Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2013
|
|
- Φρίξος Κυπραίος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2013 Λυμένες Ασκήσεις Σετ Α: Ανάλυση Αλγορίθμων Άσκηση 1 Πραγματοποιήσαμε μια σειρά μετρήσεων του χρόνου εκτέλεσης τριών αλγόριθμων και λάβαμε τα παρακάτω αποτελέσματα: αλγόριθμος Α Β Γ μέγεθος εισόδου Οι ασυμπτωτικοί χρόνοι εκτέλεσης αυτών των αλγόριθμων είναι κατά φθίνουσα σειρά, και. Αντιστοιχήστε τον κάθε αλγόριθμο με την καταλληλότερη από τις παραπάνω πολυπλοκότητες. Δικαιολογείστε τις απαντήσεις σας. Έστω, και οι χρόνοι εκτέλεσης των αλγορίθμων Α, Β και Γ αντίστοιχα. Υπολογίζουμε τον ρυθμό αύξησης του κάθε χρόνου εκτέλεσης καθώς διπλασιάζεται το και τον συγκρίνουμε με τnν αντίστοιχη αύξηση των συναρτήσεων και. Ισχύει Για έχουμε ενώ για έχουμε Αντιστοιχώντας τους χρόνους, και στις συναρτήσεις που παρουσιάζουν παρόμοια αύξηση λαμβάνουμε, και. Άσκηση 2 Διατάξτε τις παρακάτω συναρτήσεις ως προς το ρυθμό αύξησης, από τη μικρότερη ως τη μεγαλύτερη.,,, και [1 από 6]
2 Έχουμε, για. Επιπλέον επειδή Άρα. Για έχουμε άρα, επειδή Για τις και έχουμε Δηλαδή. Τέλος Δηλαδή. Άρα η διάταξη από το μικρότερο προς το μεγαλύτερο ρυθμό αύξησης είναι. [2 από 6]
3 Άσκηση 3 Λύστε την παρακάτω αναδρομική σχέση με την μέθοδο της αντικατάστασης. με αρχική συνθήκη. Υποθέτουμε ότι το είναι δύναμη του, δηλαδή για κάποιο θετικό ακέραιο. Έχουμε Μετά από αντικαταστάσεις λαμβάνουμε Επιπλέον,, άρα Άσκηση 4 Έστω ότι ο χρόνος εκτέλεσης ενός αλγορίθμου ικανοποιεί την παρακάτω αναδρομική σχέση με αρχική συνθήκη. Δείξτε με χρήση επαγωγής ότι. Θα δείξουμε πρώτα με επαγωγή, ότι υπάρχουν σταθερές και τέτοιες ώστε για κάθε. Για τη βάση της επαγωγής, από την αρχική συνθήκη έχουμε το οποίο ισχύει για. Η επαγωγική υπόθεση είναι ότι για κάθε,. Για το επαγωγικό βήμα πρέπει να δείξουμε ότι. Από την αναδρομική σχέση και την επαγωγική υπόθεση, [3 από 6]
4 αφού για, και. Τώρα θα δείξουμε με επαγωγή ότι υπάρχουν σταθερές και τέτοιες ώστε για κάθε. Για τη βάση της επαγωγής, από την αρχική συνθήκη έχουμε το οποίο ισχύει για. Η επαγωγική υπόθεση είναι ότι για κάθε,. Για το επαγωγικό βήμα πρέπει να δείξουμε ότι. Από την αναδρομική σχέση και την επαγωγική υπόθεση, το οποίο ισχύει για. Άσκηση 5 Μία ακολουθία αριθμών ονομάζεται μονοκόρυφη εάν για κάποιο με, έχουμε και. Θέλουμε να βρούμε το μέγιστο στοιχείο μιας μονοκόρυφης ακολουθίας, διαβάζοντας όσο το δυνατό λιγότερα στοιχεία της. Σχεδιάστε έναν αποδοτικό αλγόριθμο για αυτό το πρόβλημα και αναλύστε τον ασυμπτωτικό χρόνο εκτέλεσης του. Υποθέστε ότι η ακολουθία είναι αποθηκευμένη σε έναν πίνακα, οπότε η προσπέλαση ενός στοιχείου της γίνεται σε χρόνο. Μια τέτοια ακολουθία έχει τη μορφή του παρακάτω σχήματος: Μπορούμε να βρούμε το μέγιστο στοιχείο σε βήματα με ακολουθιακή αναζήτηση, δηλαδή ξεκινάμε από τη θέση και αυξάνουμε το κατά εάν, διαφορετικά έχουμε. Για να πετύχουμε καλύτερο χρόνο χρησιμοποιούμε δυαδική αναζήτηση ως εξής. Θέτουμε και ελέγχουμε τη σχέση των και. Υπάρχουν τρεις περιπτώσεις: [4 από 6]
5 α) και. Τότε το είναι το μέγιστο στοιχείο. β). Τότε το μέγιστο στοιχείο βρίσκεται στην ακολουθία, οπότε επαναλαμβάνουμε την ίδια διαδικασία για την. γ). Τότε το μέγιστο στοιχείο βρίσκεται στην ακολουθία, οπότε επαναλαμβάνουμε την ίδια διαδικασία για την. Ο χρόνος εκτέλεσης του παραπάνω αλγορίθμου είναι ασυμπτωτικά ίσος με το χρόνο δυαδικής αναζήτησης, δηλαδή. Άσκηση 6 H παρακάτω μέθοδος υπολογίζει τα αθροίσματα για όλα τα και τέτοια ώστε, όπου ένας μονοδιάστατος πίνακας ακέραιων. Τα αθροίσματα αποθηκεύονται σε ένα διδιάστατο πίνακα ακεραίων. (Υποθέτουμε ότι κάθε έχει ήδη αρχικοποιηθεί με την τιμή.) void partialsums(int[] A, int[][] B) { int N = A.length; for (int i=0; i<=n-1; i++) for (int j=i; j<=n-1; j++) for (int k=i; k<=j; k++) B[i][j] += A[k]; } α) Ποίος είναι ο ασυμπτωτικός χρόνος εκτέλεσης της partialsums; β) Δώστε ένα βελτιωμένο τρόπο υπολογισμού του πίνακα, με ασυμπτωτικά καλύτερο χρόνο εκτέλεσης. Δηλαδή θέλουμε. α) Ο χρόνος εκτέλεσης της partialsums είναι ανάλογος του αριθμού των προσθέσεων που εκτελεί. Για τον υπολογισμό του εκτελεί προσθέσεις, επομένως κάνει προσθέσεις για το, προσθέσεις για τα και, προσθέσεις για τα, και κ.ο.κ. Δηλαδή συνολικά [5 από 6]
6 β) Παρατηρούμε ότι και για,. Έτσι λαμβάνουμε την παρακάτω βελτιωμένη μέθοδο void partialsums(int[] A, int[][] B) { int N = A.length; for (int i=0; i<=n-1; i++) B[i][i] = A[i]; } for (int i=0; i<=n-1; i++) for (j=i+1; j<=n-1; j++) B[i][j] = B[i][j-1]+A[j]; Ο χρόνος εκτέλεσης είναι ανάλογος του αριθμού των προσθέσεων, που είναι ίσος με τον αριθμό των με, δηλαδή [6 από 6]
Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2012
Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2012 Ενδεικτικές απαντήσεις 1 ου σετ ασκήσεων. Άσκηση 1 Πραγματοποιήσαμε μια σειρά μετρήσεων του χρόνου εκτέλεσης τριών
Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου
Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική
Κεφα λαιο 3 Στοιχειώδεις Δομές Δεδομένων
Κεφα λαιο 3 Στοιχειώδεις Δομές Δεδομένων Περιεχόμενα 3.1 Στοιχειώδεις τύποι δεδομένων... 39 3.2 Πίνακες... 40 3.2.1 Διδιάστατοι πίνακες... 43 3.3 Συνδεδεμένες Λίστες... 48 3.4 Αναδρομή... 51 3.4.1 Μέθοδος
d k 10 k + d k 1 10 k d d = k i=0 d i 10 i.
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαδικασιακός Προγραμματισμός
Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 3: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I
Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Α. SelectionSort Ταξινόμηση με Επιλογή Β. InsertionSort Ταξινόμηση με Εισαγωγή
Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 5: Ασκήσεις Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις
Ασκήσεις (2) Άσκηση 1
Άσκηση 1 Ασκήσεις () Εισαγωγή στην Ανάλυση Αλγορίθμων Υποθέστε ότι συγκρίνουμε την υλοποίηση της ταξινόμησης με εισαγωγή και της ταξινόμησης με συγχώνευση στον ίδιο υπολογιστή. Για εισόδους μεγέθους n,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής:
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου, Τμήμα Μηχανικών Πληροφορικής ΤΕ Χειμερινό Εξάμηνο 2014-2015 (Παρουσίαση 5) 1 / 17 Απόδοση προγραμμάτων Συχνά χρειάζεται να εκτιμηθεί η απόδοση
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 1 ΛΥΣΕΙΣ Ανάλυση Πολυπλοκότητας ΠΕΡΙΓΡΑΦΗ Σε αυτή την άσκηση καλείστε να αναλύσετε και να υπολογίσετε το
Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3)
Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3) 3.1 Ασυμπτωτικός συμβολισμός (Ι) Οι ορισμοί που ακολουθούν μας επιτρέπουν να επιχειρηματολογούμε με ακρίβεια για την ασυμπτωτική συμπεριφορά. Οι f(n) και g(n) συμβολίζουν
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Εξεταστική Ιανουαρίου 2014 Διδάσκων : Ευάγγελος Μαρκάκης 20.01.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες και
Διάλεξη 04: Παραδείγματα Ανάλυσης
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι
Εισαγωγή στην επιστήμη των υπολογιστών Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι 1 Έννοια Ανεπίσημα, ένας αλγόριθμος είναι μια βήμα προς βήμα μέθοδος για την επίλυση ενός προβλήματος ή την διεκπεραίωση
Δομές Δεδομένων Ενότητα 2
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Θέματα Απόδοσης Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης
Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων
Κ Σ Ι Ενδεικτικές Λύσεις 1ου Σετ Ασκήσεων Παναγιώτα Παναγοπούλου Άσκηση 1. Υποθέστε ότι οι διεργασίες ενός σύγχρονου κατανεμημένου συστήματος έχουν μοναδικές ταυτότητες (UIDs), γνωρίζουν ότι είναι συνδεδεμένες
Κεφάλαιο 11 Ένωση Ξένων Συνόλων
Κεφάλαιο 11 Ένωση Ξένων Συνόλων Περιεχόμενα 11.1 Εισαγωγή... 227 11.2 Εφαρμογή στο Πρόβλημα της Συνεκτικότητας... 228 11.3 Δομή Ξένων Συνόλων με Συνδεδεμένες Λίστες... 229 11.4 Δομή Ξένων Συνόλων με Ανοδικά
Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1
Διαίρει-και-Βασίλευε Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διαίρει-και-Βασίλευε Γενική μέθοδος
Κατ οίκον Εργασία 1 Σκελετοί Λύσεων
ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 00 Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Αφού ξέρουμε με ακρίβεια τον αριθμό των βασικών πράξεων που εκτελεί ο κάθε αλγόριθμος σε δεδομένα μεγέθους, θα
a n = 3 n a n+1 = 3 a n, a 0 = 1
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων
Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ
1 ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #10: Αλγόριθμοι Διαίρει & Βασίλευε: Master Theorem, Αλγόριθμοι Ταξινόμησης, Πιθανοτικός
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων
ΕΠΛ31 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα
Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ )
Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ. 25 48) Τι είναι αλγόριθμος; Γ ΛΥΚΕΙΟΥ Αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρονικό διάστημα,
Κεφάλαιο 13 Αντισταθμιστική Ανάλυση
Κεφάλαιο 13 Αντισταθμιστική Ανάλυση Περιεχόμενα 13.1 Αντισταθμιστική Ανάλυση... 248 13.2 Μέθοδοι Αντισταθμιστικής Ανάλυσης... 250 13.2.1 Η χρεωπιστωτική μέθοδος... 250 13.2.2 Η ενεργειακή μέθοδος... 251
Θεωρητικό Μέρος. int rec(int n) { int n1, n2; if (n <= 5) then return n; else { n1 = rec(n-5); n2 = rec(n-3); return (n1+n2); } }
Πανεπιστήµιο Ιωαννίνων, Τµήµα Πληροφορικής 2 Νοεµβρίου 2005 Η/Υ 432: οµές εδοµένων Χειµερινό Εξάµηνο Ακαδηµαϊκού Έτους 2005-2006 Παναγιώτα Φατούρου Ηµεροµηνία Παράδοσης 1 ο Σετ Ασκήσεων Θεωρητικό Μέρος:
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016
Φροντιστήριο #4 Λυμένες Ασκήσεις Μαθηματική Επαγωγή 13/3/2018
Φροντιστήριο #4 Λυμένες Ασκήσεις Μαθηματική Επαγωγή 1//018 Σημείωση: Όλες οι παρακάτω αποδείξεις ακολουθούν την επαγωγική μέθοδο. Κάποια από τα παραδείγματα έχουν αποδειχθεί και με άλλες μεθόδους στο Φροντιστήριο
Ενδεικτικές Ερωτήσεις Θεωρίας
Ενδεικτικές Ερωτήσεις Θεωρίας Κεφάλαιο 2 1. Τι καλούμε αλγόριθμο; 2. Ποια κριτήρια πρέπει οπωσδήποτε να ικανοποιεί ένας αλγόριθμος; 3. Πώς ονομάζεται μια διαδικασία που δεν περατώνεται μετά από συγκεκριμένο
Εργαστηριακή Άσκηση 1
Εργαστηριακή Άσκηση 1 Επανάληψη προγραμματισμού Βασικοί Αλγόριθμοι Είσοδος τιμών από το πληκτρολόγιο Σε όλα τα προγράμματα που θα γράψουμε στην συνέχεια του εξαμήνου θα χρειαστεί να εισάγουμε τιμές σε
5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 5. Απλή Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 11/11/2016 Εισαγωγή Η
Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Εισαγωγή στην Ανάλυση Αλγορίθμων
Εισαγωγή στην Ανάλυση Αλγορίθμων (4) Μεθοδολογία αναδρομικών σχέσεων (Ι) Με επανάληψη της αναδρομής Έστω όπου r και a είναι σταθερές. Βρίσκουμε τη σχέση που εκφράζει την T(n) συναρτήσει της T(n-) την T(n)
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 12/10/2017
Κατ οίκον Εργασία 1 Σκελετοί Λύσεων
ΕΠΛ 1 Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 009 Κατ οίκον Εργασία 1 Σκελετοί Λύσεων Άσκηση 1 Αρχικά θα πρέπει να υπολογίσουμε τον αριθμό των πράξεων που μπορεί να εκτελέσει ο υπολογιστής σε μια ώρα,
Προγραμματισμός Η/Υ (ΤΛ2007 )
Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε.Ι. Κρήτης Προγραμματισμός Η/Υ (ΤΛ00 ) Δρ. Μηχ. Νικόλαος Πετράκης (npet@chania.teicrete.gr) Ιστοσελίδα Μαθήματος: https://eclass.chania.teicrete.gr/ Εξάμηνο: Εαρινό 01-15
ΚΕΦΑΛΑΙΟ 5 ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 5 ΑΚΟΛΟΥΘΙΕΣ ΑΡΙΘΜΗΤΙΚΗ ΓΕΩΜΕΤΡΙΚΗ ΠΡΟΟΔΟΣ ΓΙΑΝΝΗΣ ΠΑΤΕΡΑΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΑΚΟΛΟΥΘΙΕΣ ΚΕΦΑΛΑΙΟ 5 ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ ΑΠΑΡΑΙΤΗΤΕΣ ΓΝΩΣΕΙΣ ΘΕΩΡΙΑΣ Ακολουθία ονομάζουμε
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΦΡΟΝΤΙΣΤΗΡΙΑ «ΘΕΣΜΟΣ» ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΑ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις
Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 6: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 13: Αλγόριθμοι-Μεγάλων ακεραίων- Εκθετοποίηση- Πολλαπλασιασμός πινάκων -Strassen Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Σχεδίαση & Ανάλυση Αλγορίθμων
Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 04: ΠαραδείγματαΑνάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: -Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, παραδείγματα -Γραμμική
1. Η χειρότερη περίπτωση είναι όταν γίνου 10 επαναλήψεις, δηλαδή για n = 0.
ΦΥΛΛΑΔΙΟ ΚΑΤΑΝΟΗΣΗΣ 6 ΛΥΣΕΙΣ 1. Η χειρότερη περίπτωση είναι όταν γίνου 10 επαναλήψεις, δηλαδή για n = 0. 2. Εντολή Αλγορίθμου Αριθμός Πράξεων Ανάθεση τιμών στα x,y 2 έλεγχος i 6 αύξηση i 5 εκτύπωση i 5
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 4: Αναδρομικές σχέσεις και ανάλυση αλγορίθμων Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
2 n N: 0, 1,..., n A n + 1 A
Θεωρία Υπολογισμού Ενότητα 5: Τεχνικές απόδειξης & Κλειστότητα Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
περιεχόμενα ρυθιμός αύξησης συναρτήσεων ασυμπτωτική πολυπλοκότητα ασυμπτωτική επίδοση ασυμπτωτικοί συμβολισμοί ασυμπτωτικός συμβολισμος
ρυθμός αύξησης συναρτήσεων περιεχόμενα Ασυμπτωτικός συμβολισμός Καθιερωμένοι συμβολισμοί και συνήθεις συναρτήσεις Παύλος Εφραιμίδης 2 ασυμπτωτική πολυπλοκότητα ασυμπτωτική επίδοση Πολυπλοκότητα χειρότερης
Κατ οίκον Εργασία 1 Σκελετοί Λύσεων
ΕΠΛ Δομές Δεδομένων και Αλγόριθμοι Σεπτέμβριος 008 Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Παρατηρούμε ότι ο χρόνος εκτέλεσης μέσης περίπτωσης της κάθε εντολής if ξεχωριστά: if (c mod 0) for (k ; k
Πληροφορική 2. Δομές δεδομένων και αρχείων
Πληροφορική 2 Δομές δεδομένων και αρχείων 1 2 Δομή Δεδομένων (data structure) Δομή δεδομένων είναι μια συλλογή δεδομένων που έχουν μεταξύ τους μια συγκεκριμένη σχέση Παραδείγματα δομών δεδομένων Πίνακες
Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος
Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες
1η Σειρά Γραπτών Ασκήσεων
1/20 Ασυμπτωτικός Συμβολισμός, Αναδρομικές Σχέσεις 1η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 1 Ασυμπτωτικός Συμβολισμός, Αναδρομικές Σχέσεις 2 3 4 5 2/20
Περιεχόμενα 1 Πρωτοβάθμια Λογική Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων ) / 60
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 3 1. Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή 2. Δυναμικές είναι οι δομές που αποθηκεύονται σε συνεχόμενες θέσεις μνήμης 3. Ένας πίνακας
Μέθοδοι πολυδιάστατης ελαχιστοποίησης
Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα
Παράδειγμα δομικής επαγωγής Ορισμός δομικής επαγωγής Συμβολοσειρές Γλώσσες Δυαδικά δένδρα Μαθηματικά Πληροφορικής 3ο Μάθημα Αρχικός συγγραφέας: Ηλίας
Μαθηματικά Πληροφορικής 3ο Μάθημα Αρχικός συγγραφέας: Ηλίας Κουτσουπιάς Τροποποιήσεις: Σταύρος Κολλιόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Δομική επαγωγή Η ιδέα της μαθηματικής
1 Arq thc Majhmatik c Epagwg c
Μαθηματικός Λογισμός Ι Φθινόπωρο 0 Σημειώσεις 7-0- Μ. Ζαζάνης Arq thc Majhati c Epagwg c Θα συμβολίζουμε το σύνολο των ϕυσικών αριθμών, {,,,...} με το σύμβολο N. Το σύνολο των ϕυσικών αριθμών, συμπεριλαμβανομένου
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου, Τμήμα Μηχανικών Πληροφορικής ΤΕ Χειμερινό Εξάμηνο 2014-2015 (Παρουσίαση 6) 1 / 20 Ρυθμοί αύξησης Γραμμικός ρυθμός αύξησης: n, 2n, Πολυωνυμικός
εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και
Παύλος Εφραιμίδης 1 περιεχόμενα ενθετική ταξινόμηση ανάλυση αλγορίθμων σχεδίαση αλγορίθμων 2 ενθετική ταξινόμηση 3 ενθετική ταξινόμηση Βασική αρχή: Επιλέγει ένα-έναταστοιχείατηςμηταξινομημένης ακολουθίας
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο. Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1 Εισαγωγή Η τακτοποίηση των δεδομένων με ιδιαίτερη σειρά είναι πολύ σημαντική λειτουργία που ονομάζεται
Εξωτερική Αναζήτηση. Ιεραρχία Μνήμης Υπολογιστή. Εξωτερική Μνήμη. Εσωτερική Μνήμη. Κρυφή Μνήμη (Cache) Καταχωρητές (Registers) μεγαλύτερη ταχύτητα
Ιεραρχία Μνήμης Υπολογιστή Εξωτερική Μνήμη Εσωτερική Μνήμη Κρυφή Μνήμη (Cache) μεγαλύτερη χωρητικότητα Καταχωρητές (Registers) Κεντρική Μονάδα (CPU) μεγαλύτερη ταχύτητα Πολλές σημαντικές εφαρμογές διαχειρίζονται
Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).
Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 1 (ανακοινώθηκε στις 20 Μαρτίου 2017, προθεσμία παράδοσης: 24 Απριλίου 2017, 12 τα μεσάνυχτα).
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι
Μέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν
ΔΙΑΦΟΡΑ ΘΕΜΑΤΑ. Ως «γειτονικά» ορίζονται τα κελιά που συγγενεύουν οριζόντια, κάθετα και διαγώνια. Για παράδειγμα γειτονικά του Α[3,3] είναι τα:
ΔΙΑΦΟΡΑ ΘΕΜΑΤΑ ΑΣΚ 1 Το παιχνίδι ναρκαλιευτής, βασίζεται σε ένα ταμπλω (πίνακα), τα περιεχόμενα του οποίου αποτελούνται από νάρκες, και αριθμούς. Κάθε αριθμός συμβολίζει το πλήθος των ναρκών που βρίσκονται
Ουρά Προτεραιότητας (priority queue)
Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει τις ακόλουθες λειτουργίες PQinsert : εισαγωγή στοιχείου PQdelmax : επιστροφή του στοιχείου με το μεγαλύτερο* κλειδί και διαγραφή του
Πληροφορική 2. Αλγόριθμοι
Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 2: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2
Διαίρει-και-Βασίλευε Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2 Διαίρει-και-Βασίλευε Γενική µέθοδος σχεδιασµού αλγορίθµων: Διαίρεση σε ( 2) υποπροβλήµατα (σηµαντικά) µικρότερου µεγέθους.
Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών
Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 1 2 3 4 5 πλήθος κορυφών πλήθος ακμών Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από
Δομημένος Προγραμματισμός (ΤΛ1006)
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης Σχολή Εφαρμοσμένων Επιστημών Τμήμα Ηλεκτρονικών Μηχανικών Τομέας Αυτοματισμού και Πληροφορικής Δομημένος Προγραμματισμός (ΤΛ100) Δρ. Μηχ. Νικόλαος Πετράκης, Καθηγητής
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 10: Ταξινόμηση Πίνακα Αναζήτηση σε Ταξινομημένο Πίνακα Πρόβλημα Δίνεται πίνακας t από Ν ακεραίους. Ζητούμενο: να ταξινομηθούν τα περιεχόμενα του πίνακα σε αύξουσα αριθμητική
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται
max & min Μεθοδολογία - 1 Τα βήματα που συνήθως ακολουθούμε στις τεχνικές εύρεσης max & min είναι τα εξής:
Μεθοδολογία - 1 Τα βήματα που συνήθως ακολουθούμε στις τεχνικές εύρεσης είναι τα εξής: 1. Υπόθεση Ξεκινάμε με μια αυθαίρετη παραδοχή ότι κάποιος από τους αριθμούς που εξετάζουμε είναι ο μέγιστος (ή ο ελάχιστος
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη - Πολυπλοκότητα Αλγορίθμων / Επανάληψη Χρήσιμων Μαθηματικών Ορισμών Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αλγόριθμοι, Κριτήρια Αξιολόγησης Αλγόριθμων, Γιατί αναλύουμε τους Αλγορίθμων
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ ΕΠΛ 035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. και Μηχ. Υπολ.
Διάλεξη : Παραδείγματα Ανάλυσης Πολυπλοκότητας / Ανάλυση Αναδρομικών Αλγόριθμων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Παραδείγματα Ανάλυσης Πολυπλοκότητας : Μέθοδοι, 6 παραδείγματα
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. 1 ο ΚΕΦΑΛΑΙΟ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 1 ο ΚΕΦΑΛΑΙΟ 1) Τι είναι πρόβλημα (σελ. 3) 2) Τι είναι δεδομένο, πληροφορία, επεξεργασία δεδομένων (σελ. 8) 3) Τι είναι δομή ενός προβλήματος (σελ. 8)
ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης
ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων Λουκάς Γεωργιάδης loukas@cs.uoi.gr www.cs.uoi.gr/~loukas Βασικές έννοιες και εφαρμογές Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δομή
3 ο ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ - ΠΙΝΑΚΕΣ
Δημοκρίτειο Πανεπιστήμιο Θράκης Πολυτεχνική Σχολή Τμήμα Μηχανικών Παραγωγής & Διοίκησης Ακαδ. έτος 2016-2017 Τομέας Συστημάτων Παραγωγής Εξάμηνο A Αναπληρωτής Καθηγητής Στέφανος Δ. Κατσαβούνης 23 ΝΟΕ 2016
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 20: Δυαδικό Δέντρο Αναζήτησης Δυαδικό δέντρο Κάθε κόμβος «γονέας» περιέχει δύο δείκτες που δείχνουν σε δύο κόμβους «παιδιά» του ιδίου τύπου. Αν οι δείκτες προς αυτούς
Σχεδίαση και Ανάλυση Αλγορίθμων
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4.0 Επιλογή Αλγόριθμοι Επιλογής Select και Quick-Select Σταύρος Δ. Νικολόπουλος 2016-17 Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros
Εργαστήριο 2: Πίνακες
Εργαστήριο 2: Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Επεξεργασία Πινάκων - Υλοποίηση της Δυαδικής Αναζήτησης σε πίνακες - Υλοποίηση της Ταξινόμησης με Επιλογής σε πίνακες ΕΠΛ035
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ΗΜΜΥ 795: ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ Ακαδημαϊκό έτος 2010-11 Χειμερινό Εξάμηνο Practice final exam 1. Έστω ότι για
Θέματα Υπολογισμού στον Πολιτισμό - Δένδρα. Δένδρα
Δένδρα Δένδρα Ειδική κατηγορία γραφημάτων: συνεκτικά γραφήματα που δεν περιέχουν απλά κυκλώματα [1857] Arthur Cayley: για απαρίθμηση ορισμένων ειδών χημικών ενώσεων Χρησιμοποιούνται σε πληθώρα προβλημάτων,
Περιεχόμενα. Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23. Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ
Περιεχόμενα Εισαγωγή του επιμελητή, Γιάννης Σταματίου 15 Πρόλογος 17 Εισαγωγή 23 Μέρος I. ΕΠΑΝΑΛΗΠΤΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΑΝΑΛΛΟΙΩΤΕΣ ΣΥΝΘΗΚΕΣ 1. Επαναληπτικοί αλγόριθμοι: Μέτρα προόδου και αναλλοίωτες συνθήκες.....................................................29
Δομές Δεδομένων & Αλγόριθμοι
Δομές Δεδομένων & Αναζήτηση & Ταξινόμηση 1 Αναζήτηση Έχω έναν πίνακα Α με Ν στοιχεία. Πρόβλημα: Βρες αν το στοιχείο x ανήκει στον πίνακα Αν ο πίνακας είναι αταξινόμητος τότε μόνη λύση σειριακή αναζήτηση
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 14: Αλγόριθμοι Ταξινόμησης Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Οι αλγόριθμοι ταξινόμησης 3) Mergesort Ταξινόμηση με Συγχώνευση 4) BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Οι αλγόριθμοι ταξινόμησης: Γ. MergeSort Ταξινόμηση με Συγχώνευση Δ. BucketSort Ταξινόμηση με Κάδους Διδάσκων:
Δυναμικός προγραμματισμός για δέντρα
ΘΕ5 Ιδιότητες Δέντρων και Αναδρομή για Δέντρα Δυναμικός προγραμματισμός για δέντρα Έστω ότι, για k=1,..., m, το γράφημα Γ k = (V k, E k ) είναι δέντρο. Έστω w V 1... V m, z k V k, για k=1,..., m. Συμβολίζουμε
Αλγόριθμοι και Πολυπλοκότητα Φώτης Ε. Ψωμόπουλος, Περικλής Α. Μήτκας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Ηλεκτρονικής και Υπολογιστών Εργαστήριο Επεξεργασίας Πληροφορίας και Υπολογισμών Καθηγητής: Περικλής
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων
ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Πτυχιακή Εξεταστική Ιούλιος 2014 Διδάσκων : Ευάγγελος Μαρκάκης 09.07.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες
Σχεδίαση & Ανάλυση Αλγορίθμων
Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 1 Αλγόριθμοι και Πολυπλοκότητα Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Εισαγωγή Ας ξεκινήσουμε
Στοχαστικές Στρατηγικές. διαδρομής (1)
Στοχαστικές Στρατηγικές η ενότητα: Το γενικό πρόβλημα ελάχιστης διαδρομής () Τμήμα Μαθηματικών, ΑΠΘ Ακαδημαϊκό έτος 08-09 Χειμερινό Εξάμηνο Παπάνα Αγγελική Μεταδιδακτορική ερευνήτρια, ΑΠΘ & Πανεπιστήμιο
Ταξινόμηση: Εισαγωγικά. Ταξινόμηση (Sor ng) Αλγόριθμοι Απλής Ταξινόμησης. Βασικά Βήματα των Αλγορίθμων
Ταξινόμηση: Εισαγωγικά Ταξινόμηση (Sor ng) Ορέστης Τελέλης Βασικό πρόβλημα για την Επιστήμη των Υπολογιστών. π.χ. αλφαβητική σειρά, πωλήσεις ανά τιμή, πόλεις με βάση πληθυσμό, Μπορεί να είναι ένα πρώτο