Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!!
|
|
- Πιλάτος Κρεστενίτης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Όνομα: Επίθετο: Ημερομηνία: Πρωί: Απόγευμα: X Θεματική ενότητα: Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!! 1/6
2 1) A.Για μία ειδική πλήρως διακριτή πρόσκαιρη ασφάλιση θανάτου διάρκειας 10 ετών αυξανόμενου κεφαλαίου, δίνεται: i. b k+1 = 10 5 (1 + k), k = 0,,9 (ασφαλισμένο κεφάλαιο του k+1 έτους) ii. Το ασφαλισμένο κεφάλαιο καταβάλλεται στο τέλος του έτους θανάτου. i = 0,06 iv. Το Ενιαίο Καθαρό Ασφάλιστρο αυτής της ασφάλισης για τον (41) είναι v. l 40 = , l 41 = , l 50 = , l 51 = vi. Α 40 = 0,16132, Α 50 = 0,24905 Να υπολογιστεί το Ενιαίο Καθαρό Ασφάλιστρο αυτής της ασφάλισης για τον (40).(5 μονάδες) B.Ένας ασφαλιστής εκδίδει μία πλήρως διακριτή πρόσκαιρη ασφάλιση θανάτου διάρκειας 3 ετών ασφαλισμένου κεφαλαίου 1000 στον (30). Όμως, κατά τη διάρκεια του τρίτου έτους της ασφάλισης, ο ασφαλιστής ανακαλύπτει ότι η πραγματική ηλικία του ασφαλισμένου του, κατά την σύναψη της ασφάλισης, ήταν 31. Χρησιμοποιώντας την «αρχή της ισοδυναμίας», ο ασφαλιστής αναπροσαρμόζει την παροχή θανάτου σε αυτή που εξ αρχής θα έπρεπε να είχε υπολογίσει, εάν γνώριζε την πραγματική ηλικία του ασφαλισμένου στην έκδοση της ασφάλισης, διατηρώντας, αναπόφευκτα, το ασφάλιστρο με το οποίο ήδη έχει χρεώσει τον ασφαλισμένο. Δίνεται: i. Ο πίνακας θνησιμότητας: ii. i = 0,04 x q x 30 0, , , ,04 Το ετήσιο καθαρό ασφάλιστρο υπολογίζεται σύμφωνα με την «αρχή της ισοδυναμίας». Να υπολογιστεί η αναπροσαρμοσμένη παροχή θανάτου.(5 μονάδες) 2/6
3 2) Α.Το τμήμα μελετών μιας βιομηχανίας έχει προτυποποιήσει τον χρόνο ζωής των μπαταριών που παράγει, χρησιμοποιώντας ένα γενικευμένο DeMoivre μοντέλο με S(x) = (1 x ω )α, α > 0 και 0 x ω. Ένας αναλογιστής, εξετάζοντας πίνακες ζωής για μπαταρίες, κατέληξε στο συμπέρασμα ότι η τιμή της παραμέτρου α χρειάζεται αναθεώρηση. Δίνεταιότι: i. Το προσδόκιμο ζωής μιας νέαςμπαταρίας, μετά την αναθεώρηση, είναι το ήμισυ. ii. Η ένταση «θνησιμότητας»μιας μπαταρίας, μετά την αναθεώρηση, είναι 2,25 φορές την αρχική, για κάθε ηλικία x της μπαταρίας. Η τερματική ηλικία ω της ζωής μιας μπαταρίαςπαραμένει η ίδια μετά την αναθεώρηση. Να υπολογισθεί η αρχική τιμή της παραμέτρου α. (3 μονάδες) B. Για μία πλήρως διακριτή ισόβια ασφάλιση θανάτου ασφαλισμένου κεφαλαίου 1000 στον (45), δίνεται: Να υπολογιστεί το V45. (4 μονάδες) t 10 3 t V 45 q 45+t , , ,025 Γ. Ο (40) κερδίζει ποσό 10 4 σε μία λοταρία. Του προτείνεται, αντί να πάρει το ποσό εφάπαξ σήμερα, να δεχτεί να λάβει την εξής αναλογιστικά ισοδύναμη επιλογή: ισόβια ετήσια πληρωμή ύψους Κ, στην έναρξη κάθε έτους, η οποία θα είναι εγγυημένη για 10 έτη. Δίνεται: i. i = 0,04 ii. A 40 = 0,30 A 50 = 0,35 1 iv. A 40:10 = 0,09 Να υπολογιστεί το Κ.(3 μονάδες) 3/6
4 3) Α. Πλήρως διακριτή ισόβια ασφάλιση στον (45) καταβάλει μία μονάδα στο τέλος του έτους θανάτου. Το ασφάλιστρο είναι ετήσιο και καταβάλλεται ισοβίως. Να υπολογιστεί η ακριβής τιμή του 11,6V45. Δίνεται: i = 5%, a 45 = 35, a 57 = 25, ο πίνακας θνησιμότητας x lx και ότι οι προσεγγίσεις πιθανοτήτων, εντός των ηλικιακών ετών, γίνονται με την βοήθεια της υπόθεσης της «ομοιόμορφης κατανομής των θανάτων(udd)».(4 μονάδες) Β.Ο (50) είναι υπάλληλος μίας εταιρείας. Ο μελλοντικός χρόνος παραμονής του στην εταιρεία υπόκειται σ ένα μοντέλο διπλού απαυξήματος. Δίνεται: i. Το απαύξημα (1) είναι η αποχώρηση από την εταιρείαλόγω συνταξιοδότησης. ii. μ (1) 0,00, 0 t < 5 50 (t) = { 0,02, t 5 Το απαύξημα (2) είναι η αποχώρηση από την εταιρείαγια οποιαδήποτε άλλη αιτία πλην συνταξιοδότησης. iv. μ (2) 0,05, 0 t < 5 50 (t) = { 0,03, t 5 Να υπολογιστεί η πιθανότητα ο (50) να αποχωρήσει από την εταιρείαλόγω συνταξιοδότησης, πριν από την ηλικία 60.(3 μονάδες) Γ. Η θνησιμότητα για την (25) ακολουθεί το νόμο DeMoivreμε ω=100. Όμως, εάν ασχοληθεί με κάποιο extremesport μέχρι την ηλικία των 26, η ένταση της θνησιμότητάς της, μόνο για το έτος αυτό, θα είναι σταθερή 0,1. Να υπολογιστεί η μείωση στην «προσδοκώμενη ζωή της (25) μέσα στα επόμενα 11-έτη», εάν αποφασίσει να ασχοληθεί με το extremesport.(3 μονάδες) 4/6
5 4) A. Για μία μικτή πλήρως διακριτή ασφάλιση διάρκειας 3 ετών ασφαλισμένου κεφαλαίου 10 3 στον (x), δίνεται: i. i = 0,05 ii. p x = p x+1 = 0,7 Να υπολογιστεί το μαθηματικό απόθεμα στο τέλος του δεύτερου έτους ασφάλισης. (2 μονάδες) B. Δίνεται: Να υπολογιστεί το 4 14q50. (2 μονάδες) 0,05, 50 x < 60 μ(x) = { 0,04, 60 x < 70 Γ. Τιμολογείτε μία ειδική προκαταβλητέα ετήσια ράντα διάρκειας 3 ετών, επί δύο ανεξάρτητων ζωών (80). Η ράντα καταβάλλει , εάν και τα δύο άτομα είναι εν ζωή και , εάν μόνο ένα άτομο είναι εν ζωή. Δίνεται: i. k k p ,91 2 0,82 3 0,72 ii. i = 0,05 Να υπολογιστεί η αναλογιστική παρούσα αξία αυτής της ράντας. (6 μονάδες) 5/6
6 5) A. Για μία συνεχώς καταβαλλόμενηισόβια ράντα ζωής κεφαλαίου 1 στον (35), αναβαλλόμενη για 10 έτη, δίνεται: i. Η θνησιμότητα ακολουθεί το νόμο DeMoivre με ω=85. ii. i = 0 Το ετήσιο καθαρό ασφάλιστρο καταβάλλεται συνεχώς για 10 έτη. Να υπολογιστεί το μαθηματικό απόθεμα στο τέλος του 5 ου έτους ασφάλισης. (5 μονάδες) B. Ένας ασφαλιστής συστήνει ένα κεφάλαιο για την καταβολή ασφαλιστικών παροχών σε 400 ανεξάρτητες ζωές (x). Δίνεται: i. Την 1 Ιανουαρίου 2018 σε κάθε ζωή εκδίδεται μία αναβαλλόμενη για 10 έτη ισόβια ασφάλιση θανάτου κεφαλαίου 1000, πληρωτέου κατά τη χρονική στιγμή του θανάτου. ii. Κάθε ζωή υπόκειται σε σταθερή ένταση θνησιμότητας ύψους 0,05. Η ένταση ανατοκισμού είναι 0,07. Να υπολογιστεί το ύψος του κεφαλαίου που πρέπει να έχει σχηματίσει ο ασφαλιστής την 1 Ιανουαρίου 2018, ώστε με πιθανότητα 95% να δύναται να καλύψει τις ανωτέρω υποχρεώσεις. Να χρησιμοποιηθεί προσέγγιση μέσω της κανονικής κατανομής (δίνεται ότι P(Z 1,645) = 0,95, όπου Ζ~Ν(0, 1)). (5 μονάδες) 6/6
ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 21 ΙΟΥΛΙΟΥ 2017
Όνομα: Επίθετο: Ημερομηνία: Πρωί: X Απόγευμα: Θεματική ενότητα: 1) Να υπολογιστεί το A 11 θανάτων (UDD)". (2) 2 :1 χρησιμοποιώντας την υπόθεση της "ομοιόμορφης κατανομής των Δίνεται i=2%, q 0 = 0,2 και
Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!!
Όνομα: Επίθετο: Ημερομηνία: Πρωί: X Απόγευμα: Θεματική ενότητα: Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α ΣΕ ΟΛΟΥΣ!!!!!!!!!!! 1/14 1) Για ένα χαρτοφυλάκιο 250 ατόμων ηλικίας xδίνεται: i. Οι χρόνοι μελλοντικής ζωής τωνατόμων
Σελίδα 1 από 16 ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011
ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ (ΕΜΠΟΡΙΟΥ) ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΙΟΥΛΙΟΥ 2011 ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ 14 ΙΟΥΛΙΟΥ 2011 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.µ. 12 µ.) Σελίδα 1 από
και A του 1 Α) 0,048 Β) 0,288 Γ) 0,353 Δ) 0,440 Ε) 0, Για κάποια ηλικία x είναι lx t βρεθεί η τιμή του l x. Α) 99 Β) 101 Γ) 103 Δ) 111 Ε) 115
. Η πιθανότητα ο () να ζήσει για τουλάχιστον χρόνια είναι κατά 0% μεγαλύτερη από την πιθανότητα ο (+) να ζήσει για τουλάχιστον χρόνια. Αν / 0, 4, 9 / 0, και 0, 48 να βρεθεί η τιμή του Α) 0,048 Β) 0,88
ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016
Όνομα: Επίθετο: Ημερομηνία: Πρωί: X Απόγευμα: Θεματική ενότητα: 1. Μια ισόβια ασφάλιση, με ασφαλισμένο κεφάλαιο ύψους 1, πληρωτέο τη χρονική στιγμή του θανάτου του (x), περιλαμβάνει πρόσθετη κάλυψη (rider),
ΑΝΑΛΟΓΙΣΤΙΚΑ ΠΡΟΤΥΠΑ ΣΥΜΒΑΝΤΩΝ ΖΩΗΣ & ΘΑΝΑΤΟΥ 15 Ιουλίου 2016
Όνομα: Επίθετο: Ημερομηνία: Πρωί: Απόγευμα: X Θεματική ενότητα: () 1. Α. Με επιτόκιο i=3,5% και πίνακα θνησιμότητας με q 108 =1, υπολογίστε το A και το (), χρησιμοποιώντας την υπόθεση της ομοιόμορφης κατανομής
ΑΣΦΑΛΙΣΕΙΣ ΖΩΗΣ 30 ΙΑΝΟΥΑΡΙΟΥ 2019 F3W2.PR09 ΚΑΛΗ ΕΠΙΤΥΧΙΑ!!!! F3W2.PR09 1/14
ΚΑΛΗ ΕΠΙΤΥΧΙΑ!!!! 1/14 Για τις ερωτήσεις 1-3 να χρησιμοποιηθούν τα παρακάτω δεδομένα. Χαρτοφυλάκιο περιέχει πανομοιότυπα ασφαλιστήρια συμβόλαια, με την ίδια ημερομηνία έναρξης, όπως περιγράφονται στον
ΑΣΚΗΣΕΙΣ. (iii) ln(0.5) = , (iv) e =
ΑΣΚΗΣΕΙΣ Να συµπληρωθεί ο παρακάτω πίνακας 47 48 49 50 5 l 348480 299692 d 43306 q 0.0 0.2 0.5 2 3 4 5 Η ένταση θνησιµότητας µ +t, 0 t, αλλάζει σε µ +t - c, όπου το c είναι θετικός σταθερός αριθµός. Να
ΑΣΦΑΛΙΣΕΙΣ ΖΩΗΣ 2 ΦΕΒΡΟΥΑΡΙΟΥ 2018
Όνομα: Επίθετο: Ημερομηνία: 2 Φεβρουαρίου 2018 Πρωί: Απόγευμα: X Θεματική ενότητα: Ασφαλίσεις Ζωής 1. Α. Χαρτοφυλάκιο περιέχει ασφαλιστήρια συμβόλαια του ίδιου τύπου, όπως περιγράφονται στον παρακάτω πίνακα,
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ
ΣΥΜΒΑΝΤΑ ΖΩΗΣ & ΘΑΝΑΤΟΥ ΙΟΥΛΙΟΣ 0 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΟΥΛΙΟΥ 0 ΣΥΜΒΑΝΤΑ ΖΩΗΣ ΚΑΙ ΘΑΝΑΤΟΥ 4 ΙΟΥΛΙΟΥ 0 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.μ. μ.)
ΑΣΦΑΛΙΣΕΙΣ ΖΩΗΣ 2 ΦΕΒΡΟΥΑΡΙΟΥ 2018
Όνομα: Επίθετο: Ημερομηνία: 2 Φεβρουαρίου 2018 Πρωί: X Απόγευμα: Θεματική ενότητα: Ασφαλίσεις Ζωής 1. Η αξία εξαγοράς είναι ίση με 19 20 t V, όπου t V το άρτιο μαθηματικό απόθεμα. Η αναλογιστική παρούσα
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ 5 ΦΕΒΡΟΥΑΡΙΟΥ Ημερομηνία: 5/2/2018 Πρωί: Απόγευμα: X. Θεματική ενότητα: Συνταξιοδοτικά Σχήματα & Κοινωνική Ασφάλιση
Όνομα: Επίθετο: Ημερομηνία: 5/2/2018 Πρωί: Απόγευμα: X Θεματική ενότητα: Συνταξιοδοτικά Σχήματα & Κοινωνική Ασφάλιση Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α!!!! Page 1 1 ο Θέμα Α)Για ένα Σχήμα Στοχευμένης Παροχής το αναλογιστικό
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
Όνομα: Επίθετο: Ημερομηνία: 20/2/2017 Πρωί: Απόγευμα: Θεματική ενότητα: Βα, Συνταξιοδοτικά Σχήματα & Κοινωνική ασφάλιση 1/18 1.Ποια από τα παρακάτω αληθεύουν ; α) Οι οικονομικές και οι δημογραφικές μεταβλητές
Πρόγραμμα Ισοβιας συνταξης εφαπαξ ασφαλιστρου (κωδ ) Πρόγραμμα Easy Plan άμεση σύνταξη
Πρόγραμμα Ισοβιας συνταξης εφαπαξ ασφαλιστρου (κωδ. 10547) Πρόγραμμα Easy Plan άμεση σύνταξη Πρόγραμμα εφάπαξ ασφαλίστρου με παροχή Ισόβιας Συνταξιοδότησης και με εγγυημένη 10ετή περίοδο συνταξιοδότησης.
Πρόγραμμα «ΕΞΑΣΦΑΛΙΖΩ ΠΛΕΟΝΕΚΤΗΜΑ ΓΙΑ ΤΟ ΕΦΑΠΑΞ» - Δημιουργία Εγγυημένου Κεφαλαίου Εφάπαξ Ασφαλίστρου (κωδ )
Πρόγραμμα «ΕΞΑΣΦΑΛΙΖΩ ΠΛΕΟΝΕΚΤΗΜΑ ΓΙΑ ΤΟ ΕΦΑΠΑΞ» - Δημιουργία Εγγυημένου Κεφαλαίου Εφάπαξ Ασφαλίστρου (κωδ. 10442) Η Εταιρία αναλαμβάνει την υποχρέωση να καταβάλλει στον Ασφαλισμένο, εάν αυτός βρίσκεται
ΓΕΝΙΚΟΙ ΟΡΟΙ ΒΑΣΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΖΩΗΣ ΤΙΜΟΛΟΓΙΟ Ρ23
ΓΕΝΙΚΟΙ ΟΡΟΙ ΒΑΣΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΖΩΗΣ ΤΙΜΟΛΟΓΙΟ Ρ23 ΑΡΘΡΟ 1ο : ΟΡΙΣΜΟΙ «ΑΣΦΑΛΙΖΟΜΕΝΟ ΠΟΣΟ»:Το κεφάλαιο επιβίωσης και το κεφάλαιο θανάτου όπου: α. «Κεφάλαιο επιβίωσης» είναι το ποσό της μηνιαίας σύνταξης
Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις
Από την Θεωρία Θνησιµότητας Συνάρτηση Επιβίωσης : Ασφαλιστικά Μαθηµατικά Συνοπτικές σηµειώσεις Η s() δίνει την πιθανότητα άτοµο ηλικίας µηδέν, ζήσει πέραν της ηλικίας. όταν s() s( ) όταν o
Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α!!!!!
Όνομα: Επίθετο: Ημερομηνία: 22/6/2018 Πρωί: Χ Απόγευμα: Θεματική ενότητα: Βδ Ασφαλίσεις Υγείας Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α!!!!! 1/20 1. Για ένα ασφαλιστήριο συμβόλαιο υγείας δίνονται οι εξής πληροφορίες: Έκδοση
Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α!!!!!
Όνομα: Επίθετο: Ημερομηνία: 5/2/2018 Πρωί: X Απόγευμα: Θεματική ενότητα: Συνταξιοδοτικά Σχήματα & Κοινωνική Ασφάλιση Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α!!!!! Page 1 1 ο Θέμα Ασφαλισμένη συνταξιοδοτείται το 2017 με
Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α!!!!!!
Όνομα: Επίθετο: : 22/6/2018 Πρωί: Απόγευμα: X Θεματική ενότητα: Βδ Ασφαλίσεις Υγείας Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α!!!!!! 1/6 Ερώτημα 1 (10 μονάδες) Μία ασφαλιστική εταιρεία έχει αντασφαλίσει το χαρτοφυλάκιο
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
F3W.PR09 Όνομα: Επίθετο: Ημερομηνία: //07 Πρωί: Απόγευμα: x Θεματική ενότητα: Ποσοτικοποίηση και Αναλογιστική Διαχείριση των Κινδύνων και Φερεγγυότητα ΚΑΛΗ ΕΠΙΤΥΧΙΑ! F3W.PR09 /5 F3W.PR09 Θέμα α) Ποια η
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
Όνομα: Επίθετο: Ημερομηνία: //017 Πρωί: x Απόγευμα: Θεματική ενότητα: Ποσοτικοποίηση και Αναλογιστική Διαχείριση των Κινδύνων και Φερεγγυότητα ΚΑΛΗ ΕΠΙΤΥΧΙΑ! 1/10 1. Για ποια από τα παρακάτω έχει καθήκον
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
Όνομα: Επίθετο: Ημερομηνία: 13/7/2015 Πρωί: x Απόγευμα: Θεματική ενότητα: Ποσοτικοποίηση και Αναλογιστική Διαχείριση των Κινδύνων και Φερεγγυότητα 1. Στο πλαίσιο φερεγγυότητα ΙΙ, όσον αφορά στη δραστηριότητα
Πρόγραμμα Easy Plan άμεση σύνταξη
Πρόγραμμα Easy Plan άμεση σύνταξη 7 ος 2017 Η σημερινή κατάσταση 2 Η ανάγκη μας για συμπληρωματική σύνταξη 3 Θα σας ενδιέφερε να μπορούσατε να μετατρέψετε σήμερα ένα μέρος από τις διαθέσιμες αποταμιεύσεις
ΘΕΜΑ : Καθορισμός των τεχνικών παραμέτρων σχετικά με τη τις παροχές του ΕΤΕΑ ΑΠΟΦΑΣΗ Ο ΥΦΥΠΟΥΡΓΟΣ ΕΡΓΑΣΙΑΣ, ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΚΑΙ ΠΡΟΝΟΙΑΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΕΡΓΑΣΙΑΣ, Αθήνα, 7 / 06 /06 ΚΟΙΝΩΝΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΚΑΙ ΚΟΙΝΩΝΙΚΗΣ ΑΛΛΗΛΕΓΓΥΗΣ ΓΕΝ. ΓΡΑΜ. ΚΟΙΝΩΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ ΓΕΝ. Δ/ΝΣΗ ΚΟΙΝ. ΑΣΦΑΛΙΣΗΣ Δ5-Δ/ΝΣΗ ΠΡΟΣΘΕΤΗΣ ΑΣΦΑΛΙΣΗΣ ΓΕΝ. Δ/ΝΣΗ
Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α!!!!!!
Όνομα: Επίθετο: Ημερομηνία: 12 Φεβρουαρίου 2018 Πρωί: Απόγευμα: x Θεματική ενότητα: Αρχές Οικονομίας & Χρηματοοικονομικά Μαθηματικά Αα Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α!!!!!! 1/6 Θέμα 1 ο Α) (2 μονάδες) Εκδίδονται
ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-5-)
ΣΥΝΟΠΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ Ι.Ι (τεύχος-5-) 5. Ράντες 5.1.1.Ορισμοι- Κατηγορίες Ράντα ονομάζουμε σειρά κεφαλαίων που καταβάλλονται ανά ισα χρονικά διαστήματα. Για τα κεφάλαια αυτά ισχύει
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
FW.PR09 Όνομα: Επίθετο: Ημερομηνία: 4//07 Πρωί: x Απόγευμα: Θεματική ενότητα: Αρχές Οικονομίας και Χρηματοοικονομικά Μαθηματικά FW.PR09 / FW.PR09. Δίνεται ένταση ανατοκισμού t = την ράντα s 0.0t για 0
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
F3W.PR09 Όνομα: Επίθετο: Ημερομηνία: 7/0/07 Πρωί: Απόγευμα: Θεματική ενότητα: Αναλογιστικά Πρότυπα Επιβίωσης Ερώτηση Εάν η τυχαία μεταβλητή Τ έχει συνάρτηση πυκνότητας f ep 3 3 να υπολογίσετε το 90 ο εκατοστημόριο
Αναλογιστικά Μαθηµατικά Ασφαλίσεων Ζωής
Αναλογιστικά Μαθηµατικά Ασφαλίσεων Ζωής Αλέξανδρος Α. Ζυµπίδης Λέκτορας Οικονοµικού Πανεπιστηµίου Αθηνών Αναλογιστής τ. Πρόεδρος της Εθνικής Αναλογιστικής Αρχής Αθήνα, Φεβρουάριος 2009 ii Π Ε Ρ Ι Ε Χ Ο
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 2010 ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ 9 ΙΟΥΛΙΟΥ 2010
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 2010 ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ 9 ΙΟΥΛΙΟΥ 2010 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (12 μ. 2 μ.μ.) a ak 1. (6 βαθμοί)
ΓΕΝΙΚΟΙ ΟΡΟΙ ΒΑΣΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΖΩΗΣ
ΓΕΝΙΚΟΙ ΟΡΟΙ ΒΑΣΙΚΗΣ ΑΣΦΑΛΙΣΗΣ ΖΩΗΣ ΆΡΘΡΟ 1ο: ΕΞΑΓΟΡΑ Το ασφαλιστήριο μπορεί να εξαγορασθεί : α. όταν πρόκειται για συμβόλαια διάρκειας πληρωμής ασφαλίστρων μέχρι και δέκα (10) χρόνων, μετά την πληρωμή
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 8: Πρόσκαιρες Ράντες Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Υ.Γ. Για όσους ενδιαφέρονται να έχουν μία επιπλέον ενημέρωση, παραθέτουμε κατωτέρω ορισμένες λεπτομέρειες :
Υ.Γ. Για όσους ενδιαφέρονται να έχουν μία επιπλέον ενημέρωση, παραθέτουμε κατωτέρω ορισμένες λεπτομέρειες : Α. Αποσπάσματα από την Εγκύκλιο του Υπουργείου Εργασίας (Φ80020/οικ.29753/Δ15.531-30.6.2016):
Ασφαλιζόμενος Α Α - 23/01/2019 ΤΡΑΓΚΑΣ ΜΙΧΑΗΛ - ΑΣΦΑΛΙΣΤΙΚΟΣ ΣΥΜΒΟΥΛΟΣ - - Σελίδα 1 από 7
Ασφαλιζόμενος - 23/01/2019 Σελίδα 1 από 7 ΠΑΡΟΧΕΣ ΠΡΟΓΡΑΜΜΑΤΟΣ Ασφαλιζόμενος Ασφαλιστικό Πρόγραμμα Αρχικό Ασφαλιζόμενο Κεφάλαιο Πρόσκαιρη Ασφάλιση Θανάτου Μειούμενου Κεφαλαίου 30.000 Διάρκεια Ασφάλισης
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
Όνομα: Επίθετο: Ημερομηνία: 19/7/2017 Πρωί: Χ Απόγευμα: Θεματική ενότητα: Βδ Ασφαλίσεις Υγείας 1. Έστω ότι έχουμε 2 προϊόντα κάλυψης νοσοκομειακών δαπανών τα οποία έχουν ακριβώς το ίδιο ασφάλιστρο κινδύνου
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 2004 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 28 ΙΑΝΟΥΑΡΙΟΥ 2004
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΑΝΑΠΤΥΞΗΣ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΙΑΝΟΥΑΡΙΟΥ 004 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 8 ΙΑΝΟΥΑΡΙΟΥ 004 ΠΡΩΙΝΗ ΕΞΕΤΑΣΗ (9 π.μ.) . Αν δ t,
29 Σεπτεμβρίου Ετοιμάστηκε από την. Τελική Μελέτη για το Πανεπιστήμιο Κύπρου
ΤΑΜΕΙΟ ΣΥΜΠΛΗΡΩΜΑΤΙΚΗΣ ΠΕΡΙΘΑΛΨΗΣ ΥΓΕΙΑΣ ΤΟΥ ΠΡΟΣΩΠΙΚΟΥ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΚΥΠΡΟΥ Αναλογιστική μελέτη με ημερομηνία αναφοράς την 30 η Ιουνίου, 2010 για την εξέταση των οικονομικών επιπτώσεων στο Ταμείο
MetLife Οδηγούμε με σιγουριά στον δρόμο της ανάπτυξης
MetLife Οδηγούμε με σιγουριά στον δρόμο της ανάπτυξης Γιατί να κάνω Αποταμιευτικό / Συνταξιοδοτικό Πρόγραμμα Αύξηση Ορίων Συνταξιοδότησης Μείωση Βασικών Συντάξεων Μείωση Επικουρικών Συντάξεων Αξιοπρεπείς
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
Όνομα: Επίθετο: Ημερομηνία: 8/7/206 Πρωί: Απόγευμα: X Θεματική ενότητα: Βδ Ασφαλίσεις Υγείας Ερώτημα (0 μονάδες) i) Έχουμε ένα συμβόλαιο σοβαρών ασθενειών με 2-έτη διάρκεια, με τις εξής πληροφορίες: ο
ΤΡΟΠΟΠΟΙΗΣΕΙΣ ΚΑΤΑΣΤΑΤΙΚΟΥ
ΤΡΟΠΟΠΟΙΗΣΕΙΣ ΚΑΤΑΣΤΑΤΙΚΟΥ ΠΡΟΣΟΧΗ ΕΝΗΜΕΡΩΤΙΚΟ ΔΕΝ ΕΠΙΣΤΡΦΕΤΑΙ ΣΤΟ ΤΑΜΕΙΟ 2009 ΤΡΟΠΟΠΟΙΗΣΕΙΣ ΚΑΤΑΣΤΑΤΙΚΟΥ (Όπως εγκρίθηκαν από τη Γενική Συνέλευση των μελών της 11ης Μαρτίου 2009) 1. O Κλάδος Εφάπαξ επεκτείνεται
Τρόπος υπολογισμού της Θεσμοθετημένης σύνταξης
Τρόπος υπολογισμού της Θεσμοθετημένης σύνταξης όπως καθορίζεται από τον Περί Κοινωνικών Ασφαλίσεων Νόμο τόσο στη βασική όσο και στη συμπληρωματική ασφάλιση Του Μιχαλάκη Χρίστου (e-mail:christoumic@yahoo.gr)
ΠΕΡΙΕΧΟΜΕΝΑ ΑΠΟΦΑΣΕΙΣ ΑΠΟΦΑΣΕΙΣ. 7 Ιουνίου 2016 ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ Αρ. Φύλλου 1604
E Validity unknown Digitally signed by VARVARA ZACHARAKI Date: 2016.06.07 21:11:42 EEST Reason: Signed PDF (embedded) Location: Athens, Ethniko Typografio 18653 7 Ιουνίου 2016 ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ Αρ. Φύλλου
Προτεινόμενος για Ασφάλιση : ΣΤΡΑΪΤΟΥΡΗΣ ΘΑΝΑΣΗΣ Ημερομηνία Γέννησης : 7/12/1979 Ηλικία : 33
Κεντρικά Γραφεία: Λεωφ. Κηφισίας 119, 151 24, Μαρούσι, Αθήνα Τηλ: 210 87.87.000 e-mail: contact@metlifealico.gr www.metlifealico.gr Σπύρος Γεωργιάδης Ασφαλιστικός Σύμβουλος Γραφείο Πωλήσεων DSF 581 Δ.:
ΠΡΟΓΡΑΜΜΑ ACCELERATOR PLUS
ΠΡΟΓΡΑΜΜΑ ACCELERATOR PLUS Το Accelerator Plus είναι το νέο πρόγραμμα Unit Linked περιοδικών καταβολών της MetLife Alico AEAZ. Θα αντικαταστήσει τα βασικά Προγράμματα ScoreInvest και Accelerator καθώς
Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α!!!!!
Όνομα: Επίθετο: Ημερομηνία: 25/6/2018 Πρωί: Απόγευμα: Θεματική ενότητα: Αρχές Αναλογιστικής Προτυποποίησης, Κατασκευή και Αξιολόγηση Αναλογιστικών Προτύπων Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α!!!!! 1/15 1. Η κατανομή
Οικονομικά Μαθηματικά
Οικονομικά Μαθηματικά Ενότητα 8: Ράντες Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #17: Σειρές Πληρωμών ή Ράντες Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
Όνομα: Επίθετο: Ημερομηνία: 8/7/2016 Πρωί: Χ Απόγευμα: Θεματική ενότητα: Βδ Ασφαλίσεις Υγείας 1. Σε ένα χαρτοφυλάκιο managed care προϊόντων, το 2015 συνέβησαν οι εξής ζημιές: Ζημιές ( ) 1.500 10.000 40.000
Ομαδικό Συνταξιοδοτικό Πρόγραμμα για τα Μέλη της ΠΑΝΕΛΛΗΝΙΑ ΟΜΟΣΠΟΝΔΙΑ ΕΠΑΓΓΕΛΜΑΤΙΩΝ ΠΡΑΚΤΟΡΩΝ ΠΑΙΧΝΙΔΙΩΝ ΠΡΟΓΝΩΣΗΣ ΟΠΑΠ Α.Ε. (Π.Ο.Ε.Π.Π.Π.
Ομαδικό Συνταξιοδοτικό Πρόγραμμα για τα Μέλη της ΠΑΝΕΛΛΗΝΙΑ ΟΜΟΣΠΟΝΔΙΑ ΕΠΑΓΓΕΛΜΑΤΙΩΝ ΠΡΑΚΤΟΡΩΝ ΠΑΙΧΝΙΔΙΩΝ ΠΡΟΓΝΩΣΗΣ ΟΠΑΠ Α.Ε. (Π.Ο.Ε.Π.Π.Π.) Ημερομηνία Έκδοσης: Δεκέμβριος 2012 Ενημερωτικό Φυλλάδιο Π.Ο.Ε.Π.Π.Π.
Χρηματοοικονομική Ι. Ενότητα 5: Η Χρονική Αξία του Χρήματος (2/2) Ιωάννης Ταμπακούδης. Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ Ι
Χρηματοοικονομική Ι Ενότητα 5: Η Χρονική Αξία του Χρήματος (2/2) Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
Όνομα: Επίθετο: Ημερομηνία: 20/02/2017 Πρωί: Απόγευμα: Θεματική ενότητα: Βα, Συνταξιοδοτικά Σχήματα & Κοινωνική ασφάλιση 1/7 Θέμα 1 Ταμείο Κοινωνικής Ασφάλισης έχει 3 κλάδους : Κύρια σύνταξη, Επικουρική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ ΚΙΝΔΥΝΟΣ ΜΑΚΡΟΖΩΙΑΣ ΑΚΡΙΒΟΣ ΓΙΑΝΝΗΣ 331/ 2009 127 ΕΠΙΒΛΕΠΟΝ : Π.
ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΖΩΗΣ ΣΥΝΔΕΔΕΜΕΝΟΥ ΜΕ ΕΠΕΝΔΥΣΕΙΣ ΕΥΕΛΙΚΤΗ ΕΘΝΙΚΗ ΣΥΝΤΑΞΗ
ΕΕΣ ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΤΗΡΙΟΥ ΖΩΗΣ ΣΥΝΔΕΔΕΜΕΝΟΥ ΜΕ ΕΠΕΝΔΥΣΕΙΣ ΕΥΕΛΙΚΤΗ ΕΘΝΙΚΗ ΣΥΝΤΑΞΗ ΑΡΘΡΟ 1ο : ΟΡΙΣΜΟΙ 1. Εσωτερικό Μεταβλητό Κεφάλαιο Ευέλικτης Εθνικής Σύνταξης (ΕΜΚΕΕΣ). Το Κεφάλαιο που διατηρεί η
Ε Π Ι Τ Υ Χ Ι Α!!!!!!!
Όνομα: Επίθετο: Ημερομηνία:12Φεβρουαρίου 2018 Πρωί: Χ Απόγευμα: Θεματική ενότητα: Αρχές Οικονομίας & Χρηματοοικονομικά Μαθηματικά Αα Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α!!!!!!! 1/10 Ερώτηση 1. Αν η προεξοφλημένη αξία
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
FW.PR09 Όνομα: Επίθετο: Ημερομηνία: Πρωί: Απόγευμα: x Θεματική ενότητα: Αρχές Οικονομίας και Χρηματοοικονομικά Μαθηματικά FW.PR09 /6 FW.PR09 Θέμα ο α) Η παρούσα αξία μιας διηνεκούς ράντας που πληρώνει
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
Όνομα: Επίθετο: Ημερομηνία: 14/7/2017 Πρωί: X Απόγευμα: Θεματική ενότητα: Ασφαλίσεις Κατά Ζημιών Τα θέματα 1 και 2 σχετίζονται με το παρακάτω τρίγωνο επισυμβασών ζημιών Έτος Ατυχήματος Έτος Εξέλιξης 1
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2013 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 13 ΦΕΒΡΟΥΑΡΙΟΥ 2013
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 013 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 13 ΦΕΒΡΟΥΑΡΙΟΥ 013 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (1 π.μ.
XV. ΜΕΡΙ ΙΑ ΣΤΟ ΕΝΕΡΓΗΤΙΚΟ, ΙΑΝΟΜΗ ΤΟΥ ΠΛΕΟΝΑΣΜΑΤΟΣ, ΜΕΡΙΣΜΑΤΑ, ΕΛΕΓΧΟΙ ΚΕΡ ΟΦΟΡΙΑΣ Α. ΕΙΣΑΓΩΓΗ
XV. ΜΕΡΙ ΙΑ ΣΤΟ ΕΝΕΡΓΗΤΙΚΟ, ΙΑΝΟΜΗ ΤΟΥ ΠΛΕΟΝΑΣΜΑΤΟΣ, ΜΕΡΙΣΜΑΤΑ, ΕΛΕΓΧΟΙ ΚΕΡ ΟΦΟΡΙΑΣ Α. ΕΙΣΑΓΩΓΗ Στο παρελθόν ασχοληθήκαµε µε τα µαθηµατικά αποθέµατα ("αποθέµατα καθαρού ασφαλίστρου" και µε τα αποθέµατα
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (12
Προπαρασκευαστικό μάθημα: Αναλογισμός. Κ. Πολίτης. Πανεπιστήμιο Πειραιά, Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης Οκτώβριος 2014
ΠΜΣ στην Αναλογιστική Επιστήμη και Διοικητική Κινδύνου Προπαρασκευαστικό μάθημα: Αναλογισμός Κ. Πολίτης Πανεπιστήμιο Πειραιά, Τμήμα Στατιστικής και Ασφαλιστικής Επιστήμης Οκτώβριος 2014 1 Τι είναι αναλογισμός;
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
Όνομα: Επίθετο: Ημερομηνία: 27/6/2018 Πρωί: X Απόγευμα: Θεματική ενότητα: Ασφαλίσεις Κατά Ζημιών 1. Ποιο από τα παρακάτω αληθεύει; (Α) Η ηλικία του οδηγού για τον κλάδο του αυτοκινήτου αποτελεί παράγοντα
ΔΕΙΓΜΑ ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΤΗΡΙΟΥ FX LINK 1. ΑΣΦΑΛΙΣΤΗΡΙΟ ΣΥΜΒΟΛΑΙΟ
ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΤΗΡΙΟΥ FX LINK 1. ΑΣΦΑΛΙΣΤΗΡΙΟ ΣΥΜΒΟΛΑΙΟ Η πλήρης Σύμβαση Ασφάλισης με την MetLife Alico A.E.A.Z. αποτελείται από: Τους Γενικούς και Ειδικούς Όρους του Ασφαλιστηρίου, Τη Σελίδα Ειδικών
Easy Plan Εφάπαξ ασφαλίστρου
Easy Plan Εφάπαξ ασφαλίστρου κωδ.10446 8 ος 2017 1 Η αγορά σήμερα αποτελεί μια δύσκολη εξίσωση 2 Οι πελάτες αναζητούν ευκαιρίες σε περιβάλλον αρνητικών αποδόσεων επιτοκίων...τρόπους για να αυξήσουν την
Του Μιχαλάκη Χρίστου
Τρόπος υπολογισμού της σύνταξης γήρατος όπως αυτός καθορίζεται από τον Περί Κοινωνικών Ασφαλίσεων Νόμο τόσο στη βασική όσο και στη συμπληρωματική ασφάλιση Του Μιχαλάκη Χρίστου (e-mail:christoumic@yahoo.gr)
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
Όνομα: Επίθετο: Ημερομηνία:17/07/2017 Πρωί: Απόγευμα: Θεματική ενότητα: Αρχές Αναλογιστικής Προτυποποίησης, Κατασκευή και Αξιολόγηση Αναλογιστικών Προτύπων Ερώτημα 1 Ο συνολικός αριθμός των ζημιών N σε
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
Όνομα: Επίθετο: Ημερομηνία: 5/7/2016 Πρωί: X Απόγευμα: Θεματική ενότητα: Ασφαλίσεις Κατά Ζημιών Τα θέματα 1 και 2 σχετίζονται με το παρακάτω τρίγωνο σωρευτικών πληρωθεισών ζημιών Παράμετρος Bondy = 0,7
ΕΦΗΜΕΡΙ Α ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ
E ΕΦΗΜΕΡΙ Α ΤΗΣ ΚΥΒΕΡΝΗΣΕΩΣ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΗΜΟΚΡΑΤΙΑΣ 18653 7 Ιουνίου 2016 ΤΕΥΧΟΣ ΔΕΥΤΕΡΟ Αρ. Φύλλου 1604 ΠΕΡΙΕΧΟΜΕΝΑ ΑΠΟΦΑΣΕΙΣ 1 Καθορισμός των τεχνικών παραμέτρων υπολογισμού των εφάπαξ παροχών. 2 Καθορισμός
ΔΕΙΓΜΑ ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΤΗΡΙΟΥ SMART PENSION 1. ΑΣΦΑΛΙΣΤΗΡΙΟ ΣΥΜΒΟΛΑΙΟ
ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΤΗΡΙΟΥ SMART PENSION 1. ΑΣΦΑΛΙΣΤΗΡΙΟ ΣΥΜΒΟΛΑΙΟ Η πλήρης Σύμβαση Ασφάλισης με την MetLife A.E.A.Z. αποτελείται από: Τους Γενικούς και Ειδικούς Όρους του Ασφαλιστηρίου, Τη Σελίδα Ειδικών
Ομαδικές Ασφαλίσεις και σύγχρονη επιχείρηση
Ομαδικές Ασφαλίσεις και σύγχρονη επιχείρηση Παρουσίαση στο Επιμελητήριο Μεσσηνίας 17/9/2018 Ηρακλής Δασκαλόπουλος Ομαδικές Ασφαλίσεις Ασφάλιση ομάδας ατόμων με ένα Ασφαλιστήριο Συμβόλαιο Τα μέλη της ομάδας
Οι ασφαλισμένοι του Ο.Α.Ε.Ε. ή σε περίπτωση θανάτου τους, οι δικαιούχοι σύνταξης δύνανται να αναγνωρίσουν με εξαγορά τους κάτωθι χρόνους:
Οι ασφαλισμένοι του Ο.Α.Ε.Ε. ή σε περίπτωση θανάτου τους, οι δικαιούχοι σύνταξης δύνανται να αναγνωρίσουν με εξαγορά τους κάτωθι χρόνους: α) Το χρόνο δραστηριότητας για τον οποίο δεν κατέβαλαν εισφορές
ΔΙΕΥΘΥΝΣΗ ΑΤΟΜΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ & ΥΓΕΙΑΣ Αριθ.Πρωτ : / Αθήνα, 30/9/2011
ΔΙΕΥΘΥΝΣΗ ΑΤΟΜΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ & ΥΓΕΙΑΣ Αριθ.Πρωτ : 122966/28-09-2011 Αθήνα, 30/9/2011 Προς Τις Περιφερειακές Υποδιευθύνσεις, τα Υποκαταστήματα, τους Περιφερειακούς Τομείς, τις Επιθεωρήσεις και τις
Οι ασφαλισμένοι του Ο.Α.Ε.Ε. μέχρι 31/12/92 δικαιούνται να συνεχίσουν την ασφάλιση
{googleads left} Οι ασφαλισμένοι του Ο.Α.Ε.Ε. μέχρι 31/12/92 δικαιούνται να συνεχίσουν την ασφάλισή τους προαιρετικά σαυτόν μετά τη διακοπή της δραστηριότητάς τους, με την προϋπόθεση να μην είναι ασφαλισμένοι
Ο μηχανισμός που δουλεύουν και πώς να τον εκμεταλλευτείς. Τέσσερα δυνατά σημεία του μηχανισμού. Διονύσης Γεωργάτος ΙΔΙΩΤΙΚΑ ΣΥΝΤΑΞΙΟΔΟΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ
Ο μηχανισμός που δουλεύουν και πώς να τον εκμεταλλευτείς. Τέσσερα δυνατά σημεία του μηχανισμού ΙΔΙΩΤΙΚΑ Διονύσης Γεωργάτος ΣΥΝΤΑΞΙΟΔΟΤΙΚΑ ΠΡΟΓΡΑΜΜΑΤΑ Ιδιωτικά συνταξιοδοτικά προγράμματα Ο μηχανισμός που
ΔΙΕΥΘΥΝΣΗ ΑΤΟΜΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ ΚΑΙ ΥΓΕΙΑΣ
ΔΙΕΥΘΥΝΣΗ ΑΤΟΜΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ ΖΩΗΣ ΚΑΙ ΥΓΕΙΑΣ Αριθ.Πρωτ. 147532/4-10-2010 Προς τις Περιφερειακές Υποδιευθύνσεις, Περιφερειακούς Τομείς, Υποκαταστήματα, τις Επιθεωρήσεις και τις λοιπές Μονάδες Παραγωγής.
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 2014 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ 18 ΙΟΥΛΙΟΥ 2014
ΕΝΩΣΗ ΑΝΑΛΟΓΙΣΤΩΝ ΕΛΛΑΔΟΣ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 2014 ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ 18 ΙΟΥΛΙΟΥ 2014 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ (12 μ. 2 μ.μ.) 1. (5 βαθμοί) Δίνεται ο ακόλουθος πίνακας με εμπειρικά δεδομένα από
Έρευνα στατιστικών στοιχείων ασφαλίσεων Ζωής Α τριμήνου 2016
Έρευνα στατιστικών στοιχείων ασφαλίσεων Ζωής Α τριμήνου 2016 Η έρευνα Η Επιτροπή Ζωής, Συντάξεων και Υγείας της ΕΑΕΕ αφού έλαβε υπόψη της τις ανάγκες ολοκληρωμένης πληροφόρησης των ασφαλιστικών επιχειρήσεων
Στατιστικά Επιτροπή Ζωής, Υγείας και Συντάξεων
Στατιστικά 2016 Επιτροπή Ζωής, Υγείας και Συντάξεων 1 Οι Ασφαλίσεις Ζωής σε βάθος χρόνου (ποσά σε εκατομμύρια ) 2.571 2.559 2.581 1.813 2.026 2.366 2.393 2.245 2.004 1.743 1.944 1.862 2.123 1.347 1.318
2. Στα Ταμεία Επαγγελματικής Ασφάλισης οι εισφορές καταβάλλονται :
1. Προκειμένου να είναι επαρκής, στο μέτρο του ευλόγως προβλεπτού, η εκτίμηση για το ύψος της ελάχιστης ελεύθερης περιουσίας που πρέπει να διαθέτει ασφαλιστική εταιρία, πρέπει να ληφθούν υπόψη οι κίνδυνοι
S T (x) = exp. (α) m n q x = m+n q x m q x. (β) m n q x = m p x m+n p x. (γ) m n q x = m p x n q x+m. tp x = S Tx (t) = S T (x + t) { x+t
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕ ΚΑΤΕΥΘΥΝΣΗ ΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΣΗΣ ΘΝΗΣΙΜΟΤΗΤΑΣ ΙΩΑΝΝΗΣ Σ. ΣΤΑΜΑΤΙΟΥ ΣΑΜΟΣ, ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ 2013-2014
ΒΑΣΙΚΕΣ ΠΡΟΥΠΟΘΕΣΕΙΣ ΣΥΝΤΑΞΙΟ ΟΤΗΣΗΣ
ΒΑΣΙΚΕΣ ΠΡΟΥΠΟΘΕΣΕΙΣ ΣΥΝΤΑΞΙΟ ΟΤΗΣΗΣ (Tα κατωτέρω ισχύουν σύμφωνα με το Ασφαλιστικό Πλαίσιο, Νόμοι Προεδρικά Διατάγματα - Ερμηνευτικές Εγκύκλιοι, όπως έχει διαμορφωθεί μέχρι 31.12.2012) Α) ΕΙΔΙΚΑ ΤΑΜΕΙΑ
ΟΔΗΓΙΕΣ ΕΦΟΡΟΥ ΑΣΦΑΛΙΣΕΩΝ
ΚΥΠΡΙΑΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΔΗΓΙΕΣ ΕΦΟΡΟΥ ΑΣΦΑΛΙΣΕΩΝ για την Εξατομικευμένη Πληροφόρηση σε σχέση με Επενδυτικά Προϊόντα Βασιζόμενα σε Ασφάλιση. Ημερομηνία έκδοσης: 14 Δεκεμβρίου 2018 Περιεχόμενα 1 Εισαγωγή...
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 10: ΡΑΝΤΕΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creatve Commos εκτός και αν αναφέρεται διαφορετικά Το έργο υλοποιείται
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΑΠΟΤΙΜΗΣΗ ΚΑΙ ΤΙΜΟΛΟΓΗΣΗ ΑΣΦΑΛΙΣΤΗΡΙΩΝ ΖΩΗΣ ΜΕ ΕΓΓΥΗΜΕΝΕΣ ΑΠΟΔΟΣΕΙΣ - ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΚΙΝΔΥΝΟΥ ΕΠΙΤΟΚΙΩΝ ΚΑΙ ΘΝΗΣΙΜΟΤΗΤΑΣ Κωνσταντίνος Παπαγιαννόπουλος ΕΡΓΑΣΙΑ
Γενικοί Όροι Ασφαλιστηρίου
ENTYΠO 1600 Γενικοί Όροι Ασφαλιστηρίου ΓΕΝΙΚΟΙ ΟΡΟΙ ΑΣΦΑΛΙΣΤΗΡΙΟΥ 1. ΑΣΦΑΛΙΣΤΗΡΙΟ ΣΥΜΒΟΛΑΙΟ Η πλήρης Σύμβαση Ασφάλισης με την MetLife Alico Α.Ε.Α.Ζ. αποτελείται από: Τους Γενικούς και Ειδικούς Όρους του
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2013 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 13 ΦΕΒΡΟΥΑΡΙΟΥ 2013
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 03 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 3 ΦΕΒΡΟΥΑΡΙΟΥ 03 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.μ. π.μ.) .
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2012 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 2012
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 0 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 6 ΦΕΒΡΟΥΑΡΙΟΥ 0 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ 9 π.μ. π.μ. .......
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 2011 ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ 12 ΙΟΥΛΙΟΥ 2011
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ 0 ΜΑΘΗΜΑΤΙΚΑ ΤΩΝ ΓΕΝΙΚΩΝ ΑΣΦΑΛΙΣΕΩΝ ΙΟΥΛΙΟΥ 0 ΑΠΟΓΕΥΜΑΤΙΝΗ ΕΞΕΤΑΣΗ ( μ. μ.μ.) . (6 βαθμοί) Μια ασφαλιστική
ΕΝΤΥΠΟ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ
Όνομα: Επίθετο: Ημερομηνία: 7/07/207 Πρωί: Απόγευμα: Θεματική ενότητα: Αρχές Αναλογιστικής Προτυποποίησης, Κατασκευή και Αξιολόγηση Αναλογιστικών Προτύπων. Οι αναλογιστές μιας εταιρείας μοντελοποιούν την
PENSION MASTER PLAN ΣΥΝΤΑΞΗ MΕ ΕΓΓΥΗΜΕΝΟ ΕΠΙΤΟΚΙΟ
ΒΑΣΙΚΗ ΠΑΡΟΧΗ PENSION MASTER PLAN ΣΥΝΤΑΞΗ MΕ ΕΓΓΥΗΜΕΝΟ ΕΠΙΤΟΚΙΟ ΑΣΦΑΛΙΣΤΗΡΙΟ Το παρόν Ασφαλιστήριο συνάπτεται σύμφωνα με την ισχύουσα Νομοθεσία και όλα τα παρακάτω αποτελούν αναπόσπαστο μέρος του: οι Γενικοί
ΙΙΙ. ΕΠΩΝΥΜΟΙ ΝΟΜΟΙ ΘΝΗΣΙΜΟΤΗΤΑΣ Α. ΓΕΝΙΚΑ. x Ο πρώτος νόµος θνησιµότητας οφείλεται στον De Moivre, είναι γραµµικός, s(x)
ΙΙΙ. ΕΠΩΝΥΜΟΙ ΝΟΜΟΙ ΘΝΗΣΙΜΟΤΗΤΑΣ Α. ΓΕΝΙΚΑ Ο πρώτος νόµος θνησιµότητας οφείλεται στον D Moivr, είναι γραµµικός, s(), ω ω, ή ισοδύναµα κ( ω ), ω και κ θετική σταθερά, και φυσικά δεν έχει καµιά εφαρµογή
ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2011 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ 14 ΦΕΒΡΟΥΑΡΙΟΥ 2011
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΤΡΟΠΗ ΑΝΑΛΟΓΙΣΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 0 ΟΙΚΟΝΟΜΙΚΑ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ ΦΕΒΡΟΥΑΡΙΟΥ 0 ΠΡΩΪΝΗ ΕΞΕΤΑΣΗ (9 π.μ. π.μ.) . Μια
Νέο Κυβερνητικό Ταμείο Προνοίας
Νέο Κυβερνητικό Ταμείο Προνοίας Παρουσίαση γενικών παραμέτρων του νέου Κυβερνητικού Ταμείου Προνοίας (ΚΤΠ) 21 Νοεμβρίου 2017 Μαρίνος Θεοδοσίου, FCAA Διευθύνων Αναλογιστής και Συνεταίρος, i.e. Muhanna &
Ξανασχεδιάστε το Συνταξιοδοτικό σας πρόγραµµα
Ξανασχεδιάστε το Συνταξιοδοτικό σας πρόγραµµα Pension Re-Planning Ξανασχεδιάστε το Συνταξιοδοτικό σας πρόγραμμα Απευθύνεται σε όσους θέλουν να δημιουργήσουν, ή να συνεχίσουν ένα πρόγραμμα Ισόβιας Εγγυημένης
Προτού Ασφαλιστείτε. Ενημερωτικό Έντυπο
Προτού Ασφαλιστείτε Ενημερωτικό Έντυπο > Προτού Ασφαλιστείτε ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 5 2. Γενικές Πληροφορίες για την EuroLife Ltd 5 3. Γενικά για τα Ασφαλιστικά Σχέδια 5 3.1 Βασικά Σχέδια και Επιπρόσθετα
Προτού Ασφαλιστείτε. Ενηµερωτικό Έντυπο
Προτού Ασφαλιστείτε Ενηµερωτικό Έντυπο > Protou Asfalistite.indd 1 Protou Asfalistite.indd 2 Προτού Ασφαλιστείτε Protou Asfalistite.indd 3 ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 5 2. Γενικές Πληροφορίες για την EuroLife
Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α!!!!!!
Όνομα: Επίθετο: Ημερομηνία: 6 Φεβρουαρίου 2019 Πρωί: Απόγευμα: x Θεματική ενότητα: Αρχές Οικονομίας & Χρηματοοικονομικά Μαθηματικά Αα Κ Α Λ Η Ε Π Ι Τ Υ Χ Ι Α!!!!!! 1/6 Θέμα 1 ο α) (2 Βαθμοί)Ομόλογο με
Προτού Ασφαλιστείτε. Ενημερωτικό Έντυπο
Προτού Ασφαλιστείτε Ενημερωτικό Έντυπο > Προτού Ασφαλιστείτε ΠΕΡΙΕΧΟΜΕΝΑ 1. Εισαγωγή 5 2. Γενικές Πληροφορίες για την EuroLife Ltd 5 3. Γενικά για τα Ασφαλιστικά Σχέδια 5 3.1 Βασικά Σχέδια και Επιπρόσθετα
Β E ln { 1+0,8i. 17. H συνάρτηση κόστους ασφαλιστικής επιχείρησης Α είναι f(t)=500t για
1. Ποια από τα παρακάτω περιλαμβάνονται υποχρεωτικά στα στοιχεία που χορηγούνται πριν τη σύναψη ασφαλιστικής σύμβασης : Ι. το κράτος-μέλος καταγωγής της επιχείρησης ή το κράτος-μέλος στο οποίο βρίσκεται
1) ΑΣΦΑΛΙΣΗ µέχρι την 31/12/1982 (ΕΞΑΓΟΡΕΣ Ν. 3863/10 ΟΧΙ-) I. ΑΝΔΡΕΣ, ΓΥΝΑΙΚΕΣ:
ΒΑΣΙΚΕΣ ΠΡΟΥΠΟΘΕΣΕΙΣ ΣΥΝΤΑΞΙΟ ΟΤΗΣΗΣ (Tα κατωτέρω ισχύουν σύμφωνα με το Ασφαλιστικό Πλαίσιο, Νόμοι Προεδρικά Διατάγματα - Ερμηνευτικές Εγκύκλιοι, όπως έχει διαμορφωθεί μέχρι 31.12.2012) Α) ΕΙΔΙΚΑ ΤΑΜΕΙΑ