Introduction Introduction

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Introduction Introduction"

Transcript

1 EW OOLS FOR BAYESIA IFERECE: HE VARIAIOAL AROXIAIO olaos. Galatsanos ECE Dept. Unv. of atras, Greece. Dmtrs zas CS Dept. Unv. of Ioannna, Greece. Outlne Introducton Bayesan Inference Bascs A Estmaton Conugate Dstrbutons Graphcal odels E Algorthm An Alternatve Vew of the E he Varatonal E framewor Examples Lnear Regresson Blnd Image Deconvoluton Image Restoraton. Constraned. Bounded Gaussan xture odelng Conclusons Introducton Introducton homas Bayes (7 76, left, frst dscovered Bayes theorem n 764. However, Bayes n hs theorem used unform prors. erre Smon Laplace (749 87, rght, unaware of Bayes wor, dscovered the same theorem n more general form n a memor he wrote at the age of 5 and showed ts wde applcablty. (a (b (a: # of papers /year n IEEE Journals E Algorthm (b: # of papers /year n IEEE Journals Varatonal ethodology Applcatons of Varatonal Approxmaton. xture odelng of pdfs & Clusterng. ICA & CA Analyss 3. Learnng RFs 4. Dynamc Systems odelng 5. Image Recovery 6. Vsual racng 7. Dgtal Communcatons 8. Acoustcs and Speech rocessng 9. Learnng from Data Bases Sample of US atents that Use US atent Varatonal relevance vector machne, Issued on Aprl, 5 US atent Varatonal nference engne for probablstc graphcal models, Issued on Aprl 9, 3 US atent 8567 Removng camera shae from a sngle photograph US atent ethod and apparatus for denosng and deverberaton usng varatonal nference and Strong Speech odels, Issue date: Jan 4, 6. US atent ethod for learnng swtchng lnear dynamc system models from data, Issue date: Jul 8, 3 US atent ethod of speech recognton usng varatonal nference wth swtchng state space models, Issue date: Aug 6, 5. US atent 4/6548 Varatonal nference and learnng for segmental swtchng state space models of hdden speech dynamcs, US atent 4/5493 A Systems and methods for tractable varatonal approxmaton for nference n decson graph Bayesan networs, Issue Feb 7, 7 ublcaton number US 7/8398 Data securty and ntruson detecton, ublcaton number: US 5/7657 A Dagnostc marers of mood dsorders and methods of use thereof ublcaton number: US 7/3339 A opulaton sequencng ublcaton number: US 6/846 A layer ranng wth partal nformaton ublcaton number: US 7/6578 A eam matchng ublcaton number: US 7/9854 A Detectng humans va ther pose

2 Bayesan Inference Bascs Estmaton > arameter Observatons: x arameters: Lelhood Functon: p x; axmum Lelhood Estmaton ( ( parameter ( ˆ arg max p x; L Bayesan Inference Bascs Inference > Random Varable Fnd osteror p ( x osteror ORE nformaton than pont estmate E( x SE estmate Var x accuracy of estmates ( Bayesan Inference Bascs Hdden Varables z: Descrbe data generaton mechansm (graphcal model lns between observatons and parameters Easy to compute p( x z Introduce prors p( z; Bayesan Inference Bascs Fnd Lelhood, argnalze Hdden Varables ( ; (, ; ( ; ( ; p x p x z dz p x z p z dz Fnd osteror p x z p z x; ( ( ; p( z; p( x; In most cases of nterest Cannot argnalze Bayesan Inference Bascs an effort n Bayesan Inference technques bypass or approxmate margnalzaton ntegral. Random samplng methods onte Carlo Determnstc approxmatons Laplace Varatonal A Estmaton Defned as mode of posteror : ˆ A argmax p x Based on Bayes theorem p( x p( p( x p x Can be found as: ( ˆ A argmax px ( p( (

3 A Estmaton o need for p( x no margnalzaton A Estmator uch easer to fnd ode of posteror o nformaton about shape of posteror Uses Bayes heorem, however posteror not found Aoor an s Bayesan Inference Conugate rors Fnd pror whch allows closed form margnalzaton of hdden varables ( (, ( ( p x p x z dz p x z p z dz Conugate rors Example #: μ hdden varable ( μ; σ ( ; μσ,, ( μ; μ, σ ( ; μ, σ ( ; μ, σ, σ ( μσ ; ( μ; μ, σ μ px x p x px px p d Conugate rors px ( μσ ; f ( μ exp ( μ μx σ p ( σ ( μμ ;, σ g( μ exp ( μ μμ px μ; σ, and pμμ ;, σ conugate ( ;, w.r.t. to μ both p x μ; σ and p μ μ σ have the same form (Gaussan. ( ( Conugate rors argnalzng μ possble (Gaussan Integral: ( ; ( (,, ; ;, p x μ σ σ p x μ σ p μμ σ dμ x; μ, + σ σ osteror: σx + σ μ p( μ x; σ, μ, σ μ;, + σ σ + σ σ Conugate rors Example #: a hdden varable ( ( p x a x;, a, b b ca exp p( abc ;, Gamma( abc ;, Γ ( ca ( b

4 Conugate rors p( x a and p ( abc ;, w.r.t. to a both have the same form (Gamma. / ax p( x a f ( a a exp p abc g a a ac b ( ;, ( exp( p( x a ( and p abc ;, conugate Conugate rors argnalze a possble / Γ ( b + / b x p( x; b, c c c+ Γ( b π b/ Can wrte as Student s t wth ν, b λ b/ c / Γ ( ν /+ / λ λx px ( ; λν, Stx ( ; λν, + Γ( ν/ πν ν osteror x p( a x; b, c Gamma a; b+, c+ ν // Lelhood Conugate ror Dstrbuton Conugate rors osteror Dstrbuton ( σ ab Gamma σ + n /, + n ( / μ n Σ ν V Wshart ( Σ ν + n, V+ ( X ( μ X μ ( X μσ, ( μμ, Σ μ ( Σ + nσ ( Σ μ + nσ x,( Σ + nσ ( x μ σ, (, Gamma(, X μσ Wshart (, ultn ( X π Dr( π a n + Dr( π a X Graphcal odels Represent dependences between rv.s n a statstcal model Graph nodes represent rv.s and edges dependences Drected and undrected graphs. Undrected arov Random Felds Rest of presentaton: drected, no cycles graphs Graphcal odels x rv assocated node s, π ( s parents of s s ( p xs x π ( s condtonal pdf Graphcal odels Example: pabcd,,, ; pa; pba; pca ; pdbc, ; ( ( ( ( 3 ( 4 Jont pdf over all varables p( x p( xs x π ( s s

5 E Algorthm x- observatons, z hdden varables, -parameters. Defne: old Q, E ln p x, z; old ln p( x, z; p( z x; dz ( ( old pzx ( ; E Algorthm old. Intal selecton. E step: Evaluate p(z x; old new 3. step: Evaluate new arg max Q, old ( 4. Chec for convergence parameters of log lelhood, f not satsfed, go to. An Alternatve Vew of the E Algorthm Can wrte: ln p( x; F( q, + KL( q p pxz (, ; Fq (, qz ( ln dz qz ( pz ( x; KL( q p q( zln dz qz ( q( z any pdf, KL( q p Kullbac Lebler Dvergence An Alternatve Vew of the E Algorthm *** KL( q p ln px ( ; Fq (, ln px ( ; Fq (, when KLq ( p or qz ( pz ( x; An Alternatve Vew of the E Algorthm *** OLD Substtute qz ( pz ( x ; Can wrte: OLD Fq (, pz ( x; ln pxz (, ; dz Same as before: OLD OLD p( z x; ln p( x z; dz OLD Q(, ant [ ] p ( z x ( OLD Q, E ln p ( x, z; ; OLD he Varatonal E framewor *** Assume p(z x; unnown F(q, functonal n terms of q(z Varatonal E Varatonal E step: Varatonal step: OLD ( EW ( q EW ( z max F q, EW arg max F q,

6 he Varatonal E framewor *** Key ssue: maxmze F(q, w.r.t. q(z? Assume parametrc form for q(z q(z approxmates unnown posteror p(z x ln p( x; F( q, + KL( q p max F(q, >mn KL(q p ean Feld Approxmaton*** Assumpton: q(z factorzes qz ( q( z ean Feld approxmaton, statstcal physcs ean Feld Approxmaton*** hen optmal factor q( z s: wth exp ln pxz (, ; exp ln pxz (, ; q ( z ln p( xz, ; ln pxz (, ; qdz dz Conugate Exponental models ror dstrbutons belong to the exponental famly p( X Y exp φ( Y u( X + f( X + g( Y Graphcal model wth conugate prors at each level hdden z, parents π ( z p ( z π ( z conugate to p( π( z π( π( z ( ( ( p z ππ ( ( z p z π( z p π( z ππ ( ( z dπ( z Conugate Exponental models p(x z,p(z z,p(z exponental dstrbutons p(z conugate to p(z z p( x z p( x z p( z z dz (x z conugate to p(z z z p( z p( z z p( z dz Cannot evaluate margnal z ( ( ( p x p x z p z z p( z dzdz x Conugate Exponental models ractable Varatonal computatons qz ( exp ln pxz (, ; ln qz ( ln px ( z; + ln pz ( z; q z ( ln qz ( ln pz ( z; + ln pz ( ; q( z

7 Lnear Regresson Examples Lnear Regresson Observatons at t n fnd y(x tn y( xn + ε n, n,, Sgnal y(x modeled by Lnear Regresson y( xw ; wmφm( x m Observaton model t y ( x ; w + ε, Φ X desgn matrx n n n n t Φw + ε φ φ φ ( φ x φ x Φ (,,, (,, ( m m m p β p Lnear Regresson Gaussan addtve nose ( ε ( ε, I Lelhood of observatons (; tw, β ( t Φw, β I Lnear Regresson: Least Squares (w parameters Graphcal odel Lnear Regresson: arameter Estmaton nmze mean square error E [ ] LS ( w t Φw tn y( xn; w n Soluton w LS ( ΦΦ Φt β t Φw axmum Lelhood Estmaton wl p t w t Φw, I arg max ( ;, β arg max ( β w w

8 Lnear Regresson: roblems wth Least Squares (w parameters axmum Lelhood Lmtatons: observatons parameters to estmate, >> Otherwse ΦΦ Ill condtoned L estmates large varance Assume constrants on the parameters w Bayesan: Use pror dstrbuton p(w Bayesan Lnear Regresson: odel (w Gaussan d dstrbuted Gaussan weght pror p w α wm, α ( ; ( m Why Gaussan? Conugate to lelhood Bayesan Lnear Regresson: Inference osteror gven by Bayes s law p( t w; β p( w; α p( w t; αβ, p( t; αβ, Can be found n closed form p( w t; αβ, ( w μ, Σ μ β ΣΦ t Σ ( βφ Φ+ αi Bayesan Lnear Regresson: arameter Estmaton axmum Lelhood αβ, { β I α ΦΦ t ( β I α ΦΦ t} ( αl, βl argmn p( t; α, β p( t w; β p( w; α dw argmn log αβ, ot straght forward constraned optmzaton because α>, β>. Resort to E algorthm! Bayesan Lnear Regresson: E Algorthm Observatons t, parameters α, β; hdden varables w. Key for the applcaton of E: p(w t explctly nown E step: p(w t; α, β obtaned, nference of hdden varables step: L estmates of parameters Bayesan Lnear Regresson: E algorthm ( t Q ( twαβ ln p( twαβ ( t ( t p( wt ; α, β, ;,, ;, ln p( t w; αβ, p( w; αβ, ( t ( t p( wt ; α, β ( α ( t Φw α α ( w Q ( tw, ; αβ, β ln β t Φw + lnα w ( t β ln β + ln ( tr ( ( t ( t μ tr Σ ( t β ( t ( t Q ( tw, ; αβ, ln β t Φμ + [ Φ Σ Φ] α + ln α + [ ]

9 Lnear Regresson: E algorthm, E step E step: Evaluate p(w t;α (t,β (t (μ (t,σ (t Σ ( β Φ Φ+ α I μ ( t ( t ( t β Σ Φ t ( t ( t ( t Bayesan Lnear Regresson: arameter Estmaton: step step ( t ( t ( t ( α +, β + argmax( αβ, Q ( tw, ; α, β ( t Q, ;, ( ( t [ ( t μ tr Σ ] ( ( t [ ( t t Φμ tr ΦΣ Φ] ( twαβ + α α ( t Q ( tw, ; αβ, + β β ( t α + μ ( t ( t + tr[ Σ ] ( t β + ( t ( t t Φμ + tr[ ΦΣ Φ] Sparse Bayesan Lnear Regresson Lmted model: w d How to select bass functons? Sparse Lnear odel Consder many bass functons Estmatons use only few bass functons Advantages Small varance (good generalzaton Fast Evaluaton of estmaton Sparse Bayesan Lnear Regresson: ror Dstrbuton ew ror: w not dentcally dstrbuted ( w α ( m, m m p w α parameters to estmate, observatons Use Conugate Hyperprors p( α; a, b Gamma( α a, b m p( β; c, d Gamma( β c, d m Sparse Bayesan Lnear Regresson: ror Dstrbuton Graphcal odel: w, α hdden varables, a,b,c,d, parameters Sparse Bayesan Lnear Regresson: ror Dstrbuton rue weght pror s Student s t p( wa ;, b p( w α p( α; a, b dα m m m w, α Gamma α a, b dα ( ( m m m m St( w λν, m

10 Sparse Bayesan Lnear Regresson: osteror: p( t w, β p( w α p( α p( β p( w, α, β t p( t Cannot compute p( t p( t w, β p( w α p( α p( β dwdαdβ Varatonal ean Feld Approxmaton p( w, α, β t q( w, α, β q( w q( α q( β Sparse Bayesan Lnear Regresson: ln q( w ln p( t, w, α, β q α q ( ( β ln pt ( w, β p( w α q α q ( ( β ln pt ( w, β + ln p( w α q( α q ( β β ( t Φw ( tφw α mw m m α q q β ( ( β [ tt tφw + wφφw ] α m m w m w ( β Φ Φ + A w β w Φt+ const w Σ w w Σ μ+ const q( w ( w μσ, Σ β Φ Φ+ A μ β ΣΦ t ( Sparse Bayesan Lnear Regresson: ln q( α ln p( twα,,, β q( w q( β ln p( w α p( α w + a b a w + b q( w ln αm αm m ( lnαm αm m m m m ln m m m α α m m lnαm b mαm const m m a + q( α Gamma( α a, b a a+ / m m m bm b+ wm Sparse Bayesan Lnear Regresson: ln q( β ln p( twα,,, β q( w q( α ln p( t w p( β q( w q( α ln β β t Φw + ( c ln β dβ c + lnβ + d β+ const t Φw c ln β d β q( β Gamma( β c, d c c+ / d d + t Φw Sparse Bayesan Lnear Regresson: Fndng the requred expectatons q( β Gamma( β c, d, β c / d q( α Gamma( α a, b, α a / b m m m m m q w ( w ( w μσ,, m μm + Σmm { } t t t t t Φw t + tr ΦΣΦ + μ Φ Φμ t Φμ Sparse Bayesan Lnear Regresson: arameter Estmaton arameters a,b,c,d? Use fxed values that defne unnformatve prors Estmate parameters n Varatonal step For fxed a,b,c,d terate only between VE step for q(α, q(β and q(w

11 Lnear Regresson Example Lnear Regresson Example orgnal observatons L(SE7.4e- Bayesan(SE4.9e-.5 Sgnal estmate Bass functons. Varatonal(SE3.7e- RVs( Blnd Image Deconvoluton Examples Blnd Image Deconvoluton Unnown: Blur SF h rue Image f g h f + n g Hf + n Fh + n Convoluton Observed Image g Blnd Image Deconvoluton Restored Image Blnd Image Deconvoluton Unnown quanttes (f,h twce than nown (g ropertes that model should mpose: SF: smooth, lmted support Image: smooth, preserve edges ose: robustness Blnd Image Deconvoluton: ose odel Robust nose model Student s t pdf ( n β (, p n β β β p( β Gamma( β a, b pn ( pn ( β p( β dβ Student's t

12 Blnd Image Deconvoluton: SF odel SF: Sparse Lnear model Bass functons are Gaussan ernels hx ( wφ ( x h Φw φ ( x K( x, x Φ, K( x, x Sparseness weght pror α α p( w α ( w, α, p( α Gamma( α; a, b p( w p( w α p( α dα Student's t Blnd Image Deconvoluton: Image odel Drectonal mage dfferences ε ( x, y f( x, y f( x+, y ε ( xy, f( xy, f( xy, + ε γ γ γ ( ( p( γ Gamma ( γ a, b p( f γ f, ( Q ΓQ p( ε, γ ( Jont pdf Blnd Image Deconvoluton: Graphcal odel p( gf,, wαβγ,,, ; p( g f, w, β p( f γ p( w α p( β p( γ p( α Blnd Image Deconvoluton: Varatonal Bound ean feld approxmaton q( fwαβγ,,,, q( f q( w q( α q( β q( γ axmzaton of Varatonal Bound results n: log q( f log p( g, f, w, αβγ,, ; q( w q( α q( β q( γ log q( w log p( g, f, w, αβγ,, ; log q( α log p( gf,, wαβγ,,, ; q( w q( f q( β q( γ log q( β log p( gf,, wαβγ,,, ; q( w q( α q( f q( γ log q( γ log p( gfwαβγ,,,,, ; q ( w q ( α q ( f q ( β q( f q( α q( β q( γ Blnd Image Deconvoluton: Fnd approxmate posteror q(f ean Feld Optmzaton log q( f ( ΦWf g B( ΦWf g f Q ΓQf ( w q( β q( γ q f ( Φ W BWΦ + Q ΓQ f+ f Φ W Bg ( w q( β q( γ q f ( Φ W BW Φ + Q Γ Qf + f Φ W B g Completng Square results n q( f ( f μ f, Σ f μ Σ fφ < WB> g f Σ Φ < WBW> Φ + Q < Γ > Q f ( Blnd Image Deconvoluton: Approxmate posteror q(w Smlar calculatons log q( w ( FΦwg B( FΦwg w Aw q( f q( β q( α w ( Φ FBFΦ+ A w+ w Φ FBg+ const q( w ( w μ, Σ w ( w w w < > μ Σ Φ FB g Σ Φ < FBF> Φ+< A > w

13 Blnd Image Deconvoluton: Approxmate posteror q(α Based on the mean feld approxmaton log q( α log p( w α + log p( α q( w logα α w + ( a α logα b α α q( w ( a log α α ( b w α const α Whch mples α α q( α Gamma( α a, b α α a a + / + < > b α α b w Blnd Image Deconvoluton: Approxmate posterors q(β and q(γ Smlarly we get β β q( β Gamma( β a, b K γ γ q( γ Gamma( γ a, b β β a a + / β β b b + < nn > n FΦwg γ γ a a + / b γ γ b + ( < > ( Q ff Q Blnd Image Deconvoluton: Statstcs of Approxmate osterors Blnd Image Deconvoluton: Statstcs of Approxmate osterors ae dagonal and crculant approxmatons hs results n Blnd Image Deconvoluton: Overall V E Algorthm Fx parameters { a α, b α, a β, b. β a γ, b γ } to yeld unnformatve hyperprors (no Varatonal step. Blnd Image Deconvoluton: Example SF: Square 7x7, 4db nose Iterate between estmates of statstcs of q(f, q(w, q(α, q(β and q(γ (only Varatonal E step.

14 Blnd Image Deconvoluton: Examples true V StStSt Example: Image Restoraton (Constraned * G. Chantas,. Galatsanos, A. Las and. Saunders, "Varatonal Bayesan Image Restoraton * Based on a roduct of Dstrbutons Image ror", IEEE rans. on Image rocessng, to appear. (avalable on lne Image Restoraton Image Restoraton: roblem Defnton Known SF h: ose Observed Degraded Image g Imagng odel ( pxels g h* f + n Hf + n Convoluton * rue Image f + g: ( : Degraded (Observatons h: (,H:( : ont Spread Functon (nown f: ( : Orgnal Image (unnown n~, β I : ose (unnown ( Image Restoraton: f arameter Lelhood of Observatons p( g; f, β ( Hf, β I ( ˆ f H H H g { p ( β } fˆ arg max g; f, arg mn g Hf Graphcal odel f roblematc too many parameters g β Image Restoraton: f arameter Example f SR log n Double crcled observed r.v. SR~8dB SR~dB

15 Image Restoraton: Bayesan Inference (f: hdden r.v., Image Restoraton: Bayesan Inference (f: hdden r.v. Error from Local Lnear redctor fˆ ( f ( ( f( + f( + ε ( Assume Gaussan..d. redcton Errors ( ε ( (, α p ( ε ( ε ( p p Smultaneously Autoregressve (SAR ror Qf ε, Q Operator that descrbes ε ff -ˆ p( f; a α exp α f Q Qf Graphcal odel a f g Double crcled observed rv β Image Restoraton: Bayesan Inference (f: hdden r.v. Image Restoraton: Bayesan Inference (f hdden r.v. Observaton Lelhood (computed analytcally ( β ( β ( p g;, a p g f; p f; a df osteror of Hdden (computed analytcally ( f g;, β ( μf g, Σf g p a Bayesan Inference va E Small α/β Amplfes ose Large α/β Smoothes Edges Image Restoraton: Spatally Varyng Bayesan odel Image Restoraton: Spatally Varyng, Bayesan Inference Spatally Varyng ( ε ( (, Use many ε,, n pror Qf p a α hdden varables Bayesan Inference Conugate pdf p ( α Gamma( a ; αβ, roduct ror p( f a p f a, p f a exp f QAQf ( ( ( Z a ( (, ( ( A dag a a a ror: Enforces many propertes smultaneously

16 Image Restoraton: Spatally Varyng Bayesan Inference Graphcal odel α,,β α,β α,β α α α Image Restoraton: Spatally Varyng, Bayesan Inference Dffculty: Compute normalzaton of pror Z ( a K det QAQ Q,A (Νx, 5-6 f β g Image Restoraton: Spatally Varyng, Bayesan Inference Image Restoraton: Spatallyvaryng, Bayesan Inference Change Observatons Doman QgQHf+Qn, y Hε +n,,..., Hdden Varables: l [ ε, ε ε ], a [ a, a a ] [ ε (, ε ( ε ( ], a [ a (, a ( a ( ] ε ε l l l l l l l β v λ α ε β v λ α ε... β v λ α ε ε κ Q f,,.. y y y Image Restoraton: Spatally Varyng Bayesan Inference ror on ε O dffculty normalzng p( ε a p( ε ( a(, ( ( ε ( (; λ ε (;, λ ( ν ν ( (; ν (;, p a a p a Gamma a Cannot margnalze hdden varables Resort to Varatonal ethodology Image Restoraton: Spatally Varyng, Bayesan Inference osterors ean Feld Approxmaton ( ε a ( ε ( a q, q q,,..., axmze Var. Bound q( ε ( μ, Σ, μ β ΣHg, Σ HH+ QAQ ( β λ ew problem: Dfferent f for each μ

17 Image Restoraton: Constraned Defne Constraned osteror q( ε ( QmQRQ, Consstent wth ( ( ( ( ε Qf, m E f, R E fm fm axmze the Varatonal Bound w.r.t. m and R Image Restoraton: Constraned t+ ( t+ ( t VE-step: q, arg max F q α,, q ( α, [ Rm] ( ( α ( t+ ( t+ ( t+ F q ( α ( ( ( ( ( V-step: arg max,,,, [ β, λ,..., λ, ν,..., ν ] Image Restoraton: Constraned VE Step Fq (, q( ε; q( a log p( y, ε, a ; dd ε a q( ε; q( a log q( ε; q( a dε da, F F ( F ( q( ε; q( a log p( y ε; p( ε a; dεda q( ε; log q( ε; dε. Image Restoraton: Constraned q( ε ; q( a log p( y ε; p( ε a; dεda - β( Hε -y Q Q ( Hε -y λε Aε q( ε ; q ( a β λ trace β + λ q ( ε; log q ( ε; d ε logdet R Image Restoraton: Constraned ˆ trace β + λ logdet F HHR ( QAQR R R R ˆ β λ ˆ HH+ QAQ R R βhh+ λqaq F ( m βrh g m Image Restoraton: Constraned q( a exp log p( y, ε, a q( ε ν + ν ( ( a exp a( λ( ( m ( + C (, a( ( ν ν ( ( (;, ( ( q a Gamma a + + λ m + C (, m Q m, and C Q RQ

18 Image Restoraton: Constraned V step ( t+ ( t+ df ( q ( a, log (,, ; ( (, d p y ε a t+ t+ q( ε ;, q ( a d d β ( Hm - g trace{ H HR } + t t t ( + ( + ( + ( ( (, a ( ( t m + C q ( a ( ( t λ + ( t ( t + ( t ( log a ( a ( ( t ( ψ ν + + ( t ( + + q q a a ( t ν ν log ν + ψ + log + d ψ ( x log Γ( x dx Image Restoraton: Constraned. Intalze, m statonary model.. Repeat untl convergence: VE step: Update, m and R, calculate m and C. Calculate expected value w.r.t. q(a (, needed for V step and the next VE step. V step: Update β, λ κ, ν κ,, Use m as restored mage estmate. Image Restoraton: Constraned Example: Image Restoraton (Bounded * Babacan, S.D.; olna, R.; Katsaggelos, A.K.; arameter Estmaton n V Image Restoraton * Usng Varatonal Dstrbuton Approxmaton, IEEE rans. on Image rocessng, Volume 7, Issue 3, arch 8 age(s: Image Restoraton: Bounded Imagng odel ( pxels g h* f + n Hf + n Observatons Lelhood ( β p( g/ f; β~ Hf, I Image Restoraton: Bounded V Based Image ror p( f a α exp( αv( f V( f ([ Qf] + ([ Qf], [ ] [ ] Qf f(, f(,, Qf f(, f(, Conugate Hyperpror p ( α; ab, Gamma( α; ab,

19 Image Restoraton: Bounded Graphcal odel a, b α f Image Restoraton: Bounded Dffculty n VE step log q( α log p( gf,, α; β, a, b q( f β Hf g α, ([ Qf] + ([ Qf] Due to q( f cannot Compute Expectaton β g Image Restoraton: Bounded Bypass dffculty: axmze a Lower Bound of Varatonal Bound w+ u Use Upper Bound: f( w w g( u, w, u> u Image Restoraton: Bounded Defne Functon w ([ ] ([ ] u + + p( f α ( f, α, u α exp a Qf Qf u p( gf,, α ; p( g/ f ( f, α, u p( α ( gfu,,, α ; Bound gets tght : f ( w g( u, w, u w Lower Bound of Varatonal Bound F( q q, ln d d F ( q, ( gfu,,, α ; b, ( f α f α, u q ( f, α Image Restoraton: Bounded VE Step q (, f q ( α argmax F (( q f, q( α, u, ( t+ ( t+ b ( t ( t q( f, q( α V Step Bound ghtenng u ( t+ b ( t+ ( t+ ( t arg max F ( q ( f, q ( α, u, u ( t b ( t ( t ( t + arg max F ( q + (, q + ( α, +, f u Image Restoraton: Bounded ghtest Bound f( w g( u, w, u w ([ ] ([ ] ( t+ + ( t+ q ( f ( t+ ( t+ ( t+ ( t+ Qμ + Qμ + QΣ Q + QΣ Q ( t+ ( t+ ( t+ u Qf Q f,, wth q ( f f; μ, Σ ( u Captures Local Spatal Actvty

20 Gaussan xture odels Example: Gaussan xture odels.4 p( x; π ( x; μ, Σ.35.3 odel any pdf.5. Soft clusterng.5. arameters.5 { π, μ, Σ},, axmum Lelhood Estmaton Dffcult arg max log π ( x; μ, Σ L Gaussan xture odels: Data Generaton echansm Introduce bnary hdden varable z. Select component z, z (,,,,,, z z p ( z; π π multnomal. Generate sample from selected component x p ( x ( x; μ, Σ Gaussan xture odels: Data Generaton echansm Jont pdf p( xz, ; p( x z p( z ( x; μ, Σ argnal pdf p( x p ; ( xz, ; z ( π z z π ( ;, x μ Σ Gaussan xture odels: osteror osteror (responsblty can be computed analytcally p( x z p( z π ( x μ, Σ z ( x ( ( p( z x; p x π l l x μ l, Σl π (, π ( l l x μ l, Σl x μ Σ z Gaussan xture odels: arameter Estmaton axmum lelhood L argmax log p( X; arg max log π ( x; μ, Σ Use E Smplfes optmzaton roved convergence Satsfes postvty constrants π >, π

21 Gaussan xture odels: arameter Estmaton E z z n p( XZ, ; ( xn; μ, Σ ( π n ( t Q(, log p( XZ, ; ( t p( zx ; ( t ( t zn π + zn xn; μ, Σ n n log log ( n Gaussan xture odels: arameter Estmaton E E step z z n ( t ( t ( t ( t ( t ( t π ( ( ( xn; μ, Σ π x t n; μ, Σ n ( t ( t ( t ( t ( t ( t z n π xn; μ, Σ π x n; μ, Σ step ( ( ( t ( t π + z n n μ ( t z ( t+ n n ( t z n n x n Σ z ( xn μ ( xn μ ( ( ( n n t ( + z ( t n n Gaussan xture odels: Lmtatons How many components? Ill condtoned covarance matrces 6 Varatonal Bayesan Gaussan xture odels 4 4 H. Attas, "A Varatonal Bayesan Framewor for Graphcal odels", roc. IS, pp. 9 6, I ress, Varatonal Bayesan Gaussan xture odels: ror Dstrbuton reat parameters as hdden varables h { Z, πμ,, } Introduce conugate prors p ( π α Dr( π,, Γ( α α α α π Γ( α Varatonal Bayesan Gaussan xture odels: ean Feld Approxmaton Exact Bayesan Inference Intractable Varatonal ean Feld Approxmaton q( h qz( Z qπ( π qμ( μ, q ( μ, q ( μ q ( μ μ p( μ ( μ ; μ, β ( ν d / ν, ν, d ν d/ / n/ d( d 4 p( V W( V exptr V π V Γ (( ν + /

22 Varatonal Bayesan Gaussan xture odels: Approxmate osterors Varatonal Bayesan Gaussan xture odels: Approxmate osterors Z n z n q ( Z r n d log rn logπ + log ( yn μ ( y n μ β β ( β / ( β q ( μ ( μ ; m, μ m μ + μ + β + β μ z nyn n q ( π Dr( π { λ } π λ + α z n n q ( W( ; η, U η + ν ( ( / ( β U Σ + β μ μ μ μ + + n( n ( n n Σ z y μ y μ Varatonal Bayesan Gaussan xture odels: Dscusson Select arameters that defne unnformatve prors (e.g. α / Advantages Dsallow sngular covarance matrce Bayesan model selecton Drchlet dstrbuton for mxng coeffcents π dsallows prunng of unnecessary components Varatonal Bayesan Gaussan xture odels: Removng the pror from the mxng weghts A. Corduneanu and C. Bshop, Varatonal Bayesan odel Selecton for xture Dstrbutons, roc. AI and Statstcs Conference, January Varatonal Bayesan G: Removng the pror from the mxng weghts reat π as parameter Include step to update π r n n π r n n r n rn r n r π exp log tr x x x μ + μ x + μμ n n n n n Advantage Elmnates rrelevant components Varatonal Bayesan G: Example

23 Incremental Varatonal Bayesan Gaussan xture odels Incremental Varatonal Bayesan Gaussan xture odels Solutons depend on: maxmum ntal number of components ntalzaton of component parameters specfcaton of the scale matrx V of p( Wshart(v, V Constantnopoulos C. and Las, A., "Unsupervsed Learnng of Gaussan xtures Based on Varatonal Component Splttng", IEEE rans. on eural etwors, vol. 8, no. 3, pp , 7. Incremental Varatonal Bayesan Gaussan xture odels Dvde components as fxed and free Restrct competton among free components only α + s s ( Γ α s π + p( π π π s Γ( α s s + π + s μ X Z π ~ Js π s Incremental Varatonal Bayesan Gaussan xture odels We start by tranng a G wth two components At each step: Select a component Set, V dλi, where λ the max egenvalue of Splt the component n two subcomponents Apply VB learnng consderng the two components as free Incremental Varatonal Bayesan Gaussan xture odels If the data n the regon of component suggest the exstence of more than two components then the two components wll be retaned Otherwse one of the two components wll be removed from the model Incremental Varatonal Bayesan Gaussan xture odels

24 Conclusons Varatonal Approxmaton ros:. Very Flexble ool. ce heoretcal ropertes 3. Gves ractable Algorthms 4. Appled to any roblems * Varatonal Approxmaton Cons:. ghtness of Bound. Sometmes Dffcult Calculatons

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8. 8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Generalized Linear Model [GLM]

Generalized Linear Model [GLM] Generalzed Lnear Model [GLM]. ก. ก Emal: nkom@kku.ac.th A Lttle Hstory Multple lnear regresson normal dstrbuton & dentty lnk (Legendre, Guass: early 19th century). ANOVA normal dstrbuton & dentty lnk (Fsher:

Διαβάστε περισσότερα

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty

Διαβάστε περισσότερα

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [, 4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,

Διαβάστε περισσότερα

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton

Διαβάστε περισσότερα

1 Complete Set of Grassmann States

1 Complete Set of Grassmann States Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ

Διαβάστε περισσότερα

Appendix. Appendix I. Details used in M-step of Section 4. and expect ultimately it will close to zero. αi =α (r 1) [δq(α i ; α (r 1)

Appendix. Appendix I. Details used in M-step of Section 4. and expect ultimately it will close to zero. αi =α (r 1) [δq(α i ; α (r 1) Appendx Appendx I. Detals used n M-step of Secton 4. Now wrte h (r) and expect ultmately t wll close to zero. and h (r) = [δq(α ; α (r) )/δα ] α =α (r 1) = [δq(α ; α (r) )/δα ] α =α (r 1) δ log L(α (r

Διαβάστε περισσότερα

Derivation for Input of Factor Graph Representation

Derivation for Input of Factor Graph Representation Dervaton for Input of actor Graph Representaton Sum-Product Prmal Based on the orgnal LP formulaton b x θ x + b θ,x, s.t., b, b,, N, x \ b x = b we defne V as the node set allocated to the th core. { V

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford

Διαβάστε περισσότερα

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm

Supplementary materials for Statistical Estimation and Testing via the Sorted l 1 Norm Sulementary materals for Statstcal Estmaton and Testng va the Sorted l Norm Małgorzata Bogdan * Ewout van den Berg Weje Su Emmanuel J. Candès October 03 Abstract In ths note we gve a roof showng that even

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές 8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ ICA: συναρτήσεις κόστους & εφαρμογές ΚΎΡΤΩΣΗ (KUROSIS) Αθροιστικό (cumulant) 4 ης τάξεως μίας τ.μ. x με μέσο όρο 0: kurt 4 [ x] = E[ x ] 3( E[ y ]) Υποθέτουμε διασπορά=: kurt[ x]

Διαβάστε περισσότερα

LECTURE 4 : ARMA PROCESSES

LECTURE 4 : ARMA PROCESSES LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα, ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 2: Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα

ΕΝΟΤΗΤΑ 2: Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα Ε.Μ.Π., ΣΗΜΜΥ, Ακαδημαϊκό Έτος 200-, 8ο Εξάμηνο Μάθημα: Ρομποτική ΙΙ. Διδάσκων: Κ.Τζαφέστας ΕΝΟΤΗΤΑ 2: Αυτόνομα Ευφυή Κινούμενα Ρομποτικά Συστήματα Σύνθεση αισθητηριακών πληροφοριών (data / sensor fuson)

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

2 Lagrangian and Green functions in d dimensions

2 Lagrangian and Green functions in d dimensions Renormalzaton of φ scalar feld theory December 6 Pdf fle generated on February 7, 8. TODO Examne ε n the two-pont functon cf Sterman. Lagrangan and Green functons n d dmensons In these notes, we ll use

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Exam Statistics 6 th September 2017 Solution

Exam Statistics 6 th September 2017 Solution Exam Statstcs 6 th September 17 Soluto Maura Mezzett Exercse 1 Let (X 1,..., X be a raom sample of... raom varables. Let f θ (x be the esty fucto. Let ˆθ be the MLE of θ, θ be the true parameter, L(θ be

Διαβάστε περισσότερα

ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΕΠΙΔΡΑΣΗ Μ.Β ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΠΟΛΥΜΕΡΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΜΟΡΙΑΚΟΥ ΒΑΡΟΥΣ ΣΥΝΑΡΤΗΣΗ ΠΙΘΑΝΟΤΗΤΟΣ (ΔΙΑΦΟΡΙΚΗ) Probablty Densty Functon

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Estimators when the Correlation Coefficient. is Negative

Estimators when the Correlation Coefficient. is Negative It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of

Διαβάστε περισσότερα

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution Journal of Statstcal Theory and Applcatons, Vol. 4, No. 3 September 5, 4-56 Concomtants of Dual Generalzed Order Statstcs from Bvarate Burr III Dstrbuton Haseeb Athar, Nayabuddn and Zuber Akhter Department

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment 1 2 2 GPS (SOM) Proposal of Termnal Self Locaton Estmaton Method to Consder Wreless Sensor Network Envronment Shohe OHNO, 1 Naotosh ADACHI 2 and Yasuhsa TAKIZAWA 2 Recently, large scale wreless sensor

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA, Bayes, Bayes mult-armed bandt problem Bayes A Sequental Expermental Desgn based on Bayesan Statstcs for Onlne Automatc Tunng Re SUDA, Ths paper proposes to use Bayesan statstcs for software automatc tunng

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =

Διαβάστε περισσότερα

V. Finite Element Method. 5.1 Introduction to Finite Element Method

V. Finite Element Method. 5.1 Introduction to Finite Element Method V. Fnte Element Method 5. Introducton to Fnte Element Method 5. Introducton to FEM Rtz method to dfferental equaton Problem defnton k Boundary value problem Prob. Eact : d d, 0 0 0, 0 ( ) ( ) 4 C C * 4

Διαβάστε περισσότερα

Suppose Mr. Bump observes the selling price and sales volume of milk gallons for 10 randomly selected weeks as follows

Suppose Mr. Bump observes the selling price and sales volume of milk gallons for 10 randomly selected weeks as follows Albert Ludwgs Unverst Freburg Department of Emprcal Research and Econometrcs Appled Econometrcs Dr Kestel ummer 9 EXAMPLE IMPLE LINEAR REGREION ANALYI uppose Mr Bump observes the sellng prce and sales

Διαβάστε περισσότερα

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ). Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

8.323 Relativistic Quantum Field Theory I

8.323 Relativistic Quantum Field Theory I MIT OpenCourseWare http://ocwmtedu 8323 Relatvstc Quantum Feld Theory I Sprng 2008 For nformaton about ctng these materals or our Terms of Use, vst: http://ocwmtedu/terms 1 The Lagrangan: 8323 Lecture

Διαβάστε περισσότερα

ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΕΠΙ ΡΑΣΗ Μ.Β ΣΤΙΣ Ι ΙΟΤΗΤΕΣ ΠΟΛΥΜΕΡΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΜΟΡΙΑΚΟΥ ΒΑΡΟΥΣ ΣΥΝΑΡΤΗΣΗ ΠΙΘΑΝΟΤΗΤΟΣ ( ΙΑΦΟΡΙΚΗ) Probablty Densty Functon

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University A Study on Predctve Control Usng a Short-Term Predcton Method Based on Chaos Theory (Predctve Control of Nonlnear Systems Usng Plural Predcted Dsturbance Values) Noryasu MASUMOTO, Waseda Unversty, 3-4-1

Διαβάστε περισσότερα

CMOS Technology for Computer Architects

CMOS Technology for Computer Architects CMOS Technology for Computer Architects Iakovos Mavroidis Giorgos Passas Manolis Katevenis Lecture 13: On chip SRAM Technology FORTH ICS / EURECCA & UoC GREECE ABC A A E F A BCDAECF A AB C DE ABCDAECF

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

Conjugate Bayesian analysis of the Gaussian distribution

Conjugate Bayesian analysis of the Gaussian distribution Conjugate Bayesan analyss of the Gaussan dstrbuton Kevn P. Murphy murphyk@cs.ubc.ca Last updated October 3, 7 Introducton The Gaussan or normal dstrbuton s one of the most wdely used n statstcs. Estmatng

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

The ε-pseudospectrum of a Matrix

The ε-pseudospectrum of a Matrix The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey THE SECOND WEIGHTED MOMENT OF ζ by S. Bettn & J.B. Conrey Abstract. We gve an explct formula for the second weghted moment of ζs) on the crtcal lne talored for fast computatons wth any desred accuracy.

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Stochastic Finite Element Analysis for Composite Pressure Vessel

Stochastic Finite Element Analysis for Composite Pressure Vessel * ** ** Stochastc Fnte Element Analyss for Composte Pressure Vessel Tae Kyung Hwang Young Dae Doh and Soon Il Moon Key Words : Relablty Progressve Falure Pressure Vessel Webull Functon Abstract ABAQUS

Διαβάστε περισσότερα

Bayesian random effects model for disease mapping of relative risks

Bayesian random effects model for disease mapping of relative risks Avalable onlne at www.scholarsresearchlbrary.com Scholars Research Lbrary Annals of Bologcal Research, 014, 5 (1):3-31 (http://scholarsresearchlbrary.com/archve.html) ISS 0976-133 CODE (USA): ABRBW Bayesan

Διαβάστε περισσότερα

Durbin-Levinson recursive method

Durbin-Levinson recursive method Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Latent variable models Variational approximations.

Latent variable models Variational approximations. CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :

Διαβάστε περισσότερα

Power allocation under per-antenna power constraints in multiuser MIMO systems

Power allocation under per-antenna power constraints in multiuser MIMO systems 33 0 Vol.33 No. 0 0 0 Journal on Councatons October 0 do:0.3969/.ssn.000-436x.0.0.009 IO 009 IO IO N94 A 000-436X(0)0-007-06 Power allocaton under er-antenna ower constrants n ultuser IO systes HAN Sheng-qan,

Διαβάστε περισσότερα

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03).. Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα