Introduction: Big-Bang Cosmology
|
|
- Κηφεύς Στεφανόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Introduction: Big-Bng Cosology
2 Bsic Assuptions Principle of Reltivity: The lws of nture re the se everywhere nd t ll ties The Cosologicl principle: The universe is hoogeneous nd isotropic Spce tie is siply connected, cn be filled with cooving observers (CO). Ech CO perfors locl esureents of distnce nd tie in it s own fre of reference, loclly flt. No globl inertil fre. Cosic tie: synchronized clocks of COs in spce t every given tie.
3 Lick Survey M glxies isotropy hoogeneity North Glctic Heisphere
4 Microwve Anisotropy Probe Februry, 4 Science brekthrough of the yer WMAP δt/t~ -5 isotropy hoogeneity
5 Hoogeneous Universe: Flt (Eucliden), therefore open, infinite Curved nd closed, finite
6 Three-diensionl Two diensionl One-diensionl Open??? Closed x + y + z + w R x + y + z R x + y R
7 Olbers Prdox L R f L/R R The siplest ssuptions: Hoogeneity nd isotropy Eucliden geoetry Infinite spce A sttic universe N nr dr dr Flux L nr dr nl dr nl + nl + nl R +...
8 The Universe is evolving in tie
9 Bby glxies in erly universe z
10 the universe is expnding Expnding
11 99 Discovery of the Expnsion
12 Doppler Shift receding source pproching source
13 Red-shift distnce wvelength
14 Hubble Expnsion: V H R Distnce R Velocity V Accelertion
15 Hubble Expnsion velocity V H R distnce Hubble constnt
16 V H R A specil center?
17 V H R A specil center? Other Origin
18 Prediction fro hoogeneity: The Hubble Lw tie VHR t x x t x x distnce r( x, t) ( t) x & r& x & r H &
19 distnce glxy glxy The Big Bng here now t.7 Gyr tie
20 היכן היה המפץ הגדול? בנקודה אחת? בהרבה נקודות??? היכן המפץ
21 היכן היה המפץ הגדול? בנקודה אחת? בהרבה נקודות? מפץ באינסוף נקודות כל הנקודות מתלכדות לנקודה אחת
22 The Big Bng odel The Stedy Stte odel The Stedy Stte odel
23 Cosic Microwve Bckground Rdition 965
24 COBE 99 Plnk blck-body spectru ( h ν dν I ν ) dν hν / kt c e Nobel Prize 6 to Soot nd Mther Ienergy flux per unit re, solid ngle, nd frequency intervl
25 Hoogeneity nd Isotropy: Robertson-Wlker Metric
26 Metric Distnce B Metric distnce l ( A, B; t) Hubble expnsion in curved spce: dl dl i vi H ( t) l i H ( t) l i H ( t) l dt dt d ln l dt H ( t) locl Hubble lw l( A, B; t) w( A, B) ( t) H ( t) & l cooving distnce i universl expnsion fctor A tt
27 Metric l l l θ const. x. const x cos cos x x x x x x x x + + θ θ l l l l l l l l l In sll neighborhood (loclly flt) Coordinte syste: x, x (d exple) dx dx g dx g dx g d + + l dx dx g dx g dx g d + + l j i ij dx dx g d l Line eleent: Specifies the geoetry uniquely. Exct for depends on the choice of coordintes Orthogonl coordintes: g ij for i j j i ij x x x g ) ( l r The etric: l l l x x
28 Exple: E Coordintes: crtezin sphericl x r sinθ cosφ y r sinθ sinφ z r cosθ intervl d l dx + dy + dz dr + r ( dθ + sin θ dφ ) g crtezin sphericl r r sin dγ θ ngulr distnce dl r dl dl θ φ dr r dθ r sinθ dφ Exple: D sphere ebedded in E : rconst. d l dθ + sin θ d φ Are: da dl dl θ φ r sinθ dθ dφ A π π θ φ da 4π r
29 The Metric of Hoogeneous nd Isotropic Universe (Robertson-Wlker) d l ( t) dw tconst. In cooving sphericl coordintes u r /, θ, φ Isotropy: dw du + σ ( u) dγ d γ dθ + sin θ dφ Three solutions: σ (u) S k ( u) sin( u ) k u k sinh( u) k sinh( x) ( e x e x ) / dl ( t)[ du + S k ( u) dγ ] Spce-tie intervl ds dt ( t)[ du + S k ( u) dγ ]
30 k flt spce (E ) d l ( t) [ du + u ( dθ + sin θ dφ )] u θ π φ π infinite volue
31 k+ closed spce d l ( t) [ du + sin ( u)( dθ + sin θ dφ )] u π θ π φ π For visuliztion: D sphere ebedded in E 4 : (w, x, y, z) D sphere the ebedding is defined by the trnsfortion: consistent with w + x + y + z w z x y cos u sin sin sin u cosθ u sinθ cosφ u sinθ sinφ d l dw + dx + dy + To visulize plot subspce θ π / ( z ) D sphere in w,x,y,z d l ( du + sin uconst. is sphere of cooving rdius u d l sin u ( dθ + sin θ dφ ) A V π π θ φ π sin u dθ sin u A du 4π sin u π sinθ dφ 4π sin u du π u ( t) u dφ ) dz A grows for < u < π/ nd decreses for π/ < u < π x w φ u y
32 k- n open spce d l ( t) [ du + sinh ( u)( dθ + sin θ dφ )]
33 Hoogeneity nd Isotropy Robertson-Wlker Metric ds dt ( t)[ du + S k ( u) dγ ] expnsion fctor cooving rdius r ( t) u ngulr re d γ dθ + sin θ dϕ S k ( u) sin u k + sinh u k u k
34 Rdil ry dγ ds ds dt Redshift dt ν ( t)[ du locl Hubble locl flt λ + S k ( u) dγ ] ± ( t) du u± ( + z ) T t t e o dt ( t) nerby observers long light pth, seprted by δr: δν & δ δv HδrHδuHδt δt ν z λ λ v c For Blck-Body rdition, Plnck s spectru: dn 8πν c Vdν exp( hν / kt) Also for free ssive prticles: p de Broglie wvelength (prticles or photons): like photons: λ h / p p hν / c useful: conforl tie dη dt u η η o e ds ( η)[ dη du S k ( u) dγ ]
35 Horizon u t o dt < lite ( t) t e u( t, t ) u ( t o e horizon o ) liit exists r H ( t) u ( t)) H u H VH 4π Sk ( u) du Exple: EdS (k, Λ) t / u H t dt t / t / r H t M H u H t / Cuslity proble: M H ( trec ) / 4 ( ) ~ M ( t ) H Our Horizon is not cuslly connected: wht is the origin of the isotropy?
36 Friedn s Eqution nd its solutions
37 Newtonin Grvity shell E GM r 4π G v H ρ r r v Hr M 4π ρr M types of solutions, depending on the sign of E H t xiu expnsion, possible only if E< ρ crit H 8 π G ρ ρ crit & 8π G E u r u ρ( t) ε ε ±, independent of r becuse lhs is
38 The Friedn Eqution Newton s grvity: spce fixed, externl force deterining otions Einstein s equtions G 8 µν+λ gµν π GTµν G c left side of E s eq. is the ost generl function of g nd its st nd nd tie derivtives tht reduces to Newton s eqution φ 4π Gρ Grvity is n intrinsic property of spce-tie. geoetry <-> energy density. Prticles ove on geodesics (locl stright lines) deterined by the locl curvture. For the isotropic RW etric ds dt ( t)[ du + S ( u) dγ ] Einstein s tensor Stress-energy tensor & 8πρ k + Λ ss conservtion ρ V const. ρ & Gtt Ttt ρ Tuu T T P k k + G G G uu ϑϑ ϕϕ ϑϑ ϕϕ energy conservtion A differentil eqution for (t) k && & && & k 8πP+Λ conservtion of nuber of photons ρrv ρr N const. ρ r hν Add λ 4 eq. of otion
39 Solutions of Friedn eq. (tter er) *, ny k : & t * Λ & k & * k & t / / * k & + t ( ) k + dη dt & conforl tie + / ( t) * t * * turnround [ cos( η)] [ ηsin( η)] rdition er & (t) t / Λ * & k Λ + * 4π Gρ const. > ccelertion < expnsion forever criticl density ρ H / 8π G H k ρ + 8π G 8π G > collpse Λc Λ > H ( ) & e Ht big bng here & now t
40 Light trvel in closed universe A photon is eitted t the origin (u e ) right fter the big-bng (t e ) dt conforl tie dη photon: ds dη du (t) big crunch π η π/ π t π/ big bng π/ π north pole u south pole
41 H nd t Λ / collpse / / < > << Ht Ht t Ht t k / / ) /( sinh Ht Generl: ) ( sinh ), ( sin...7 ) /( / / > + Λ S S Ht Crrol, Press, Turner 99, Ann Rev A&A, 499
42 Solutions with Cosologicl Constnt Λ & k + + * k Λ> [cosh( Λ t) ] Λ< Λ * [ cosh( Λ * Λ t)] ( tter) && s / t * / Λ Λ> e & 6 Λ / t * / Λ Λ< Λ / t t π / Λ t k- Λ> se syptotic behvior s k Λ< & & & ( t c rd -order polynoil one rel root exists Λ c ) if Λc * / t Λ> e s Λ / t c Λ t c Λ c Λ< t
43 Solutions with Cosologicl Constnt (cont.) Λ & k + + * ( tter) e Λ / t 9 k+ (closed) criticl vlue: Λ c * Letre Λ>>Λ c s Λ>Λ c & > solution for every the rhs t s to be > ΛΛc+ε t ΛΛ c & double root t * & & c c c e Λ / t Einstein s sttic universe (unstble) sttic expnding to infltion Eddington-Letre big-bng expnding to sttic c / t t sttic
44 Solutions with Cosologicl Constnt (cont.) Λ & k + + * ( tter) 9 k+ (closed) criticl vlue: Λ c * <Λ<Λ c & > & < for sll nd lrge for << no solution t cos. const. wins ss ttrction wins Λ & only ttrction t
45 Friedn Eqution k tot + Λ closed/open 8 c kc G H Λ + ρ π & kinetic potentil curvture vcuu 4 r r ρ ρ ρ ρ ρ ρ r ρ + Λ + + k 8 / H c H kc G H k Λ Λ π ρ two free preters, Λ Crrol, Press, Turner 99, Ann Rev A&A, 499 Λ q & && decelerte/ccelerte c g h h G H π ρ Flt: k tot Λ ) ( + ) ( / H H + Λ
46 Drk Mtter nd Drk Energy vcuu repulsion? Λ unbound bound ss - ttrction
47 Cosologicl Constnt: Newtonin Anlog vcuu energy density Λ 4πρ Λ M Λ 4π ρ r Λ Λr force per ss on shell F M r rˆ Λ Λ r rˆ vs. M r ˆ r potentil r φ Fdr Λ r 6 vs. M r in Einstein s eqs. & 8π ρ k + Λ && 4π ρ + Λ
48 if ρ Accelertion, pressure, energy density FRW: dointes if ρ dointes r 8 π & ρ ( k Energy chnge by work d( ρ c ) pd( ) () if ρ ) 4π p && ρ+ c 4 ρ ρλ + ρ + ρr G () 4π ρ ρ p & 4 4 () 8π ρr ρ ρ & r pr rc () 8π ρλ const. pλ ρλc && ρλ Λ dointes + Construct sttic odel: de Sitter: p/c Quintessence Λ ω ωρ ρ p ρ p 8π & in FRW : ρ kc () p && ρ ρ > Λ ρ ρλ ρ c H & / Λc / for infltion need &> & to exceed r ct & r ω</ h Ht e h dv k +
49 Future SN Cosology Project
50 Drk Energy w ccelertion WMAP_ Λ WMAP_
51 Friedn Eqution Hoogeneity + Grvity ( G Λ g 8 ) H & kc c + 8π Gρ µν µν π GTµν Λ kinetic potentil curvture vcuu ρ ρ + ρ r ρ 4 ρ ρr ρr ρ crit + k + Λ ρ kc Λc c k Λ H / 8 G H H π ~ 9 g c two free preters +Λ closed/open q tot && & Λ k decelerte/ccelerte
52 Solutions of Friedn eq. & * k : t sll : k / t / * 4π Gρ const. ny k lrge, k : t << k t + * * H d η dt / ( t ) [ cos( η)] [ ηsin( η)] & Ht e Λc tter er, Λ (t) conforl tie ccelertion Λ big bng here & now t & 8π Gρ kc Λc H + > +k < > collpse + Λ expnsion forever
53 Accelertion by cosologicl constnt: & 8π Gρ kc Λc H + q +Λ k && & Λ distnce > Λ e Ht Λ < > Big Bng here & now tie
54 Generlized Drk Energy Energy conservtion during expnsion: Cosologicl constnt: d( ρtotc ) p d( ρtot ρ Λ const. ) Eqution of stte: pρ c negtive pressure Generl eq. of stte: Λ p wρ c w e.g. Quintessence w( x, t)? &> & w< / & FRW ( k ) 8πG ρ tot 4π G p && ρ+ c
CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity
CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution
Physics/Astronomy 226, Problem set 5, Due 2/17 Solutions
Physics/Astronomy 6, Problem set 5, Due /17 Solutions Reding: Ch. 3, strt Ch. 4 1. Prove tht R λναβ + R λαβν + R λβνα = 0. Solution: We cn evlute this in locl inertil frme, in which the Christoffel symbols
Geodesic Equations for the Wormhole Metric
Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes
Cosmological Space-Times
Cosmological Space-Times Lecture notes compiled by Geoff Bicknell based primarily on: Sean Carroll: An Introduction to General Relativity plus additional material 1 Metric of special relativity ds 2 =
Answer sheet: Third Midterm for Math 2339
Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne
( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution
L Slle ollege Form Si Mock Emintion 0 Mthemtics ompulsor Prt Pper Solution 6 D 6 D 6 6 D D 7 D 7 7 7 8 8 8 8 D 9 9 D 9 D 9 D 5 0 5 0 5 0 5 0 D 5. = + + = + = = = + = =. D The selling price = $ ( 5 + 00)
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Self and Mutual Inductances for Fundamental Harmonic in Synchronous Machine with Round Rotor (Cont.) Double Layer Lap Winding on Stator
Sel nd Mutul Inductnces or Fundmentl Hrmonc n Synchronous Mchne wth Round Rotor (Cont.) Double yer p Wndng on Sttor Round Rotor Feld Wndng (1) d xs s r n even r Dene S r s the number o rotor slots. Dene
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2
Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent
Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''
Chpter 7b, orsion τ τ τ ' D' B' C' '' B'' B'' D'' C'' 18 -rottion round xis C'' B'' '' D'' C'' '' 18 -rottion upside-down D'' stright lines in the cross section (cross sectionl projection) remin stright
Integrals in cylindrical, spherical coordinates (Sect. 15.7)
Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Electromagnetic Waves I
Electromgnetic Wves I Jnury, 03. Derivtion of wve eqution of string. Derivtion of EM wve Eqution in time domin 3. Derivtion of the EM wve Eqution in phsor domin 4. The complex propgtion constnt 5. The
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.
etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Differential equations
Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density
The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density 5..29 Radek Wojtak Nicolaus Copernicus Astronomical Center collaboration: Ewa Łokas, Gary Mamon, Stefan
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
Example 1: THE ELECTRIC DIPOLE
Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
The Early Universe Big Bang Cosmology: Einstein Universe Friedmann-Lemaître Universe Einstein-deSitter Universe
Seminr The Erly Universe Big Bng Cosmology: Einsein Universe Friemnn-Lemîre Universe Einsein-eSier Universe by Oliver Schmi Ouline The observe universe Meric of he universe Curvure Einsein Equion Cosmologicl
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.
Physics 55 Fll 25 Pctice Midtem Solutions The midtem will e 2 minute open ook, open notes exm. Do ll thee polems.. A two-dimensionl polem is defined y semi-cicul wedge with φ nd ρ. Fo the Diichlet polem,
wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:
3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:
s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)
. Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x
AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval
AMS B Perturbtion Methods Lecture 4 Copyright by Hongyun Wng, UCSC Emple: Eigenvlue problem with turning point inside the intervl y + λ y y = =, y( ) = The ODE for y() hs the form y () + λ f() y() = with
Notes on Tobin s. Liquidity Preference as Behavior toward Risk
otes on Tobin s Liquidity Preference s Behvior towrd Risk By Richrd McMinn Revised June 987 Revised subsequently Tobin (Tobin 958 considers portfolio model in which there is one sfe nd one risky sset.
Linearized Lifting Surface Theory Thin-Wing Theory
13.021 Marine Hdrodnamics Lecture 23 Copright c 2001 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hdrodnamics Lecture 23 Linearized Lifting Surface Theor Thin-Wing Theor
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
On the Einstein-Euler Equations
On the Einstein-Euler Equations Tetu Makino (Yamaguchi U, Japan) November 10, 2015 / Int l Workshop on the Multi-Phase Flow at Waseda U 1 1 Introduction. Einstein-Euler equations: (A. Einstein, Nov. 25,
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Oscillatory integrals
Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)
The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog
Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where
( () () ()) () () ()
ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /011 1 Έστω r = r( t = ( x( t ( t z( t t I = [ a b] συνάρτηση C τάξης και r = r( t = r ( t = x ( t + ( t z ( t είναι μία διανυσματική + Nα αποδείξετε ότι: d 1 1
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B
Problem 3.6 Given B = ˆxz 3y) +ŷx 3z) ẑx+y), find a unit vector parallel to B at point P =,0, ). Solution: At P =,0, ), B = ˆx )+ŷ+3) ẑ) = ˆx+ŷ5 ẑ, ˆb = B B = ˆx+ŷ5 ẑ = ˆx+ŷ5 ẑ. +5+ 7 Problem 3.4 Convert
Oscillatory Gap Damping
Oscillatory Gap Damping Find the damping due to the linear motion of a viscous gas in in a gap with an oscillating size: ) Find the motion in a gap due to an oscillating external force; ) Recast the solution
Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell
Jackson 2.25 Hoework Proble Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: Two conducting planes at zero potential eet along the z axis, aking an angle β between the, as
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.
Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes. Diego Torres Machado To cite this version: Diego Torres Machado. Radio
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
CE 530 Molecular Simulation
C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different
m i N 1 F i = j i F ij + F x
N m i i = 1,..., N m i Fi x N 1 F ij, j = 1, 2,... i 1, i + 1,..., N m i F i = j i F ij + F x i mi Fi j Fj i mj O P i = F i = j i F ij + F x i, i = 1,..., N P = i F i = N F ij + i j i N i F x i, i = 1,...,
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
TeSys contactors a.c. coils for 3-pole contactors LC1-D
References a.c. coils for 3-pole contactors LC1-D Control circuit voltage Average resistance Inductance of Reference (1) Weight Uc at 0 C ± 10 % closed circuit For 3-pole " contactors LC1-D09...D38 and
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Lifting Entry (continued)
ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
11.4 Graphing in Polar Coordinates Polar Symmetries
.4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry y axis symmetry origin symmetry r, θ = r, θ r, θ = r, θ r, θ = r, + θ .4 Graphing in Polar Coordinates Polar Symmetries x axis symmetry
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ
ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete
Note: Please use the actual date you accessed this material in your citation.
MIT OpenCourseWre http://ocw.mit.edu 6.641 Electromgnetic Fields, Forces, nd Motion, Spring 005 Plese use the following cittion formt: Mrkus Zhn, 6.641 Electromgnetic Fields, Forces, nd Motion, Spring
Š Š Œ Š Œ ƒˆ. Œ. ϵ,.. ÊÏ,.. µ ±Ê
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2003.. 34.. 7 Š 524.8+[530.12:531.51] Š Š Œ Š Œ ƒˆ. Œ. ϵ,.. ÊÏ,.. µ ±Ê Ñ Ò É ÉÊÉ Ö ÒÌ ² µ, Ê ˆ 138 Š Šˆ Š Š ˆ ˆ Š Œ ƒˆˆ 140 Š Œ ƒˆÿ œ 141 Š Ÿ Š Œ ƒˆÿ 143 ˆ Ÿ Š Œ ƒˆÿ ˆ Œ 144 ˆŸ Ä ˆ Œ
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
4.4 Superposition of Linear Plane Progressive Waves
.0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive
Chapter 2. Stress, Principal Stresses, Strain Energy
Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the
ˆˆ ƒ ˆ ˆˆ.. ƒ ÏÉ,.. μ Ê μ, Œ.. Œ É Ï ²,.. ± Î ±μ
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2005.. 36.. 5 Š 539.12.01 ˆŸ ˆˆ ƒ ˆ ˆˆ.. ƒ ÏÉ,.. μ Ê μ, Œ.. Œ É Ï ²,.. ± Î ±μ ˆ É ÉÊÉ Ë ± Ò μ± Ì Ô, μé μ, μ Ö ˆ 1004 ˆ ˆŠ ƒ ˆ ˆ ƒ Ÿ ˆ ƒ Œ ˆ - ˆŸ 1006 œ ƒ ˆ ƒ ˆ ˆ- ƒ Ÿ 1013 ˆŸ ƒ ˆ ˆ ƒ Ÿ
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
Solutions_3. 1 Exercise Exercise January 26, 2017
s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)
( () () ()) () () ()
ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /011 1 Έστω r = r( t = ( x( t, ( t, z( t, t I = [ a, b] συνάρτηση C τάξης και r = r( t = r ( t = x ( t + ( t z ( t είναι μία διανυσματική + Nα αποδείξετε ότι:
Rectangular Polar Parametric
Hrold s AP Clculus BC Rectngulr Polr Prmetric Chet Sheet 15 Octoer 2017 Point Line Rectngulr Polr Prmetric f(x) = y (x, y) (, ) Slope-Intercept Form: y = mx + Point-Slope Form: y y 0 = m (x x 0 ) Generl
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!
Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Parallel transport and geodesics
Parallel transport and geodesics February 4, 3 Parallel transport Before defining a general notion of curvature for an arbitrary space, we need to know how to compare vectors at different positions on
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
ds 2 = 1 y 2 (dx2 + dy 2 ), y 0, < x < + (1) dx/(1 x 2 ) = 1 ln((1 + x)/(1 x)) για 1 < x < 1. l AB = dx/1 = 2 (2) (5) w 1/2 = ±κx + C (7)
ΒΑΡΥΤΗΤΑ ΚΑΙ ΚΟΣΜΟΛΟΓΙΑ Θ. Τομαράς 1. ΤΟ ΥΠΕΡΒΟΛΙΚΟ ΕΠΙΠΕΔΟ. Το υπερβολικό επίπεδο ορίζεται με τη μετρική ds = 1 y dx + dy ), y 0, < x < + 1) α) Να υπολογίσετε το μήκος της γραμμής της παράλληλης στον
Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence
Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
ECE 222b Applied Electromagnetics Notes Set 4c
ECE 222b Applied Electromgnetics Notes Set 4c Instructor: Prof. Vitliy Lomkin Deprtment of Electricl nd Computer Engineering University of Cliforni, Sn Diego 1 Cylindricl Wve Functions (1) Helmoholt eqution:
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Quantum Field Theory Example Sheet 1, Michælmas 2005
Quntum Field Theory Exmple Sheet 1, Michælms 25 Jcob Lewis Bourjily 1. A string of length with mss per unit length σ under tension T with fixed endpoints is described by the Lgrngin ( 2 1 y L = dx 2 σ
c 4 (1) Robertson Walker (x 0 = ct) , R 2 (t) = R0a 2 2 (t) (2) p(t) g = (3) p(t) g 22 p(t) g 33
ΤΟ ΚΑΘΙΕΡΩΜΕΝΟ ΠΡΟΤΥΠΟ ΤΗΣ ΚΟΣΜΟΛΟΓΙΑΣ Α. Η ΕΞΙΣΩΣΗ EINSTEIN Διδάσκων: Θεόδωρος Ν. Τομαράς G µν R µν 1 g µν R = κ T µν, κ 8πG N c 4 (1) Β. Η ΕΞΙΣΩΣΗ FRIEDMANN. Για ομογενή και ισότροπο χωρόχρονο έχουμε