Tube : beam model : analytical
|
|
- Ευδώρα Βλαστός
- 6 χρόνια πριν
- Προβολές:
Transcript
1 TUBES
2 Tube : beam model : analytical Tube = simply supported homogeneous & isotropic beam Load = point load (man) & distributed load (wind) z a L I x = 1 [ BH 3 bh 3] ; I z = 1 [ HB 3 hb 3] F y x z b, B q h, H 0 < y a : u z (y) = F [ (L a)y 3 a(2l a)(l a)y ] 6EI x L a y < L : u z (y) = F [ (L a)y 3 a(2l a)(l a)y L(y a) 3] 6EI x L 0 y < L : u x (y) = q [ 1 12EI 2 y4 + Ly L3 y ] z () 2 / 59
3 Tube : beam model : deformation and stress L = 10 [m] ; B = 1 [m] ; H = 2 [m] ; D = 0.01 [m] E = 20 GPa ; a = 0.75L ; F = 5000 [N] ; q = 500 H [N/m] 0 x disp [m] y [m] F q σ x,max = 0.29 [MPa] ; σ z,max = 0.56 [MPa] () 3 / 59
4 Tube : beam model in MARC/Mentat element 52 point load & global load 0 x disp [m] y [m] () 4 / 59
5 Tube : shell model Inc: 0 Time: 0.000e+00 Y job1 Z X 1 () 5 / 59
6 Tube : shell model Tube = simply supported homogeneous & isotropic shell Load = point loads on top & face loads (wind) Inc: 0 Time: 0.000e e e e e e e e e e e e-02 Y job1 Displacement Y Z X 1 () 6 / 59
7 Tube : shell model vs beam model disp [m] disp [m] 0 x y [m] y [m] σ x,max 15.5 [MPa] ; σ z,max 2.5 [MPa] () 7 / 59
8 Tube : buckling Inc: 0:1 Time: 0.000e+00 Fac: 2.353e+00 Y lcase1 Z X 1 () 8 / 59
9 LINEAR PLATE BENDING AND LAMINATES
10 Linear plate bending () 10 / 59
11 Geometry the mid-plane is planar in the undeformed state, the mid-plane coincides with the global coordinate plane z = 0, the thickness h is uniform. z y x s θ h n r () 11 / 59
12 External loads z p x θ r y s f z (s) m b (s) s f s (s) m w (s) n f n (s) s x (x, y), s y (x, y) or s r (r, θ), s t (r, θ) p(x, y) or p(r, θ) f n (s), f s (s), f z (s) m b (s), m w (s) () 12 / 59
13 Displacements z θ y θ θ x T P P z S R z y x u Q v w Q u x = u z sin(θ x )cos(θ y ) u y = v z cos(θ x )sin(θ y ) u z = w + z cos(θ) z () 13 / 59
14 Simplifications No out-of-plane shear Kirchhoff hypotheses straight lines, perp. to mid-plane remain straight straight lines, perp. to mid-plane remain perp. to mid-plane Small rotation Constant thickness : z = z z φ x P Q z z P Q u x (x, y, z) = u(x, y) zw,x φ x u y (x, y, z) = v(x, y) zw,y u z (x, y, z) = w(x, y) + η(x, y)z 2 x () 14 / 59
15 Strains and curvatures ε xx = u x,x = u,x zw,xx = ε xx0 zκ xx ε yy = u y,y = v,y zw,yy = ε yy0 zκ yy γ xy = u x,y + u y,x = u,y + v,x 2zw,xy = γ xy0 zκ xy ε = ε 0 zκ z y ε xx0 ε xy0 ε xy0 ε yy0 x κ xx κ yy κ xy κ xy () 15 / 59
16 Stresses z plane stress state σ zz = σ xz = σ yx = 0 x y σ xx σ yx σ xy σ yy Linear elastic material behaviour ε xx ε yy = 1 1 ν 0 ν 1 0 E γ xy 0 0 2(1 + ν) σ xx σ yy σ xy = E 1 ν 2 σ xx σ yy 1 ν 0 ν (1 ν) σ xy ε xx ε yy γ xy ; ε zz = ν E (σ xx + σ yy ) short notation : ε = Sσ σ = S 1 ε = Cε = C(ε 0 zκ ) () 16 / 59
17 Cross-sectional forces and moments Ñ = M = D x = N xx N yy N xy M xx M yy M xy h/2 h/2 = h/2 = h/2 h/2 h/2 σ dz = h/2 σ zx dz ; D y = {C(ε 0 h/2 zκ )} dz = hcε 0 h/2 1 σ z dz = {C(ε 0 zκ )}z dz = h/2 12 h3 Cκ h/2 h/2 σ zy dz z y N xx N xy N xy D y N yy x D x M xx M yy M xy M xy () 17 / 59
18 Stiffness- and compliance matrix [ Ñ M ] = [ Ch 0 0 Ch 3 /12 ][ ε 0 κ ] [ ε 0 κ ] [ ][ S/h 0 Ñ = 0 12S/h 3 M ] () 18 / 59
19 Orthotropic plate 2 y α 1 x ε 11 ε 22 γ 12 σ 11 σ 22 σ 12 = E1 1 ν 21 E2 1 0 ν 12 E1 1 E G 1 1 = 1 ν 21 ν σ 11 σ 22 σ 12 E 1 ν 21 E 1 0 ν 12 E 2 E (1 ν 21 ν 12 )G 12 ε 11 ε 22 γ 12 () 19 / 59
20 Transformation c = cos(α) ; s = sin(α) ε xx ε yy = c2 s 2 cs s 2 c 2 cs 2cs 2cs c 2 s 2 γ xy σ xx σ yy σ xy = c2 s 2 2cs s 2 c 2 2cs cs cs c 2 s 2 ε 11 ε 22 σ 11 σ 22 σ 12 γ 12 = T ε 1 ε ε = T σ 1 σ σ ε = T 1 ε ε = T 1 ε S σ = T 1 ε S T σ = S σ σ = T σ 1 σ σ = T 1 σ C ε = T 1 σ C T ε = C ε ε () 20 / 59
21 Laminates () 21 / 59
22 Laminates z k 1 z k y x () 21 / 59
23 Ply strains z k 1 z k y 2 y x x α 1 strains in ply k with ε = ε 0 k(z) zκ T ε = k ε (z) = T ε,k ε k(z) s 2 c 2 cs c2 s 2 cs 2cs 2cs c 2 s 2 () 22 / 59
24 Ply stresses Constitutive relation in material coordinate system for ply k k σ = C k ε k σ k = T 1 σ,k C k T ε,k ε k = C k ε k = C k (ε 0 zκ ) transformation matrices T σ = c2 s 2 2cs s 2 c 2 2cs ; T 1 cs cs c 2 s 2 σ = c2 s 2 2cs s 2 c 2 2cs cs cs c 2 s 2 z k 1 z k y x () 23 / 59
25 ABD-matrix z k 1 z k y x zk Ñ k = σ k dz = (z k z k 1 )C k ε (z2 k z2 k 1 )C k κ = A k ε 0 + B k κ z k 1 zk k M = σ k z dz = 1 2 (z2 k z2 k 1 )C k ε (z3 k z3 k 1 )C k κ = B k ε 0 + D k κ z k 1 summation over all plies Ñ = [ Ñ M n Ñ k = Aε 0 + B κ ] [ ] [ A B = ε 0 B D κ k=1 ] ; M = [ ε 0 κ n k = Bε 0 + M Dκ k=1 ] [ ] [ ] a b Ñ = b d M () 24 / 59
26 ABD-matrix A 11 A 12 A 13 B 11 B 12 B 13 A 22 A 23 B 12 B 22 B 23 A 33 B 13 B 23 B 33 D 12 D 13 D 11 D 22 D 23 D 33 () 25 / 59
27 Stacking cross-ply orthotropic plies material directions = global directions. A 13 = A 23 = 0 angle-ply orthotropic plies each ply material direction 1 is rotated over α o w.r.t. global direction x. regular angle-ply orthotropic plies subsequent plies have material direction 1 rotated alternatingly over α o and α o w.r.t. the global x-axis. even number of plies A 13 = A 23 = 0 symmetric symmetric stacking w.r.t. mid-plane B = 0 anti-symm. anti-symmetric stacking w.r.t. mid-plane D 13 = D 23 = 0 quasi-isotropic α k = k π n with k = 1,.., n (n = number of plies) () 26 / 59
28 Damage fibre rupture fibre buckling matrix cracking fibre-matrix de-adhesion interlaminar delamination : Inter Laminar Shear Stress (ILSS) ils xx = σ xxb σ xxt ; ils yy = σ yyb σ yyt ; ils xy = σ xyb σ xyt b = bottom of top layer ; t = top of bottom layer () 27 / 59
29 Random 4-ply laminate : Matlab LAM : IL4r.m ============================================================ Laminate build-up (lam) z- z+ ang El Et nutl Gl Mechanical load (ld) [Nxx Nyy Nxy Mxx Myy Mxy] = [ ] Stiffness matrix 2.57e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e Strains in the mid-plane (e0) [ exx eyy exy ] = [ 3.810e e e-04 ] Curvatures of the mid-plane (kr) [ kxx kyy kxy ] = [ 4.784e e e-01 ] ============================================================ () 28 / 59
30 w Random 4-ply laminate : results 3 2 xx yy xy z [mm] 1 z [mm] σ [Pa] x σ [Pa] x xx yy xy z [mm] 1 z [mm] y x ε [ ] x ε [ ] x 10 3 () 29 / 59
31 MSC MARC/MENTAT SHELL ELEMENTS
32 Cross-sectional forces and moments LAM x z y N xx N xy D x M xx N xy M yy D y N yy M xy M xy MSC.Marc/Mentat x z y N x N y N x M x N y M y M y M x () 31 / 59
33 Bending of a strip H W z y L F z x F x M y length L 1 m width W 0.1 m heigth H 0.05 m Young s modulus E 150 GPa Poisson s ratio ν axial end force F x 100 N lateral end force F z 100 N bending end moment M y 100 Nm () 32 / 59
34 Bending of a strip Inc: 0 Time: 0.000e+00 Inc: 0 Time: 0.000e+00 Inc: 0 Time: 0.000e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e+02 Z e+06 Z e+06 Z job1 X Y job1 X Y job1 X Y Beam Bending Moment Local Y 4 Comp 11 of Stress Layer 1 4 Comp 11 of Stress 4 exact beam shell 3D axial end displacement u x µm lateral end displacement u z mm end rotation φ y deg maximum axial stress σ MPa stripbeam.proc ; stripplate.proc ; strip3dsol.proc () 33 / 59
35 Local/global stress components Inc: 0 Time: 0.000e e e e e e e e e e e e+06 Z job1 X Y Comp 11 of Stress Layer 1 4 Inc: 0 Time: 0.000e+00 Inc: 0 Time: 0.000e e e e e e e e e e e e e e e e e e e e e e+06 Z e+06 Z job1 X Y job1 X Y Comp 11 of Stress Layer 1 4 Comp 11 of Global Stress Layer 1 4 () 34 / 59
36 Orthotropic plate 2 = t y z = 3 = t α 1 = l x () 35 / 59
37 Orthotropic plate 2 = t y α z = 3 = t 1 = l x MSC E 1 E 11 E l E 2 E 22 E t E 3 E 33 E t G 12 G 12 G lt E t G 23 G 23 2(1 + ν tt ) G 31 G 31 G lt ν 12 ν 12 ν lt ν 23 ν 23 ν tt E 3 ν 31 ν 31 ν 13 = E t ν lt E 1 E l ν 21 ν 21 ν 32 ν 32 ν 13 ν 13 () 35 / 59
38 Orthotropic plate 2 = t y MSC α z = 3 = t y 1 = l x E 1 E 11 E l E 2 E 22 E t E 3 E 33 E t G 12 G 12 G lt E t G 23 G 23 2(1 + ν tt ) G 31 G 31 G lt ν 12 ν 12 ν lt ν 23 ν 23 ν tt F x M y z F x x E 3 ν 31 ν 31 ν 13 = E t ν lt E 1 E l ν 21 ν 21 ν 32 ν 32 M y ν 13 ν 13 () 36 / 59
39 Orthotropic plate : deformation and stress-11 in layer 1 Inc: 0 Time: 0.000e e e e e e e e e e e e+07 Z job1 Comp 11 of Stress Layer 1 X Y 4 plate20x20ortm1p4.proc ; ortm1p4.m () 37 / 59
40 Laminated plate : ply properties For each ply : (MAIN MENU) (PREPROCESSING) MATERIAL PROPERTIES ORIENTATION NEW EDGE12 ANGLE 0 MATERIAL PROPERTIES NEW (type) STANDARD STRUCTURAL ELASTO-PLASTIC ORTHOTROPIC E1 E2 E3 N12 N23 N31 G12 G23 G31 OK () 38 / 59
41 Laminated plate : stacking NEW (type) COMPOSITE (DATA CATAGORIES) GENERAL ABSOLUTE THICKNESS Toggle! APPEND material 1 THICKNESS ANGLE 90 APPEND material 2 THICKNESS ANGLE 45 etc OK (ELEMENTS) ADD (ALL) EXIST. RETURN () 39 / 59
42 Laminated plate : loading and results y M y F x z F x M y x Inc: 0 Time: 0.000e e e e e e e e e e e e+07 Z job1 Comp 11 of Stress Layer 1 X Y 4 plate20x20ortm4p4.proc ; ortm4p4.m () 40 / 59
43 RECTANGULAR TUBE
44 Tube : buckling : FEM K ũ = f e ũ = K 1 f e σ K g (σ) K : linear stiffness matrix ũ : nodal displacements σ : stresses : proportional with f e K g : geometric or stress stiffness matrix : proportional with σ K + K g : total stiffness matrix () 42 / 59
45 Tube : buckling : FEM K ũ = f e ũ = K 1 f e σ K g (σ) K : linear stiffness matrix ũ : nodal displacements σ : stresses : proportional with f e K g : geometric or stress stiffness matrix : proportional with σ K + K g : total stiffness matrix [ K + λ Kg (σ) ] α = 0 λ i α i λ i : buckling factors λ i f e : buckling forces α i : buckling modes minλ i : collaps load factor () 42 / 59
46 Tube : buckling : MARC/Mentat LOADCASE NEW BUCKLE RETURN JOB PROPERTIES select loadcase STRUCTURAL buckle OK RUN SUBMIT RESULTS OPEN DEFAULT NEXT () 43 / 59
47 Tube : deformation Inc: 0 Time: 0.000e e e e e e e e e e e e-02 Y job1 Displacement Y Z X 1 Buckling modes () 44 / 59
48 Inc: 0:1 Time: 0.000e+00 Fac: 2.353e+00 Y lcase1 Z X 1 () 45 / 59
49 Inc: 0:2 Time: 0.000e+00 Fac: 3.991e+00 Y lcase1 Z X 1 () 46 / 59
50 Inc: 0:3 Time: 0.000e+00 Fac: e+00 Y lcase1 Z X 1 () 47 / 59
51 Inc: 0:4 Time: 0.000e+00 Fac: 4.702e+00 Y lcase1 Z X 1 () 48 / 59
52 Tube : inside loads and wind load Inc: 0 Time: 0.000e e e e e e e e e e e e-03 Y job1 Displacement Y Z X 1 () 49 / 59
53 Tube : deformation disp [m] y [m] Buckling modes () 50 / 59
54 Inc: 0:1 Time: 0.000e+00 Fac: 2.698e+00 Y lcase1 Z X 1 () 51 / 59
55 Inc: 0:2 Time: 0.000e+00 Fac: e+00 Y lcase1 Z X 1 () 52 / 59
56 OPTIMIZATION
57 Optimization theory and procedures See slides Pascal Etman for background information. Use examples from download page as starting point Optimization with MSC.Marc/Mentat is also possible. This will not be discussed here. () 54 / 59
58 Cyclic analysis 4-ply laminate : laminate0 lam.m matrix lam with laminate stacking 3 z [mm] xx yy xy z [mm] w y x z [mm] σ [Pa] x xx yy xy ε [ ] z [mm] σ [Pa] x ε [ ] Two design variables : ply angles Cyclic variation of design variables in 2 nested loops : laminate0 cyc.m Plot results in 3-d plots and contour plot () 55 / 59
59 Surface plots x Curvature Stress xx x x x x Stress 11/Tl ilsxx1/ilss x x x x () 56 / 59
60 Contour plot x x1 () 57 / 59
61 Searching algorithms laminate0 opt.m ; laminate0 obj.m ; laminate0 con.m fmincon : output and results Max Line search Directional First-order Iter F-count f(x) constraint steplength derivative optimality Procedure e Infeasible start point e e e e e e+09 Hessian not updated e e e+09 Hessian not updated e e e+09 Hessian not updated e e+08 Hessian not updated e e e e e+07 Hessian modified twice e e e e e e Optimization terminated: magnitude of directional derivative in search direction less than 2*options.TolFun and maximum constraint violation is less than options.tolcon. No active inequalities. ========================================================== Initial ply angles : Initial curvature : 1.76 Initial constraints : : Optimized ply angles : Optimized curvature : 2.362e-09 Optimized constraints : : ========================================================== () 58 / 59
62 Searching algorithms laminate0 opt.m ; laminate0 obj.m ; laminate0 con.m patternsearch : output and results max Iter f-count f(x) constraint MeshSize Method e e Increase penalty e-05 Increase penalty e-07 Increase penalty Maximum number of function evaluations exceeded: increase options.maxfunevals. ========================================================== Initial ply angles : Initial curvature : 1.76 Initial constraints : : Optimized ply angles : Optimized curvature : 9.715e-05 Optimized constraints : : ========================================================== () 59 / 59
Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw
Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
3o/B Mάθημα: Δικτύωμα / 2D-Truss in Batch
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ 3o/B Mάθημα: Δικτύωμα / 2D-Truss in Batch Λεωνίδας Αλεξόπουλος, Επ. Καθηγητής Τομέας ΜΚ&ΑΕ leo@mail.ntua.gr, τηλ: 772-1666 Βοηθοί διδασκαλίας: Κανακάρης Γιώργος, Διδακτορικός
Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/
Page: 10 CONTENTS Contents... 10 General Data... 10 Structural Data des... 10 erials... 10 Sections... 10 ents... 11 Supports... 11 Loads General Data... 12 LC 1 - Vollast 120 km/h 0,694 kn/qm... 12 LC,
Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/
Page: 1 CONTENTS Contents... 1 General Data... 1 Structural Data des... 1 erials... 1 Sections... 1 ents... 2 Supports... 2 Loads General Data... 3 LC 1 - Vollast 90 km/h 0,39 kn/qm... 3 LC, LG Results
ADVANCED STRUCTURAL MECHANICS
VSB TECHNICAL UNIVERSITY OF OSTRAVA FACULTY OF CIVIL ENGINEERING ADVANCED STRUCTURAL MECHANICS Lecture 1 Jiří Brožovský Office: LP H 406/3 Phone: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
Mechanics of Materials Lab
Mechanics of Materials Lab Lecture 9 Strain and lasticity Textbook: Mechanical Behavior of Materials Sec. 6.6, 5.3, 5.4 Jiangyu Li Jiangyu Li, Prof. M.. Tuttle Strain: Fundamental Definitions "Strain"
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ 3o/B Mάθημα: Δικτύωμα / 2D-Truss in Batch Λεωνίδας Αλεξόπουλος Βοηθοί διδασκαλίας: Κανακάρης Γιώργος, Καβαλόπουλος Νίκος Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Introduction to Theory of. Elasticity. Kengo Nakajima Summer
Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor
MECHANICAL PROPERTIES OF MATERIALS
MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain
(Mechanical Properties)
109101 Engineering Materials (Mechanical Properties-I) 1 (Mechanical Properties) Sheet Metal Drawing / (- Deformation) () 3 Force -Elastic deformation -Plastic deformation -Fracture Fracture 4 Mode of
E T E L. E e E s G LT. M x, M y, M xy M H N H N x, N y, N xy. S ijkl. V v V crit
A c,a f,a m E c.e f,e m E e E s G f,g m L M x, M y, M xy M H N H N x, N y, N xy P c,p f,p m Q S S ijkl T T V V v V crit W h k t c,t f,t m u 0 v c,v f,v m w c,w f,w m cross-sectional area of composite,fiber
θ p = deg ε n = με ε t = με γ nt = μrad
IDE 110 S08 Test 7 Name: 1. The strain components ε x = 946 με, ε y = -294 με and γ xy = -362 με are given for a point in a body subjected to plane strain. Determine the strain components ε n, ε t, and
Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in
ME 10W E. Evans Stresses in a Plane Some parts eperience normal stresses in two directions. hese tpes of problems are called Plane Stress or Biaial Stress Cross Section thru Bod z angent and normal to
5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών
5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Σύγχρονες μέθοδοι ανάλυσης κατασκευών
8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών
ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros
Analyse af skrå bjælke som UPE200
Analyse af skrå bjælke som UPE Project: Opgave i stål. Skrå bjælke som UPE Description: Snitkræfter, forskydningscentrum, samling Customer: LC FEDesign. StruSoft Designed: LC Date: 9 Page: / 4 Documentation
τηλ:
ΥΠΟΛΟΓΙΣΤΙΚΕΣΜΕΘΟ ΟΙ ΜΕΘΟ ΟΙΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ 7o o MάθηµαM άθηµα: 3 Έµβολο ΛεωνίδαςΑλεξόπουλος, Λέκτορας, ΤοµέαςΜΚ&ΑΕ leo@mail.ntua.gr, τηλ: 772-1666 Βοηθοί διδασκαλίας: ηµήτριοςβενετσάνος, Ι ΑΧ, ΤοµέαςΜΚ&ΑΕ
katoh@kuraka.co.jp okaken@kuraka.co.jp mineot@fukuoka-u.ac.jp 4 35 3 Normalized stress σ/g 25 2 15 1 5 Breaking test Theory 1 2 Shear tests Failure tests Compressive tests 1 2 3 4 5 6 Fig.1. Relation between
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
1. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = 0 = ΣF y = 0 =
IDE S8 Test 6 Name:. Sketch the ground reactions on the diagram and write the following equations (in units of kips and feet). (8 points) ΣF x = = ΣF y = = ΣM A = = (counter-clockwise as positie). Sketch
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ 7o Mάθημα: 3Δ Έμβολο Λεωνίδας Αλεξόπουλος Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο του Έργου των Ανοικτών
Mechanical Behaviour of Materials Chapter 5 Plasticity Theory
Mechanical Behaviour of Materials Chapter 5 Plasticity Theory Dr.-Ing. 郭瑞昭 Yield criteria Question: For what combinations of loads will the cylinder begin to yield plastically? The criteria for deciding
Chapter 2. Stress, Principal Stresses, Strain Energy
Chapter Stress, Principal Stresses, Strain nergy Traction vector, stress tensor z z σz τ zy ΔA ΔF A ΔA ΔF x ΔF z ΔF y y τ zx τ xz τxy σx τ yx τ yz σy y A x x F i j k is the traction force acting on the
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Το σχέδιο της μέσης τομής πλοίου
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΤΜΗΜΑ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Το σχέδιο της μέσης τομής πλοίου Α. Θεοδουλίδης Σχέδιο Μέσης Τομής Αποτελεί ένα από τα βασικώτερα κατασκευαστικά σχέδια του πλοίου.
MasterSeries MasterPort Lite Sample Output
MasterSeries MasterPort Lite Sample Output The following output is from the MasterPort Lite Design program. Contents 2 Frame Geometry and Loading 3 Tabular Results Output 4 Bending Moment and Diagrams
Μηχανική ανάλυση με χρήση θεωρίας επαφής: Συναρμογή σύσφιξης και εξόλκευση πείρου
Μηχανική ανάλυση με χρήση θεωρίας επαφής: Συναρμογή σύσφιξης και εξόλκευση πείρου Περιγραφή προβλήματος Στη συνέχεια θα πραγματοποιηθεί η μηχανική ανάλυση ενός ατσάλινου πείρου που έρχεται σε επαφή με
Kul Finite element method I, Exercise 07/2016
Kul-49.3300 Finite element metod I, Eercise 07/016 Demo problems y 1. Determine stress components at te midpo of element sown if u y = a and te oter nodal displacements are zeros. e approimations to te
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα, 2018-2 η Πρόοδος ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα Ακαδημαϊκό Έτος 2017 18, Εαρινό Εξάμηνο 2 η Πρόοδος 9:00-10:10 μ.μ. (70 λεπτά) Πέμπτη, 29 Μαρτίου, 2018 Όνομα:
ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕΤΑΛΛΙΚΑ ΥΠΟΣΤΥΛΩΜΑΤΑ ΥΠΟ ΘΛΙΨΗ ΚΑΙ ΚΑΜΨΗ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΛΥΣΕΩΝ ΚΑΝΟΝΙΣΤΙΚΩΝ ΙΑΤΑΞΕΩΝ ΚΑΙ
255 (log-normal distribution) 83, 106, 239 (malus) 26 - (Belgian BMS, Markovian presentation) 32 (median premium calculation principle) 186 À / Á (goo
(absolute loss function)186 - (posterior structure function)163 - (a priori rating variables)25 (Bayes scale) 178 (bancassurance)233 - (beta distribution)203, 204 (high deductible)218 (bonus)26 ( ) (total
Multilayer Ceramic Chip Capacitors
FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* Temperature Coefficient
University of Waterloo. ME Mechanical Design 1. Partial notes Part 1
University of Waterloo Department of Mechanical Engineering ME 3 - Mechanical Design 1 Partial notes Part 1 G. Glinka Fall 005 1 Forces and stresses Stresses and Stress Tensor Two basic types of forces
ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Τοµέας οµοστατικής Εργαστήριο Μεταλλικών Κατασκευών ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ιπλωµατική Εργασία Ιωάννη Σ. Προµπονά
= l. = l. (Hooke s Law) Tensile: Poisson s ratio. σ = Εε. τ = G γ. Relationships between Stress and Strain
Relationships between tress and train (Hooke s Law) When strains are small, most of materials are linear elastic. Tensile: Ε hear: Poisson s ratio Δl l Δl l Nominal lateral strain (transverse strain) Poisson
1. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? (3 points) Areas (1) and (5)
IDE 0 S08 Test 5 Name:. In calculating the shear flow associated with the nail shown, which areas should be included in the calculation of Q? ( points) Areas () and (5) Areas () through (5) Areas (), ()
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Multilayer Ceramic Chip Capacitors
FEATURES X7R, X6S, X5R AND Y5V DIELECTRICS HIGH CAPACITANCE DENSITY ULTRA LOW ESR & ESL EXCELLENT MECHANICAL STRENGTH NICKEL BARRIER TERMINATIONS RoHS COMPLIANT SAC SOLDER COMPATIBLE* PART NUMBER SYSTEM
CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant
CHAPTER 7 DOUBLE AND TRIPLE INTEGRALS EXERCISE 78 Page 755. Evaluate: dxd y. is integrated with respect to x between x = and x =, with y regarded as a constant dx= [ x] = [ 8 ] = [ ] ( ) ( ) d x d y =
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
Aerodynamics & Aeroelasticity: Beam Theory
Εθνικό Μετσόβιο Πολυτεχνείο National Technical Universit of thens erodnamics & eroelasticit: Beam Theor Σπύρος Βουτσινάς / Spros Voutsinas Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
CONSULTING Engineering Calculation Sheet
E N G I N E E R S Consulting Engineers jxxx 1 Structure Design - EQ Load Definition and EQ Effects v20 EQ Response Spectra in Direction X, Y, Z X-Dir Y-Dir Z-Dir Fundamental period of building, T 1 5.00
Περίπτωση Μελέτης Θαλάσσιας Κατασκευής με χρήση λογισμικού και με βάση Κώδικες (Compliant Tower) (8.1.10)
Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. 2 η Πρόοδος. 9:00-10:10 μ.μ. (70 λεπτά) Πέμπτη, 30 Μαρτίου, 2017
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα, 2017-2 η Πρόοδος Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Ακαδημαϊκό Έτος
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Struct4u b.v. Calculation number : Revision : 0 Page 1 of 8 Project number : Date - time : :25 Project description : Part :
Calculation number : Revision : 0 Page 1 of 8 GENERAL File: document1.xcol Applied standards: Consequence class Structural Class : NEN-EN 1992-1-1 + C2:2011/NB:2011 (nl) : NEN-EN 1992-1-2 + C1:2011/NB:2011
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ Μεταπτυχιακή Εργασία
Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206
Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206 Scope -This specification applies to all sizes of rectangular-type fixed chip resistors with Ruthenium-base as material. Features
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
1. Ανασκόπηση μεθόδων δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων
ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 1. Ανασκόπηση μεθόδων δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros
Γεωργιουδάκης Εμμανουήλ
ΣΥΝΤΟΜΟ ΕΓΧΕΙΡΙΔΙΟ ΜΗ-ΓΡΑΜΜΙΚΗΣ ΑΝΑΛΥΣΗΣ (ΜΕ ΤΟ ΠΡΟΓΡΑΜΜΑ NASTRAN) Γεωργιουδάκης Εμμανουήλ ΕΜΠ Νοέμβριος 2004 Περιεχόμενα Περιεχόμενα... i Πρόλογος...iii Πρόβλημα προς επίλυση... 5 1 Αναγνώριση ειδών
Μηχανική ανάλυση µε χρήση θεωρίας επαφής: Συναρµογή σύσφιξης και εξόλκευση πείρου
Μηχανική ανάλυση µε χρήση θεωρίας επαφής: Συναρµογή σύσφιξης και εξόλκευση πείρου Περιγραφή προβλήµατος Στη συνέχεια θα πραγµατοποιηθεί η µηχανική ανάλυση ενός ατσάλινου πείρου που έρχεται σε επαφή µε
APPENDIX 1: Gravity Load Calculations. SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD:
APPENDIX 1: Gravity Load Calculations SELF WEIGHT: Slab: 150psf * 8 thick slab / 12 per foot = 100psf ROOF LIVE LOAD: A t = 16.2 * 13 = 208 ft^2 R 1 = 1.2 -.001* A t = 1.2 -.001*208 =.992 F = 0 for a flat
Thin Film Chip Resistors
FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
5.0 DESIGN CALCULATIONS
5.0 DESIGN CALCULATIONS Load Data Reference Drawing No. 2-87-010-80926 Foundation loading for steel chimney 1-00-281-53214 Boiler foundation plan sketch : Figure 1 Quantity Unit Dia of Stack, d 6.00 m
Technical Data for Profiles. α ( C) = 250 N/mm 2 (36,000 lb./in. 2 ) = 200 N/mm 2 (29,000 lb./in 2 ) A 5 = 10% A 10 = 8%
91 500 201 0/11 Aluminum raming Linear Motion and Assembly Technologies 1 Section : Engineering Data and Speciications Technical Data or Proiles Metric U.S. Equivalent Material designation according to
3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information
MI Girder 90/120 Materia Specifications 1 15 / 16 " (50) Materia Gavanizing Ordering Information Description S235 JRG2 DIN 10025, (ASTM A283 (D) 34 ksi) Hot-dip gavanized 3 mis (75 μm) DIN EN ISO 1461,
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor
Technical Report General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor Tasos Lazaridis Electrical Engineer CAD/CAE Engineer tasoslazaridis13@gmail.com Three-Phase Induction Machine
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ. 6o Mάθημα: 2Δ Έλασμα
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΙΣ ΚΑΤΑΣΚΕΥΕΣ 6o Mάθημα: 2Δ Έλασμα 1 Άδεια Χρήσης Το παρόν υλικό υπόκειται σε άδειες χρήσης Creative Commons και δημιουργήθηκε στο πλαίσιο του Έργου των Ανοικτών Ακαδημαϊκών Μαθημάτων
COMPOSITE SLABS DESIGN CONTENTS
CONTENTS 1. INTRODUCTION... 3 2. GENERAL PARAMETERS... 5 3. PROFILED STEEL SHEETING CROSS-SECTIONS... 6 4. COMPOSITE SLAB STEEL REINFORCEMENT... 9 5. LOADS... 10 6. ANALYSIS... 11 7. DESIGN... 13 8. REPORT
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
D28 1-1/4" PIPE x 42-1/2" HIGH RAIL WITHOUT BOTTOM RAIL
Ultra-tec Cable Railing Systems G-D28 D28 1-1/4" PIPE x 42-1/2" HIGH RAIL WITHOUT BOTTOM RAIL Building Code: Material: 2006 International Building Code 2007 California Building Code AISC Steel Construction
CORDIC Background (2A)
CORDIC Background 2A Copyright c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
MS SERIES MS DESK TOP ENCLOSURE APPLICATION EXAMPLE FEATURE. Measuring instruments. Power supply equipments
MS SERIES MS DESK TOP ENCLOSURE FEATURE Available in 176 sizes. Screws are not appeared on the surface. Usable as rack mount case with optinal mounting bracket. There are no ventilation hole for cover
Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.
upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. Ανάπτυξη Προγράμματος Ανάλυσης Επίπεδων Δικτυωμάτων
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα, 2017 Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα ΠΠΜ 221: Ανάλυση Κατασκευών
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
ω α β χ φ() γ Γ θ θ Ξ Μ ν ν ρ σ σ σ σ σ σ τ ω ω ω µ υ ρ α Coefficient of friction Coefficient of friction 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 0.90 0.80 0.70 0.60 0.50 0.40 0.30
Surface Mount Multilayer Chip Capacitors for Commodity Solutions
Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF
MasterSeries MasterPort Plus Sample Output
MasterSeries MasterPort Plus Sample Output The following output is from the MasterPort Plus Design program. Contents 2 Frame Geometry and Loading 4 Tabular Results Output support reactions and nodal deflections
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
0.635mm Pitch Board to Board Docking Connector. Lead-Free Compliance
.635mm Pitch Board to Board Docking Connector Lead-Free Compliance MINIDOCK SERIES MINIDOCK SERIES Features Specifications Application.635mm Pitch Connector protected by Diecasted Zinc Alloy Metal Shell
Μηχανικές ιδιότητες συνθέτων υλικών: διάτμηση. Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών
Μηχανικές ιδιότητες συνθέτων υλικών: διάτμηση Άλκης Παϊπέτης Τμήμα Επιστήμης & Τεχνολογίας Υλικών Αντοχή σε κάμψη. Κάμψη τριών σημείων Η αντοχή σύμφωνα με τη θεωρία της ελαστικής δοκού είναι: σ ult = 3P
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ. (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά
ECTS ΕΥΡΩΠΑΪΚΟ ΣΥΣΤΗΜΑ ΜΕΤΑΦΟΡΑΣ ΑΚΑΔΗΜΑΪΚΩΝ ΜΟΝΑΔΩΝ ΣΤΗΝ ΕΥΡΩΠΑΪΚΗ ΕΝΩΣΗ (Α) Λίστα με τα στοιχεία των μαθημάτων στα ελληνικά Γενικές πληροφορίες μαθήματος: Τίτλος μαθήματος: ΣΤΑΤΙΚΗ ΙΙΙ Κωδικός μαθήματος:
Kul Finite element method I, Exercise 08/2016
Kul-49.3300 Finite element metod I, Eercise 08/016 Demo problems 1. A square tin slab (1) is loaded by a po force () as sown in te figure. Derive te relationsip between te force magnitude F and displacement
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
Linearized Lifting Surface Theory Thin-Wing Theory
13.021 Marine Hdrodnamics Lecture 23 Copright c 2001 MIT - Department of Ocean Engineering, All rights reserved. 13.021 - Marine Hdrodnamics Lecture 23 Linearized Lifting Surface Theor Thin-Wing Theor
MSN DESK TOP ENCLOSURE WITH STAND / CARRYING HANDLE
MSN SERIES MSN DESK TOP ENCLOSURE WITH STAND / CARRYING HANDLE W H FEATURE Available in 176 sizes. Stand / carrying handle can be adjusted in 30 degree. Maximum load is kg. There are no ventilation hole
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical