C) منحناها في معلم متعامد ممنظم تارين وحلول ف دراسة الدوال اللوغاريتمية والسية - سلسلة -3 ترين [ 0,+ [ نعتبر الدالة العددية f للمتغير الحقيقي المعرفة f ( )=ln( ++ 2 +2 ) بما يلي. (O, i, j) وليكن منحناها في معلم متعامد ممنظم ) ln يرمز

Διαβάστε περισσότερα

+ n e = Red. Ox /Red بالشكل : الوحدة 01 الدرس الا ول GUEZOURI Aek lycée Maraval Oran أمثلة : I 2 (aq) 1 نكتب : MnO 4. Cr 2 O 7.

+ n e = Red. Ox /Red بالشكل : الوحدة 01 الدرس الا ول GUEZOURI Aek lycée Maraval Oran أمثلة : I 2 (aq) 1 نكتب : MnO 4. Cr 2 O 7. الكتاب الا ول الوحدة 01 التطورات الرتيبة تطور آميات مادة المتفاعلات والنواتج خلال تحول آيمياي ي في محلول ماي ي الدرس الا ول GUEZOURI Aek lycée Maraval Oran - Ι مراجعة - Ι الا آسدة والا رجاع المو آسد :

Διαβάστε περισσότερα

jamil-rachid.jimdo.com

jamil-rachid.jimdo.com تصحیح الامتحان الوطني الموحد للبكالوریا مسلك علوم فیزیاي یة 8 الدورة العادیة jilrchidjidoco الكیمیاء الجزء : I تحديد ثابتة التوازن لتفاعل حمض الا يبوبروفين مع الماء: حساب الترآيز : ( ( i ROOH ROOH i ومنه:

Διαβάστε περισσότερα

التطورات الوحدة المجال يبة المستوى: 3 + ر+ رقم : 01 الدرس الرت PV = nrt. n = C = C m C 2 F = = atm 082 mole. mole 273 === ( g.mol.

التطورات الوحدة المجال يبة المستوى: 3 + ر+ رقم : 01 الدرس الرت PV = nrt. n = C = C m C 2 F = = atm 082 mole. mole 273 === ( g.mol. التطورات المجال يبة الرت الزمنية المتابعة الوحدة كيمياي ي في وسط ماي ي لتحول ر ت ر ت ع المستوى رقم الدرس لية قب سبات مآت ترآيز محلول ماي ي و آمية المادة علاقة آمية المادة بالآتلة صلب أو ساي ل أو غاز حالة

Διαβάστε περισσότερα

يط... األعداد المركبة هذه التمارين مقترحة من دورات البكالوريا من 8002 إلى التمرين 0: دورة جوان 8009 الموضوع األول التمرين 8: دورة جوان

يط... األعداد المركبة هذه التمارين مقترحة من دورات البكالوريا من 8002 إلى التمرين 0: دورة جوان 8009 الموضوع األول التمرين 8: دورة جوان األعداد المركبة 800 هذه التمارين مقترحة من درات البكالريا من 800 إلى 800 المضع األل التمرين 0: حل في مجمعة األعداد المركبة المعادلة: = 0 i ( + i) + نرمز للحلين ب حيث: < ( عدد حقيقي ) 008 - بين أن ( المستي

Διαβάστε περισσότερα

**********************************************************

********************************************************** اجب بصحيح أو خطا : أيكون محلول قاعديا إذا آان : سلسلة تمارين حول المعايرة تمرين ص 99 p > log k e / على الشكل : pk للمزدوجة بثابتة الحمضية محلول حمض p pk p log [ éq éq ب ( تكتب العلاقة التي تربط p هو 8

Διαβάστε περισσότερα

الوحدة 08. GUEZOURI A. Lycée Maraval - Oran الدرس H + بروتونا... . CH 3 NH 3 HSO 4 NH 4

الوحدة 08. GUEZOURI A. Lycée Maraval - Oran الدرس H + بروتونا... . CH 3 NH 3 HSO 4 NH 4 المستوى : السنة الثانية ثانوي الوحدة 08 تعيين آمية المادة بواسطة المعايرة GUEZOURI Lycée Maraval - Oran ماذا يجب أن أعرف حتى أقول : إني استوعبت هذا الدرس - 1 يجب أن أفر ق بين حمض وأساس حسب تعريف برونشتد

Διαβάστε περισσότερα

Acceptance Sampling Plans. مقدمة المستهلك.

Acceptance Sampling Plans. مقدمة المستهلك. الباب الخامس ضبط الجودة عن طريق خطط الفحص و عينات القبول Acceptance Sampling Plans د. محمد عيشوني أستاذ مساعد قسم التقنية الميكانيكية - ٢٠٠٤ m_aichouni@yahoo.co.uk مقدمة تقتني الشرآات الصناعية المواد الخام

Διαβάστε περισσότερα

-1 المعادلة x. cosx. x = 2 M. و π. π π. π π. π π. حيث π. cos x = إذن حيث. 5π π π 5π. ] [ 0;π حيث { } { }

-1 المعادلة x. cosx. x = 2 M. و π. π π. π π. π π. حيث π. cos x = إذن حيث. 5π π π 5π. ] [ 0;π حيث { } { } الحساب المثلثي الجزء - الدرس الا ول القدرات المنتظرة التمكن من تمثيل وقراءة حلول معادلة أو متراجحة مثلثية على عدد الساعات: 5 الداي رة المثلثية الدورة الثانية k k I- المعادلات المثلثية cos x = a - المعادلة

Διαβάστε περισσότερα

( ) / ( ) ( ) على. لتكن F دالة أصلية للدالة f على. I الدالة الا صلية للدالة f على I والتي تنعدم في I a حيث و G دالة أصلية للدالة حيث F ملاحظات ملاحظات

( ) / ( ) ( ) على. لتكن F دالة أصلية للدالة f على. I الدالة الا صلية للدالة f على I والتي تنعدم في I a حيث و G دالة أصلية للدالة حيث F ملاحظات ملاحظات الا ستاذ محمد الرقبة مراآش حساب التكامل Clcul ntégrl الدال الا صلية (تذآير آل دالة متصلة على مجال تقبل دالة أصلية على. الدالة F هي الدالة الا صلية للدالة على تعني أن F قابلة للا شتقاق على لكل من. F لتكن

Διαβάστε περισσότερα

2) CH 3 CH 2 Cl + CH 3 O 3) + Br 2 4) CH 3 CHCH 3 + KOH.. 2- CH 3 CH = CH 2 + HBr CH 3 - C - CH C 2 H 5 - C CH CH 3 CH 2 OH + HI

2) CH 3 CH 2 Cl + CH 3 O 3) + Br 2 4) CH 3 CHCH 3 + KOH.. 2- CH 3 CH = CH 2 + HBr CH 3 - C - CH C 2 H 5 - C CH CH 3 CH 2 OH + HI اكتب الناتج العضوي في كل من التفاعلات الا تية : 5 مساعد (400-300) س C + 2H عامل 2. ضوء CH 4 + Cl 2 CH 3 NH 2 + HCl أكتب صيغة المركب العضوي الناتج في كل من التفاعل الا تية : 2) CH 3 CH 2 Cl + CH 3 3) +

Διαβάστε περισσότερα

Ακαδημαϊκός Λόγος Εισαγωγή

Ακαδημαϊκός Λόγος Εισαγωγή - سا قوم في هذه المقالة \ الورقة \ الا طروحة بدراسة \ فحص \ تقييم \ تحليل Γενική εισαγωγή για μια εργασία/διατριβή سا قوم في هذه المقالة \ الورقة \ الا طروحة بدراسة \ فحص \ تقييم \ تحليل للا جابة عن هذا

Διαβάστε περισσότερα

( ) ( ) [ [ ( ) ( ) ( ) =sin2xcosx ( ) lim. lim. α; ] x حيث. = x. x x نشاط 3 أ- تعريف لتكن. x نهاية l في x 0 ونرمز لها ب ب- خاصية نهاية على اليمين في

( ) ( ) [ [ ( ) ( ) ( ) =sin2xcosx ( ) lim. lim. α; ] x حيث. = x. x x نشاط 3 أ- تعريف لتكن. x نهاية l في x 0 ونرمز لها ب ب- خاصية نهاية على اليمين في الاشتقاق تطبيقاته دراسة الدال www.woloj.com - الاشتقاق في نقطة- الدالة المشتقة ( A أنشطة نشاط باستعمال التعريف ادرس اشتقاق الدالة في حدد العدد المشتق في إن جد ثم حدد معادلة المماس أ نصف المماس لمنحنى الدالة

Διαβάστε περισσότερα

أ- سلسلة تمارين حول التحكم في تطور مجموعة آيمياي ية 1 )التمرين رقم 1 الصفحة 167 المفيد في الكيمياء: عين من بين الجزيي ات التالية إلى أي مجموعة تنتمي وأعط أسماءها : CH 3 -CO-O-CO-CH 3 ( CH 3 -CO-O-CH 3

Διαβάστε περισσότερα

( ) ( ) 27,5.10 1,35.10 = 5, = 0,3. n C V mol ( ) M NaHCO max. n( CO ) n CO. 2 exp 2. Page 1

( ) ( ) 27,5.10 1,35.10 = 5, = 0,3. n C V mol ( ) M NaHCO max. n( CO ) n CO. 2 exp 2. Page 1 الكيمياء صحيح الفرض المنزلي 01 السنة الثانية علوم فيزياي ية 1 نوع التفاعل : تفاعل حمض قاعدة. التعليل : لا ن حمض الا يثانويك آحمض برونشتد قادر على إعطاء بروتون + H و أيون هيدروجينو آربونات آقاعدة برونشتد

Διαβάστε περισσότερα

الكيمياء. allal Mahdade 1

الكيمياء.  allal Mahdade  1 الكيمياء الا ستاذ : علال محداد http://sciencephysique.ifrance.com allal Mahdade http://sciencephysique.ifrance.com 1 I الجسم الصلب الا يوني أمثلة لا جسام صلبة أيونية : بلورات آلورور الصوديوم وفليورور الكالسيوم

Διαβάστε περισσότερα

المجال الرتيبة المستوى: 3 التطورات الوحدة + ر+ : 01 ) ) MnO. / réd) ) ( mol. mol Ca 2

المجال الرتيبة المستوى: 3 التطورات الوحدة + ر+ : 01 ) ) MnO. / réd) ) ( mol. mol Ca 2 التطورات المجال الرتيبة الزمنية المتابعة الوحدة كيمياي ي في وسط ماي ي لتحول ر ت ر ت ع المستوى رقم سلسلة وآمية من غاز ثناي ي الهيدروجين H آتلتها g بواسطة L في مفاعل صناعي نضع حجما من غاز ثناي ي الازوت N

Διαβάστε περισσότερα

١٤ أغسطس ٢٠١٧ العمليات الحسابية الا ساسية مع الا شع ة ٢ ٥

١٤ أغسطس ٢٠١٧ العمليات الحسابية الا ساسية مع الا شع ة ٢ ٥ ح اب الا شع ة (ال هات) ١٤ أغسطس ٢٠١٧ ال ات ٢ الا شع ة ١ ٣ العمليات الحسابية الا ساسية مع الا شع ة ٢ ٥ هندسة الا شع ة ٣ ٩ الضرب التقاطعي - Product) (eng. Cross ٤ ١ ١ الا شع ة يمكننا تخي ل الا عداد الحقيقية

Διαβάστε περισσότερα

M = A g/mol. M 1 ( 63 Cu) = A 1 = 63 g/mol M 2 ( 65 Cu) = A 2 = 65 g/mol.

M = A g/mol. M 1 ( 63 Cu) = A 1 = 63 g/mol M 2 ( 65 Cu) = A 2 = 65 g/mol. : - 07 و تحولاتها المادة الشعبة : جذع مشترك علوم و تكنولوجيا ********************************************************************************** www.sites.google.co/site/faresfergai تاريخ ا خر تحديث : 03/03/

Διαβάστε περισσότερα

: : RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. éq= éq éq

: : RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. éq= éq éq تصحيح موضوع الامتحان الوطني الموحد للبكالوريا - الدورة العادية ROOH HlO ROOH ( HO( l ROO ( HO( 4( H O( l lo4 ( HO( ( aq HO( ROO ( HO( l الكيمياء الجزء الا ول التعرف على محلولين حمضيين تصنيع إستر معادلة

Διαβάστε περισσότερα

تصميم الدرس الدرس الخلاصة.

تصميم الدرس الدرس الخلاصة. مو شرات الكفاءة:- يحدد مجال المرا ة المستوية. الدروس التي ينبغي مراجعتها: المتوسط). - الانتشار المستقيم للضوء(من دروس الا رسال الثالث للسنة الا ولى من التعليم - قانونا الانعكاس (الدرس الثالث من ا الا رسال

Διαβάστε περισσότερα

المستوى المادة مسلك والكيمياء الفيزياء المو سسة تمارة + + éq 3 éq= xéq. x m. m = CV x. Q r [ RCOOH] RCOOH

المستوى المادة مسلك والكيمياء الفيزياء المو سسة تمارة + + éq 3 éq= xéq. x m. m = CV x. Q r [ RCOOH] RCOOH 8 ا ستاذ ( éq wwwphysiquelyceecl א الجزء I تحديد ثابتة التوازن لتفاعل حمض الا يبوبروفين مع الماء حساب الترآيز ( ( i i ومنه و نعلم أن M ( M (, 9,7 ol L 6, تع تفاعل الا یبوبروفين مع الماء تفاعل محدود * الجدول

Διαβάστε περισσότερα

ﻲﻔﻴﻅﻭﻟﺍ ﺹﺼﺨﺘﻟﺍ : لﻭﻷﺍ ﻲ ﻠﻤﻌﺘﻟﺍ لﺎﺠﻤﻟﺍ

ﻲﻔﻴﻅﻭﻟﺍ ﺹﺼﺨﺘﻟﺍ : لﻭﻷﺍ ﻲ ﻠﻤﻌﺘﻟﺍ لﺎﺠﻤﻟﺍ المجال التعلمي الا ول : التخصص الوظيفي للبروتين..(1) الوحدة التعلمية الثالثة : دور البروتين في الدفاع عن الذات تصميم الدرس. تمهيد. 1. الذات و اللاذات : النشاط الا ول : النشاط الثاني: ا وظف مكتسباتي. الدعامة

Διαβάστε περισσότερα

تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة

تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة تصحيح موضوع العلوم الفيزياي ية : شعبة العلوم التجريبية والعلوم والتكنولوجيات الكيمياء : المحلول الماي ي لحمض الميثامويك العمود قصدير فضة المحلول الماي ي لحمض المیثانويك تعريف حمض حسب برونشتد : كل نوع كيمياي

Διαβάστε περισσότερα

المستوى المادة المو سسة علوم رياضية الكيمياء والكيمياء الفيزياء تمارة RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH.

المستوى المادة المو سسة علوم رياضية الكيمياء والكيمياء الفيزياء تمارة RCOO RCOOH - ت.ع : RCOOH. x=x éq. x éq x m ] = 10 RCOOH. الدورة العادية ROOH HlO ROOH ( aq HO( l ROO ( aq HO( aq 4( aq H O( l lo4 ( aq HO( aq ( aq HO( aq ROO ( aq HO( l wwwphysiqulyccla الكيمياء الجزء الا ول التعرف على محلولين حمضيين تصنيع إستر معادلة تفاعل

Διαβάστε περισσότερα

التطورات الرتيبة الوحدة 05 التمرين 27 : النظام الانتقالي : النظام الداي م. 10 m/s. من البيان τ = 1 s. t (s) التمرين 28 P= = 44, , 445 Π= ρ = =

التطورات الرتيبة الوحدة 05 التمرين 27 : النظام الانتقالي : النظام الداي م. 10 m/s. من البيان τ = 1 s. t (s) التمرين 28 P= = 44, , 445 Π= ρ = = -i الكتاب الا ول التطورات الرتيبة الوحدة 5 تطور جملة ميكانيكية تمارين الكتاب GUEZOURI Aek lycée Maraal - Oran ( / ) التمرين 7 حسب الطبعة الشكل المعطى في الكتاب يوافق دافعة أرخميدس مهملة وقوة الاحتكاك للكتاب

Διαβάστε περισσότερα

() 1. ( t) ( ) U du RC RC dt. t A Be E Ee E e U = E = 12V ن ن = + =A ن 1 RC. τ = RC = ن

() 1. ( t) ( ) U du RC RC dt. t A Be E Ee E e U = E = 12V ن ن = + =A ن 1 RC. τ = RC = ن تصحیح الموضوع الثاني U V 5 ن B التمرین الا ول( ن): - دراسة عملیة الشحن: - - التوتر الكھرباي ي بین طرفي المكثفة عند نھایة الشحن : -- المعادلة التفاضلیة: بتطبيق قانون جمع التوترات في حالة الربط على التسلسل

Διαβάστε περισσότερα

الوحدة 04 الدرس الشكل - 2. E pp. E : Energie, p : potentielle, p : (de) pesanteur. P r. F r. r P. z A إلى. z B. cb ca AB AB

الوحدة 04 الدرس الشكل - 2. E pp. E : Energie, p : potentielle, p : (de) pesanteur. P r. F r. r P. z A إلى. z B. cb ca AB AB المستوى : السنة الثانية ثانوي الطاقة الكامنة الوحدة 4 حسب الطبعة 3 / للكتاب المدرسي GUZOURI Lycée aaal Oan ماذا يجب أن أعرف حتى أقول : إني استوعبت هذا الدرس - يجب أن أعرف مدلول الطاقة الكامنة الثقالية

Διαβάστε περισσότερα

الملخص مقدمة. من الطرق هما الطرق المباشرة Direct methods. Lamotte وBourliere (1975) حيث اعتبرا أن. متقاربة,convergent بينما تتميز طريقة Ben

الملخص مقدمة. من الطرق هما الطرق المباشرة Direct methods. Lamotte وBourliere (1975) حيث اعتبرا أن. متقاربة,convergent بينما تتميز طريقة Ben ا مكانية استخدام نظرية التقريبات المتعاقبة لتحليل مقاييس النمو الطولي للا سماك خير الدين ولد محمد عبد االله * الملخص تتضمن هذه الدراسة عرضا و تطبيقا لا مكانية استخدام نظرية التقريابت المتعاقبة successive

Διαβάστε περισσότερα

: : 03 التطورات . ( u BD. 5 τ u ( V ) t ( s ) t ( s ) C ) 0.2. t ( ms )

: : 03 التطورات . ( u BD. 5 τ u ( V ) t ( s ) t ( s ) C ) 0.2. t ( ms ) التطورات : المجال الرتيبة : 3 الوحدة الآهرباي ية الظواهر ر ت ت ر ع المستوى: 3 3 : رقم اللللسلسلة u V 5 t s نشحن بواسطة مولد مثالي = r, مآثفة مربوطة على التسلسل =. يمثل البيان التالي تغيرات التوتر الآهرباي

Διαβάστε περισσότερα

التمرين الثاني )3 2-( نعتبر في المستوى المنسوب إلى معلم متعامد ممنظم التي معادلتها : 3-( بين أن المستوى مماس للفلكة في النقطة.

التمرين الثاني )3 2-( نعتبر في المستوى المنسوب إلى معلم متعامد ممنظم التي معادلتها : 3-( بين أن المستوى مماس للفلكة في النقطة. التمرين األل) 3 نقط ) نعتبر في الفضاء المنسب إلى معلم متعامد ممنظم مباشر التي معادلتها : النقطتين الفلكة الفلكة هي النقطة أن شعاعها ه تحقق من أن تنتمي إلى 1-( بين أن مركز 2-( حددمثلث إحداثيات المتجهة بين

Διαβάστε περισσότερα

( ) ( ) Circuit (R,L,C)en série en régime sinusoïdal forcé. i t I t I = u t U t. I m 2. Allal mahdade Page 1.

( ) ( ) Circuit (R,L,C)en série en régime sinusoïdal forcé. i t I t I = u t U t. I m 2. Allal mahdade  Page 1. الدارة (,L,C) المتوالية في النظام الجيبي والقسري. Crct (,L,C)en sére en rége snsoïdal forcé رأينا سابقا أن الدارة LC المتوالية تكون متذبذبا آهرباي يا مخمدا. عند إضافة مولد آهرباي ي مرآب على التوالي إلى

Διαβάστε περισσότερα

ﺔﻴﻭﻀﻌﻟﺍ ﺕﺎﺒﻜﺭﻤﻟﺍ ﻥﻴﺒ ﺕﻼﻴﻭﺤﺘﻟﺍ لﻭﺤ ﺔﻴﺯﻴﺯﻌﺘ ﺔﻗﺎﻁﺒ

ﺔﻴﻭﻀﻌﻟﺍ ﺕﺎﺒﻜﺭﻤﻟﺍ ﻥﻴﺒ ﺕﻼﻴﻭﺤﺘﻟﺍ لﻭﺤ ﺔﻴﺯﻴﺯﻌﺘ ﺔﻗﺎﻁﺒ بطاقة تعزيزية حول التحويلات بين المركبات العضوية مبتدي ا من الاسيتلين ) الا يثاين ( وضح بالمعادلات الكيمياي ية مع ذكر شروط التفاعل كيف يمكنك س ١ : الحصول على : ( ٣ اسيتات الفينيل ) ( ) الفينول ٢ ميثيل

Διαβάστε περισσότερα

الموافقة : v = 100m v(t)

الموافقة : v = 100m v(t) مراجعة القوة والحركة تصميم الدرس 1- السرعة المتوسطة 2- السرعة اللحظية 3- النموذج الرياضي : شعاع السرعة 4- شعاع السرعة والحركة المستقيمة 5- الحالة الخاصة 1 1 السرعة المتوسطة سيارة تقطع مسافة L بين مدينة

Διαβάστε περισσότερα

1- عرض وتحليل النتائج الفرضية األولى: يبين مقارنة بين األوساط الحسابية واالنح ارفات المعيارية وقيمتي )T(

1- عرض وتحليل النتائج الفرضية األولى: يبين مقارنة بين األوساط الحسابية واالنح ارفات المعيارية وقيمتي )T( 1- الفرضية األولى: جدول رقم )06(: يبين مقارنة بين األوساط الحسابية واالنح ارفات المعيارية وقيمتي )T( - المحسوبة والمجدولة بين العينتين التجريبية والضابطة لالختبار القبلي. اختبار التوافق الداللة df T t

Διαβάστε περισσότερα

( ) ( ) ( OPMQ) ( ) المستقيم في المستوى 1- معلم إحداثيتا نقطة و و ( ) أفصول و. y أآتب الشكل مسقط M على ) OI (

( ) ( ) ( OPMQ) ( ) المستقيم في المستوى 1- معلم إحداثيتا نقطة و و ( ) أفصول و. y أآتب الشكل مسقط M على ) OI ( المستقيم في المستى القدرات المنتظرة *- ترجمة مفاهيم خاصيات الهندسة التالفية الهندسة المتجهية باسطة الاحداثيات *- استعمال الا داة التحليلية في حل مساي ل هندسية. I- معلم مستى احداثيتا نقطة تساي متجهتين شرط

Διαβάστε περισσότερα

مثال: إذا كان لديك الجدول التالي والذي يوضح ثلاث منحنيات سواء مختلفة من سلعتين X و Yوالتي تعطي المستهلك نفس القدر من الا شباع

مثال: إذا كان لديك الجدول التالي والذي يوضح ثلاث منحنيات سواء مختلفة من سلعتين X و Yوالتي تعطي المستهلك نفس القدر من الا شباع - هذا الا سلوبعلى أنه لا يمكن قياس المنفعة بشكل كمي بل يمكن قياسها بشكل ترتيبي حسب تفضيلات المستهلك. يو كد و يقوم هذا الا سلوب على عدد من الافتراضات و هي:. قدرة المستهلك على التفضيل. -العقلانية و المنطقية.

Διαβάστε περισσότερα

امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية

امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية ثانویة عین معبد المستوى : ثالثة ) تقني ریاضي علوم ( التاریخ: 014/03/06 المدة : 3 ساعا ت التمرين الا ول: (06 ن) امتحان الثلاثي الثاني لمادة العلوم الفيزياي ية في الدارة الكهرباي ية التالية مولد توتره ثابت

Διαβάστε περισσότερα

أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي

أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي أسئلة استرشادية لنهاية الفصل الدراسي الثاني في مادة الميكانيكا للصف الثاني الثانوي العلمي للعام الدراسي 4102 4102 تذكر أن :1- قانون نيوتن الثاني : 2- في حال كان الجسم متزن أو يتحرك بسرعة ثابتة أوساكن فإن

Διαβάστε περισσότερα

فرض محروس رقم 1 الدورة 2

فرض محروس رقم 1 الدورة 2 ن 0 فرض محرس رقم 1 الدرة 2 الفيزياء 13 نقطة الجزء 1 )دراسة الدارة ) RLC 8 نقط لتحديد L معامل تحريض شيعة مقامتها الداخلية r مستعملة في مكبر الصت ننجز تجربة على مرحلتين باستعمال التركيب التجريبي الممثل في

Διαβάστε περισσότερα

تصحيح الامتحان الوطني الموحد للبكالوريا الدورة العادية مادة : الفيزياء والكيمياء شعبة العلوم التجريبية مسلك العلوم الفيزياي ية

تصحيح الامتحان الوطني الموحد للبكالوريا الدورة العادية مادة : الفيزياء والكيمياء شعبة العلوم التجريبية مسلك العلوم الفيزياي ية مادة : الفيزياء والكيمياء شعبة العلوم التجريبية مسلك العلوم الفيزياي ية الكيمياء : الجزء الا ول والثاني مستقلين الجزء الا ول : التحليل لكهرباي ي لمحلول كلورور القصدير II 1 تبيانة التركيب التجريبي للتحليل

Διαβάστε περισσότερα

2,9 3,5 اختبار الثلاثي الثاني في مادة مدینة علي منجلي - قسنطینة I- دراسة عملیة الشحن :

2,9 3,5 اختبار الثلاثي الثاني في مادة مدینة علي منجلي - قسنطینة I- دراسة عملیة الشحن : اختبار الثلاثي الثاني في مادة المستوى: نھاي ي علوم تجریبیة المدة : ساعتان التاریخ : /... فیفري/ 0 مدینة علي منجلي - قسنطینة تمرین( 0 ): أ- قیمة ال : ph لمحلول لحمض النمل HOOH تركیزه المولي. ph,9 - أكتب

Διαβάστε περισσότερα

بحيث ان فانه عندما x x 0 < δ لدينا فان

بحيث ان فانه عندما x x 0 < δ لدينا فان أمثلة. كل تطبيق ثابت بين فضائين متريين يكون مستمرا. التطبيق الذاتي من أي فضاء متري الى نفسه يكون مستمرا..1.2 3.اذا كان f: R R البرهان. لتكن x 0 R و > 0 ε. f(x) = x 2 فان التطبيق f مستمرا. فانه عندما x

Διαβάστε περισσότερα

)الجزء األول( محتوى الدرس الددراتالمنتظرة

)الجزء األول( محتوى الدرس الددراتالمنتظرة األعداد العقدية )الجزء األل ) 1 ثانية المنصر الذهبي التأهيلية نيابة سيدي البرنصي - زناتة أكا يمية الدار البيضاء الكبرى األعدا القددية )الجزء األل( األستاذ تباعخالد المستى السنة الثانية بكالريا علم تجريبية

Διαβάστε περισσότερα

H H 2 O (l) /HO - و (l) 3 O + /H 2 O. V b. dataelouardi.jimdo.com 1/

H H 2 O (l) /HO - و (l) 3 O + /H 2 O. V b. dataelouardi.jimdo.com 1/ الثانوية التا هيلية الفقيه الكانوني فرض محروس رقم 6 الدورة الثانية المستوى: الثانية باك علوم فيزياي ية ملحوظة: يو خذ بعين الاعتبار تنظيم ورقة التحرير يجب أن تعطي العلاقة الحرفية قبل التطبيق العددي استعمال

Διαβάστε περισσότερα

حركة دوران جسم صلب حول محور ثابت

حركة دوران جسم صلب حول محور ثابت حركة دوران جسم صلب حول محور ثابت I تعريف حركة الدوران لجسم صلب حول محور ثابت 1 مثال الجسم (S) في حركة دوران حول محور ثابت : النقطتين A و B تتحركان وفق داي رتين ممركزتين على المحور النقطتين M و N المنتميتين

Διαβάστε περισσότερα

1 +. [I 2 ]mmol/l. t(min) t (min) V H2 (ml) x (mol)

1 +. [I 2 ]mmol/l. t(min) t (min) V H2 (ml) x (mol) S, mol V = ml S : t = c = / L ( K (aq ) SO8 ) (aq ). c ( K (aq ) I (aq ) ) V = ml. [ I (aq ) ] 6. [I ]mmol/l - 4 3 3 4 6 7 8 9 - (Ox / Red) -.. -3. -4. -. -6 x -7. I ] f (t) [ (aq ) =. t = mn -8 [ I (aq

Διαβάστε περισσότερα

dθ dt ds dt θ θ v a N dv a T dv dt v = rθ ɺ

dθ dt ds dt θ θ v a N dv a T dv dt v = rθ ɺ حرآة دوران جسم صلب حول السرعة الزاوية-التسارع الزاوي: 1) تذآير: محور ثابت I الا فصول الزاوي يكون جسم صلب غير قابل للتشويه في حرآة دوران حول محور ثابت إذا آانت جميع نقطه لهاحرآة داي رية ممرآزة على هذا المحور

Διαβάστε περισσότερα

الوحدة المستوى: 3 المجال : 03 التطورات + ر+ رقم ملخص 2 : : : RC U AC U AB U BC + U U EF U CD. u AC I 1. u AB I 2 I = I1 + I R 2 R 1 B + A

الوحدة المستوى: 3 المجال : 03 التطورات + ر+ رقم ملخص 2 : : : RC U AC U AB U BC + U U EF U CD. u AC I 1. u AB I 2 I = I1 + I R 2 R 1 B + A التطورات المجال الرتيبة 3 الوحدة الكهرباي ية الظواهر ر ت ر ت ع المستوى 3 3 رقم ملخص مآتسبات قبلية التيار الآهرباي ي المستمر التيار الآهرباي ي المتناوبببب قانون التواترات 3 حالة الدارة المتسلسلة أ هو آل

Διαβάστε περισσότερα

التمرين األول: )80 نقاط( - 1 أ- إيجاد الصيغ نصف المفصلة للمركبات:. M 1 D C B A 3,75 B: CH 3 CH 2 CH 3 C CH 3 A: CH 3. C: CH 3 CH CH 3 Cl CH CH CH 3

التمرين األول: )80 نقاط( - 1 أ- إيجاد الصيغ نصف المفصلة للمركبات:. M 1 D C B A 3,75 B: CH 3 CH 2 CH 3 C CH 3 A: CH 3. C: CH 3 CH CH 3 Cl CH CH CH 3 بكالوراي ال د و ر ة االسحثنائية: الشعبة: تقين رايوي املدة: 4 سا و 4 د عناصر اإلجابة )الموضوع األول( مج أزة م ج م و ع,5 التمرين األول: )8 نقاط( -I - أ- إيجاد الصيغ نصف المفصلة للمركبات:. M D B A A: H H

Διαβάστε περισσότερα

تايضاير و مولع يئاهن Version 1.1 اي ل

تايضاير و مولع يئاهن Version 1.1 اي ل ر ي ا ض ي ا ت نهائي علم Version أ ج ل م ن ب د ا ي ة ح س ن ة ك م ا ل ح ا م د ي 0 الدرجة الثانية... عمميات على الدال... 3 قاعد احلساب على املتباينات... تطبيقات...6 a مع 0 p() = a + b + c p() = a [( + b )

Διαβάστε περισσότερα

Noyau,masse et énergie

Noyau,masse et énergie النوى الكتلة والطاقة Noyau,masse et énergie I التكافو "آتلة طاقة" علاقة إنشتاين توصل العالم إنشتاين من خلال الميكانيك النسبوية الخاصة سنة 905 م إلى أن هناك تكافو بين الكتلة والطاقة. تمتلك آل مجموعة آتلتها

Διαβάστε περισσότερα

1/ الزوايا: المتت امة المتكاملة المتجاورة

1/ الزوايا: المتت امة المتكاملة المتجاورة الحصة األولى الز وايا القدرات المستوجبة:* تعر ف زاويتين متكاملتين أو زاويتين متتام تين. * تعر ف زاويتين متجاورتين. المكتسبات السابقة:تعريف الزاوية كيف نستعمل المنقلة لقيس زاوية كيف نرمز للزاوية 1/ الزوايا:

Διαβάστε περισσότερα

منتديات علوم الحياة و الأرض بأصيلة

منتديات علوم الحياة و الأرض بأصيلة www.svt-assilah.com الفيزياء تمرين : 1 نحدث عند الطرف S لحبل مرن موجة مستعرضة تنتشر بسرعة 1 s. v = 10 m. عند اللحظة t = 0s يوجد مطلع الإشارة عند المنبع. S يمثل المنحنى أسفله تغيرات استطالة المنبع بدلالة

Διαβάστε περισσότερα

prf : SBIRO Abdelkrim ( ) ( ) ( ) . v B ( )

prf : SBIRO Abdelkrim ( ) ( ) ( ) . v B ( ) الثانوية الفلاحية باولادتايمة فرض رقم الدورة الثانية يوم - 010/5/19 مدة الا نجاز: ساعتين- التمرين الا ول فيزياء : 9 نقط يمكن لجسم صلب ) S ( آتلته = 1Kg نعتبره نقطيا أن ينزلق فوق سكة ABC مكونة من : prf

Διαβάστε περισσότερα

امتحان بكالوراي التعليم الثانوي الشعبة: علوم جتريبية اختبار يف مادة: علوم الطبيعة واحلياة

امتحان بكالوراي التعليم الثانوي الشعبة: علوم جتريبية اختبار يف مادة: علوم الطبيعة واحلياة اجلمهورية اجلزائرية الدميقراطية الشعبية الديوان الوطين لالمتحاانت واملسابقات وزارة الرتبية الوطنية دورة: امتحان بكالوراي التعليم الثانوي الشعبة: علوم جتريبية املدة: اختبار يف مادة: علوم الطبيعة واحلياة

Διαβάστε περισσότερα

دورة : : . ( Pu E. ( Mev n. [ H O + ], [ Al + ], [Cl : 25 C. 25 C Al. 27 mg. 0,012 mol / L. ( t ) 0, 1. t (min) v ( t ) H O Al Cl.

دورة : : . ( Pu E. ( Mev n. [ H O + ], [ Al + ], [Cl : 25 C. 25 C Al. 27 mg. 0,012 mol / L. ( t ) 0, 1. t (min) v ( t ) H O Al Cl. الجزاي رية الديمقراطية الشعبية الجهرية الطني للامتحانات المسابقات الديان التربية الطنية زارة ما ياي م درة البآالريا التجريبية للتعليم الثاني امتحان سطيف بن عليي صالح ثانية تجريبية علم الشعبة نصف ساعات

Διαβάστε περισσότερα

الشاشة منبع ضوي ي الطیف المستمر

الشاشة منبع ضوي ي الطیف المستمر . ا طياف الا صدار و الامتصاص - المطياف نحصل على طيف الضوء باستعمال المطياف. المطياف مكون من موشور ا و مجموعة من الموشورات و التي تبدد الضوء المنبعث من مادة ملخص الدرس الطیف الشاشة منبع ضوي ي 2- ا طياف

Διαβάστε περισσότερα

المجلة الا ردنية للفيزياء

المجلة الا ردنية للفيزياء ص ص.. 157-149 المجلة الا ردنية للفيزياء المجلد 5 العدد 2012 3 ARTICLE تا ثير أشعة كاما على عمل نبيطة شوتكي Au/n-Si نوع من نوفل يوسف جميل ومحمدنور خضر قسم الفيزياء كلية العلوم جامعة الموصل الموصل العراق.

Διαβάστε περισσότερα

قوانين التشكيل 9 الةي ر السام ظزري 11/12/2016 د. أسمهان خضور سنستعمل الرمز (T,E) عوضا عن قولنا إن T قانون تشكيل داخلي يعرف على المجموعة E

قوانين التشكيل 9 الةي ر السام ظزري 11/12/2016 د. أسمهان خضور سنستعمل الرمز (T,E) عوضا عن قولنا إن T قانون تشكيل داخلي يعرف على المجموعة E ظزري 45 قوانين التشكيل 9 11/12/2016 8 الةي ر السام د. أسمهان خضور صاظعن الاحضغض الثاخطغ operation) (the Internal binary تعريف: ا ن قانون التشكيل الداخلي على المجموعة غير الخالية ( E) E يعر ف على ا نه التطبيق.

Διαβάστε περισσότερα

x Log x = Log mol [ H 3O + ] = ] = [OH ) ph ( mole ) n 0 - x f n 0 x x x f x f x f x max : ( τ max τf 1 : ( - 2 -

x Log x = Log mol [ H 3O + ] = ] = [OH ) ph ( mole ) n 0 - x f n 0 x x x f x f x f x max : ( τ max τf 1 : ( - 2 - التطورات المجال الرتيبة جملة كيمياي ية تطور 0 الوحدة حالة التوازن نحو ر ت ر ت ع المستوى 0 رقم ملخص O الا سس حسب تعريف برونشتد و الا حماض الا حماض الحمض تعريف أو أآثر. هو آل فرد آيمياي ي شاردة جزئ بامآانه

Διαβάστε περισσότερα

األستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

األستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية http://benmoussamathjimdocom/ 55:31 5342-3-41 يم السبت : األستاذ: بنمسى محمد ثانية: عمر بن عبد العزيز المستى: 1 علم رياضية إحداثيات نقطة بالنسبة لمعلم - إحداثيات متجهة بالنسبة ألساس: األساس المعلم في الفضاء:

Διαβάστε περισσότερα

الدورة العادية 2O16 - الموضوع -

الدورة العادية 2O16 - الموضوع - ا 1 لصفحة المركز الوطني ل ت وي واامتحانا والتوجيه اامتحا الوطني ال وحد للبكالوريا NS 6 الدورة العادية O16 - الموضوع - المادة ع و الحياة واأرض مدة اإنجاز الشعبة أو المس شعبة الع و الرياضية " أ " المعامل

Διαβάστε περισσότερα

الوحدة 02. GUEZOURI A. Lycée Maraval - Oran الدرس 2 الطاقة الحرآي ة. F r ( ) W F = F ABcosθ عمل. F r محر ك عمل مقاوم

الوحدة 02. GUEZOURI A. Lycée Maraval - Oran الدرس 2 الطاقة الحرآي ة. F r ( ) W F = F ABcosθ عمل. F r محر ك عمل مقاوم المستى : السنة الثانية ثاني الحدة 0 العمل الطاقة الحرآية (حالة الحرآة الا نسحابية) GUEZOURI Lycée Maaal Oan ماذا يجب أن أعرف حتى أقل : إني استعبت هذا الدرس يجب أن أفر ق بين انسحاب جسم درانه يجب أن أعرف

Διαβάστε περισσότερα

با نها خماسية حيث: Q q الدخل. (Finite Automaton)

با نها خماسية حيث: Q q الدخل. (Finite Automaton) الخامس الفصل اللغات الصورية والا وتومات A = Q F Σ Fnte Automaton 1. الا وتومات المنتهي تعريف: نعر ف "الا وتومات المنتهي" حيث: با نها خماسية Q: مجموعة منتهية من الحالات. Q ندعوها الحالة الابتداي ية. Q وندعوها

Διαβάστε περισσότερα

المصادر: : الاستنتاجات يلاحظ أن هناك الثابت يكون أكبر بشكل عام ويتخذ قيمة موجبة عند الضغط 0.8 باسكال وهذا ما لم يلاحظ في المنطقة السابقة.

المصادر: : الاستنتاجات يلاحظ أن هناك الثابت يكون أكبر بشكل عام ويتخذ قيمة موجبة عند الضغط 0.8 باسكال وهذا ما لم يلاحظ في المنطقة السابقة. تشابه التصرف مع علاقة باشن في التفريغ الراديوي في غاز الا ركون a 1 يلاحظ أن هناك الثابت يكون أكبر بشكل عام ويتخذ قيمة موجبة عند الضغط 0.8 باسكال وهذا ما لم يلاحظ في المنطقة السابقة. كذلك فان الثوابت a

Διαβάστε περισσότερα

الترانزستور 1 تعريف الترانزستور مرآبة إلكترونية تتكون من بلور خالص شبه موصل (Gi) أو (Si) يتم تنشيطه با ضافة آمية صغيرة جدا من ذرات دخيلة حيث نحصل على ثلاثة مناطق مختلفة. 2 أنواع الترانزستور هناك نوعان

Διαβάστε περισσότερα

متارين حتضري للبكالوريا

متارين حتضري للبكالوريا متارين حتضري للبكالريا بكالريا فرنسية بكالريا اجلزائر نظام قدمي مرتمجة ترمجة إعداد : الطالب بلناس عبد املؤمن ثانية عبد الرمحن بن خلدن عني جاسر باتنة جيلية 2102 أمتىن أن تكن هذه التمارين مفيدة للتحضري للبكالريا

Διαβάστε περισσότερα

وزارة الرتبية الوطنية دورة ماي 2017 املدة: 04 ساعات

وزارة الرتبية الوطنية دورة ماي 2017 املدة: 04 ساعات وزارة الرتبية الوطنية امتحان البااكلوراي التجريبية الشعبة علوم جتريبية اختبار يف مادة: علوم الطبيعة واحلياة امجلهورية اجلزائرية ادلميقراطية الشعبية مديرية الرتبية لوالية املدية اثنوية ادلكتور أمحد عروة

Διαβάστε περισσότερα

تصحيح تمارين تطبيقات توازن جسم صلب خاضع لقوتين

تصحيح تمارين تطبيقات توازن جسم صلب خاضع لقوتين تصحيح تمارين تطبيقات توازن جسم صلب خاضع لقوتين www.svt-assilah.com تصحيح تمرين 1: F1 F2 F 2 فإن : F 1 و 1- شرط توازن جسم صلب تحت تأثير قوتين : عندما يكون جسم صلب في توازن تحت تأثير قوتين 0 2 F 1 + F المجموع

Διαβάστε περισσότερα

L'allergie. Rhinites. La muqueuse nasale. des foins. L eczéma allergique. L urticaire allergique. Le choc anaphylactique

L'allergie. Rhinites. La muqueuse nasale. des foins. L eczéma allergique. L urticaire allergique. Le choc anaphylactique مقدمة: مفرطة Ι. الجهاز المناعي اضطرابات قد يصاب الجھاز المناعتي ببعض االضطرابات يمكن أن تظھر في شكل ردود فعل تنتج عنھا أمراض كاألرجيات وقد يتمثل الخلل في قصور مناعتي وقد يضطرب الجھاز المناعتي بشكل يجعله

Διαβάστε περισσότερα

الا شتقاق و تطبيقاته

الا شتقاق و تطبيقاته الا شتقاق و تطبيقاته سيدي محمد لخضر الفهرس قابلية ا شتقاقدالةعددية.............................................. قابلية ا شتقاق دالة في نقطة................................. المماس لمنحنى دالة في نقطة..............................

Διαβάστε περισσότερα