On Certain Subclass of λ-bazilevič Functions of Type α + iµ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "On Certain Subclass of λ-bazilevič Functions of Type α + iµ"

Transcript

1 Tamsui Oxford Joural of Mathematical Scieces 23(2 ( Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad Computig Sciece Chagsha Uiversity of Sciece ad Techology Chagsha, Hua, 4176, People s epublic of Chia eceived March 26, 25, Accepted October 5, 25. Abstract I the preset paper, the authors itroduce a ew subclass B (λ, α, µ, A, B, of λ Bailevič fuctios of type α + iµ. The subordiatio relatios ad iequality properties are discussed by makig use of differetial subordiatio method. The results preseted here geeralie ad improve some kow results, ad some other ew results are obtaied. Keywords ad Phrases: λ-bailevič fuctios of type α + iµ, Differetial subordiatio. 1. Itroductio ad Defiitios Let A deote the class of fuctios of the form f( = + k=+1 2 Mathematics Subject Classificatio. Primary 3C a k k ( N = {1, 2, 3,..., (1.1

2 142 Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua which are aalytic i the uit disk U = { : < 1. Also let S (β deote the usual class of starlike fuctios of order β, β < 1. Let f( ad F ( be aalytic i U. The we say that the fuctio f( is subordiate to F ( i U, if there exists a aalytic fuctio ω( i U such that ω( ad f( = F (ω(, deoted by f F or f( F (. If F ( is uivalet i U, the the subordiatio is equivalet to f( = F ( ad f(u F (U (see [1]. The followig class of aalytic fuctios were studied by various authors (see [3]. Defiitio 1. Let B (α, µ, β, g( deote the class of fuctios i A satisfyig the iequality f ( α+iµ ( f( > β ( U, (1.2 f( g( where α, µ, β < 1 ad g( S (β. The fuctio f( i this class is said to be Bailevič fuctio of type α + iµ ad of order β. I the preset paper, we defie the followig class of aalytic fuctios. Defiitio 2. Let B (λ, α, µ, A, B, g( deote the class of fuctios i A satisfyig the iequality (1 λ f ( f( ( α+iµ ( f( + λ 1 + f ( g( f ( ( f α+iµ ( 1 + A g ( 1 + B ( U, (1.3 where λ 1, α, µ, 1 B 1, A B, A ad g( S (β. All the powers i (1.3 are pricipal values, below we apply this agreemet. The fuctio f( i this class is said to be λ Bailevič fuctio of type α+iµ. If α = 1, µ =, A = 1 2β ad B = 1, the the class B (λ, α, µ, A, B, g( reduces to the class of λ close-to-covex fuctios of order β, β < 1. If α =, µ =, A = 1 ad B = 1, the the class B (λ, α, µ, A, B, g( reduces to the class of λ covex fuctios [6]. If α =, µ =, A = 1 2β ad B = 1, the the class B (λ, α, µ, A, B, g( reduces to the class of λ covex fuctios of order β, β < 1. If A = 1 2β ad B = 1, the the class B (λ, α, µ, A, B, g( reduces to the class of λ Bailevič fuctios of type α + iµ ad of order β, β < 1. Li [3], Owa [4], Owa ad Nuokawa [5] discussed the related properties of

3 O Certai Subclass 143 the classes B (λ, α, µ, 1 2β, 1,, B (, α,, 1 2β, 1, ad B (λ, 1,, 1 2β, 1,, respectively. I the preset paper, we will discuss the subordiatio relatios ad iequality properties of the class B (λ, α, µ, A, B,. The results preseted here geeralie ad improve some kow results, ad some other ew results are obtaied. 2. Prelimiaries esults I order to establish our mai results, we shall require the followig lemmas. Lemma 1 ([7]. Let F ( = 1 + b + b be aalytic i U, h( be aalytic ad covex i U, h( = 1. If where c ad c, the F ( + 1 c F ( h(, (2.1 F ( c c t c 1 h(tdt h(, ad c c t c 1 h(tdt is the best domiat for (2.1. Lemma 2 ([8]. Let f( = k=1 a k k be aalytic i U, g( = k=1 b k k be aalytic ad covex i U. If f( g(, the a k b 1, for k = 1, 2,.... Lemma 3. Let λ 1, α, µ, α + iµ, 1 B 1, A B ad A. The f( B (λ, α, µ, A, B, if ad oly if q( + 1 α + iµ q ( 1 + A 1 + B, (2.2 where q( = (1 λ (f(/ α+iµ + λ(f ( α+iµ. Proof. Let ( α+iµ f( = m(. (2.3

4 144 Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua The, by takig the derivatives i the both sides of (2.3, we have that is, f ( f( f ( f( ( f( ( α+iµ ( f( f( = α+iµ = m( + α + iµ m (, α+iµ + α + iµ Substitutig f( by f ( i (2.4, we have ( 1 + f ( f ( ( α+iµ f(. (2.4 (f ( α+iµ = (f ( α+iµ + ( (f ( α+iµ. (2.5 α + iµ From equalities (2.4 ad (2.5, we get = (1 λ f ( α+iµ ( ( f( + λ 1 + f ( (f ( α+iµ f( f ( ( α+iµ f( (1 λ + λ (f ( α+iµ + ( α+iµ f( (1 λ + λ (f ( α+iµ. (2.6 α + iµ Now, suppose that f( B (λ, α, µ, A, B,, ad let q( = (1 λ ( α+iµ f( + λ (f ( α+iµ. Thus, from the defiitio of B (λ, α, µ, A, B, ad equality (2.6, we ca get (2.2. O the other had, this deductive process ca be coverse. Therefore, the proof of Lemma 3 is complete.

5 O Certai Subclass Mai esults ad Their Proofs Theorem 1. Let λ 1, α, µ, α + iµ, 1 B 1, A B ad A. If f( B (λ, α, µ, A, B,, the (1 λ ( f( α+iµ + λ (f ( α+iµ α + iµ 1 + Au 1 + Bu u α+iµ 1 du 1 + A 1 + B. Proof. First let q( = (1 λ (f(/ α+iµ + λ (f ( α+iµ, the q( = 1 + b +b is aalytic i U. Now, suppose that f( B (λ, α, µ, A, B,, by Lemma 3, we kow q( + 1 α + iµ q ( 1 + A 1 + B. It is obvious that h( = (1 + A/(1 + B is aalytic ad covex i U, h( = 1. Sice α + iµ ad α, therefore it follows from Lemma 1 that (1 λ ( α+iµ f( + λ (f ( α+iµ α + iµ α+iµ t α+iµ 1 h(tdt = α + iµ 1 + Au 1 + Bu u α+iµ 1 du 1 + A 1 + B. Corollary 1. Let λ 1, α, µ, α + iµ ad β 1. If f( A satisfies (1 λ f ( f( the (1 λ ( f( ( α+iµ ( f( +λ 1 + f ( (f ( α+iµ f ( ad (3.1 is equivalet to (1 λ ( f( α+iµ +λ (f ( α+iµ α + iµ 1 + (1 2βu 1 + (1 2β 1 ( U, u α+iµ 1 du ( U, (3.1 α+iµ +λ (f ( α+iµ (1 β(α + iµ 1 β+ u α+iµ 1 du ( U.

6 146 Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua Theorem 2. Let λ 1, α, µ, α + iµ, 1 B 1, A B ad A. If f( B (λ, α, µ, A, B,, the { α + iµ ( if 1 + Au U 1 + Bu u α+iµ α+iµ f( 1 du < (1 λ + λ (f ( α+iµ { α + iµ 1 + Au < sup U 1 + Bu u α+iµ 1 du. Proof. Suppose that f( B (λ, α, µ, A, B,, from Theorem 1 we kow ( α+iµ f( (1 λ + λ (f ( α+iµ α + iµ 1 + Au 1 + Bu u α+iµ 1 du. Therefore it follows from the defiitio of the subordiatio that ( α+iµ f( { (1 λ + λ (f ( α+iµ α + iµ > if 1 + Au U 1 + Bu u α+iµ 1 du, ad ( α+iµ f( { (1 λ + λ (f ( α+iµ α + iµ < sup U 1 + Au 1 + Bu u α+iµ 1 du. Corollary 2. Let λ 1, α, µ, α + iµ ad β < 1. If f( B (λ, α, µ, 1 2β, 1,, the { α + iµ β + (1 β if U u α+iµ 1 du ( α+iµ f( < (1 λ + λ(f ( α+iµ { α + iµ < β + (1 β sup U u α+iµ 1 du. Corollary 3. Let λ 1, α, µ, α + iµ ad β > 1. If f( A satisfies ( α+iµ ( (1 λf ( f( + λ 1 + f ( (f ( α+iµ < β ( U, f( f (

7 O Certai Subclass 147 the β + (1 β sup < U (1 λ ( f( { α + iµ < β + (1 β if U { α + iµ u α+iµ α+iµ + λ(f ( α+iµ 1 du u α+iµ 1 du. Theorem 3. Let λ 1, α ad 1 B < A 1. If f( B (λ, α,, A, B,, the { ( α 1 α 1 Au 1 Bu u α f( 1 du < (1 λ + λ (f ( α < α 1 + Au 1 + Bu u α 1 du ( U, (3.2 ad iequality (3.2 is sharp, with the extremal fuctio defied by (1 λ ( f( α + λ (f ( α = α 1 + Au 1 + Bu u α 1 du. (3.3 Proof. Suppose that f( B (λ, α,, A, B,, from Theorem 1 we kow (1 λ ( f( α + λ (f ( α α 1 + Au 1 + Bu u α 1 du. Therefore it follows from the defiitio of the subordiatio ad A > B that { (1 λ ( α f( + λ (f ( α < sup U α < α { α sup U 1 + Au 1 + Bu u α 1 du { 1 + Au u α 1 du 1 + Bu 1 + Au 1 + Bu u α 1 du,

8 148 Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua ad { ( α f( (1 λ + λ (f ( α { α > if 1 + Au U 1 + Bu u α 1 du α { 1 + Au if u α 1 du U 1 + Bu > α 1 Au 1 Bu u α 1 du. It is obvious that iequality (3.2 is sharp, with the extremal fuctio defied by equality (3.3. Corollary 4. Let λ 1, α ad β < 1. If f( B (λ, α,, 1 2β, 1,, the α 1 { 1 (1 2βu u α 1 du < (1 λ < α ad iequality (3.4 is equivalet to β + (1 βα ( α f( + λ (f ( α 1 + (1 2βu u α 1 du ( U, (3.4 u α 1 du < { ( α f( (1 λ + λ (f ( α < (1 βα 1 β + u α 1 du ( U. Corollary 5. Let α ad β < 1. If f( A satisfies {( 1 + f ( f ( (f ( α > β ( U, the α 1 < α 1 (1 2βu u α 1 du < { (f ( α 1 + (1 2βu u α 1 du ( U, (3.5

9 O Certai Subclass 149 ad iequality (3.5 is equivalet to β + (1 βα < β + (1 βα u α 1 du < { (f ( α u α 1 du ( U, iequality (3.5 is sharp, with the extremal fuctio defied by f α,β ( = ( α (1 2βt u u α 1 t 1 du u α dt. (3.6 Corollary 6. Let λ > ad β < 1. If f( B (λ, 1,, 1 2β, 1,, the for = r < 1, we have {f ( > 1 λ t 1 λ 1 1 (1 2βt dt. 1 + t emark 1. Corollary 6 is the correspodig result obtaied by Owa ad Nuokawa i [5]. By applyig the similar method as i Theorem 3, we have Theorem 4. Let λ 1, α ad 1 A < B 1. If f( B (λ, α,, A, B,, the { ( α 1 α 1 + Au 1 + Bu u α f( 1 du < (1 λ + λ (f ( α < α 1 Au 1 Bu u α 1 du ( U, (3.7 ad iequality (3.7 is sharp, with the extremal fuctio defied by equality (3.3. Corollary 7. Let λ 1, α ad β > 1. If f( A satisfies { (1 λ f ( f( ( α ( f( + λ 1 + f ( (f ( α < β ( U, f (

10 15 Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua the α 1 { 1 + (1 2βu u α 1 du < (1 λ < α ad iequality (3.8 is equivalet to β + (1 βα ( α f( + λ (f ( α 1 (1 2βu u α 1 du ( U, (3.8 u α 1 du < { ( α f( (1 λ + λ (f ( α < (1 βα 1 β + u α 1 du ( U. Corollary 8. Let α ad β > 1. If f( A satisfies the {( α 1 < α 1 + f ( f ( (f ( α < β ( U, 1 + (1 2βu u α 1 du < { (f ( α ad iequality (3.9 is equivalet to β + (1 βα < β + 1 (1 2βu u α 1 du ( U, (3.9 (1 βα u α 1 du < { (f ( α u α 1 du ( U, iequality (3.9 is sharp, with the extremal fuctio defied by equality (3.6. emark 2. Corollary 7-8 improve the correspodig results of Corollary 6-7 i [3], respectively. If ω, the (ω 1 2 ω 1 2 ω( 1 2 (see [2, 9]. So we have

11 O Certai Subclass 151 Theorem 5. Let λ 1, α ad 1 B < A 1. If f( B (λ, α,, A, B,, the ( α 1 Au 1 1 Bu u α 1 2 du [ ( α ] 1 f( < (1 λ + λ (f ( α 2 < ( α 1 + Au Bu u α 1 2 du ( U, (3.1 ad iequality (3.1 is sharp, with the extremal fuctio defied by equality (3.3. Proof. From Theorem 1 we kow ( α f( (1 λ + λ (f ( α 1 + A 1 + B. Sice 1 B < A 1, we have 1 A { ( α f( 1 B < (1 λ + λ (f ( α < 1 + A 1 + B. Thus, from iequality (3.2, we ca get iequality (3.1. It is obvious that iequality (3.1 is sharp, with the extremal fuctio defied by equality (3.3. By applyig the similar method as i Theorem 5, we have Theorem 6. Let λ 1, α ad 1 A < B 1. If f( B (λ, α,, A, B,, the ( α 1 + Au Bu u α 1 2 du [ ( α ] 1 f( < (1 λ + λ (f ( α 2 < ( α 1 Au 1 1 Bu u α 1 2 du ( U, (3.11 ad iequality (3.11 is sharp, with the extremal fuctio defied by equality (3.3. emark 3. From Theorem 5-6 we also ca obtai the correspodig results about some other special classes of aalytic fuctios, here we do t give uecessary details ay more.

12 152 Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua Theorem 7. Let λ 1, α, 1 B 1, A B ad A. If f( = + k=+1 a k k B (λ, α,, A, B,, the a +1 A B ( + α(λ + 1, (3.12 ad iequality (3.12 is sharp, with the extremal fuctio defied by equality (3.3. Proof. Suppose that f( = + k=+1 a k k B (λ, α,, A, B,, the we have (1 λ f ( α ( ( f( + λ 1 + f ( (f ( α f( f ( = 1 + ( + α(λ + 1a A 1 + B. It follows from Lemma 2 that ( + α(λ + 1a +1 A B. (3.13 Thus, from (3.13, we ca get (3.12. Notice that f( = + A B ( + α(λ B (λ, α,, A, B,, we obtai that iequality (3.12 is sharp. Ackowledgmets This work was supported by the Scietific esearch Fud of Hua Provicial Educatio Departmet ad the Hua Provicial Natural Sciece Foudatio (No. 5JJ313 of the People s epublic of Chia. The authors would like to thak Professor H. M. Srivastava for his careful readig of ad costructive suggestios for the origial mauscript.

13 O Certai Subclass 153 efereces [1] C. Pommereke, Uivalet Fuctios, Vadehoeck ad uprecht, Göttige, [2] M.-S. Liu, O certai class of aalytic fuctios defied by differetial subordiatio, Acta Math. Sci. Ser. B Egl. Ed. 22 (22, [3] S.-H. Li, Several iequalities about the α+iµ type of λ-bailevič fuctios of order β, Adv. Math. 33 (24, (i Chiese. [4] S. Owa, O certai Bailevič fuctios of order β, Iterat. J. Math. Math. Sci. 15 (1992, [5] S. Owa ad M. Nuokawa, Properties of certai aalytic fuctios, Math. Japo. 33 (1988, [6] S. S. Miller, P. T. Mocau, ad M. O. eade, All alpha covex fuctios are uivalet ad starlike, Proc. Amer. Math. Soc. 37 (1973, [7] S. S. Miller ad P. T. Mocau, Differetial subordiatio ad uivalet fuctios, Michiga. Math. J. 28 (1981, [8] W. W. ogosiski, O the coefficiets of subordiatio fuctios, Proc. Lodo Math. Soc. (Ser (1943, [9] Z.-G. Wag, C.-Y. Gao, ad M.-X. Liao, O certai geeralied class of o-bailevič fuctios, Acta Math. Acad. Paedagog. Nyhái (N.S. 21 (25,

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet

Διαβάστε περισσότερα

n=2 In the present paper, we introduce and investigate the following two more generalized

n=2 In the present paper, we introduce and investigate the following two more generalized MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1) GEORGIAN MATHEMATICAL JOURNAL: Vol. 2, No. 5, 995, 535-545 PROPERTIES OF CERTAIN INTEGRAL OPERATORS SHIGEYOSHI OWA Abstract. Two integral operators P α and Q α for analytic functions in the open unit disk

Διαβάστε περισσότερα

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points Applied Mathematical Sciences, Vol. 2, 2008, no. 35, 1739-1748 Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points S. M. Khairnar and

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1 Bulleti of the Trasilvaia Uiversity of Braşov Vol 5) - 00 Series III: Mathematics, Iformatics, Physics, -4 ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY Gabriel STAN Abstract A extesio ad a refiemet

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

A General Note on δ-quasi Monotone and Increasing Sequence

A General Note on δ-quasi Monotone and Increasing Sequence International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions

The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions Pure Mathematical Sciences, Vol. 1, 01, no. 4, 187-196 The Fekete Szegö Theorem for a Subclass of Quasi-Convex Functions Goh Jiun Shyan School of Science and Technology Universiti Malaysia Sabah Jalan

Διαβάστε περισσότερα

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1. Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

STRONG DIFFERENTIAL SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MULTIVALENT ANALYTIC FUNCTIONS DEFINED BY LINEAR OPERATOR

STRONG DIFFERENTIAL SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MULTIVALENT ANALYTIC FUNCTIONS DEFINED BY LINEAR OPERATOR Khayyam J. Math. 3 217, no. 2, 16 171 DOI: 1.2234/kjm.217.5396 STRONG DIFFERENTIA SUBORDINATIONS FOR HIGHER-ORDER DERIVATIVES OF MUTIVAENT ANAYTIC FUNCTIONS DEFINED BY INEAR OPERATOR ABBAS KAREEM WANAS

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

1. Introduction and Preliminaries.

1. Introduction and Preliminaries. Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif)

ON CERTAIN SUBCLASS OF p-valent FUNCTIONS WITH POSITIVE COEFFICIENTS (Berkenaan Subkelas Fungsi p-valen Tertentu Berpekali Positif) Joual of Quality Measuemet ad Aalysis Jual Peguua Kualiti da Aalisis JQMA 10(2) 2014, 41-50 ON CERTAIN SUBCLASS OF -VALENT FUNCTIONS WITH POSITIVE COEFFICIENTS (Beeaa Subelas Fugsi -Vale Tetetu Beeali

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

The Number of Zeros of a Polynomial in a Disk as a Consequence of Restrictions on the Coefficients

The Number of Zeros of a Polynomial in a Disk as a Consequence of Restrictions on the Coefficients The Number of Zeros of a Polynomial in a Disk as a Consequence of Restrictions on the Coefficients Robert Gardner Brett Shields Department of Mathematics and Statistics Department of Mathematics and Statistics

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

On a Subclass of k-uniformly Convex Functions with Negative Coefficients

On a Subclass of k-uniformly Convex Functions with Negative Coefficients International Mathematical Forum, 1, 2006, no. 34, 1677-1689 On a Subclass of k-uniformly Convex Functions with Negative Coefficients T. N. SHANMUGAM Department of Mathematics Anna University, Chennai-600

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

Intuitionistic Fuzzy Ideals of Near Rings

Intuitionistic Fuzzy Ideals of Near Rings International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS

ESTIMATES FOR WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS ESTIMATES FO WAVELET COEFFICIENTS ON SOME CLASSES OF FUNCTIONS V F Babeo a S A Sector Let ψ D be orthogoal Daubechies wavelets that have zero oets a let W { } = f L ( ): ( i ) f ˆ( ) N We rove that li

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

On New Subclasses of Analytic Functions with Respect to Conjugate and Symmetric Conjugate Points

On New Subclasses of Analytic Functions with Respect to Conjugate and Symmetric Conjugate Points Global Journal of Pure Applied Mathematics. ISSN 0973-768 Volume, Number 3 06, pp. 849 865 Research India Publications http://www.ripublication.com/gjpam.htm On New Subclasses of Analytic Functions with

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.

Διαβάστε περισσότερα

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras Annals of Pure and Applied athematics Vol. 8, No. 1, 2014, 93-104 ISSN: 2279-087X (P), 2279-0888(online) Published on 11 November 2014 www.researchmathsci.org Annals of Homomorphism and Cartesian Product

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities Hidawi Publishig Corporatio Joural of Iequalities ad Applicatios Volume 2008, Article ID 598632, 13 pages doi:10.1155/2008/598632 Research Article Fiite-Step Relaxed Hybrid Steepest-Descet Methods for

Διαβάστε περισσότερα

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, )

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, ) Ecoometrica Supplemetary Material SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Ecoometrica, Vol. 81, No. 3, May 213, 1185 121) BY YUICHI KITAMURA,TAISUKE OTSU, ANDKIRILL

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα