Άλυτα προβλήματα μαθηματικών 1. Υπόθεση (Εικασία) του Πουανκαρέ
|
|
- Μακεδνός Κωνσταντόπουλος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Άλυτα προβλήματα μαθηματικών 1. Υπόθεση (Εικασία) του Πουανκαρέ Το πρόβλημα που διατύπωσε το 1904 ο Γάλλος επιστήμονας Ανρί Πουανκαρέ αφορά την Τοπολογία, ένα κλάδο των Μαθηματικών που δεν ενδιαφέρεται για το ακριβές σχήμα των στερεών σωμάτων (σφαίρα, κύβος, πυραμίδα κ.λπ.), αλλά για τα ποιοτικά χαρακτηριστικά τους, π.χ. αν είναι συμπαγή ή αν έχουν τρύπες. Οι εφαρμογές αυτού του σχετικά νέου κλάδου των Μαθηματικών είναι εξαιρετικά σημαντικές σε τομείς όπως τα δίκτυα υπολογιστών και συγκοινωνιών, όπου δεν μας ενδιαφέρουν τα ακριβή σχήματα, αλλά οι «κόμβοι» και οι διασυνδέσεις (σκεφθείτε, για παράδειγμα, το λειτουργικό διάγραμμα του μετρό, που δεν απεικονίζει ακριβώς τη γεωγραφία της πόλης, αλλά μας επιτρέπει εύκολα να βρούμε τον δρόμο μας). Σε χοντρικές γραμμές, η υπόθεση Πουανκαρέ καθορίζει ποια στερεά σώματα (ή «πολλαπλότητες» σε αφηρημένους μαθηματικούς χώρους άνω των τριών διαστάσεων) είναι ισοδύναμα, από τοπολογική άποψη με μια σφαίρα και ποια όχι. Π.χ., ένας κύβος από πλαστελίνη είναι ισοδύναμος με σφαίρα, αφού μπορούμε να τον «πλάσουμε» σε στυλ σφαίρας, ενώ ένα ντόνατ δεν είναι, γιατί έχει τρύπα στη μέση. Φαντασθείτε ότι έχετε ένα λάστιχο, ένα μήλο και ένα ντόνατ με τρύπα στη μέση. Αν τραβήξετε το λάστιχο και το τοποθετήσετε περιμετρικά γύρω από το μήλο, θα μπορείτε να μετακινήσετε το λάστιχο από τον «ισημερινό» στον «πόλο» του μήλου, χωρίς να σκίσετε το λάστιχο και χωρίς να εγκαταλείψετε την επιφάνεια του μήλου. Αν, όμως, το λάστιχο τοποθετηθεί πάνω στην επιφάνεια του ντόνατ, τότε δεν υπάρχει τρόπος να μετακινήσουμε το λάστιχο σε όλη την επιφάνεια του ντόνατ, χωρίς να σκίσουμε ή το ένα ή το άλλο. Ο Πουανκαρέ υπέθεσε ότι κάτι ανάλογο συμβαίνει και στον τετραδιάστατο χώρο, ενώ σύγχρονοι μαθηματικοί απέδειξαν ότι κάτι τέτοιο συμβαίνει και σε χώρο περισσότερων των τεσσάρων διαστάσεων. Αγνωστο παρέμενε, όμως, μέχρι την εμφάνιση του Πέρελμαν στη σκηνή, εάν η αρχική Υπόθεση του Πουενκαρέ ισχύει. Αν η απόδειξη του Ρώσου μαθηματικού στέκει, τότε αυτό θα έχει σημαντικές πρακτικές εφαρμογές στον τομέα του σχεδιασμού και της κατασκευής ηλεκτρονικών κυκλωμάτων, αλλά και συγκοινωνιακών δικτύων. O Πουανκαρέ χαρακτηρίσθηκε ως «ο τελευταίος αναγεννησιακός άνθρωπος», ένας μαθηματικός που αισθανόταν άνετα σε κάθε τομέα των Μαθηματικών, όπως την ανάλυση, την άλγεβρα, την τοπολογία, την αστρονομία και τη
2 θεωρητική φυσική. Ο Γάλλος μαθηματικός ήταν μεγάλος οραματιστής και πρώτος εξέφρασε τη βασική αρχή της Θεωρίας του Χάους, ότι δηλαδή «μικρές διαφορές στις αρχικές συνθήκες προκαλούν μεγάλες διαφορές στο τελικό αποτέλεσμα». Σημείωση: Η εικασία του Πουανκαρέ λύθηκε από το Ρώσο μαθηματικό Γριγκόρι Πέρελμαν!! Έπειτα από οκτώ χρόνια προσπαθειών, ο Πέρελμαν κατέληξε το 2002 σε μια απόδειξη 473 σελίδων στην οποία οι συνάδελφοί του δεν κατάφεραν να εντοπίσουν λάθος. Η απόδειξη δεν δημοσιεύτηκε σε επιστημονική έκδοση, αλλά στο Διαδίκτυο. Διαβάστε σχετικά μ αυτό στο διαδίκτυο!! 2. Πρόβλημα P v. NP Οι επιστήμονες των ηλεκτρονικών υπολογιστών αναγνώρισαν δύο είδη προβλημάτων, που μπορεί να επιλύσει ένας υπολογιστής. Προβλήματα τύπου Ρ μπορούν να επιλυθούν «αποτελεσματικά», δηλαδή να δώσουν λύση έπειτα από «λογικό» αριθμό αριθμητικών πράξεων. Προβλήματα τύπου Ε, αντίθετα, απαιτούν υπολογιστική ισχύ, που ξεπερνάει σε πολυπλοκότητα τον συνολικό αριθμό ατόμων στο Σύμπαν. Υπάρχει, όμως, και τρίτο είδος προβλήματος, τύπου ΝΡ, που συμπεριλαμβάνει τις περισσότερες περίπλοκες ασκήσεις που η βιομηχανία και ο εμπορικός τομέας θα ήθελαν να επιλύουν οι υπολογιστές. Άσκηση τύπου ΝΡ μπορεί να επιλυθεί αποτελεσματικά από υπολογιστή, εφόσον σε κρίσιμα σημεία του υπολογισμού, το μηχάνημα λαμβάνει έτοιμη την απάντηση, αντί να εργαστεί για να φθάσει σε αυτή. Το ζήτημα είναι βέβαια θεωρητικό, καθώς παραμένει το ζήτημα από πού θα εξασφαλίσει ο υπολογιστής την απάντηση. Αν ένας υπολογιστής είχε την ικανότητα αυτή, το εύρος των προβλημάτων που μπορεί να αναλάβει θα αυξανόταν άραγε σημαντικά; Η προφανής απάντηση είναι, ναι. Ίσως, όμως, και όχι. Ίσως όλες οι ασκήσεις τύπου ΝΡ είναι στην πραγματικότητα ασκήσεις τύπου Ρ. Ίσως δηλαδή η αποτελεσματικότητα στην επίλυση προβλημάτων που θα ακολουθούσε την τροφοδότηση του μηχανήματος με έτοιμες απαντήσεις να
3 είναι εφικτή, χάρη σε έξυπνο προγραμματισμό του υπολογιστή. Αντικείμενο του προβλήματος P v. NP είναι να προσδιορίσει εάν αυτό ισχύει. Εάν αυτό αποδειχθεί, τότε οι πρακτικές εφαρμογές σε βιομηχανία, εμπόριο, αλλά και στην ασφάλεια του Ιντερνετ θα είναι σημαντικές. 3. Υπόθεση του Χοτζ Πρόκειται για ένα από τα σημαντικότερα άλυτα μαθηματικά προβλήματα της αλγεβρικής γεωμετρίας. Κατά τη διάρκεια του 20ού αιώνα, πολλοί μαθηματικοί ανακάλυψαν καλές μεθόδους έρευνας περίπλοκων αντικειμένων. Η βασική ιδέα αφορά το ερώτημα, σε ποιο βαθμό μπορούμε να πλησιάσουμε τη μορφή ενός δεδομένου αντικειμένου, κολλώντας μεταξύ τους απλά γεωμετρικά δομικά στοιχεία, αυξανόμενου μεγέθους. Η τεχνική αυτή αποδείχθηκε τόσο χρήσιμη, που γενικεύθηκε με πολλούς διαφορετικούς τρόπους, οδηγώντας τελικά στη δημιουργία πανίσχυρων εργαλείων, που επέτρεψαν στους μαθηματικούς να πραγματοποιήσουν άλματα στην ταξινόμηση της ποικιλίας αντικειμένων, που συναντούσαν στις έρευνές τους. Δυστυχώς, η γεωμετρική προέλευση της μεθόδου χάθηκε μέσα στην περιπλοκότητα του ορισμού της. Υπό μία έννοια, κατέστη αναγκαίο να προστεθούν τμήματα που στερούνταν γεωμετρικής ερμηνείας. Η υπόθεση του Χοτζ έρχεται να βάλει τάξη σε αυτό το χάος, δημιουργώντας μια γέφυρα μεταξύ αλγεβρικών δομών και της γεωμετρίας τους. Προέκυψε ως αποτέλεσμα του ερευνητικού έργου του μαθηματικού Χ. Ντ. Χοτζ μεταξύ 1930 και Εξίσωση Νέιβιερ - Στόουκς Κύματα ακολουθούν τη βάρκα μας, καθώς κινούμαστε στην επιφάνεια μιας λίμνης, ενώ κύματα αέρος ακολουθούν τα σύγχρονα αεροσκάφη, καθώς αυτά πετούν στον αέρα. Μαθηματικοί και φυσικοί πιστεύουν ότι μπορεί να βρεθεί εξήγηση και να προβλεφθεί η συμπεριφορά των κυμάτων αυτών, μέσα από την κατανόηση της λύσης της Εξίσωσης Νέιβιερ - Στόουκς. Αν και οι εξισώσεις αυτές καταγράφηκαν τον 19ο αιώνα, ακόμη και σήμερα αδυνατούμε να τις κατανοήσουμε. Οι μαθηματικοί καλούνται σήμερα να εκπονήσουν μαθηματική θεωρία, η οποία θα ξεκλειδώσει τα μυστικά που κρύβει η Εξίσωση Νέιβιερ - Στόουκς.
4 5. Θεωρία Γιανγκ - Μιλς Οι νόμοι της κβαντικής Φυσικής είναι για τον κόσμο των στοιχειωδών σωματιδίων ό,τι και οι Νόμοι του Νεύτωνα για τον γύρω μας κόσμο. Σχεδόν πριν από πενήντα χρόνια, οι μαθηματικοί Γιανγκ και Μιλς εισήγαγαν εντυπωσιακό νέο πλαίσιο, για την περιγραφή των στοιχειωδών σωματιδίων, χρησιμοποιώντας δομές που συναντιούνται και στη Γεωμετρία. Η Κβαντική Θεωρία Γιανγκ - Μιλς αποτελεί σήμερα τη βάση σχεδόν όλων των θεωριών στοιχειωδών σωματιδίων, ενώ οι προβλέψεις της έχουν τύχει πειραματικής μελέτης σε πολλά εργαστήρια. Η μαθηματική της βάση παραμένει, όμως, ασαφής. Η επιτυχημένη χρήση της θεωρίας Γιανγκ - Μιλς για την περιγραφή των ισχυρών αλληλεπιδράσεων στοιχειωδών σωματιδίων εξαρτάται από μιαν ανεπαίσθητη κβαντική μηχανική ιδιότητα, που ονομάζουμε «χάσμα μάζας»: τα κβαντικά σωματίδια έχουν θετική μάζα, παρότι τα κλασικά κύματα μετακινούνται με την ταχύτητα του φωτός. Η ιδιότητα αυτή ανακαλύφθηκε πειραματικά από φυσικούς και επιβεβαιώθηκε με τη βοήθεια προσομοιώσεων σε ηλεκτρονικούς υπολογιστές, χωρίς ωστόσο να έχει εκφρασθεί θεωρητικά. Η πρόοδος στην επιβεβαίωση της θεωρίας Γιανγκ - Μιλς θα απαιτήσει, όμως, την υιοθέτηση θεμελιωδών νέων ιδεών στη Φυσική και τα Μαθηματικά. 6.Υπόθεση του Riemann Το 1859, ο Μπέρνχαρτ Ράιμαν παρουσίασε την υπόθεση, που είναι η μόνη που απομένει αναπόδεικτη από τον κατάλογο του Χίλμπερτ. Η υπόθεση αφορά την αλληλουχία των πρώτων αριθμών μεταξύ των θετικών ακέραιων. Πρώτος είναι κάθε θετικός αριθμός, εκτός του 1, ο οποίος δεν διαρείται παρά μόνο από τον εαυτό του και το 1. Οι πρώτοι δέκα πρώτοι αριθμοί είναι οι 2, 3, 5, 7, 11, 13, 17, 19, 23 και 29. Οι πρώτοι αριθμοί είναι άπειροι, αλλά η συχνότητά τους μειώνεται όσο επεκτείνεται η σειρά θετικών ακεραίων προς το άπειρο. Από τους οκτώ αρχικούς θετικούς ακέραιους αριθμούς, οι μισοί είναι πρώτοι, αλλά από τους αρχικούς εκατό, μόλις το ένα τέταρτο είναι πρώτοι, ενώ από τους αρχικούς ένα εκατομμύριο θετικούς ακέραιους, μόλις ο ένας στους δέκα τρεις είναι πρώτος. Αυτό δημιουργεί το ερώτημα εάν μπορούμε να εξαγάγουμε κάποιο αξιόλογο συμπέρασμα για τον ακριβή τρόπο, με τον οποίο το ποσοστό αυτό μειώνεται σταδιακά. Το αρχικό πρότυπο της ακολουθίας πρώτων αριθμών και
5 όσα γνωρίζουμε για τα μετέπειτα πρότυπα δεν είναι, όμως, ενθαρρυντικά. Τα διαστήματα μεταξύ των αρχικών δέκα πρώτων, για παράδειγμα, είναι 1, 2, 2, 4, 2, 4, 2, 4 και 6, μία ακολουθία που δεν μοιάζει να έχει εμφανή περιοδικότητα. Ασχετα από το πόσο μακριά φθάνουμε στην αλληλουχία θετικών ακεραίων, ανακαλύπτουμε ομάδες πολλών πρώτων, συγκεντρωμένες κοντά η μία στην άλλη, καθώς και διαστήματα, όσο μεγάλα θέλει κανείς, στα οποία δεν συναντούμε κανέναν πρώτο αριθμό. Οι μαθηματικοί, όμως, πέτυχαν να κατανοήσουν -εν μέρει- τον τρόπο με τον οποίο το ποσοστό των πρώτων αριθμών μειώνεται. Αν και η κατανόηση αυτή προήλθε από άλλο κλάδο των Μαθηματικών, που μοιάζει εντελώς άσχετος με τη θεωρία των θετικών ακεραίων, καθώς ασχολείται με τη διαρκή διακύμανση ενός μεγέθους σε σχέση με ένα άλλο. Παρ' όλα αυτά, η απόδειξη της Υπόθεσης του Ρίμαν, εάν και εφόσον επιτευχθεί, θα μπορούσε και αυτή να έχει σημαντικές πρακτικές εφαρμογές στη Φυσική και την τεχνολογία των επικοινωνιών. 7. Υπόθεση Μπερτς και Σουίνερτον - Ντάιερ Οι μαθηματικοί ανέκαθεν ενδιαφέρονταν για το πρόβλημα της ανακάλυψης ακέραιων λύσεων για εξισώσεις του τύπου x^2+y^2=z^2. Ο Ευκλείδης έδωσε την πλήρη λύση στην εξίσωση αυτή, αλλά για περισσότερο περίπλοκες εξισώσεις, αυτό καθίσταται πολύ δύσκολο. Πράγματι, το 1970, ο Ματιγιάσεβιτς έδειξε ότι το δέκατο πρόβλημα στον κατάλογο του Χίλμπερτ είναι άλυτο, δεν υπάρχει δηλαδή γενική μέθοδος επιβεβαίωσης, ότι τέτοιες εξισώσεις έχουν λύσεις σε πλήρεις αριθμούς. Αλλά σε ορισμένες ειδικές περιπτώσεις, μπορεί να έχουμε καλύτερη τύχη. Η Υπόθεση Μπερτς και Σουίνερτον - Ντάιερ αφορά τις λύσεις ορισμένων τέτοιων, ειδικών περιπτώσεων.
Εισαγωγή. Γιατί είναι χρήσιμο το παρόν βιβλίο. Πώς να ζήσετε 150 χρόνια µε Υγεία
Εισαγωγή «Όποιος έχει υγεία, έχει ελπίδα. Και όποιος έχει ελπίδα, έχει τα πάντα.» Τόμας Κάρλαϊλ Γιατί είναι χρήσιμο το παρόν βιβλίο Ο πατέρας μου είναι γιατρός, ένας από τους καλύτερους παθολόγους που
Γενικές αρχές ακτινοφυσικής Π. ΓΚΡΙΤΖΑΛΗΣ
Γενικές αρχές ακτινοφυσικής Π. ΓΚΡΙΤΖΑΛΗΣ Μέρος πρώτο ΣΚΟΠΟΣ ΜΑΘΗΜΑΤΟΣ Να εξηγηθούν βασικές έννοιες της φυσικής, που θα βοηθήσουν τον φοιτητή να μάθει: Τι είναι οι ακτίνες Χ Πως παράγονται Ποιες είναι
Το χάος και η σχετικότητα στον Πουανκαρέ
5 Μαρτίου 2012 Το χάος η σχετικότητα στον Πουανκαρέ Επιστήμες / Μορφές της Επιστήμης & της Τεχνολογίας Το 2012 συμπληρώνονται 100 χρόνια από το θάνατο του μεγάλου φιλόσοφου επιστήμονα Jules Henri Poincaré
Παρατηρώντας κβαντικά φαινόμενα δια γυμνού οφθαλμού
Παρατηρώντας κβαντικά φαινόμενα δια γυμνού οφθαλμού του Δρ. Γεωργίου Καβουλάκη Όπως αναφέρεται στην ειδησεογραφία του παρόντος τεύχους, το ΤΕΙ Κρήτης μετέχει σε ένα δίκτυο έρευνας του Ευρωπαϊκού Ιδρύματος
Κβαντικό κενό ή πεδίο μηδενικού σημείου και συνειδητότητα Δευτέρα, 13 Οκτώβριος :20. Του Σταμάτη Τσαχάλη
Του Σταμάτη Τσαχάλη Η διάκριση ανάμεσα στην ύλη και στον κενό χώρο εγκαταλείφθηκε από τη στιγμή που ανακαλύφθηκε ότι τα στοιχειώδη σωματίδια μπορούν να γεννηθούν αυθόρμητα από το κενό και στη συνέχεια
ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη
ΑΠΟ ΤΟΥΣ : Γιάννης Πετσουλας-Μπαλής Στεφανία Ολέκο Χριστίνα Χρήστου Βασιλική Χρυσάφη Ο ΠΥΘΑΓΟΡΑΣ (572-500 ΠΧ) ΗΤΑΝ ΦΟΛΟΣΟΦΟΣ, ΜΑΘΗΜΑΤΙΚΟΣ ΚΑΙ ΘΕΩΡΗΤΙΚΟΣ ΤΗΣ ΜΟΥΙΣΚΗΣ. ΥΠΗΡΞΕ Ο ΠΡΩΤΟΣ ΠΟΥ ΕΘΕΣΕ ΤΙΣ ΒΑΣΕΙΣ
Κατακόρυφη πτώση σωμάτων. Βαρβιτσιώτης Ιωάννης Πρότυπο Πειραματικό Γενικό Λύκειο Αγίων Αναργύρων Μάιος 2015
Κατακόρυφη πτώση σωμάτων Βαρβιτσιώτης Ιωάννης Πρότυπο Πειραματικό Γενικό Λύκειο Αγίων Αναργύρων Μάιος 2015 Α. Εισαγωγή Ερώτηση 1. Η τιμή της μάζας ενός σώματος πιστεύετε ότι συνοδεύει το σώμα εκ κατασκευής
Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας»
Εισαγωγή Επιστημονική μέθοδος Αριστοτέλης (384-322 π.χ) : «Για να ξεκινήσει και να διατηρηθεί μια κίνηση είναι απαραίτητη η ύπαρξη μιας συγκεκριμένης αιτίας» Διατύπωση αξιωματική της αιτίας μια κίνησης
Ιστοσελίδα: Γραφείο: ΣΘΕ, 4 ος όροφος, γραφείο 3 Ώρες: καθημερινά Βιβλίο: Ομότιτλο, εκδόσεις
Ιστοσελίδα: http://www.astro.auth.gr/~varvogli/ Γραφείο: ΣΘΕ, 4 ος όροφος, γραφείο 3 Ώρες: 10.00-12.00 καθημερινά Βιβλίο: Ομότιτλο, εκδόσεις Πλανητάριο, 200 σελίδες Ημερολόγιο μαθήματος Μέθοδος διδασκαλίας:
Κατακόρυφη πτώση σωμάτων
Κατακόρυφη πτώση σωμάτων Τα ερωτήματα Δύο σώματα έχουν το ίδιο σχήμα και τις ίδιες διαστάσεις με το ένα να είναι βαρύτερο του άλλου. Την ίδια στιγμή τα δύο σώματα αφήνονται ελεύθερα να πέσουν μέσα στον
ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2012
Εαρινό εξάμηνο 2012 17.05.12 Χ. Χαραλάμπους (1791-1858) 1858) Peacock: «Treatise on Algebra»(1830) και αργότερα μετά το 1839 την «αριθμητική άλγεβρα» και στην «συμβολική άλγεβρα». «αριθμητική άλγεβρα»:
Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ
Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας
invariante Eigenschaften spezieller binärer Formen, insbesondere der
Κουλακίδου Π. Ιστορία των Μαθηματικών Υπεύθυνη Καθηγήτρια: Χ. Χαραλάμπους Εισαγωγή David Hilbert (1862 Königsberg - 1943 Göttingen). Διδακτορικό το 1885 υπό την επίβλεψη του Ferdinand von Lindemann με
Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 19/04/16
Διάλεξη 15: Νετρίνα Νετρίνα Τα νετρίνα τα συναντήσαμε αρκετές φορές μέχρι τώρα: Αρχικά στην αποδιέγερση β αλλά και αργότερα κατά την αποδιέγερση των πιονίων και των μιονίων. Τα νετρίνα αξίζει να τα δούμε
ΟΔΗΓΟΣ ΓΙΑ ΤΙΣ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ ΜΑΪΟΣ 2012
ΟΔΗΓΟΣ ΓΙΑ ΤΙΣ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ ΜΑΪΟΣ 2012 Καραγιάννης Ιωάννης Σχολικός Σύμβουλος ΠΕ03 Ν.Δωδεκανήσου 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Νομικό Πλαίσιο...3 2. Δομή των θεμάτων...3 3. Ενδεικτικά Παραδείγματα...5
ΚΒΑΝΤΟΜΗΧΑΝΙΚ Η ΜΕΤΡΗΣΗ. By Teamcprojectphysics
ΚΒΑΝΤΟΜΗΧΑΝΙΚ Η ΜΕΤΡΗΣΗ By Teamcprojectphysics ΕΙΣΑΓΩΓΗ Ο κόσμος της Κβαντομηχανικής είναι περίεργος, γοητευτικός και μυστήριος. Η ονομασία όμως Κβαντομηχανική είναι αποκρουστική, βαρετή, μη ενδιαφέρουσα,
4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ
174 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Εισαγωγή Ένα από τα αρχαιότερα προβλήματα της Θεωρίας Αριθμών είναι η αναζήτηση των ακέραιων αριθμών που ικανοποιούν κάποιες δεδομένες σχέσεις Με σύγχρονη ορολογία
ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΧΕΙΜΕΡΙΝΩΝ ΕΞΑΜΗΝΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦ ΑΡΜ ΟΣΜ ΕΝΩΝ Μ ΑΘΗΜ ΑΤΙΚΩΝ ΚΑΙ Φ ΥΣΙΚΩΝ ΕΠΙΣΤΗΜ ΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2012-201 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΧΕΙΜΕΡΙΝΩΝ ΕΞΑΜΗΝΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2012-201 ΗΜ/ΝΙΑ 1ο ο 5ο (κατ.
ΟΠΤΙΚΗ & ΕΡΓΑΣΤΗΡΙΟ αμφ. 3, 4. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΙΙ αμφ. 2. ΓΕΝΙΚΗ ΧΗΜΕΙΑ αμφ. 4
ΠΑΡΑΣΚΕΥΗ 25/1/2019 ΠΕΜΠΤΗ 24/1/2019 ΤΕΤΑΡΤΗ 23/1/2019 ΤΡΙΤΗ 22/1/2019 ΔΕΥΤΕΡΑ 21/1/2019 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ
Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς
Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια
ETY-202 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ
stzortz@iesl.forth.gr 1396; office Δ013 ΙΤΕ 2 ΎΛΗ & ΦΩΣ 07. ΣΤΡΟΦΟΡΜΗ ΚΑΙ ΤΟ ΑΤΟΜΟ ΤΟΥ ΥΔΡΟΓΟΝΟΥ Θεωρία της στροφορμής Στέλιος Τζωρτζάκης 1 3 4 Υπενθύμιση βασικών εννοιών της στροφορμής κυματοσυνάρτηση
ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΧΕΙΜΕΡΙΝΩΝ ΕΞΑΜΗΝΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 20-201 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΧΕΙΜΕΡΙΝΩΝ ΕΞΑΜΗΝΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 20-201 ΓΙΑ ΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΦΟΙΤΗΤΕΣ ΟΡΘΗ
ΚΟΡΜΟΥ. ΜΑΘΗΜΑΤΙΚΟΥ ΦΥΣΙΚΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΦΥΣΙΚΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΦΥΣΙΚΟΥ 5ο 7ο 9ο
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2016-17 1η 5ο 7ο 9ο ΔΕΥΤΕΡΑ 23/1/2017 ΘΕΡΜΟΔΥΝΑΜΙΚΗ, 4 --------- Γαλλικά
2 ΔΙΔΑΣΚΩΝ: Ι.Δ. ΠΛΑΤΗΣ Επτά Γέφυρες της Καινιξβέργης 1 απέδειξε ότι δεν μπορούμε να χαράξουμε διαδρομή στην πόλη, δια της οποίας θα διασχίζουμε ακριβ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΕΜ Χειμερινό εξάμηνο 2017-18 ΜΕΜ231-ΤΟΠΟΛΟΓΙΑ 1, 1Η ΔΙΑΛΕΞΗ ΠΡΟΛΟΓΟΣ-ΕΙΣΑΓΩΓΗ ΔΙΔΑΣΚΩΝ: Ι.Δ. ΠΛΑΤΗΣ 1. Προλογος Η τοπολογία είναι η περιοχή εκείνη των μαθηματικών που ασχολείται με
ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2016-17 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1 1η 5ο 7ο 9ο ΠΑΡΑΣΚΕΥΗ 27/1/201 ΠΕΜΠΤΗ 26/1/2017
ΝΕΥΤΩΝΑΣ... Λίνα Παπαεμμανουήλ Μάνος Ορφανίδης Άννα Σαμαρά Στέφανος Τζούμας
ΝΕΥΤΩΝΑΣ... Λίνα Παπαεμμανουήλ Μάνος Ορφανίδης Άννα Σαμαρά Στέφανος Τζούμας Γνωρίζοντας τον Νεύτωνα... Ο Σερ Ισαάκ Νεύτων (Αγγλ. Sir Isaac Newton Σερ Άιζακ Νιούτον, 4 Ιανουαρίου 1643 31 Μαρτίου 1727) ήταν
ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΣΕΠΤΕΜΒΡΙΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ
ΠΑΡΑΣΚΕΥΗ 30/8/2019 ΠΕΜΠΤΗ 29/8/2019 ΤΕΤΑΡΤΗ 28/8/2019 ΤΡΙΤΗ 27/8/2019 ΔΕΥΤΕΡΑ 26/8/2019 1ο-2ο 3ο-4ο ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 5ο-6ο 7ο-8ο ΠΡΟΓΡΑΜΜΑ
Κεφάλαιο 1 Ανάλυση προβλήματος
Κεφάλαιο 1 Ανάλυση προβλήματος 1.1 Η έννοια πρόβλημα Με τον όρο πρόβλημα εννοείται μια κατάσταση η οποία χρειάζεται αντιμετώπιση, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής. 1.2 Κατανόηση
Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης
Επιμορφωτικό Εργαστήριο Διδακτικής των Μαθηματικών Του Δημήτρη Ντρίζου Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής
Το νέο Πρόγραμμα Σπουδών για τα Μαθηματικά της υποχρεωτικής εκπαίδευσης
ΕΣΠΑ 2007-13\Ε.Π. Ε&ΔΒΜ\Α.Π. 1-2-3 «ΝΕΟ ΣΧΟΛΕΙΟ (Σχολείο 21 ου αιώνα) Νέο Πρόγραμμα Σπουδών, Οριζόντια Πράξη» MIS: 295450 Με συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.) Το νέο Πρόγραμμα
Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης (2η εκδοχή, Ιανουάριος 2016)
Επιμορφωτικό Εργαστήριο Διδακτικής των Μαθηματικών Του Δημήτρη Ντρίζου Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής
Συμπληρωματικό Φύλλο Εργασίας 3+ ( * ) Μετρήσεις Μάζας Τα Διαγράμματα
Συμπληρωματικό Φύλλο Εργασίας 3+ ( * ) Μετρήσεις Μάζας Τα Διαγράμματα ( * ) + επιπλέον πληροφορίες, ιδέες και προτάσεις προαιρετικών πειραματικών δραστηριοτήτων, ερωτήσεις... Στην αρχαιότητα πίστευαν ότι
Φυσική: Ασκήσεις. Β Γυμνασίου. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
0 Β Γυμνασίου Φυσική: Ασκήσεις Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 0 1 Ασκήσεις στο 1 ο Κεφάλαιο Ασκήσεις με κενά 1. Να συμπληρώσεις τα κενά στις παρακάτω προτάσεις:
ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ Απόλυτες τιμές Α Λυκείου. 1. α) Αν, να αποδειχθεί ότι: Μονάδες 15
ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ 016-17 Απόλυτες τιμές Α Λυκείου 1. α) Αν, να αποδειχθεί ότι: Μονάδες 15 β) Αν α
Το Κεντρικό Οριακό Θεώρημα
Το Κεντρικό Οριακό Θεώρημα Όπως θα δούμε αργότερα στη Στατιστική Συμπερασματολογία, λέγοντας ότι «από έναν πληθυσμό παίρνουμε ένα τυχαίο δείγμα μεγέθους» εννοούμε ανεξάρτητες τυχαίες μεταβλητές,,..., που
Ασκήσεις στο βαρυτικό πεδίο
Ασκήσεις στο βαρυτικό πεδίο Για το ΘΜΚΕ η μόνη δύναμη που δρα στη μάζα είναι η ελκτική βαρυτική δύναμη της Γης. Θα μπορούσαμε να εργαστούμε και με ΑΔΜΕ! Δοκιμάστε την Εδώ εργαζόμαστε μόνο με ΘΜΚΕ. Δεν
5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα
5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι
Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ
ΜΑΘΗΜΑ 1: Η ΚΛΑΣΙΚΗ ΘΕΩΡΗΣΗ ΤΟΥ ΧΩΡΟΥ ΚΑΙ ΤΟΥ ΧΡΟΝΟΥ Τίποτε δεν θεωρώ μεγαλύτερο αίνιγμα από το χρόνο και το χώρο Εντούτοις, τίποτε δεν με απασχολεί λιγότερο από αυτά επειδή ποτέ δεν τα σκέφτομαι Charles
Παρασκευή-Ανδριάννα Μαρούτσου Πρότυπο Γυμνάσιο Ευαγγελικής Σχολής Σμύρνης Επιβλέπων καθηγητής: Νικόλαος Μεταξάς, Δρ. Μαθηματικών Θεματική Ενότητα:
Παρασκευή-Ανδριάννα Μαρούτσου Πρότυπο Γυμνάσιο Ευαγγελικής Σχολής Σμύρνης Επιβλέπων καθηγητής: Νικόλαος Μεταξάς, Δρ. Μαθηματικών Θεματική Ενότητα: Μαθηματικά Ο σκοπός της έρευνας είναι η αναζήτηση για
ΚΟΡΜΟΥ. ΜΑΘΗΜΑΤΙΚΟΥ ΦΥΣΙΚΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΦΥΣΙΚΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΦΥΣΙΚΟΥ 5ο 7ο 9ο
ΡΑΣΚΕΥΗ 25/1/2019 ΠΕΜΠΤΗ 24/1/2019 ΤΕΤΑΡΤΗ 23/1/2019 ΤΡΙΤΗ 22/1/2019 ΔΕΥΤΕΡΑ 21/1/2019 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ
ΚΟΡΜΟΥ. ΜΑΘΗΜΑΤΙΚΟΥ ΦΥΣΙΚΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΦΥΣΙΚΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΦΥΣΙΚΟΥ 5ο 7ο 9ο
ΠΑΡΑΣΚΕΥΗ 18/1/201 ΠΕΜΠΤΗ 17/1/2019 ΤΕΤΑΡΤΗ 16/1/2019 ΤΡΙΤΗ 15/1/2019 ΔΕΥΤΕΡΑ 14/1/2019 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ
Διάλεξη 17: Το μοντέλο των κουάρκ
Διάλεξη 17: Το μοντέλο των κουάρκ Από την επιτυχία της αναπαράστασης των σωματιδίων σε οκταπλέτες ή δεκαπλέτες προκύπτει ένα πολύ εύλογο ερώτημα. Τι συμβαίνει και οι ιδιότητες των σωματιδίων που έχουν
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2013-2014
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 3-4 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 3 ΗΜ/ΝΙΑ 1ο-2ο Φυσική Φυσικού
Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι αλη
Υποθέσεις - - Θεωρήματα Μαθηματικά Πληροφορικής 1ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Στα μαθηματικά και στις άλλες επιστήμες
ΘΕΜΑ 2 (996) A = x 1 + y 3, με x, y πραγματικούς αριθμούς, για τους οποίους. Δίνεται η παράσταση:
ΘΕΜΑ 2 (996) Δίνεται η παράσταση: A = x 1 + y 3, με x, y πραγματικούς αριθμούς, για τους οποίους ισχύει: 1 < x < 4 και 2 < y < 3. Να αποδείξετε ότι: α) A = x y +2. (Μονάδες 12) β) 0 < A < 4. (Μονάδες 13)
Γεώργιος Φίλιππας 23/8/2015
MACROWEB Προβλήματα Γεώργιος Φίλιππας 23/8/2015 Παραδείγματα Προβλημάτων. Πως ορίζεται η έννοια πρόβλημα; Από ποιους παράγοντες εξαρτάται η κατανόηση ενός προβλήματος; Τι εννοούμε λέγοντας χώρο ενός προβλήματος;
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων Ι Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Σύμφωνα με τον ολισμό το Σύμπαν περιγράφεται πλήρως από το ίδιο το Σύμπαν,
Επινοώντας εκ νέου τη φυσική, στην εποχή της ανάδυσης. Εκδόσεις Κάτοπτρο, 2008. Ο Robert B. Laughlin κατέχει την έδρα φυσικής Robert M. και Anne Bass στο Πανεπιστήμιο Stanford, όπου διδάσκει από το 1985.
το πλαίσιο της άσκησης των μαθητών στις διαδικασίες της επιστημονικής μεθόδου
το πλαίσιο της άσκησης των μαθητών στις διαδικασίες της επιστημονικής μεθόδου από τον διαδικτυακό τόπο το Πανεπιστημιακό Τμήμα Δημοτικής Εκπαίδευσης του Πανεπιστημίου Αθηνών (διδακτική τω Φυσικών Επιστημών).
Το Κεντρικό Οριακό Θεώρημα
Το Κεντρικό Οριακό Θεώρημα Στα προηγούμενα (σελ. 7), δώσαμε μια πρώτη, γενική, διατύπωση του Κεντρικού Οριακού Θεωρήματος (Κ.Ο.Θ.) και τη γενική ιδέα για το πώς το Κ.Ο.Θ. εξηγεί το μεγάλο εύρος εφαρμογής
Η κλασσική, η σχετικιστική και η κβαντική προσέγγιση. Θωµάς Μελίστας Α 3
Η κλασσική, η σχετικιστική και η κβαντική προσέγγιση Θωµάς Μελίστας Α 3 Σύµφωνα µε την κλασσική µηχανική και την γενική αντίληψη η µάζα είναι µία εγγενής ιδιότητα των φυσικών σωµάτων. Μάζα είναι η ποσότητα
ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΣΕΠΤΕΜΒΡΙΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ
1ο-2ο 3ο-4ο ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ 5ο-6ο 7ο-8ο 9ο ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΣΕΠΤΕΜΒΡΙΟΥ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2017-18 1η 1o - 2ο 3o - 4ο
ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ ΜΑΪΟΣ 2012
ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ ΜΑΪΟΣ 2012 ΕΓΚΥΚΛΙΟΣ ΓΙΑ ΤΗ ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ Στο Γυμνάσιο οι ανακεφαλαιωτικές, προαγωγικές και απολυτήριες εξετάσεις διεξάγονται σύμφωνα με : Το Π.Δ. 409/1994 και
ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1
ΕΘΝΚΟ ΜΕΤΣΟΒΟ ΠΟΛΥΤΕΧΝΕΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΚΩΝ ΚΑ ΦΥΣΚΩΝ ΕΠΣΤΗΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2011-2012 ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2011-2012 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1 ΗΜ/ΝΑ 1ο-2ο 3ο-4ο 5ο-6ο
Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).
Μάθημα 5ο Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Ο δεύτερος ηλικιακός κύκλος περιλαμβάνει την ηλικιακή περίοδο
Βασίλειος Κοντογιάννης ΠΕ19
Ενότητα2 Προγραμματιστικά Περιβάλλοντα Δημιουργία Εφαρμογών 5.1 Πρόβλημα και Υπολογιστής Τι ονομάζουμε πρόβλημα; Πρόβλημα θεωρείται κάθε ζήτημα που τίθεται προς επίλυση, κάθε κατάσταση που μας απασχολεί
ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΕΠΙ ΠΤΥΧΙΩ ΕΑΡΙΝΗ ΕΞΕΤΑΣΤΙΚΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΕΥΤΕΡΑ 23/1/2017 ΤΡΙΤΗ 24/1/2017 1η 1ο ΑΝΑΛΥΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΚΑΙ ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ, 4 3ο ΘΕΡΜΟΔΥΝΑΜΙΚΗ, 4 Γαλλικά (9.00 11.00)
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα:
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:. -. (Προτείνεται να διατεθούν 5 διδακτικές ώρες).3 (Προτείνεται να διατεθούν
ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών
44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.
ΣΥΝΔΥΑΣΜΟΣ ΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΔΙΑΧΥΣΗΣ ΣΤΟΥΣ ΠΟΡΟΥΣ ΜΕ ΚΙΝΗΤΙΚΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΑΝΤΙΔΡΑΣΗΣ
ΣΥΝΔΥΑΣΜΟΣ ΤΗΣ ΑΝΤΙΣΤΑΣΗΣ ΔΙΑΧΥΣΗΣ ΣΤΟΥΣ ΠΟΡΟΥΣ ΜΕ ΚΙΝΗΤΙΚΗ ΕΠΙΦΑΝΕΙΑΚΗΣ ΑΝΤΙΔΡΑΣΗΣ Παράγοντας Αποτελεσματικότητας Ειδικά για αντίδραση πρώτης τάξης, ο παράγοντας αποτελεσματικότητας ισούται προς ε = C
ΠΛΗΡΟΦΟΡΙΕΣ - ΕΙΣΑΓΩΓΙΚΑ
ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΦΥΣΙΚΗ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2015-16 ΠΛΗΡΟΦΟΡΙΕΣ - ΕΙΣΑΓΩΓΙΚΑ 18/9/2014 ΕΙΣΑΓΩΓΗ_ΚΕΦ. 1 1 ΠΛΗΡΟΦΟΡΙΕΣ Διδάσκων Γεράσιμος Κουρούκλης Καθηγητής (Τμήμα Χημικών Μηχανικών). (gak@auth.gr,
Υποθέσεις - Θεωρήματα. Μαθηματικά Πληροφορικής 1ο Μάθημα. Η χρυσή τομή. Υποθέσεις - Εικασίες
Υποθέσεις - - Θεωρήματα Υποθέσεις - - Θεωρήματα Υποθέσεις - Θεωρήματα Μαθηματικά Πληροορικής ο Μάθημα Στα μαθηματικά και στις άλλες επιστήμες κάνουμε συχνά υποθέσεις. Οταν δείξουμε ότι μια υπόθεση είναι
ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ
Tel.: +30 2310998051, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Ιστοσελίδα: http://users.auth.gr/theodoru ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ
ΔΟΜΗ ΑΤΟΜΩΝ ΚΑΙ ΜΟΡΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ ΤΟΥ BOHR
ΔΟΜΗ ΑΤΟΜΩΝ ΚΑΙ ΜΟΡΙΩΝ ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ ΤΟΥ BOHR Μοντέλο του Bohr : Άτομο ηλιακό σύστημα. Βασικά σημεία της θεωρίας του Bohr : 1 η συνθήκη ( μηχανική συνθήκη ) Τα ηλεκτρόνια κινούνται
Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος
Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν
Συντελεστής επαναφοράς ή αποκατάστασης
Συντελεστής επαναφοράς ή αποκατάστασης (Coefficient of restitution ή bounciness) Μία έννοια εξαιρετικά σημαντική για όσους φτιάχνουν ασκήσεις στις στιγμιαίες κρούσεις (με ορμές ή/και στροφορμές για την
Περιεχόμενα. Πρόλογος... 9 Δύο λόγια για το νέο ερευνητή Δύο λόγια για το Διδάσκοντα Ένα κβαντικό παιχνίδι... 15
Περιεχόμενα Πρόλογος... 9 Δύο λόγια για το νέο ερευνητή... 11 Δύο λόγια για το Διδάσκοντα... 1 Ένα κβαντικό παιχνίδι... 15 Κεφάλαιο 1: Κβαντικά συστήματα δύο καταστάσεων...17 1.1 Το κβαντικό κέρμα... 17
26 Ιανουαρίου 2019 ΜΟΝΑΔΕΣ: ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ:
ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΒΟΡΕΙΑΣ ΕΛΛΑΔΑΣ ΦΥΣΙΚΗ 26 Ιανουαρίου 2019 ΛΥΚΕΙΟ:... ΟΜΑΔΑ ΜΑΘΗΤΩΝ: 1.. 2..... 3..... ΜΟΝΑΔΕΣ: Η βασική ιδέα Θα αναλάβετε το ρόλο ενός οργανοποιού με επιστημονικές ανησυχίες: Θέλετε
Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ
Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Οι μαθηματικές έννοιες και γενικότερα οι μαθηματικές διαδικασίες είναι αφηρημένες και, αρκετές φορές, ιδιαίτερα πολύπλοκες. Η κατανόηση
Ευρωπαίοι μαθηματικοί απέδειξαν έπειτα από 40 χρόνια τη θεωρία περί της ύπαρξης του Θεού του Γκέντελ με τη βοήθεια ηλεκτρονικού υπολογιστή
Ευρωπαίοι μαθηματικοί απέδειξαν έπειτα από 40 χρόνια τη θεωρία περί της ύπαρξης του Θεού του Γκέντελ με τη βοήθεια ηλεκτρονικού υπολογιστή Καθηγητή Χάρη Βάρβογλη 1 / 6 Υπάρχει Θεός; Το ερώτημα αυτό απασχολεί
Σύγχρονη Φυσική 1, Διάλεξη 3, Τμήμα Φυσικής, Παν/μιο Ιωαννίνων Η θεωρία του αιθέρα καταρρίπτεται από το πείραμα των Michelson και Morley
1 Η θεωρία του αιθέρα καταρρίπτεται από το πείραμα των Mihelson και Morley 0.10.011 Σκοποί της τρίτης διάλεξης: Να κατανοηθεί η ιδιαιτερότητα των ηλεκτρομαγνητικών κυμάτων (π. χ. φως) σε σχέση με άλλα
ΘΕΜΑ ΘΕΜΑ ΘΕΜΑ 4
7.0 ΘΕΜΑ 4 Δίνονται τα σημεία Α, Β και Μ που παριστάνουν στον άξονα των πραγματικών αριθμών τους αριθμούς -, 7 και x αντίστοιχα, με - < x < 7. α) Να διατυπώσετε τη γεωμετρική ερμηνεία των παραστάσεων.
Περιεχόμενα. Ανάλυση προβλήματος. Δομή ακολουθίας. Δομή επιλογής. Δομή επανάληψης. Απαντήσεις. 1. Η έννοια πρόβλημα Επίλυση προβλημάτων...
Περιεχόμενα Ανάλυση προβλήματος 1. Η έννοια πρόβλημα...13 2. Επίλυση προβλημάτων...17 Δομή ακολουθίας 3. Βασικές έννοιες αλγορίθμων...27 4. Εισαγωγή στην ψευδογλώσσα...31 5. Οι πρώτοι μου αλγόριθμοι...54
ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
1 ΑΝΔΡΕΑΣ Λ. ΠΕΤΡΑΚΗΣ ΑΡΙΣΤΟΥΧΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΔΙΔΑΚΤΩΡ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΝΤΙΣΤΡΟΦΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΤΑ ΚΟΙΝΑ ΣΗΜΕΙΑ ΤΩΝ ΓΡΑΦΙΚΩΝ ΤΟΥΣ ΠΑΡΑΣΤΑΣΕΩΝ, ΑΝ ΥΠΑΡΧΟΥΝ, ΒΡΙΣΚΟΝΤΑΙ ΜΟΝΟ ΠΑΝΩ ΣΤΗΝ ΕΥΘΕΙΑ y = x ΔΕΥΤΕΡΗ
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ
ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2
x ν+1 =ax ν (1-x ν ) ή αλλιώς η απλούστερη περίπτωση ακολουθίας αριθμών με χαοτική συμπεριφορά.
1 x ν+1 =ax ν (1-x ν ) ή αλλιώς η απλούστερη περίπτωση ακολουθίας αριθμών με χαοτική συμπεριφορά. Πριν λίγα χρόνια, όταν είχε έρθει στην Ελλάδα ο νομπελίστας χημικός Ilya Prigogine (πέθανε πρόσφατα), είχε
ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦ ΑΡΜ ΟΣΜ ΕΝΩΝ Μ ΑΘΗΜ ΑΤΙΚΩΝ ΚΑΙ Φ ΥΣΙΚΩΝ ΕΠΙΣΤΗΜ ΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 3-4 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 3-4 ΗΜ/ΝΙΑ 1ο-2ο 3ο-4ο 5ο-6ο 5ο-6ο Μαθηματικού 7ο-8ο Φυσικού
ΠΑΡΑΛΛΗΛΑ ΣΥΜΠΑΝΤΑ. Συντελεστής: Γιάννης Τσικαλάκης. Θέμα ομάδας: Θεωρία χορδών και παράλληλα σύμπαντα. Σχολικό έτος:
ΠΑΡΑΛΛΗΛΑ ΣΥΜΠΑΝΤΑ Συντελεστής: Γιάννης Τσικαλάκης Θέμα ομάδας: Θεωρία χορδών και παράλληλα σύμπαντα Σχολικό έτος: 2015-2016 Υπεύθυνη Καθηγήτρια: Δρίλλια Γεωργία Αθανασία 2.ΠΕΡΙΕΧΟΜΕΝΑ Περίληψη: σελ. 3
ΕΞΑΜΗΝΟ ΕΞΑΜΗΝΟ. (κατ. Φυσικού. Εφαρμογών) Μαθηματικού Εφαρμογών) και Σχεδιασμοί Αμφ. 1, Εμβιομηχανική του μυοσκελετικού αμφ.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010-2011 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1 ΤΕΛΙΚΟ ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2010-2011 ΗΜ/ΝΙΑ ΩΡΑ
Θέμα: Μεταπτυχιακό πρόγραμμα με τίτλο «Μάστερ σε Αρχές Φυσικής» του Πανεπιστημίου Κύπρου
ΚΥΠΡΙΑΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αρ. Φακ.: 7.15.03 Αρ. Τηλ.: 22800630/631 Αρ. Φαξ: 22428268 E-mail : circularsec@schools.ac.cy 23 Οκτωβρίου 2008 Διευθυντές/Διευθύντριες
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 7 Ιανουαρίου, 00 Ώρα: 0.00.00 Οδηγίες: ) Το δοκίμιο αποτελείται από έξι (6) σελίδες και πέντε (5) θέματα. ) Να απαντήσετε τα ερωτήματα όλων
Η Φυσική που δεν διδάσκεται
1 Η Φυσική που δεν διδάσκεται Δρ. Μιχάλης Καραδημητρίου Σύλλογος Φυσικών Κρήτης www.sfkritis.gr Αλήθεια τι είναι η «Φυσική» ; 2 Είναι ένα άσχημο μάθημα με τύπους και εξισώσεις;; ή μήπως είναι η επιστήμη
Η Φυσική που δεν διδάσκεται ΣΥΛΛΟΓΟΣ ΦΥΣΙΚΩΝ ΚΡΗΤΗΣ
Η Φυσική που δεν διδάσκεται ΣΥΛΛΟΓΟΣ ΦΥΣΙΚΩΝ ΚΡΗΤΗΣ Αλήθεια τι είναι η «Φυσική» ; Είναι ένα άσχημο μάθημα με τύπους και εξισώσεις;; ή μήπως είναι η επιστήμη που μελετάει την φύση και προσπαθεί να κατανοήσει
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών
Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών
Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά.
Γ. Οι μαθητές και τα Μαθηματικά. Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά. ΠΙΝΑΚΑΣ 55 Στάση
ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ & ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ (ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 4 )
ΠΑΡΑΣΚΕΥΗ 19/6/2015 ΠΕΜΠΤΗ 18/6/2015 ΤΕΤΑΡΤΗ 17/6/2015 ΤΡΙΤΗ 16/6/2015 ΔΕΥΤΕΡΑ 15/6/2015 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ
Από την Άλγεβρα των Υπολογισμών στα Υπολογιστικά Συστήματα Άλγεβρας
Από την Άλγεβρα των Υπολογισμών στα Υπολογιστικά Συστήματα Άλγεβρας Νικόλαος Καραμπετάκης Επίκουρος Καθηγητής Τμήμα Μαθηματικών, Α.Π.Θ. http://anemos.web.auth.gr/mathematica/index.htm http://anadrasis.web.auth.gr/n.karampetakis.htm
Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο
Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΊΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΊΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΒΙΟΪΑΤΡΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΜΕΤΡΗΣΕΙΣ ΣΤΗ ΒΙΟΪΑΤΡΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 6: ΠΑΡΑΛΛΗΛΗ
5. Σε ορθογώνιο σύστημα αξόνων να σχεδιαστούν οι ευθείες που έχουν εξισώσεις τις: β. y = 4 δ. x = y
. Δύο φίλοι, ο Μάρκος και ο Βασίλης, έχουν άθροισμα ηλικιών 7 χρόνια, και ο Μάρκος είναι μεγαλύτερος από το Βασίλη. Μπορείτε να υπολογίσετε την ηλικία του καθενός; Να δικαιολογήσετε την απάντησή σας. β.
ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ & ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗΣ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ (ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 5 )
ΠΑΡΑΣΚΕΥΗ 19/6/2015 ΠΕΜΠΤΗ 18/6/2015 ΤΕΤΑΡΤΗ 17/6/2015 ΤΡΙΤΗ 16/6/2015 ΔΕΥΤΕΡΑ 15/6/2015 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΕΑΡΙΝΩΝ ΕΞΑΜΗΝΩΝ
ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ - ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗ ΕΑΡΙΝΩΝ ΜΑΘΗΜΑΤΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ 1
ΠΑΡΑΣΚΕΥΗ 22/1/2016 ΠΕΜΠΤΗ 21/1/201 ΤΕΤΑΡΤΗ 20/1/2016 ΤΡΙΤΗ 19/1/2016 ΔΕΥΤΕΡΑ 18/1/201 ΠΡΟΓΡΑΜΜΑ ΧΕΙΜΕΡΙΝΗΣ ΕΞΕΤΑΣΤΙΚΗΣ - ΕΠΙ ΠΤΥΧΙΩ ΕΞΕΤΑΣΤΙΚΗ ΕΑΡΙΝΩΝ ΜΑΘΗΜΑΤΩΝ ΑΚΑΔΗΜΑΪΚΟΥ ΕΤΟΥΣ 2015-16 ΟΡΘΗ ΕΠΑΝΑΛΗΨΗ
μαθηματικά β γυμνασίου
μαθηματικά β γυμνασίου Κάθε αντίτυπο φέρει την υπογραφή ενός εκ των συγγραφέων Σειρά: Γυμνάσιο, Θετικές Επιστήμες Μαθηματικά Β Γυμνασίου, Βασίλης Διολίτσης Ιωάννα Κοσκινά Νικολέττα Μπάκου Θεώρηση Κειμένου:
ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ
ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ Ιστότοπος Βιβλίου http://www.iep.edu.gr/ και «Νέα Βιβλία ΙΕΠ ΓΕΛ και ΕΠΑΛ» 2 ΠΕΡΙΕΧΟΜΕΝΑ
Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ
0 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΑΣΚΗΣΕΙΣ Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η - Α Σ Κ Η Σ Ε Ι Σ 0 1 Στρατηγική επίλυσης προβλημάτων Α. Κάνε κατάλληλο σχήμα,τοποθέτησε τα δεδομένα στο σχήμα και ονόμασε
THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION
THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION E F R A I M F I S C H B E I N, T E L - A V I V U N I V E R S I T Y M A R I A D E R I, U N I V E R S I T Y O F P I S
1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες
Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να
ΑΝΩΤΑΤΟ ΣΤΡΑΤΙΩΤΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ ΤΜΗΜΑ ΝΑΥΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΑΝΩΤΑΤΟ ΣΤΡΑΤΙΩΤΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΧΟΛΗ ΝΑΥΤΙΚΩΝ ΔΟΚΙΜΩΝ ΤΜΗΜΑ ΝΑΥΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΡΤΗΤΕΟ ΣΤΟ ΔΙΑΔΙΚΤΥΟ Αρ. Πρωτ.: 0129/24.1.2018 Πειραιάς, 24 Ιανουαρίου 2018 E-mail: deansecretary@snd.edu.gr ΘΕΜΑ: