Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε"

Transcript

1 ΓΑΤΕ 2016 Γενεραλ Απτιτυδε ΓΑ Σετ 8 Q. 1 Q. 5 carry one mark each. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε Θ.2 Ιδεντιφψ τηε χορρεχτ σπελλινγ ουτ οφ τηε γιϖεν οπτιονσ: (Α) Μαναγαβλε (Β) Μαναγεαβλε (Χ) Μανγαεβλε (D) Μαναγιβλε Θ.3 Πιχκ τηε οδδ ονε ουτ ιν τηε φολλοωινγ: 13, 23, 33, 43, 53 (Α) 23 (Β) 33 (Χ) 43 (D) 53 Θ.4 Ρ2D2 ισ α ροβοτ. Ρ2D2 χαν ρεπαιρ αεροπλανεσ. Νο οτηερ ροβοτ χαν ρεπαιρ αεροπλανεσ. Wηιχη οφ τηε φολλοωινγ χαν βε λογιχαλλψ ινφερρεδ φροm τηε αβοϖε στατεmεντσ? (Α) Ρ2D2 ισ α ροβοτ ωηιχη χαν ονλψ ρεπαιρ αεροπλανεσ. (Β) Ρ2D2 ισ τηε ονλψ ροβοτ ωηιχη χαν ρεπαιρ αεροπλανεσ. (Χ) Ρ2D2 ισ α ροβοτ ωηιχη χαν ρεπαιρ ονλψ αεροπλανεσ. (D) Ονλψ Ρ2D2 ισ α ροβοτ. Θ.5 Ιφ 9ψ 6 =3, τηεν ψ 2 4ψ/3 ισ. (Α) 0 (Β) +1/3 (Χ) 1/3 (D) υνδεφινεδ 1/3

2 ΓΑΤΕ 2016 Q. 6 Q. 10 carry two marks each. Γενεραλ Απτιτυδε ΓΑ Σετ 8 Θ.6 Τηε φολλοωινγ γραπη ρεπρεσεντσ τηε ινσταλλεδ χαπαχιτψ φορ χεmεντ προδυχτιον (ιν τοννεσ) ανδ τηε αχτυαλ προδυχτιον (ιν τοννεσ) οφ νινε χεmεντ πλαντσ οφ α χεmεντ χοmπανψ. Χαπαχιτψ υτιλιζατιον οφ α πλαντ ισ δεφινεδ ασ ρατιο οφ αχτυαλ προδυχτιον οφ χεmεντ το ινσταλλεδ χαπαχιτψ. Α πλαντ ωιτη ινσταλλεδ χαπαχιτψ οφ ατ λεαστ 200 τοννεσ ισ χαλλεδ α λαργε πλαντ ανδ α πλαντ ωιτη λεσσερ χαπαχιτψ ισ χαλλεδ α σmαλλ πλαντ. Τηε διφφερενχε βετωεεν τοταλ προδυχτιον οφ λαργε πλαντσ ανδ σmαλλ πλαντσ, ιν τοννεσ ισ. Θ.7 Α πολλ οφ στυδεντσ αππεαρινγ φορ mαστερσ ιν ενγινεερινγ ινδιχατεδ τηατ 60 % οφ τηε στυδεντσ βελιεϖεδ τηατ mεχηανιχαλ ενγινεερινγ ισ α προφεσσιον υνσυιταβλε φορ ωοmεν. Α ρεσεαρχη στυδψ ον ωοmεν ωιτη mαστερσ ορ ηιγηερ δεγρεεσ ιν mεχηανιχαλ ενγινεερινγ φουνδ τηατ 99 % οφ συχη ωοmεν ωερε συχχεσσφυλ ιν τηειρ προφεσσιονσ. Wηιχη οφ τηε φολλοωινγ χαν βε λογιχαλλψ ινφερρεδ φροm τηε αβοϖε παραγραπη? (Α) Μανψ στυδεντσ ηαϖε mισχονχεπτιονσ ρεγαρδινγ ϖαριουσ ενγινεερινγ δισχιπλινεσ. (Β) Μεν ωιτη αδϖανχεδ δεγρεεσ ιν mεχηανιχαλ ενγινεερινγ βελιεϖε ωοmεν αρε ωελλ συιτεδ το βε mεχηανιχαλ ενγινεερσ. (Χ) Μεχηανιχαλ ενγινεερινγ ισ α προφεσσιον ωελλ συιτεδ φορ ωοmεν ωιτη mαστερσ ορ ηιγηερ δεγρεεσ ιν mεχηανιχαλ ενγινεερινγ. (D) Τηε νυmβερ οφ ωοmεν πυρσυινγ ηιγηερ δεγρεεσ ιν mεχηανιχαλ ενγινεερινγ ισ σmαλλ. 2/3

3 ΓΑΤΕ 2016 Γενεραλ Απτιτυδε ΓΑ Σετ 8 Θ.8 Σουρψα χοmmιττεε ηαδ προποσεδ τηε εσταβλισηmεντ οφ Σουρψα Ινστιτυτεσ οφ Τεχηνολογψ (ΣΙΤσ) ιν λινε ωιτη Ινδιαν Ινστιτυτεσ οφ Τεχηνολογψ (ΙΙΤσ) το χατερ το τηε τεχηνολογιχαλ ανδ ινδυστριαλ νεεδσ οφ α δεϖελοπινγ χουντρψ. Wηιχη οφ τηε φολλοωινγ χαν βε λογιχαλλψ ινφερρεδ φροm τηε αβοϖε σεντενχε? Βασεδ ον τηε προποσαλ, (ι) Ιν τηε ινιτιαλ ψεαρσ, ΣΙΤ στυδεντσ ωιλλ γετ δεγρεεσ φροm ΙΙΤ. (ιι) ΣΙΤσ ωιλλ ηαϖε α διστινχτ νατιοναλ οβϕεχτιϖε. (ιιι) ΣΙΤ λικε ινστιτυτιονσ χαν ονλψ βε εσταβλισηεδ ιν χονσυλτατιον ωιτη ΙΙΤ. (ιϖ) ΣΙΤσ ωιλλ σερϖε τεχηνολογιχαλ νεεδσ οφ α δεϖελοπινγ χουντρψ. (Α) (ιιι) ανδ (ιϖ) ονλψ. (Χ) (ιι) ανδ (ιϖ) ονλψ. (Β) (ι) ανδ (ιϖ) ονλψ. (D) (ιι) ανδ (ιιι) ονλψ. Θ.9 Σηαθυιλλε Ο Νεαλ ισ α 60% χαρεερ φρεε τηροω σηοοτερ, mεανινγ τηατ ηε συχχεσσφυλλψ mακεσ 60 φρεε τηροωσ ουτ οφ 100 αττεmπτσ ον αϖεραγε. Wηατ ισ τηε προβαβιλιτψ τηατ ηε ωιλλ συχχεσσφυλλψ mακε εξαχτλψ 6 φρεε τηροωσ ιν 10 αττεmπτσ? (Α) (Β) (Χ) (D) Θ.10 Τηε νυmεραλ ιν τηε υνιτσ ποσιτιον οφ ισ. END OF THE QUESTION PAPER 3/3

4 Q. 1 Q. 25 carry one mark each. Q.1 The output expression for the Karnaugh map shown below is (A) + (B) + (C) + (D) + Q.2 The circuit shown below is an example of a (A) low pass filter. (C) high pass filter. (B) band pass filter. (D) notch filter. Q.3 The following figure shows the connection of an ideal transformer with primary to secondary turns ratio of 1:100. The applied primary voltage is 100 V (rms), 50 Hz, AC. The rms value of the current I, in ampere, is. Q.4 Consider a causal LTI system characterized by differential equation () + () = 3(). The response of the system to the input () = 3 (), where u(t) denotes the unit step function, is (A) 9 (). (C) 9 () 6 (). (B) 9 (). (D) 54 () 54 (). EE 1/12

5 Q.5 Suppose the maximum frequency in a band-limited signal () is 5 khz. Then, the maximum frequency in () cos(2000), in khz, is. Q.6 Consider the function () = + where is a complex variable and denotes its complex conjugate. Which one of the following is TRUE? (A) () is both continuous and analytic (B) () is continuous but not analytic (C) () is not continuous but is analytic (D) () is neither continuous nor analytic Q.7 A 3 3 matrix is such that, =. Then the eigenvalues of are (A) 1,1,1 (B) 1, , (C) 1, , (D) 0,1,1 Q.8 The solution of the differential equation, for > 0, () + 2 () + () = 0 with initial conditions (0) = 0 and (0) = 1, is (u(t) denotes the unit step function), (A) () (C) ( + )() Q.9 The value of the line integral (B) ( )() (D) () ( ) along a path joining the origin (0, 0, 0) and the point (1, 1, 1) is (A) 0 (B) 2 (C) 4 (D) 6 Q.10 Let f(x) be a real, periodic function satisfying () = (). The general form of its Fourier series representation would be (A) () = + (B) () = (C) () = + (D) () = sin () cos () cos() sin (2 + 1) EE 2/12

6 Q.11 A resistance and a coil are connected in series and supplied from a single phase, 100 V, 50 Hz ac source as shown in the figure below. The rms values of plausible voltages across the resistance (V R ) and coil (V C ) respectively, in volts, are (A) 65, 35 (B) 50, 50 (C) 60, 90 (D) 60, 80 Q.12 The voltage (V) and current (A) across a load are as follows. () = 100 sin(), () = 10 sin( 60 ) + 2 sin(3) + 5 sin(5). The average power consumed by the load, in W, is. Q.13 A power system with two generators is shown in the figure below. The system (generators, buses and transmission lines) is protected by six overcurrent relays R 1 to R 6. Assuming a mix of directional and nondirectional relays at appropriate locations, the remote backup relays for R 4 are (A) R 1, R 2 (B) R 2, R 6 (C) R 2, R 5 (D) R 1, R 6 Q.14 A power system has 100 buses including 10 generator buses. For the load flow analysis using Newton-Raphson method in polar coordinates, the size of the Jacobian is (A) 189 x 189 (B) 100 x 100 (C) 90 x 90 (D) 180 x 180 Q.15 The inductance and capacitance of a 400 kv, three-phase, 50 Hz lossless transmission line are 1.6 mh/km/phase and 10 nf/km/phase respectively. The sending end voltage is maintained at 400 kv. To maintain a voltage of 400 kv at the receiving end, when the line is delivering 300 MW load, the shunt compensation required is (A) capacitive (B) inductive (C) resistive (D) zero EE 3/12

7 Q.16 A parallel plate capacitor filled with two dielectrics is shown in the figure below. If the electric field in the region A is 4 kv/cm, the electric field in the region B, in kv/cm, is (A) 1 (B) 2 (C) 4 (D) 16 Q.17 A 50 MVA, 10 kv, 50 Hz, star-connected, unloaded three-phase alternator has a synchronous reactance of 1 p.u. and a sub-transient reactance of 0.2 p.u. If a 3-phase short circuit occurs close to the generator terminals, the ratio of initial and final values of the sinusoidal component of the short circuit current is. Q.18 Consider a linear time-invariant system with transfer function () = 1 ( + 1) If the input is cos() and the steady state output is cos( + ), then the value of is. Q.19 A three-phase diode bridge rectifier is feeding a constant DC current of 100 A to a highly inductive load. If three-phase, 415 V, 50 Hz AC source is supplying to this bridge rectifier then the rms value of the current in each diode, in ampere, is. Q.20 A buck-boost DC-DC converter, shown in the figure below, is used to convert 24 V battery voltage to 36 V DC voltage to feed a load of 72 W. It is operated at 20 khz with an inductor of 2 mh and output capacitor of 1000 µf. All devices are considered to be ideal. The peak voltage across the solid-state switch (S), in volt, is. EE 4/12

8 Q.21 For the network shown in the figure below, the frequency (in rad/s) at which the maximum phase lag occurs is,. 9 vin 1 1F vo Q.22 The direction of rotation of a single-phase capacitor run induction motor is reversed by (A) interchanging the terminals of the AC supply. (B) interchanging the terminals of the capacitor. (C) interchanging the terminals of the auxiliary winding. (D) interchanging the terminals of both the windings. Q.23 In the circuit shown below, the voltage and current sources are ideal. The voltage (V out ) across the current source, in volts, is (A) 0 (B) 5 (C) 10 (D) 20 Q.24 The graph associated with an electrical network has 7 branches and 5 nodes. The number of independent KCL equations and the number of independent KVL equations, respectively, are (A) 2 and 5 (B) 5 and 2 (C) 3 and 4 (D) 4 and 3 Q.25 Two electrodes, whose cross-sectional view is shown in the figure below, are at the same potential. The maximum electric field will be at the point (A) A (B) B (C) C (D) D EE 5/12

9 Q. 26 Q. 55 carry two marks each. Q.26 The Boolean expression ( + ) simplifies to (A) 1 (B). (C). (D) 0 Q.27 For the circuit shown below, taking the opamp as ideal, the output voltage V out in terms of the input voltages V 1, V 2 and V 3 is (A)1.8V V 2 -V 3 (B) 2V 1 + 8V 2-9V 3 (C) 7.2V V 2 -V 3 (D) 8V 1 + 2V 2-9V 3 Q.28 Let () () and () () be two signals whose Fourier Transforms are as shown in the figure below. In the figure, () = denotes the impulse response. For the system shown above, the minimum sampling rate required to sample y(t), so that y(t) can be uniquely reconstructed from its samples, is (A) 2B 1 (B) 2(B 1 +B 2 ) (C) 4(B 1 +B 2 ) (D) Q.29 The value of the integral 2 is equal to (A) 0 (B) 0.5 (C) 1 (D) 2 EE 6/12

10 Q = 0 with initial Let () be the solution of the differential equation 4 conditions (0) = 0 and = 1. Then the value of (1) is. Q.31 The line integral of the vector field = 5 + (3 + 2) + along a path from (0,0,0) to (1,1,1) parametrized by (,,) is. Q.32 Let = Consider the set of all vectors such that + = 1 where =. Then is (A) a circle of radius 10 (B) a circle of radius (C) an ellipse with major axis along 1 1 (D) an ellipse with minor axis along 1 1 Q.33 Let the probability density function of a random variable,, be given as: Q.34 () = 3 2 () + () where () is the unit step function. Then the value of 'a' and { 0}, respectively, are (A) 2, (B) 4, (C) 2, (D) 4, The driving point input impedance seen from the source V s of the circuit shown below, in Ω, is. EE 7/12

11 Q.35 The z-parameters of the two port network shown in the figure are z 11 40, z12 60, z 80 and z The average power delivered to R 20, in watts, is L 20V 10 I1 I 2 V 1 Z V 2 R L Q.36 In the balanced 3-phase, 50 Hz, circuit shown below, the value of inductance (L) is 10 mh. The value of the capacitance (C) for which all the line currents are zero, in millifarads, is. Q.37 In the circuit shown below, the initial capacitor voltage is 4 V. Switch S 1 is closed at = 0. The charge (in µc) lost by the capacitor from = 25 to = 100 is. 4V 5F L S 1 C C C L 5 L EE 8/12

12 Q.38 The single line diagram of a balanced power system is shown in the figure. The voltage magnitude at the generator internal bus is constant and 1.0 p.u. The p.u. reactances of different components in the system are also shown in the figure. The infinite bus voltage magnitude is 1.0 p.u. A three phase fault occurs at the middle of line 2. The ratio of the maximum real power that can be transferred during the pre-fault condition to the maximum real power that can be transferred under the faulted condition is. Q.39 The open loop transfer function of a unity feedback control system is given by The closed loop system will be stable if, (A) 0 < < () (C) 0 < < ( + 1) () =, > 0, > 0. (1 + )(1 + 2) (B) 0 < < () (D) 0 < < () Q.40 At no load condition, a 3-phase, 50 Hz, lossless power transmission line has sending-end and receiving-end voltages of 400 kv and 420 kv respectively. Assuming the velocity of traveling wave to be the velocity of light, the length of the line, in km, is. Q.41 The power consumption of an industry is 500 kva, at 0.8 p.f. lagging. A synchronous motor is added to raise the power factor of the industry to unity. If the power intake of the motor is 100 kw, the p.f. of the motor is Q.42 The flux linkage (λ) and current (i) relation for an electromagnetic system is = ()/. When i = 2A and (air-gap length) = 10 cm, the magnitude of mechanical force on the moving part, in N, is. EE 9/12

13 Q.43 The starting line current of a 415 V, 3-phase, delta connected induction motor is 120 A, when the rated voltage is applied to its stator winding. The starting line current at a reduced voltage of 110 V, in ampere, is. Q.44 A single-phase, 2 kva, 100/200 V transformer is reconnected as an auto-transformer such that its kva rating is maximum. The new rating, in kva, is. Q.45 A full-bridge converter supplying an RLE load is shown in figure. The firing angle of the bridge converter is 120º. The supply voltage () = 200 sin (100) V, R=20 Ω, E=800 V. The inductor L is large enough to make the output current I L a smooth dc current. Switches are lossless. The real power fed back to the source, in kw, is. Load v m T1 T4 T3 T2 Bridge Q.46 A three-phase Voltage Source Inverter (VSI) as shown in the figure is feeding a delta connected resistive load of 30 Ω/phase. If it is fed from a 600 V battery, with 180 o conduction of solid-state devices, the power consumed by the load, in kw, is. I L - + L R=20 E=800V EE 10/12

14 Q.47 A DC-DC boost converter, as shown in the figure below, is used to boost 360V to 400 V, at a power of 4 kw. All devices are ideal. Considering continuous inductor current, the rms current in the solid state switch (S), in ampere, is. Q.48 A single-phase bi-directional voltage source converter (VSC) is shown in the figure below. All devices are ideal. It is used to charge a battery at 400 V with power of 5 kw from a source V s = 220 V (rms), 50 Hz sinusoidal AC mains at unity p.f. If its AC side interfacing inductor is 5 mh and the switches are operated at 20 khz, then the phase shift (δ) between AC mains voltage (V s ) and fundamental AC rms VSC voltage (V C1 ), in degree, is. Q.49 Consider a linear time invariant system =, with initial condition (0) at = 0. Suppose and are eigenvectors of (2 x 2) matrix A corresponding to distinct eigenvalues and respectively. Then the response () of the system due to initial condition (0) = is (A) (B) (C) (D) + Q.50 A second-order real system has the following properties: a) the damping ratio = 0.5 and undamped natural frequency =10 rad/s, b) the steady state value of the output, to a unit step input, is The transfer function of the system is (A) (C). (B) (D) EE 11/12

15 Q.51 Three single-phase transformers are connected to form a delta-star three-phase transformer of 110 kv/ 11 kv. The transformer supplies at 11 kv a load of 8 MW at 0.8 p.f. lagging to a nearby plant. Neglect the transformer losses. The ratio of phase currents in delta side to star side is (A) 1 : 103 (B) 103 : 1 (C) 1 : 10 (D) 3 : 10 Q.52 The gain at the breakaway point of the root locus of a unity feedback system with open loop Ks transfer function G ( s) is ( s 1)( s 4) (A) 1 (B) 2 (C) 5 (D) 9 Q.53 Two identical unloaded generators are connected in parallel as shown in the figure. Both the generators are having positive, negative and zero sequence impedances of j0.4 p.u., j0.3 p.u. and j0.15 p.u., respectively. If the pre-fault voltage is 1 p.u., for a line-to-ground (L-G) fault at the terminals of the generators, the fault current, in p.u., is. Q.54 An energy meter, having meter constant of 1200 revolutions/kwh, makes 20 revolutions in 30 seconds for a constant load. The load, in kw, is. Q.55 A rotating conductor of 1 m length is placed in a radially outward (about the z-axis) magnetic flux density (B) of 1 Tesla as shown in figure below. Conductor is parallel to and at 1 m distance from the z-axis. The speed of the conductor in r.p.m. required to induce a voltage of 1 V across it, should be. END OF THE QUESTION PAPER EE 12/12

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε ΓΑΤΕ 2016 Γενεραλ Απτιτυδε ΓΑ Σετ 8 Q. 1 Q. 5 carry one mark each. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε Θ.2 Ιδεντιφψ τηε χορρεχτ

Διαβάστε περισσότερα

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε ΓΑΤΕ 2016 Γενεραλ Απτιτυδε ΓΑ Σετ 8 Q. 1 Q. 5 carry one mark each. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε Θ.2 Ιδεντιφψ τηε χορρεχτ

Διαβάστε περισσότερα

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε ΓΑΤΕ 2016 Γενεραλ Απτιτυδε ΓΑ Σετ 8 Q. 1 Q. 5 carry one mark each. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε Θ.2 Ιδεντιφψ τηε χορρεχτ

Διαβάστε περισσότερα

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε ΓΑΤΕ 2016 Γενεραλ Απτιτυδε ΓΑ Σετ 8 Q. 1 Q. 5 carry one mark each. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε Θ.2 Ιδεντιφψ τηε χορρεχτ

Διαβάστε περισσότερα

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε

Γενεραλ Απτιτυδε ΓΑ Σετ 8. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε ΓΑΤΕ 016 Γενεραλ Απτιτυδε ΓΑ Σετ 8 Q. 1 Q. 5 carry one mark each. Θ.1 Τηε χηαιρmαν ρεθυεστεδ τηε αγγριεϖεδ σηαρεηολδερσ το ηιm. (Α) βαρε ωιτη (Β) βορε ωιτη (Χ) βεαρ ωιτη (D) βαρε Θ. Ιδεντιφψ τηε χορρεχτ

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. The magnetic flux through a coil of N turns is increased uniformly from zero to a maximum value in a time t. An emf, E, is induced across the coil. What is the maximum value

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor Technical Report General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor Tasos Lazaridis Electrical Engineer CAD/CAE Engineer tasoslazaridis13@gmail.com Three-Phase Induction Machine

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδηµαϊκό έτος 2011-12 Εαρινό Εξάµηνο Ενδιάµεση Εξέταση 1 Παρασκευή 17 Φεβρουαρίου

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

SPBW06 & DPBW06 series

SPBW06 & DPBW06 series /,, MODEL SELECTION TABLE INPUT ORDER NO. INPUT VOLTAGE (RANGE) NO LOAD INPUT CURRENT FULL LOAD VOLTAGE CURRENT EFFICIENCY (TYP.) CAPACITOR LOAD (MAX.) SPBW06F-03 310mA 3.3V 0 ~ 1500mA 81% 4700μF SPBW06F-05

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Surface Mount Multilayer Chip Capacitors for Commodity Solutions Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF

Διαβάστε περισσότερα

Sampling Basics (1B) Young Won Lim 9/21/13

Sampling Basics (1B) Young Won Lim 9/21/13 Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

SMD Transient Voltage Suppressors

SMD Transient Voltage Suppressors SMD Transient Suppressors Feature Full range from 0 to 22 series. form 4 to 60V RMS ; 5.5 to 85Vdc High surge current ability Bidirectional clamping, high energy Fast response time

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

RSDW08 & RDDW08 series

RSDW08 & RDDW08 series /,, MODEL SELECTION TABLE INPUT ORDER NO. INPUT VOLTAGE (RANGE) NO LOAD INPUT CURRENT FULL LOAD VOLTAGE CURRENT EFFICIENCY (Typ.) CAPACITOR LOAD (MAX.) RSDW08F-03 344mA 3.3V 2000mA 80% 2000μF RSDW08F-05

Διαβάστε περισσότερα

Magnetically Coupled Circuits

Magnetically Coupled Circuits DR. GYURCSEK ISTVÁN Magnetically Coupled Circuits Sources and additional materials (recommended) Dr. Gyurcsek Dr. Elmer: Theories in Electric Circuits, GlobeEdit, 2016, ISBN:978-3-330-71341-3 Ch. Alexander,

Διαβάστε περισσότερα

Lecture 23. Impedance, Resonance in R-C-L Circuits. Preparation for the Final Exam

Lecture 23. Impedance, Resonance in R-C-L Circuits. Preparation for the Final Exam Lecture 3. Impedance, Resonance in R-C-L Circuits (a) Start earlier! Preparation for the Final Exam (b) Review the concepts (lectures + textbook) and prepare your equation sheet. Think how you can use

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα IPHO_42_2011_EXP1.DO Experimental ompetition: 14 July 2011 Problem 1 Page 1 of 5 1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα Για ένα πυκνωτή χωρητικότητας ο οποίος είναι μέρος

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Design and Fabrication of Water Heater with Electromagnetic Induction Heating U Kamphaengsean Acad. J. Vol. 7, No. 2, 2009, Pages 48-60 ก 7 2 2552 ก ก กก ก Design and Fabrication of Water Heater with Electromagnetic Induction Heating 1* Geerapong Srivichai 1* ABSTRACT The purpose

Διαβάστε περισσότερα

Aluminum Electrolytic Capacitors (Large Can Type)

Aluminum Electrolytic Capacitors (Large Can Type) Aluminum Electrolytic Capacitors (Large Can Type) Snap-In, 85 C TS-U ECE-S (U) Series: TS-U Features General purpose Wide CV value range (33 ~ 47,000 µf/16 4V) Various case sizes Top vent construction

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

NMBTC.COM /

NMBTC.COM / Common Common Vibration Test:... Conforms to JIS C 60068-2-6, Amplitude: 1.5mm, Frequency 10 to 55 Hz, 1 hour in each of the X, Y and Z directions. Shock Test:...Conforms to JIS C 60068-2-27, Acceleration

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Fundamentals of Signals, Systems and Filtering

Fundamentals of Signals, Systems and Filtering Fundamentals of Signals, Systems and Filtering Brett Ninness c 2000-2005, Brett Ninness, School of Electrical Engineering and Computer Science The University of Newcastle, Australia. 2 c Brett Ninness

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4 Fig. A-1-1. Te(OH) NH H PO (NH ) HPO (TAAP). Projection of the crystal structure along the b direction [Ave]. 9 1. 7.5 ( a a )/ a [1 ] ( b b )/ b [1 ] 5..5 1.5 1 1.5 ( c c )/ c [1 ].5 1. 1.5. Angle β 1.

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC Metallized Polyester Film Capacitor Type: ECQE(F) Non-inductive construction using metallized Polyester film with flame retardant epoxy resin coating Features Self-healing property Excellent electrical

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract: MnZn JFE No. 8 5 6 p. 32 37 MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer FUJITA Akira JFE Ph. D. FUKUDA Yutaka JFE NISHIZAWA Keitarou JFE TOGAWA Jirou MnZn Fe2O3 1 C NiO

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Aluminum Electrolytic Capacitors

Aluminum Electrolytic Capacitors Aluminum Electrolytic Capacitors Snap-In, Mini., 105 C, High Ripple APS TS-NH ECE-S (G) Series: TS-NH Features Long life: 105 C 2,000 hours; high ripple current handling ability Wide CV value range (47

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN-

MAX4147ESD PART 14 SO TOP VIEW. Maxim Integrated Products 1 MAX4147 EVALUATION KIT AVAILABLE ; Rev 1; 11/96 V CC V EE OUT+ IN+ R t SENSE IN- -; Rev ; / EVALUATION KIT AVAILABLE µ µ PART ESD TEMP. RANGE - C to +5 C PPACKAGE SO TOP VIEW V EE V CC SENSE+ SENSE- R t R t R t R t MAX SENSE OUT SENSE+ SENSE- N.C. SHDN N.C. 3 5 R f R G R f 3 VDSL TRANSFORMER

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example: UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

ITU-R BT ITU-R BT ( ) ITU-T J.61 ( ITU-R BT.439- ITU-R BT.439- (26-2). ( ( ( ITU-T J.6 ( ITU-T J.6 ( ( 2 2 2 3 ITU-R BT.439-2 4 3 4 K : 5. ITU-R BT.24 :. ITU-T J.6. : T u ( ) () (S + L = M) :A :B :C : D :E :F :G :H :J :K :L :M :S :Tsy :Tlb

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Assignment 1 Solutions Complex Sinusoids

Assignment 1 Solutions Complex Sinusoids Assignment Solutions Complex Sinusoids ECE 223 Signals and Systems II Version. Spring 26. Eigenfunctions of LTI systems. Which of the following signals are eigenfunctions of LTI systems? a. x[n] =cos(

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα