Αλγόριθµοι και Πολυπλοκότητα
|
|
- Τρίτων Γούναρης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
2 ένδρα Ενα δένδρο είναι µια δοµή δεδοµένων η οποία µπορεί να είναι είτε ένα ατοµικό δένδρο (ένα ϕύλλο), είτε ένας κόµβος και µια ακολουθία από υποδένδρα. Οι κόµβοι ενός δένδρου διακρίνονται σε εσωτερικούς κόµβους και ϕύλλα. Τα ϕύλλα είναι κόµβοι οι οποίοι δεν έχουν παιδιά. Το ϐάθος ενός κόµβου είναι το µήκος του µονοπατιού το οποίο ενώνει τον κόµβο αυτό µε τη ϱίζα. Κατά σύµβαση ϑεωρούµε πάντα ότι η ϱίζα έχει ϐάθος 0. Το ύψος ενός κόµβου είναι το µήκος του µεγαλύτερου µονοπατιού που ενώνει τον κόµβο µε τα ϕύλλα. Το ύψος του δένδρου είναι το ύψος της ϱίζας. Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
3 υαδικά ένδρα Μια ειδική κατηγορία δένδρων είναι τα δυαδικά δένδρα στα οποία κάθε κόµβος έχει το πολύ δύο παιδιά. Γενικά το επίπεδο i περιέχει το πολύ i κόµβους. Σχεδόν πλήρες καλείται ένα δυαδικό δένδρο όταν όλες οι γραµµές, εκτός ίσως από την τελευταία, περιέχουν το µέγιστο αριθµό κόµβων (δηλαδή i ). Επιπλέον ισχύει µια σειρά από ιδιότητες όπως: Τα ϕύλλα της τελευταίας γραµµής είναι όλα αριστερά Τα ϕύλλα ϐρίσκονται όλα στην τελευταία και ενδεχοµένως στην προτελευταία γραµµή Οι εσωτερικοί κόµβοι είναι όλοι δυαδικοί, εκτός από το δεξιότερο της προτελευταίας γραµµής, ο οποίος µπορεί να µην έχει δεξιό παιδί. Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
4 Αρίθµηση κόµβων Κάθε κόµβος έχει τον πατέρα του στη ϑέση i/, το αριστερό παιδί του κόµβου i, είναι ο κόµβος i και το δεξιό παιδί του κόµβου i είναι το i +. Σε ένα δυαδικό δένδρο µε m κόµβους και ύψος h ισχύει log m h m Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
5 Σχεδόν πλήρες δυαδικό δένδρο Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
6 Η δοµή σωρού Εστω ότι πελάτες παρουσιάζονται στο ταµείο µιας τράπεζας µε ένα νούµερο σε ένα χαρτί αντιπροσωπεύοντας τον αριθµό προτεραιότητας του καθενός.χρειαζόµαστε: Αναζήτηση του µέγιστου αριθµού στην ουρά ιαγραφή αυτού του στοιχείου από την ουρά Εισαγωγή ενός νέου στοιχείου στην ουρά Μια πιθανή λύση ϑα ήταν η ταξινόµηση κατά αύξουσα σειρά των στοιχείων της ουράς. Ετσι η διαγραφή και η αναζήτηση του µεγίστου γίνεται σε σταθερό χρόνο, αλλά η εισαγωγή απαιτεί γραµµικό χρόνο. Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
7 Η δοµή σωρού (συν.) Μια άλλη λύση ϑα ήταν απλά µια ουρά, αλλά τότε ενώ η εισαγωγή ϑα γινόταν πολύ γρήγορα, η διαγραφή και η αναζήτηση στην ουρά ϑα χρειάζονταν επίσης γραµµικό χρόνο. Η ουρά n στοιχείων παριστάνεται από ένα δυαδικό δένδρο το οποίο σε κάθε κόµβο περιέχει ένα στοιχείο της ουράς. Το δένδρο αυτό ϑα πληρεί δύο ϐασικές ιδιότητες: Η τιµή κάθε κόµβου είναι µεγαλύτερη ή ίση της τιµής των παιδιών του κόµβου ιδιότητα σωρού Το δέντρο είναι σχεδόν πλήρες δοµική ιδιότητα Η αναπαράσταση µε σωρό µας επιτρέπει να κάνουµε τις πράξεις της αναζήτησης του µέγιστου στοιχείου, της εισαγωγής και της διαγραφής σε χρόνο O(log n). Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
8 Υλοποίηση µε πίνακα ενός σωρού Κατά πλάτος αρίθµηση των κόµβων του δέδρου Το νούµερο κάθε κόµβου του δένδρου δίνει τον δείκτη του πίνακα που περιέχει την τιµή του κόµβου. Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
9 Ενας σωρός και η υλοποίησή του µε πίνακα i a[i] Θέση = Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
10 Εισαγωγή Εισάγουµε το στοιχείο σαν τελευταίο ϕύλλο στο πλήρες δυαδικό δένδρο. Συγκρίνουµε την τιµή του µε αυτήν του πατέρα του και αν έχει µεγαλύτερη τιµή, τις αντιµεταθέτουµε. Η διαδικασία επαναλαµβάνεται εωσότου ικανοποιείται η συνθήκη του σωρού. Στην χείριστη περίπτωση η πολυπλοκότητα είναι O(log n). Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 0 /
11 Αλγόριθµος εισαγωγής Σωρός-Εισαγωγή(u : στοιχείο). n = n+. k = n, a[k] = u. while a[k/] < a[k]. swap (a[k], a[k/]). k = k/. end while Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
12 Εισαγωγή ενός νέου στοιχείου στο σωρό() Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
13 Εισαγωγή ενός νέου στοιχείου στο σωρό() Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
14 ιαγραφή Η διαδικασία διαγραφής του ου στοιχείου του σωρού αντικαθιστά τη ϱίζα του δέντρου που παριστάνει τον σωρό, µε το δεξιότερο ϕύλλο του τελευταίου επιπέδου του δένδρου. Επειτα συγκρίνεται η τιµή της νέας ϱίζας µε των παιδιών της και αν είναι µικρότερη από κάποια, την αντιµεταθέτουµε µε την µεγαλύτερη. Η διαδικασία επαναλαµβάνεται για το νέο στοιχείο, µέχρι να ικανοποιηθεί η συνθήκη του σωρού. Στην χείριστη περίπτωση η πολυπλοκότητα είναι O(log n). Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
15 Σωρός - ιαγραφή. a[] = a[n]. n = n, i =. do. l = i, r = i +. if l n and a[l] > a[i] then max = l. else max = i. if r n and a[r] > a[max] then max = r. if i max then swap (a[i], a[max]), i = max. else break 0. while (i < n) Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
16 ιαγραφή της ϱίζας από το το σωρό () Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
17 ιαγραφή της ϱίζας από το το σωρό () Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
18 Εισαγωγή ενός νέου στοιχείου στο σωρό Εισαγωγή Εισαγωγή Εισαγωγή Εισαγωγή Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
19 Αλγόριθµος κατασκευής σωρού Κατασκευή-Σωρού (πίνακας a µε n στοιχεία). for i = to n do. Σωρός-Εισαγωγή(a[i]). end for Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
20 Αλγόριθµος διατήρησης ιδιότητας σωρού ιατήρηση-σωρού( πίνακας a µε n στοιχεία, ϑέση i). l = i. r = i +. if l n and a[l] > a[i]. max = l. else. max = i. if r n and a[r] > a[max]. max = r. if i max then 0. swap (a[i], a[max]). ιατήρηση-σωρού (a, max) Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 0 /
21 Αλγόριθµος κατασκευής σωρού σε γραµµικό χρόνο Θεωρούµε τώρα ότι στην αταξινόµητη ακολουθία όλα τα στοιχεία που είναι ϕύλλα του σωρού είναι υπο-σωροί που πληρούν την ιδιότητα του σωρού. Για κάθε επόµενο εσωτερικό κόµβο (από κάτω προς τα πάνω, δηλαδή από n/ εώς ) επιβάλλουµε την συνέπεια µε την ιδιότητα σωρού χρησιµοποιώντας τον αλγ οριυµο ιατήρηση-σωρού Κατασκευή-Σωρού (πίνακας a µε n στοιχεία). for i = n/ to do. ιατήρηση-σωρού (a, i). end for Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
22 Κατασκευή Σωρού Υποθέτουµε ότι τα στοιχεία έρχονται µε µια σειρά και δεν είναι γνωστά εκ των προτέρων. Στην χείριστη περίπτωση (αύξουσα ακολουθία), αν εισάγεται στο ϐήµα i, τότε ϑα χρειαστεί O(log i) ϐήµατα. Ο χρόνος του αλγορίθµου ϕράσσεται ως: O(log )+O(log )+...+O(log n) = O(n log n) Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
23 Κατασκευή Σωρού (συν.) Μπορούµε να επιτύχουµε καλύτερο χρόνο για την κατασκευή του σωρού αν γνωρίζουµε από την αρχή όλην την ακολουθία εισόδου και την έχουµε αποθηκευµένη σε έναν πίνακα. Ο αρχικός πίνακας εισόδου a είναι η αναπαράσταση ενός αταξινόµητου σωρού, επιβάλλουµε την ιδιότητα του σωρού, από τους χαµηλότερους εσωτερικούς κόµβους και πηγαίνοντας προς την ϱίζα. Ο αλγόριθµος συγκρίνει το τρέχον στοιχείο µε τα παιδιά του ανυψώνοντας το µεγαλύτερο, εωσότου και τα δύο παιδιά του έχουν µικρότερη τιµή. Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
24 Αλγόριθµος κατασκευής σωρού σε γραµµικό χρόνο() Εκτέλεση του αλγορίθµου κατασκευής του σωρού, όταν ο πίνακας εισόδου είναι ο [,,,,,,,, ]. Βήµα Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
25 Αλγόριθµος κατασκευής σωρού σε γραµµικό χρόνο () Βήµα Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
26 Αλγόριθµος κατασκευής σωρού σε γραµµικό χρόνο () Βήµα Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
27 Αλγόριθµος κατασκευής σωρού σε γραµµικό χρόνο () Βήµα Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
28 Πολυπλοκότητα Η πολυπλοκότητα µίας κλήσης της συνάρτησης ιατήρηση-σωρού είναι O(h) άρα η συνολική πολυπλοκότητα τηςκατασκευή-σωρού ϕράσσεται από log n h=0 n ( log n O(h) = h+ O n h=0 h ) h Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
29 Πολυπλοκότητα (συν.) Επειδή τώρα για x = / έχουµε kx k = k=0 k=0 x ( x) k k = Αρα η πολυπλοκότητα της κατασκευής του σωρού ϕράσσεται από O(n ) = O(n). Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
30 Ταξινόµηση µε σωρό Αρχικά, κατασκευάζούµε τον σωρό των προς ταξινόµηση στοιχείων και κάνουµε διαδοχικές διαγραφές της ϱίζας του δένδρου. Η συνάρτησημέγιστος-σωρού()επιστρέφει την ϱίζα του σωρού. HeapSort (πίνακας a µε n στοιχεία). Κατασκευή-Σωρού (a). for i = to n. a[i] = Μέγιστος-Σωρού(). Σωρός- ιαγραφή() Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 0 /
31 Ταξινόµηση µε σωρό Παράδειγµα: Να ταξινοµηθούν µε τη ϐοήθεια σωρού τα παρακάτω στοιχεία,,,,,,. Λύση: Κατασκευάζουµε το σωρό. Σχήµα: Ο σωρός Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
32 Ταξινόµηση µε σωρό Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
33 Πολυπλοκότητα Αφαιρούµε διαδοχικά το µεγαλύτερο στοιχείο. Το πρώτο ϐήµα του αλγορίθµου απαιτεί χρόνο O(n), το δεύτερο απαιτεί χρόνο O(n log n). Συνολικά εποµένως ο αλγόριθµος ταξινόµησης µε σωρό έχει πολυπλοκότητα O(n log n). Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 /
Ουρές προτεραιότητας
Ουρές προτεραιότητας Πελάτες... στο ταµείο µιας τράπεζας Κάθε πελάτης µε ένα νούµερο/αριθµός προτεραιότητας! Όσοοαριθµός είναι µεγάλος, τόσο οι πελάτες είναι πιο ενδιαφέροντες(!) ένα µόνο ταµείο ανοικτό
Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο
Ουρές προτεραιότητας Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο αριθμός είναι μεγάλος, τόσο οι πελάτες
ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 2006 9-1
Σωροί Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθµος ταξινόµησης HeapSort Παραλλαγές Σωρών ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι
Δομές Δεδομένων & Αλγόριθμοι
Σωροί 1 Ορισμοί Ένα δέντρο μεγίστων (δένδρο ελαχίστων) είναι ένα δένδρο, όπου η τιμή κάθε κόμβου είναι μεγαλύτερη (μικρότερη) ή ίση με των τιμών των παιδιών του Ένας σωρός μεγίστων (σωρός ελαχίστων) είναι
ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ
ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ Ουρές Προτεραιότητας (Priority Queues) Θεωρούµε ότι τα προς αποθήκευση στοιχεία έχουν κάποια διάταξη (καθένα έχει µια προτεραιότητα). Τα προς αποθήκευση στοιχεία είναι
Ενότητα 7 Ουρές Προτεραιότητας
Ενότητα Ουρές Προτεραιότητας ΗΥ4 - Παναγιώτα Φατούρου Ουρές Προτεραιότητας Θεωρούµε ένα χώρο κλειδιών U και έστω ότι µε κάθε κλειδί Κ (τύπου Key) έχει συσχετισθεί κάποια πληροφορία Ι (τύπου Type). Έστω
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και
Ουρά Προτεραιότητας: Heap
Ουρά Προτεραιότητας: Heap ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ομές εδομένων (Αναπαράσταση,) οργάνωση και διαχείριση συνόλων αντικειμένων για
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ουρές προτεραιότητας Κεφάλαιο 9. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ουρές προτεραιότητας Κεφάλαιο 9 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ουρές προτεραιότητας Στοιχειώδεις υλοποιήσεις Δοµή δεδοµένων σωρού Αλγόριθµοι σε σωρούς Ο αλγόριθµος heapsort Δοµές
Heapsort Using Multiple Heaps
sort sort Using Multiple s. Λεβεντέας Χ. Ζαρολιάγκης Τµήµα Μηχανικών Η/Υ & Πληροφορικής 29 Αυγούστου 2008 sort 1 Ορισµός ify Build- 2 sort Πως δουλεύει Ιδιότητες 3 4 Προβλήµατα Προτάσεις Ανάλυση Κόστους
Κεφάλαιο 2. Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.1, 12/05/2010
Κεφάλαιο 2 Η δοµή δεδοµένων Σωρός και η Ταξινόµηση Σωρού (The Heap data structure and Heapsort) Έκδοση., 2/05/200 Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. Σωρός και Ταξινόµηση
Δοµές Δεδοµένων. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Ουρές Προτεραιότητας 2
Δοµές Δεδοµένων Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Ουρές Προτεραιότητας 2 Δοµές Δεδοµένων (Αναπαράσταση,) οργάνωση και διαχείριση συνόλων αντικειµένων για αποδοτική ενηµέρωση και ανάκτηση πληροφορίας.
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort
Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα
Ουρά Προτεραιότητας: Heap
Δομές Δεδομένων Ουρά Προτεραιότητας: Heap Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο (Αναπαράσταση,)
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ουρές προτεραιότητας Κεφάλαιο 9. Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ουρές προτεραιότητας Κεφάλαιο 9 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ουρές προτεραιότητας Στοιχειώδεις υλοποιήσεις Δοµή δεδοµένων σωρού Αλγόριθµοι σε σωρούς Ο αλγόριθµος heapsort Δοµές
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Ουρές Προτεραιότητας Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρά Προτεραιότητας Το πρόβλημα Έχουμε αντικείμενα με κλειδιά και θέλουμε ανά πάσα στιγμή
Ουρά Προτεραιότητας: Heap
Ουρά Προτεραιότητας: Heap ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας Η δομή
Ουρά Προτεραιότητας: Heap
Ουρά Προτεραιότητας: Heap Επιμέλεια διαφανειών: Δ. Φωτάκης (λίγες τροποποιήσεις: Α. Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Δομές Δεδομένων (Αναπαράσταση,)
Διάλεξη 26: Σωροί. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 26: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας -Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 6 Μαΐου 2015 1 / 42 Εύρεση Ελάχιστου Μονοπατιού
Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθμος ταξινόμησης HeapSort
Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ουρές Προτεραιότητας Σωροί υλοποίηση και πράξεις Ο αλγόριθμος ταξινόμησης HeapSort ΕΠΛ 231 Δομές Δεδομένων και Αλγόριθμοι 9-1 Ουρά προτεραιότητας
Δομές Δεδομένων (Εργ.) Ακ. Έτος Διδάσκων: Ευάγγελος Σπύρου. Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Δομές Δεδομένων (Εργ.) Ακ. Έτος 2017-18 Διδάσκων: Ευάγγελος Σπύρου Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης 1. Στόχος του εργαστηρίου Στόχος του δέκατου εργαστηρίου
h/2. Άρα, n 2 h/2-1 h 2log(n+1). Πως υλοποιούµε τη LookUp()? Πολυπλοκότητα?
Κόκκινα-Μαύρα ένδρα (Red-Black Trees) Ένα κόκκινο-µαύρο δένδρο είναι ένα δυαδικό δένδρο αναζήτησης στο οποίο οι κόµβοι µπορούν να χαρακτηρίζονται από ένα εκ των δύο χρωµάτων: µαύρο-κόκκινο. Το χρώµα της
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Dijkstra Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Dijkstra
Ενότητα 7 Ουρές Προτεραιότητας
Ενότητα 7 Ουρές Προτεραιότητας ΗΥ240 - Παναγιώτα Φατούρου Ουρές Προτεραιότητας Θεωρούµε ένα χώρο κλειδιών U και έστω ότι µε κάθε κλειδί Κ (τύπου Key) έχει συσχετισθεί κάποια πληροφορία Ι (τύπου Type).
13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας
ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Τι θα δούμε Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί Σωροί Ουρές Fibonacci Αναπαράσταση Πράξεις Ανάλυση Συγκρίσεις Ουρές προτεραιότητας
Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα
Γενικό πλάνο Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 1 Παράδειγµα δοµικής επαγωγής 2 Ορισµός δοµικής
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 8: ΧΡΗΣΗ ΔΟΜΩΝ ΔΕΝΤΡΟΥ ΚΑΙ ΣΩΡΟΥ ΓΙΑ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΤΑΞΙΝΟΜΗΣΗΣ ΑΛΓΟΡΙΘΜΟΣ HEAPSORT
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 8: ΧΡΗΣΗ ΔΟΜΩΝ ΔΕΝΤΡΟΥ ΚΑΙ ΣΩΡΟΥ ΓΙΑ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΤΑΞΙΝΟΜΗΣΗΣ ΑΛΓΟΡΙΘΜΟΣ HEAPSORT Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης
Ουρά Προτεραιότητας (priority queue)
Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει τις ακόλουθες λειτουργίες PQinsert : εισαγωγή στοιχείου PQdelmax : επιστροφή του στοιχείου με το μεγαλύτερο* κλειδί και διαγραφή του
Κεφάλαιο 2. Η δομή δεδομένων Σωρός και η Ταξινόμηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.3, 14/11/2014
Κεφάλαιο 2 Η δομή δεδομένων Σωρός και η Ταξινόμηση Σωρού (The Heap data structure and Heapsort) Έκδοση 1.3, 14/11/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Σωρός και Ταξινόμηση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης 3-4 Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητες 3 & 4: ένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε
Μαθηµατικά για Πληροφορική
Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 14/10/2008 1 / 24 Γενικό πλάνο 1 Παράδειγµα δοµικής επαγωγής
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Πτυχιακή Εξεταστική Ιούλιος 2014 Διδάσκων : Ευάγγελος Μαρκάκης 09.07.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες
Ταξινόμηση με συγχώνευση Merge Sort
Ταξινόμηση με συγχώνευση Merge Sort 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 Πληροφορικής 1 Διαίρει και Βασίλευε Η μέθοδος του «Διαίρει και Βασίλευε» είναι μια γενική αρχή σχεδιασμού αλγορίθμων
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 9: Στατιστικά Διάταξης- Στατιστικά σε Μέσο Γραμμικό Χρόνο Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Ταξινόμηση. 1. Στατιστικά Διάταξης 2. Στατιστικά σε Μέσο Γραμμικό Χρόνο. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Ταξινόμηση. Στατιστικά Διάταξης. Στατιστικά σε Μέσο Γραμμικό Χρόνο Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Στατιστικά Διάταξης Με τον όρο στατιστικά διάταξης (order statistics) εννοούμε την περίπτωση
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 17 Σωροί (Heaps) έκδοση 10 1 / 19 Heap Σωρός Ο σωρός είναι μια μερικά ταξινομημένη δομή δεδομένων που υποστηρίζει
Αλγόριθμοι Ταξινόμησης Μέρος 2
Αλγόριθμοι Ταξινόμησης Μέρος 2 Μανόλης Κουμπαράκης 1 Προχωρημένοι Αλγόριθμοι Ταξινόμησης Στη συνέχεια θα παρουσιάσουμε τρείς προχωρημένους αλγόριθμους ταξινόμησης: treesort, quicksort και mergesort. 2
Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη
Όρια Αλγόριθμων Ταξινόμησης Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Όρια Αλγόριθμων Ταξινόμησης Μέχρι στιγμής εξετάσθηκαν μέθοδοι ταξινόμησης µε πολυπλοκότητα της τάξης Θ ) ή Θlog ). Τι εκφράζει
Ουρά Προτεραιότητας (priority queue)
Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει δύο βασικές λειτουργίες : Εισαγωγή στοιχείου με δεδομένο κλειδί. Επιστροφή ενός στοιχείου με μέγιστο (ή ελάχιστο) κλειδί και διαγραφή
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή
ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ
ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ Δομές Δεδομένων Παπαγιαννόπουλος Δημήτριος 30 Μαρτίου 2017 18 Μαΐου 2017 papagianno@ceid.upatras.gr 1 Περιεχόμενα Ουρές προτεραιότητας Πράξεις Διωνυμικές Ουρές Διωνυμικά Δέντρα Διωνυμικοί
Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών. Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου / 18
Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής 29 Μαΐου 2017 1 / 18 Βέλτιστα (στατικά) δυαδικά δένδρα αναζήτησης Παράδειγµα: Σχεδιασµός προγράµµατος
Δομές Δεδομένων Ενότητα 4
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 4: Ουρές Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Οι βασικές πράξεις που ορίζουν τον ΑΤ δυαδικό δέντρο αναζήτησης είναι οι ακόλουθες:
υαδικά έντρα Αναζήτησης (Binary Search Trees) Ορισµός : Ένα δυαδικό δέντρο αναζήτησης t είναι ένα δυαδικό δέντρο, το οποίο είτε είναι κενό είτε: (i) όλα τα περιεχόµενα στο αριστερό υποδέντρο του t είναι
Εξωτερική Ταξινόμηση. Μ.Χατζόπουλος 1
Εξωτερική Ταξινόμηση Μ.Χατζόπουλος 1 Γιατί είναι απαραίτητη; Κλασσικό Πρόβλημα της Πληροφορικής Πολλές φορές θέλουμε να παρουσιάσουμε δεδομένα σε ταξινομημένη μορφή Είναι σημαντική για την απαλοιφή διπλοτύπων
Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου
Merge Sort (Ταξινόμηση με συγχώνευση) 6/14/2007 3:04 AM Merge Sort 1
Merge Sort (Ταξινόμηση με συγχώνευση) 7 2 9 4 2 4 7 9 7 2 2 7 9 4 4 9 7 7 2 2 9 9 4 4 6/14/2007 3:04 AM Merge Sort 1 Κύρια σημεία για μελέτη Το παράδειγμα του «διαίρει και βασίλευε» ( 4.1.1) Merge-sort
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 7β: Όρια Αλγόριθμων Ταξινόμησης Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos.
Ο αλγόριθμος Quick-Sort. 6/14/2007 3:42 AM Quick-Sort 1
Ο αλγόριθμος Quick-Sort 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9 7 9 2 2 9 9 6/14/2007 3:42 AM Quick-Sort 1 Κύρια σημεία για μελέτη Quick-sort ( 4.3) Αλγόριθμος Partition step Δέντρο Quick-sort Παράδειγμα εκτέλεσης
Διάλεξη 16: Σωροί. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 16: Σωροί Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ουρές Προτεραιότητας - Ο ΑΤΔ Σωρός, Υλοποίηση και πράξεις Ουρά Προτεραιότητας (Priority
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 26 Ιουνίου 201 1 / Απληστοι (Greedy) Αλγόριθµοι
Δοµές Δεδοµένων. 12η Διάλεξη Διάσχιση Δέντρων και Ουρές Προτεραιότητας. Ε. Μαρκάκης
Δοµές Δεδοµένων 12η Διάλεξη Διάσχιση Δέντρων και Ουρές Προτεραιότητας Ε. Μαρκάκης Περίληψη Διάσχιση δέντρων Ουρές προτεραιότητας Στοιχειώδεις υλοποιήσεις Δοµή δεδοµένων σωρού Αλγόριθµοι σε σωρούς Ο αλγόριθµος
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 28: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Η διαδικασία PercolateDown, Δημιουργία Σωρού - O Αλγόριθμος Ταξινόμησης HeapSort - Υλοποίηση, Παραδείγματα
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται
ταξινόμηση σωρού Παύλος Εφραιμίδης Δομές Δεδομένων και
ταξινόμηση σωρού Παύλος Εφραιμίδης ταξινόμηση σωρού ταξινόμηση σωρού άλλος ένας αλγόριθμος ταξινόμησης πολυπλοκότητας O(n lgn) Ιδιαίτερα χαρακτηριστικά: χρησιμοποιεί μια δομή δεδομένων που ονομάζεται «σωρός»
ΕΝΟΤΗΤΑ 6 ΛΙΣΤΕΣ ΠΑΡΑΛΕΙΨΗΣ (SKIP LISTS)
ΕΝΟΤΗΤΑ 6 ΛΙΣΤΕΣ ΠΑΡΑΛΕΙΨΗΣ (SKIP LISTS) Ταχεία Αναζήτηση Σε πίνακα: δυαδική αναζήτηση (binary search) σε ταξινοµηµένο πίνακα O(log n) Σε δένδρο: αναζήτηση σε ισοζυγισµένο δένδρο O(log n) Σε λίστα: Μπορούµε
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Δέντρα Αναζήτησης. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Δέντρα Αναζήτησης Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Αναζήτηση Θέλουμε να διατηρήσουμε αντικείμενα με κλειδιά και να μπορούμε εκτός από
Ισοζυγισµένο έντρο (AVL Tree)
Εργαστήριο 7 Ισοζυγισµένο έντρο (AVL Tree) Εισαγωγή Εκτός από τα δυαδικά δέντρα αναζήτησης (inry serh trees) που εξετάσαµε σε προηγούµενο εργαστήριο, υπάρχουν αρκετά είδη δέντρων αναζήτησης µε ξεχωριστό
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα.0 Σταύρος Δ. Νικολόπουλος 06-7 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Ταξινόμηση Selection-Sort Bubble-Sort και
Οι ϐασικές πράξεις που ορίζονται για τη δοµή δεδοµένων σωρός, είναι η πράξη της εισαγωγής και η πράξη της διαγραφής ενός στοιχείου.
Εργαστήριο 8 Σωρός (Hap) Εισαγωγή Ενα δυαδικό δέντρο ϐάθους N ονοµάζεται πλήρες (compt), όταν έχει όλους τους κόµβους του επιπέδου N συµπληρωµένους. Ενα δυαδικό δέντρο ϐάθους N ονοµάζεται σχεδόν πλήρες
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 3η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Απλοί Αλγόριθμοι & Δομές Δεδομένων Δύο Απλές
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα
σωροί ταξινόμηση σωρού οόροςheap σωρός (heap) συστοιχία Α για έναν σωρό μια δομή δεδομένων που πχ.
Παύλος Εφραιμίδης άλλος ένας αλγόριθμος ταξινόμησης πολυπλοκότητας O(n lgn) Ιδιαίτερα χαρακτηριστικά: χρησιμοποιεί μια δομή δεδομένων που ονομάζεται «σωρός» είναι επιτόπια: το πλήθος των στοιχείων της
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου
Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Σχεδίαση Αλγορίθμων Μετασχημάτισε και Κυριάρχησε http://delab.csd.auth.gr/~gounaris/courses/ad auth gounaris/courses/ad Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Μετασχημάτισε και Κυριάρχησε
Εξωτερική Ταξινόμηση. Μ.Χατζόπουλος 1
Εξωτερική Ταξινόμηση Μ.Χατζόπουλος 1 Γιατί είναι απαραίτητη; Κλασσικό Πρόβλημα της Πληροφορικής Πολλές φορές θέλουμε να παρουσιάσουμε δεδομένα σε ταξινομημένη μορφή Είναι σημαντική για την απαλοιφή διπλοτύπων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΛΥΣΗ ΣΤΗΝ ΕΥΤΕΡΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΑ. ΕΤΟΣ 2012-13 Ι ΑΣΚΟΝΤΕΣ Ιωάννης Βασιλείου Καθηγητής, Τοµέας Τεχνολογίας
Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)
Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή
Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Μαΐου 201 1 / Απληστοι (Greedy) Αλγόριθµοι
ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ
ΕΝΟΤΗΤΑ 4 ΣΥΝΟΛΑ - ΛΕΞΙΚΑ ΗΥ240 - Παναγιώτα Φατούρου Σύνολα (Sets) Τα µέλη ενός συνόλου προέρχονται από κάποιο χώρο U αντικειµένων/στοιχείων (π.χ., σύνολα αριθµών, λέξεων, ζευγών αποτελούµενων από έναν
Σχεδίαση & Ανάλυση Αλγορίθμων
Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε
Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Συγχωνευτική Ταξινόμηση Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Συγχωνευτική Ταξινόμηση (Merge Sort) 7 2 9 4 2 4 7 9 7 2 2 7 9 4
Διάλεξη 04: Παραδείγματα Ανάλυσης
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
3 Αναδροµή και Επαγωγή
3 Αναδροµή και Επαγωγή Η ιδέα της µαθηµατικής επαγωγής µπορεί να επεκταθεί και σε άλλες δοµές εκτός από το σύνολο των ϕυσικών N. Η ορθότητα της µαθηµατικής επαγωγής ϐασίζεται όπως ϑα δούµε λίγο αργότερα
ΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 9 ο Ταξινόµηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ταξινόµηση Εισαγωγή Selection sort Insertion sort Bubble sort
8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 8. Σωροί (Heaps)-Αναδρομή- Προχωρημένη Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων
Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο
Κατακερµατισµός 1 Οργάνωση Αρχείων (σύνοψη) Οργάνωση αρχείων: πως είναι τοποθετηµένες οι εγγραφές ενός αρχείου όταν αποθηκεύονται στο δίσκο 1. Αρχεία Σωρού 2. Ταξινοµηµένα Αρχεία Φυσική διάταξη των εγγραφών
Κατ οίκον Εργασία 3 Σκελετοί Λύσεων
Άσκηση 1 Χρησιµοποιούµε τη δοµή Κατ οίκον Εργασία 3 Σκελετοί Λύσεων typedef struct Node int data; struct node *lchild; struct node *rbro; node; και υποθέτουµε πως ένα τυχαίο δένδρο είναι υλοποιηµένο ως
ΠΛΗ111. Ανοιξη 2005. Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 7 ο έντρο Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης έντρο Ορισµός Υλοποίηση µε Πίνακα Υλοποίηση µε είκτες υαδικό έντρο
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Γιάννης Κουτσονίκος Επίκουρος Καθηγητής Οργάνωση Δεδομένων Δομή Δεδομένων: τεχνική οργάνωσης των δεδομένων με σκοπό την
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου
Στοιχεία Αλγορίθµων και Πολυπλοκότητας
Στοιχεία Αλγορίθµων και Πολυπλοκότητας Ορέστης Τελέλης telelis@unipi.gr Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς Πολυπλοκότητα 1 / 16 «Ζέσταµα» Να γράψετε τις συναρτήσεις
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 28 Μαΐου 2015 1 / 45 Εισαγωγή Ο δυναµικός
ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 8-1
B-Δένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: 2-3 Δένδρα, Υλοποίηση και πράξεις Β-δένδρα ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 8-1 2-3 Δένδρα Γενίκευση των δυαδικών δένδρων αναζήτησης.
Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)
Ενότητα 9 (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή ισχύει ότι S i S j =, για κάθε i,j µε i j και S 1 S k = U. Λειτουργίες q MakeSet(X): επιστρέφει
Βασικές Προτάσεις. έντρα. υαδικά έντρα Αναζήτησης ( Α) Ισοζυγισµένα έντρα και Υψος. Κάθε δέντρο µε n κόµβους έχει n 1 ακµές.
Βασικές Προτάσεις έντρα Ορέστης Τελέλης Κάθε δέντρο µε n κόµβους έχει n ακµές. ικαιολόγηση: Με επαγωγή στο πλήθος των κόµβων, n. έντρο µε k εσωτερικούς κόµβους και l ϕύλλα έχει n = k + l κόµβους. tllis@unipi.r
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 7η: Ουρές Προτεραιότητας Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 7η: Ουρές Προτεραιότητας Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 7 Ουρές Προτεραιότητας ΗΥ240 - Παναγιώτα Φατούρου 2 Ουρές
Δοµές Δεδοµένων. 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων. Ε. Μαρκάκης
Δοµές Δεδοµένων 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων Ε. Μαρκάκης Περίληψη Quicksort Χαρακτηριστικά επιδόσεων Μη αναδροµική υλοποίηση Δέντρα Μαθηµατικές ιδιότητες Δοµές Δεδοµένων 11-2
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 23: οµές εδοµένων και Αλγόριθµοι Ενδιάµεση Εξέταση Ηµεροµηνία : ευτέρα, 3 Νοεµβρίου 2008 ιάρκεια : 2.00-4.00 ιδάσκουσα : Άννα Φιλίππου Ονοµατεπώνυµο: ΣΚΕΛΕΤΟΙ
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Διδάσκων: Κωνσταντίνος Κώστα
Διάλεξη Ε4: Επανάληψη Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή σε δενδρικές δομές δεδομένων, Δυαδικά Δένδρα Αναζήτησης Ισοζυγισμένα Δένδρα & 2-3 Δένδρα Διδάσκων: Κωνσταντίνος
Μπαλτάς Αλέξανδρος 21 Απριλίου 2015
ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ B- Trees Δομές Δεδομένων Μπαλτάς Αλέξανδρος 21 Απριλίου 2015 ampaltas@ceid.upatras.gr Περιεχόμενα 1. Εισαγωγή 2. Ορισμός B- tree 3. Αναζήτηση σε B- tree 4. Ένθεση σε
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων
ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 6: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 15 Ιουνίου 2009 1 / 26 Εισαγωγή Η ϑεωρία