Research Article The Study of Triple Integral Equations with Generalized Legendre Functions

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Research Article The Study of Triple Integral Equations with Generalized Legendre Functions"

Transcript

1 Hindwi Pulishing Corportion Astrct nd Applied Anlysis Volume 28, Article ID , 2 pges doi:.55/28/ Reserch Article The Study of Triple Integrl Equtions with Generlized Legendre Functions B. M. Singh, J. Rokne, nd R. S. Dhliwl 2 Deprtment of Computer Science, University of Clgry, Clgry, AB, Cnd T2N-N4 2 Deprtment of Mthemtics nd Sttistics, University of Clgry, Clgry, AB, Cnd T2N-N4 Correspondence should e ddressed to R. S. Dhliwl, dhli.r@shw.c Received 28 April 28; Accepted 2 Septemer 28 Recommended y Lnce Littlejohn A method is developed for solutions of two sets of triple integrl equtions involving ssocited Legendre functions of imginry rguments. The solution of ech set of triple integrl equtions involving ssocited Legendre functions is reduced to Fredholm integrl eqution of the second kind which cn e solved numericlly. Copyright q 28 B. M. Singh et l. This is n open ccess rticle distriuted under the Cretive Commons Attriution License, which permits unrestricted use, distriution, nd reproduction in ny medium, provided the originl work is properly cited.. Introduction Dul integrl equtions involving Legendre functions hve een solved y Bloin. He pplied these equtions to prolems of potentil theory nd to torsion prolem. Lter on Pthk 2 nd Mndl 3 who considered dul integrl equtions involving generlized Legendre functions which hve more generl solution thn the ones considered y Bloin. Recently, Singh et l. 4 considered dul integrl equtions involving generlized Legendre functions, nd their results re more generl thn those in 3. In the nlysis of mixed oundry vlue prolems, we often encounter triple integrl equtions. Triple integrl equtions involving Legendre functions hve een studied y Srivstv 5. Triple integrl equtions involving Bessel functions hve lso een considered y Cooke 6 9, Trnter, Love nd Clements, Srivstv 2, nd most of these uthors reduced the solution into solution of Fredholm integrl eqution of the second kind. The relevnt references for dul nd triple integrl equtions re given in the ook of Sneddon 3. In this pper, method is developed for solutions of two sets of triple integrl equtions involving generlized Legendre functions in Sections 3 nd 4. Ech set of triple integrl equtions is reduced to Fredholm integrl eqution of the second kind which my e solved numericlly. The im of this pper is to find more generl solution for the type of

2 2 Astrct nd Applied Anlysis integrl equtions given in 5 nd to develop n esier method for solving triple integrl equtions in generl. 2. Integrl involved generlized Legendre functions nd some useful results We first summrize some known results needed in the pper. We find from 4, eqution 2, pge 33 tht ( ) 2 [ 2 μ ] μ sinh αc P μ ] cosh αc cos τx dτ c [ cosh αc cosh xc ] μ /2 H α x, 2. μ</2 ndfrom 4, weotin ) [ 2 ( 3/2 2 μ ] μ sinh αc ( ) ( ) 2 μ iτ c 2 μ iτ sinh fτ sin xτ P μ ] c cosh αc dτ c [ cosh xc cosh αc ] μ /2 H x α, 2.2 μ> /2 ndh denotes the Heviside unit function. Furthermore, c /f, f> nd P μ cosh αc is the generlized Legendre function defined in 5, pge 37.From /2 i τ/c 4, 6, the generlized Mehler-Fock trnsform is defined y ψ ( cosh αc ) P μ cosh αc ] F τ dτ, 2.3 nd its inversion formul is F τ fτ ( ) ( ) sinh fτ 2 2 μ iτ c 2 μ iτ c 2.4 [ ] ( ) cosh αc ψ cosh αc sinh αc dα. P μ /2 i τ/c Equtions 2. nd 2.2 re of form 2.3. From the inversion formul given y 2.4, 2., nd 2.2, it follows tht cos xτ τ sin xτ τ sinh fτ ( /2 μ i τ/c ) ( /2 μ i τ/c ) 2 /2 μ x [ sinh αc ] μp μ cosh αc ] dα [ cosh αc cosh xc ] μ /2, μ < 2, 2 /2 μ x 2.5 [ ] μp μ sinh αc cosh αc dα /2 i τ/c [ ] /2 μ, μ > cosh xc cosh αc

3 B. M. Singh et l. 3 The inversion theorem for Fourier cosine trnsforms nd the results 2. nd 2.2 led to P μ /2 i τ/c P μ /2 i τ/c [ ] 2 cosh αc c sinhμ αc /2 μ α cos τs [ ] μ /2, μ < cosh αc cosh sc 2, 2.7 [ ] 2c cosh αc [ sinh μ αc /2 μ sin fτ ( /2 μ i τ/c ) ( /2 μ i τ/c ) sin τs [ ] /2 μ, μ > cosh sc cosh αc 2. α 2.8 If h t is monotoniclly incresing nd differentile for <t<nd h t / inthis intervl, then the solutions of the equtions t t f x dx [ ] α g t, < t <, <α<, 2.9 h t h x f x dx [ h x h t ] α g t, < t <, <α<, 2. re given y Sneddon 3 s f x sin α f x sin α d dx x d dx h t g t dt [ ] α, < x <, 2. h x h t x h t g t dt [ ] α, <x<, 2.2 h t h x respectively, the prime denotes the derivtive with respect to t. 3. Triple integrl equtions with generlized Legendre functions: set I In this section, we will find solution of the following triple integrl equtions: ( τa τ sinh τf 2 μ i τ ) ( c 2 μ i τ ) P μ ] c cosh αc dτ, <α<, 3. A τ P μ ] 2 cosh αc dτ f α, < α <, 3.2 ( τa τ sinh τf 2 μ 3 i τ ) ( c 2 μ 3 i τ ) P μ ] 3 c cosh αc dτ, < α <, 3.3

4 4 Astrct nd Applied Anlysis A τ is n unknown function to e determined, f α is known function, nd P μ cosh αc is the generlized Legendre function defined in Section 2 nd /2 < /2 i τ/c μ < /2, /2 <μ 2 < /2, μ 3 > /2. The tril solution of 3., 3.2, nd 3.3 cn e written s A τ ψ t cos τt dt, 3.4 ψ t is n unknown function to e determined. On integrting 3.4 y prts, we get A τ ψ sin τ τ τ ψ t sin τt dt, 3.5 the prime denotes the derivtive with respect to t. Sustituting 3.5 into 3.3, interchnging the order of integrtions nd using 2.2, we find tht 3.3 is stisfied identiclly. Sustituting 3.5 into 3. nd using the integrl defined y 2.2, weotin ψ [ ] /2 μ cosh c cosh αc α ψ t dt [ ] /2 μ, <α<. 3.6 cosh tc cosh αc Eqution 3.6 is equivlent to the following integrl eqution: d dα α c sinh tc ψ t dt [ ] /2 μ, <α<. 3.7 cosh tc cosh αc By sustituting 3.4 into 3.2, interchnging the order of integrtions nd using the integrl defined y 2. we find tht α ψ t dt c [ ] /2 μ2 cosh αc cosh tc ( ) 2 [ 2 μ ] μ2 2 sinh αc f α, < α <, μ 2 < For otining the solution of the prolem, we need to solve two Ael s type integrl equtions 3.7 nd 3.8. We ssume tht d c sinh tc ψ t dt dα [ ] /2 μ φ α, <α<. 3.9 cosh tc cosh αc α

5 B. M. Singh et l. 5 The ove eqution is of the sme form s 3.7 nd defined in different region. Eqution 3.9 is of form 2.2. Hence, the solution of the integrl eqution 3.9 cn e written s ψ t cos ( μ ) t φ α dα [ ] /2 μ, cosh cα cosh tc 2 <μ <,<t< to The solution of Ael s type integrl equtions 2. together with 3.7 nd 3.9 le ψ t cos ( μ ) φ α dα [ ] /2 μ, cosh cα cosh tc 2 <μ <, <t< Equtions 3. nd 3. men tht 3.7 is stisfied identiclly. Eqution 3.8 cn e rewritten in the form ψ t dt [ ] /2 μ2 cosh αc cosh tc c α 2 ( μ 2 ) f α [ sinh αc ] μ2, ψ t dt [ ] /2 μ2 cosh αc cosh tc <α<. 3.2 Sustituting the expression for ψ t from 3. nd 3. into the first nd second integrl of 3.2 we otin α S t dt [ ] /2 μ2 cosh αc cosh tc dt φ u dt F α [ ] /2 μ2 [ ] /2 μ2, <t<, cosh αc cosh tc cosh cu cosh tc 3.3 S t t φ u dt [ cosh cu cosh tc ] /2 μ, 3.4 F α 2 ( μ 2 ) f α [ sinh αc ] μ2 c cos ( μ ). 3.5 Assuming tht the right-hnd side of 3.3 is known function of α it hs the form of 2.9, whose solution is given y S t cos ( ) μ 2 d dt t c sinh cα F α dα [ ] /2 μ2 I t, <t<, cosh ct cosh cα 2 <μ 2 < 2, 3.6

6 6 Astrct nd Applied Anlysis I t cos ( ) μ 2 d dt t c sinh cα dα dp [ ] /2 μ2 ( ) /2 μ2 cosh ct cosh cα cosh cα cosh cp φ u du ( ) /2 μ2, < t <, cosh cu cosh cp 2 <μ 2 < From the integrl d t dt c sinh cα dα [ ] /2 μ2 [ ] /2 μ2 cosh ct cosh cα cosh cα cosh cp [ ] /2 μ2 c sinh ct cosh c cosh cp [ ] [ ] cosh ct cosh cp /2 μ2, p<<t, cosh ct cosh c 2 <μ 2 < 2, 3.8 we then otin c cos ( μ 2 ) sinh ct I t [ cosh ct cosh c ] /2 μ 2 φ u du [ ] /2 μ. cosh cu cosh cp ( cosh c cosh cp ) /2 μ2 dp [ cosh ct cosh cp ] 3.9 Eqution 3.4 is n Ael-type eqution. Hence, its solution is φ u cos ( μ ) d du u c sinh cv S v dv [ ] /2 μ, < u <, cosh vc cosh uc 2 <μ < 2, 3.2 R p φ u du [ ] /2 μ. 3.2 cosh cu cosh cp Sustituting the expression for φ u from 3.2 into 3.2, integrting y prts, nd finlly interchnging the order of integrtions in second integrl, we rrive t R p c cos ( μ ) [ S v sinh cv dv [ ] /2 μ [ ] /2 μ cosh c cosh cp cosh cv cosh c ( ) 2 μ S v sinh cv dv 3.22 v c sinh cu du [ ] 3/2 μ [ ] /2 μ ]. cosh cu cosh cp cosh cv cosh cu

7 B. M. Singh et l. 7 The integrl v c sinh cu du [ ] 3/2 μ [ ] /2 μ cosh cu cosh cp cosh cv cosh cu cosh cv cosh c /2 μ μ /2 cosh cv cosh cp cosh c cosh cp 3.23 p<<v, 2 <μ < 2 together with 3.22 le to R p c cos ( ) μ ( ) /2 μ cosh c cosh pc S ν sinh cν dν [ ][ ] /2 μ. cosh νc cosh pc cosh νc cosh c 3.24 From 3.9, 3.2, nd 3.24, weotin I t S ν K ν, t dν, 3.25 c 2 cos ( ) ( ) μ cos μ2 sinh ct sinh cν K ν, t 2[ cosh ct cosh c ] /2 μ 2 [ ] /2 μ cosh cν cosh c ( ) μ μ cosh c cosh cp 2 dp [ ][ ]. cosh ct cosh cp cosh cν cosh cp 3.26 From 3.25, 3.6 cn e written s S t S ν K ν, t dν cos ( ) μ 2 d dt t c sinh cα F α dα [ ] /2 μ2, < t < cosh ct cosh cα Eqution 3.27 is Fredholm integrl eqution of the second kind with kernel K ν, t. The kernel is defined y The integrl in 3.26 cnnot e solved nlyticlly, ut for prticulr vlues of μ nd μ 2 the vlues of K ν, t cn e found numericlly. Hence, the numericl solution of Fredholm integrl eqution 3.27 cn e otined for prticulr vlue of f α, μ,ndμ 2 to find numericl vlues of S t. Mking use of 3.2, 3.,nd 3.,the numericl results for ψ t cn e otined. Finlly, mking use of 3.4 the numericl results for A τ cn e otined.

8 8 Astrct nd Applied Anlysis 4. Triple integrl equtions with generlized Legendre functions: set II In this section, we will find the solution of the following triple integrl equtions: τa τ P μ ] cosh αc dτ, <α<, 4. ( sinh τf 2 μ 2 i τ ) ( c 2 μ 2 i τ ) A τ P μ ] 2 c cosh αc dτ f α, <α<, 4.2 τa τ P μ 3 cosh αc ] dτ, < α, 4.3 μ > /2, /2 <μ 2 < /2, /2 <μ 3 < /2. We ssume tht τa τ P μ 3 cosh αc ] dτ M α, <α<. 4.4 The inversion formul for generlized Mehler-Fock trnsforms 2.4 together with 4.3 nd 4.4 implies tht A τ f ( sinh fτ 2 2 μ 3 i τ ) ( c 2 μ 3 i τ ) c 4.5 sinh uc P μ [ ] 3 /2 i τ/c cosh uc M u du. Multiplying 4. y sinh αc μ / cosh xc cosh αc /2 μ, integrting oth sides fromtox nd with respect to α, nd then using 2.6 we otin A τ sin xτ dτ, <x<. 4.6 Sustituting the vlue of A τ from 4.5 into 4.6, interchnging the order of integrtions, nd using the integrl 2.2, weget x sinh uc M u du [ ] /2 μ3, μ 3 >, <x<. 4.7 cosh xc cosh uc 2 Sustituting the vlue of A τ from 4.5 into 4.2 nd interchnging the order of integrtions we rrive t sinh uc M u K 2 u, α du f α, <α<, 4.8

9 B. M. Singh et l. 9 K 2 u, α ( f 2 ) ( 2 μ 2 i τ ) ( c 2 μ 3 i τ ) ( c 2 μ 3 i τ ) c 2 μ 2 i τ c 4.9 sinh 2 fτ P μ [ ] 3 μ /2 i τ/c cosh uc P 2 [ ] /2 i τ/c cosh αc dτ, nd then 2.8 nd 2.2 imply tht c K 2 u, α ( ) ( )[ ] μ2 [ ] μ3 /2 μ 2 /2 μ3 sinh αc sinh uc mx α,u [ ] /2 μ2 [ ] /2 μ3, cosh sc cosh αc cosh sc cosh uc 4. μ 3 > 2, μ 2 > 2. Eqution 4.7 is n Ael-type eqution nd hs the form 2.9. Hence, the solution of 4.7 is M u, <u<. 4. Using 4. nd 2.5, 4.8 cn e written in the form [ sinh uc ] μ3 M u du mx α,u [ ] /2 μ2 [ ] /2 μ3 cosh sc cosh αc cosh sc cosh uc ( ) ( )[ ] μ3 /2 μ 2 /2 μ2 sinh αc f α F α, c sy, <α<. 4.2 Using the formul du mx α,u α s du du, 4.3 we cn write 4.2 in the form α S s [ ] /2 μ2 F α cosh sc cosh αc [ cosh sc cosh αc ] /2 μ2 M u [ sinh uc ] μ 3 du [ ] /2 μ2, <α<, cosh sc cosh uc 4.4

10 Astrct nd Applied Anlysis S s s M u [ sinh uc ] μ 3 du [ ] /2 μ2, < s <. 4.5 cosh sc cosh αc Assuming tht the right-hnd side of 4.4 is known function eqution nd 4.4 hs the form of 2., hence the solution of 4.4 cn e written s S s c cos ( ) d F α sinh αc dα μ 2 [ ] /2 μ2 I s, <s<, s cosh αc cosh sc 2 <μ 2 < 2, 4.6 I s c cos ( ) d sinh αc dα μ 2 [ ] /2 μ2 cosh αc cosh sc s dp M u [ sinh cu ] μ 3 dα [ ] /2 μ2 [ ] /2 μ3, < s <. cosh pc cosh αc cosh pc cosh uc 4.7 Eqution 4.7 is simplified to I s c cos ( ) μ 2 sinh sc [ ] /2 μ2 cosh c cosh sc M u [ sinh cu ] μ 3 du [ ] /2 μ3, <s<. cosh cp cosh cu [ cosh cp cosh c ] /2 μ2 dp [ cosh sc cosh cp ] 4.8 Let R p M u [ sinh cu ] μ 3 du [ ] /2 μ cosh pc cosh uc Eqution 4.5 is of the form of 2.9. Hence, its solution is M u [ sinh cu ] μ 3 c cos ( ) μ 3 d du u S s sinh sc [ ] /2 μ3, < u <. 4.2 cosh uc cosh sc

11 B. M. Singh et l. Sustituting the expression for M u from 4.2 into 4.9 nd integrting y prts nd then using the following integrl: s c sinh uc du ( ) 3/2 μ3 ( ) /2 μ3 cosh pc cosh uc cosh uc cosh sc [ cosh c cosh cs ] /2 μ 3 ( /2 μ3 )[ cosh cs cosh cp ][ cosh cp cosh c ] /2 μ3, 4.2 s<<p, 2 <μ 2 < 2, we find tht R p c cos ( μ 3 ) ( ) /2 μ3 cosh cp cosh c S u sinh cu du [ ][ ] /2 μ3. cosh cp cosh uc cosh c cosh cu 4.22 Mking use of 4.8, 4.9,nd 4.22, wefindtht I s S u K 2 u, s du, 4.23 c 2 cos ( ) ( ) μ 2 cos μ3 sinh sc sinh uc K 2 u, s 2[ cosh c cosh sc ] /2 μ 2 [ ] /2 μ3 cosh c cosh cu [ ] μ2 μ cosh cp cosh c 3 dp [ ][ ]. cosh sc cosh cp cosh cp cosh cu 4.24 Using 4.7 nd 4.23, 4.6 cn e written in the form S s S u K 2 u, s du c cos ( ) d μ 2 s F α sinh αc dα [ ] /2 μ2, < s <. cosh αc cosh sc 4.25 Eqution 4.25 is Fredholm integrl eqution of the second kind with kernel defined y The Fredholm integrl eqution 4.25 my e solved to find numericl vlues of S s for prticulr vlues of f α. And hence from 4.2 nd 4.5, the numericl vlues for A τ cn e otined for prticulr vlues of f α, μ 2,ndμ 3.

12 2 Astrct nd Applied Anlysis 5. Conclusions The solution of the two sets of triple integrl equtions involving generlized Legendre functions is reduced to the solution of Fredholm integrl equtions of the second kind which cn e solved numericlly. References A. A. Bloin, Solutions of certin dul integrl equtions, Prikldny Mtemtik i Mekhnik, vol. 28, no. 6, pp. 5 23, 964, English trnsltion in Journl of Applied Mthemtics nd Mechnics, vol. 28, no. 6, pp , R. S. Pthk, On clss of dul integrl equtions, Koninklijke Nederlne Akdemie vn Wetenschppen, vol. 4, no. 4, pp. 49 5, B. N. Mndl, A note on dul integrl equtions involving ssocited Legendre function, Interntionl Journl of Mthemtics nd Mthemticl Sciences, vol. 5, no. 3, pp. 6 64, B. M. Singh, J. Rokne, nd R. S. Dhliwl, The study of dul integrl equtions with generlized Legendre functions, Journl of Mthemticl Anlysis nd Applictions, vol. 34, no. 2, pp , K. N. Srivstv, On some triple integrl equtions involving Legendre functions of imginry rgument, Journl of Muln Azd College of Technology, vol., pp , J. C. Cooke, Triple integrl equtions, The Qurterly Journl of Mechnics nd Applied Mthemtics, vol. 6, no. 2, pp , J. C. Cooke, Some further triple integrl eqution solutions, Proceedings of the Edinurgh Mthemticl Society, vol. 3, pp , J. C. Cooke, The solution of triple integrl equtions in opertionl form, The Qurterly Journl of Mechnics nd Applied Mthemtics, vol. 8, no., pp , J. C. Cooke, The solution of triple nd qudruple integrl equtions nd Fourier-Bessel series, The Qurterly Journl of Mechnics nd Applied Mthemtics, vol. 25, no. 2, pp , 972. C. J. Trnter, Some triple integrl equtions, Proceedings of the Glsgow Mthemticl Assocition, vol. 4, pp. 2 23, 96. E. R. Love nd D. L. Clements, A trnsformtion of Cooke s tretment of some triple integrl equtions, Journl of the Austrlin Mthemticl Society. Series B, vol. 9, no. 3, pp , N. Srivstv, On triple integrl equtions involving Bessel function s kernel, Journl of Muln Azd College of Technology, vol. 2, pp. 39 5, I. N. Sneddon, Mixed Boundry Vlue Prolems in Potentil Theory, North-Hollnd, Amsterdm, The Netherln, A. Erdélyi, W. Mgnus, F. Oerhettinger, nd F. G. Tricomi, Tles of Integrl Trnsforms. Vol. II,McGrw Hill, New York, NY, USA, A. Erdélyi, W. Mgnus, F. Oerhettinger, nd F. G. Tricomi, Tles of Integrl Trnsforms. Vol. I,McGrw Hill, New York, NY, USA, W. Mgnus, F. Oerhettinger, nd R. P. Soni, Formuls nd Theorems for the Specil Functions of Mthemticl Physics, Die Grundlehren der Mthemtischen Wissenschften. 52, Springer, New York, NY, USA, 966.

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα

INTEGRAL INEQUALITY REGARDING r-convex AND

INTEGRAL INEQUALITY REGARDING r-convex AND J Koren Mth Soc 47, No, pp 373 383 DOI 434/JKMS47373 INTEGRAL INEQUALITY REGARDING r-convex AND r-concave FUNCTIONS WdAllh T Sulimn Astrct New integrl inequlities concerning r-conve nd r-concve functions

Διαβάστε περισσότερα

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals: s Februry 2, 216 1 Exercise 5.2. Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x) =

Διαβάστε περισσότερα

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique. Further Conepts for Avne Mthemtis - FP1 Unit Ientities n Roots of Equtions Cui, Qurti n Quinti Equtions Cui Equtions The three roots of the ui eqution x + x + x + 0 re lle α, β n γ (lph, et n gmm). The

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Some definite integrals connected with Gauss s sums

Some definite integrals connected with Gauss s sums Some definite integrls connected with Guss s sums Messenger of Mthemtics XLIV 95 75 85. If n is rel nd positive nd I(t where I(t is the imginry prt of t is less thn either n or we hve cos πtx coshπx e

Διαβάστε περισσότερα

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2. etion 6. Lw of osines 59 etion 6. Lw of osines If is ny oblique tringle with sides, b, nd, the following equtions re vlid. () b b os or os b b (b) b os or os b () b b os or os b b You should be ble to

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 6 Σειρά Ασκήσεων Ακέραιοι και Διαίρεση, Πρώτοι Αριθμοί, GCD/LC, Συστήματα

Διαβάστε περισσότερα

Solutions_3. 1 Exercise Exercise January 26, 2017

Solutions_3. 1 Exercise Exercise January 26, 2017 s_3 Jnury 26, 217 1 Exercise 5.2.3 Apply composite Simpson s rule with m = 1, 2, 4 pnels to pproximte the integrls: () x 2 dx = 1 π/2 3, (b) cos(x) dx = 1, (c) e x dx = e 1, nd report the errors. () f(x)

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval AMS B Perturbtion Methods Lecture 4 Copyright by Hongyun Wng, UCSC Emple: Eigenvlue problem with turning point inside the intervl y + λ y y = =, y( ) = The ODE for y() hs the form y () + λ f() y() = with

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS Dedicted to Professor Octv Onicescu, founder of the Buchrest School of Probbility LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS G CARISTI nd M STOKA Communicted by Mrius Iosifescu

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k! Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation

Διαβάστε περισσότερα

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015. Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Thles Worksho, 1-3 July 015 The isomorhism function from S3(L(,1)) to the free module Boštjn Gbrovšek Άδεια Χρήσης Το παρόν

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],*

Oscillation of Nonlinear Delay Partial Difference Equations. LIU Guanghui [a],* Studies in Mthemtil Sienes Vol. 5, No.,, pp. [9 97] DOI:.3968/j.sms.938455.58 ISSN 93-8444 [Print] ISSN 93-845 [Online] www.snd.net www.snd.org Osilltion of Nonliner Dely Prtil Differene Equtions LIU Gunghui

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

On the generalized fractional derivatives and their Caputo modification

On the generalized fractional derivatives and their Caputo modification Aville online t www.isr-pulictions.com/jns J. Nonliner Sci. Appl., 0 207), 2607 269 Reserch Article Journl Homepge: www.tjns.com - www.isr-pulictions.com/jns On the generlized frctionl derivtives nd their

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Lecture 5: Numerical Integration

Lecture 5: Numerical Integration Lecture notes on Vritionl nd Approximte Metods in Applied Mtemtics - A Peirce UBC 1 Lecture 5: Numericl Integrtion Compiled 15 September 1 In tis lecture we introduce tecniques for numericl integrtion,

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices Lanzos and iorthogonalization methods for eigenvalues and eigenvetors of matries rolem formulation Many prolems are redued to solving the following system: x x where is an unknown numer А a matrix n n

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle Applied Mathematical Sciences Vol. 11 2017 no. 8 361-374 HIKARI Ltd www.m-hikari.com https://doi.org/.12988/ams.2017.7113 A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Math-Net.Ru Общероссийский математический портал

Math-Net.Ru Общероссийский математический портал Mth-Net.u Общероссийский математический портал М. Ю. Ватолкин, О собственных функциях и собственных значениях одной квазидифференциальной краевой задачи второго порядка, Изв. ИМИ УдГУ, 25, выпуск 246),

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B'' Chpter 7b, orsion τ τ τ ' D' B' C' '' B'' B'' D'' C'' 18 -rottion round xis C'' B'' '' D'' C'' '' 18 -rottion upside-down D'' stright lines in the cross section (cross sectionl projection) remin stright

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK STEPHEN HANCOCK Chpter 6 Solutions 6.A. Clerly NE α+β hs root vector α+β since H i NE α+β = NH i E α+β = N(α+β)

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Weyl-Titchmarsh type formula for periodic Schrödinger operator with Wigner-von Neumann potential

Weyl-Titchmarsh type formula for periodic Schrödinger operator with Wigner-von Neumann potential Weyl-Titchmrsh type formul for periodic Schrödinger opertor with Wigner-von Neumnn potentil Pvel Kursov nd Sergey Simonov Abstrct Schrödinger opertor on the hlf-line with periodic bckground potentil perturbed

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Spherical quadrangles with three equal sides and rational angles

Spherical quadrangles with three equal sides and rational angles Also vilble t http://mc-journl.eu ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 1 (017) 415 44 Sphericl qudrngles with three equl sides nd rtionl ngles Abstrct

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du) . Trigonometric Integrls. ( sin m (x cos n (x Cse-: m is odd let u cos(x Exmple: sin 3 (x cos (x Review- nd Prctice problems sin 3 (x cos (x Cse-: n is odd let u sin(x Exmple: cos 5 (x cos 5 (x sin (x

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points Applied Mathematical Sciences, Vol. 3, 009, no., 6-66 The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points A. Neamaty and E. A. Sazgar Department of Mathematics,

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution L Slle ollege Form Si Mock Emintion 0 Mthemtics ompulsor Prt Pper Solution 6 D 6 D 6 6 D D 7 D 7 7 7 8 8 8 8 D 9 9 D 9 D 9 D 5 0 5 0 5 0 5 0 D 5. = + + = + = = = + = =. D The selling price = $ ( 5 + 00)

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems. Physics 55 Fll 25 Pctice Midtem Solutions The midtem will e 2 minute open ook, open notes exm. Do ll thee polems.. A two-dimensionl polem is defined y semi-cicul wedge with φ nd ρ. Fo the Diichlet polem,

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα