ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι. Ενότητα 10: Εισαγωγικά περί κανονικοποίησης Συναρτησιακές εξαρτήσεις BCNF. Ευαγγελίδης Γεώργιος Τμήμα Εφαρμοσμένης Πληροφορικής
|
|
- Κυριακή Μαυρογένης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ενότητα 10: Εισαγωγικά περί κανονικοποίησης Συναρτησιακές εξαρτήσεις BCNF Ευαγγελίδης Γεώργιος
2 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2
3 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Μακεδονίας» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3
4 Μέρος 1 Εισαγωγικά περί κανονικοποίησης 4
5 Πως προκύπτει ένα σχήμα; Top-down με σχεδίαση ενός διαγράμματος Οντοτήτων-Συσχετίσεων και μετατροπή αυτού σε ένα σύνολο πινάκων (σχέσεων) [δες ενότητες 2 και 3]. Bottom-up με αυτοματοποιημένο αλγοριθμικό τρόπο (χρήση της θεωρίας κανονικοποίησης). 5
6 Παράδειγμα με CDBASE (1) Επίπεδος (flat) πίνακας, παρόμοιος με λογιστικό φύλλο: TRACK(cd_title, year, company_name, track_position, song_title, performer_name, composer_name, lyricist_name) Πρόβλημα: Πως ξεχωρίζω cd με τον ίδιο τίτλο, τραγούδια με τον ίδιο τίτλο, εταιρίες / ερμηνευτές / συνθέτες / στιχουργούς με το ίδιο όνομα; Λύση: χρήση κάποιου έξτρα πεδίου που παίρνει μοναδικές τιμές για κάθε ένα από αυτά τα αντικείμενα (οντότητες;) 6
7 Παράδειγμα με CDBASE (2) Μια βελτιωμένη εκδοχή: TRACK(cd_id, cd_title, year, company_id, company_name, track_position, song_id, song_title, performer_id, performer_name, composer_id, composer_name, lyricist_id, lyricist_name) 7
8 Παράδειγμα με CDBASE (3) Αλλά, όπως ήδη είδαμε έχουμε περιττή επανάληψη πληροφορίας καθώς και όλα τα αρνητικά επακόλουθα (στις ενημερώσεις και στις διαγραφές). Πόσες εγγραφές χρειαζόμαστε για ένα track που έχει 4 ερμηνευτές, 3 στιχουργούς και 2 συνθέτες; Στο παραπάνω σενάριο (δηλαδή για την καταγραφή της πληροφορίας ενός μόνο track), πόσες φορές δηλώνουμε κάποια πληροφορία για το cd και την εταιρία; - για κάθε ερμηνευτή / συνθέτη / στιχουργό; Πρόκειται για ένα κακό σχήμα. 8
9 Παράδειγμα με CDBASE (4) Τώρα μπαίνουν στο παιχνίδι και οι επιχειρησιακοί κανόνες που προκύπτουν κατά τη φάση της ανάλυσης απαιτήσεων: Μπορεί να υπάρχουν πολλαπλές εκδοχές (ηχογραφήσεις) ενός τραγουδιού; Μπορεί το ίδιο τραγούδι να εμφανίζεται στο ίδιο cd είτε με την ίδια είτε με διαφορετική ηχογράφηση; Μπορεί ένα τραγούδι να έχει πολλούς συνθέτες ή στιχουργούς; Μπορεί μια ηχογράφηση να έχει πολλούς ερμηνευτές; 9
10 Ένα καλύτερο σχήμα SONG(song_id, song_title) COMPOSER(composer_id, composer_name) LYRICIST(lyricist_id, lyricist_name) SONG_COMP(song_id, composer_id) SONG_LYR(song_id, lyricist_id) RECORDING(rec_id, song_id) PERFORMER(performer_id, performer_name) REC_PERF(rec_id, performer_id) TRACK(cd_id, track_pos, rec_id) CD(cd_id, cd_title, year, company_id) COMPANY(company_id, company_name) 10
11 Σχεδίαση με κανονικοποίηση (1) Πως φτάνω όμως στο προηγούμενο καλό σχήμα; Ξεκινώ από έναν universal πίνακα. Διασπώ σε μικρότερους καλύτερους πίνακες. Η όλη διαδικασία γίνεται με αυτοματοποιημένο τρόπο (αλγόριθμος). 11
12 Σχεδίαση με κανονικοποίηση (2) Για να δουλέψει ο αλγόριθμος χρειάζεται επιπλέον πληροφορία εκτός της universal σχέσης. Είναι πληροφορία που σχετίζεται με τους επιχειρησιακούς κανόνες, δηλαδή με τις ιδιότητες που έχουν τα δεδομένα. Ο αλγόριθμος παράγει ένα σύνολο πινάκων που ικανοποιούν μια κανονική μορφή (normal form). 12
13 Σχεδίαση με κανονικοποίηση (3) Συναρτησιακές εξαρτήσεις ==> Boyce-Codd NF Εξαρτήσεις πολλαπλών τιμών ==> 4NF Συναρτησιακή εξάρτηση = Functional dependency Εξάρτηση πολλαπλών τιμών = Multivalued dependency Στα επόμενα θα χρησιμοποιούμε τις συντομογραφίες FD και MVD. 13
14 Συναρτησιακές εξαρτήσεις TRACK(cd_id, cd_title, year, rec_id, track_pos) Κακός σχεδιασμός. Έχουμε την FD: cd_id cd_title, year BCNF: αν Α Β τότε το Α πρέπει να είναι κλειδί Άρα διασπώ τον TRACK σε: CD(cd_id, cd_title, year) TRACK(cd_id, rec_id, track_pos) 14
15 Εξαρτήσεις πολλαπλών τιμών SONG(song_id, composer_id, lyricist_id) Κακός σχεδιασμός παρόλο που είναι σε BCNF. Πρακτικά, δεν υπάρχει καμία FD στον Song. Όμως έχω την MVD: song_id composer_id 4NF: αν Α Β τότε το Α πρέπει να είναι κλειδί Άρα διασπώ τον SONG σε: SONG_COMP(song_id, composer_id) SONG_LYR(song_id, lyricist_id) 15
16 Μέρος 2 Συναρτησιακές εξαρτήσεις BCNF 16
17 Ορισμός FD A B Όταν σε δυο διαφορετικές εγγραφές ενός πίνακα τα A έχουν την ίδια τιμή τότε και τα B έχουν την ίδια τιμή. Αλλιώς, το Α προσδιορίζει το Β. Γενίκευση: A1, A2,... An B1, B2,... Bm ή Χ Υ Παράδειγμα: cd_id cd_title, year 17
18 FD και κλειδί Έχω έναν πίνακα R χωρίς διπλότυπα. Έστω ότι Α, Β όλα-τα-πεδία-του-r. Αυτός όμως είναι ορισμός του κλειδιού. Στα παρακάτω χρησιμοποιούμε τους συμβολισμούς A, B, C για πεδία και X, Y, Z για σύνολα πεδίων. 18
19 Είδη FD Τετριμμένες: Χ Υ και Υ Χ Μη-τετριμμένες: Χ Υ και Υ Χ Πλήρως μη-τετριμμένες Χ Υ και Χ Υ = Μας ενδιαφέρουν μόνο FD του τελευταίου είδους. 19
20 Κανόνες για FD (1) Κανόνας διαχωρισμού: Αν Χ B1, B2,... Bm τότε Χ B1 Χ B2... Χ Bm Το ανάποδο δεν ισχύει! 20
21 Κανόνες για FD (2) Κανόνας συνένωσης: Αν Χ B1 Χ B2... Χ Bm τότε Χ B1, B2,... Bm 21
22 Κανόνες για FD (3) Τετριμμένοι κανόνες: Χ Υ τότε Χ Χ Υ Χ Υ τότε Χ Χ Υ Μεταβατικός κανόνας: Χ Υ και Υ Ζ τότε Χ Ζ 22
23 Εγκλεισμός πεδίων Έχω έναν πίνακα R, ένα σύνολο από FDs, και ένα σύνολο πεδίων Χ του R. Εγκλεισμός του Χ, ή Χ +, είναι το σύνολο όλων των πεδίων Υ του R για τα οποία ισχύει Χ Υ. Αλγόριθμος; Ξεκινώ θέτοντας Χ + = Χ και μετά για κάθε FD Υ Ζ με Υ Χ προσθέτω το Ζ στο Χ +. Συνεχίζω μέχρι να μην μπορεί να προστεθεί κάτι στο Χ +. 23
24 Παράδειγμα εγκλεισμού RECORDING(song_id, song_title, rec_id, performer_id, performer_name) και ισχύουν song_id song_title performer_id performer_name rec_id song_id Τότε {performer_id, rec_id} + = {όλα τα πεδία} 24
25 Εγκλεισμός και κλειδιά Πότε ξέρουμε αν X είναι κλειδί του R; Αν Χ + ισούται με το σύνολο των πεδίων του R! Άρα αν έχουμε έναν πίνακα R και ένα σύνολο από FDs, πως βρίσκουμε τα κλειδιά του R; Αλγόριθμος: δοκιμάζουμε αν Α + είναι κλειδί για κάθε πεδίο Α του R. Αν δεν βρούμε κανένα κλειδί, δοκιμάζουμε με ζεύγη πεδίων, κοκ. 25
26 Καθορίζοντας FDs για πίνακα (1) Αν έχω δυο σύνολα S1 και S2 από FDs για έναν πίνακα R, τότε το S2 προκύπτει από το S1 αν κάθε εγγραφή του R που ικανοποιεί τις FDs του S1 ικανοποιεί και τις FDs του S2. Παράδειγμα: το S2 = {rec_id song_title} προκύπτει από το S1 = {rec_id song_id, song_id song_title} Πως βρίσκω αν Χ Υ προκύπτει από ένα σύνολο S από FDs; Υπολογίζω το Χ + βάσει του S και ελέγχω αν το Υ ανήκει στο Χ +. 26
27 Καθορίζοντας FDs για πίνακα (2) Ποιες FDs θέλουμε για έναν πίνακα R; Το ελάχιστο σύνολο από πλήρως μητετριμμένες FDs ώστε όλες οι FDs που ισχύουν για τον πίνακα R να προκύπτουν από αυτό το σύνολο. Θα το δούμε στην πράξη! 27
28 Διάσπαση πίνακα Έχουμε μια καλή διάσπαση όταν ο αρχικός πίνακας R(Χ) διασπάται στους πίνακες R1(Υ) και R2(Ζ) ώστε Υ Ζ = Χ και R1 x R2 = R 28
29 Κανονικοποίηση με διάσπαση Ξεκινάμε από έναν universal πίνακα και ιδιότητες των δεδομένων (FDs). Ο αλγόριθμος διασπά βάσει των FDs. Στο τέλος μετά από μια σειρά καλών διασπάσεων έχουμε ένα σύνολο καλών πινάκων (που είναι σε BCNF). 29
30 Ορισμός BCNF Ένας πίνακας R με FDs είναι σε BCNF αν Για κάθε Χ B, το Χ είναι κλειδί 30
31 Παράδειγμα BCNF (1) R(song_id, song_title, rec_id, performer_id, performer_name) και ισχύουν song_id song_title performer_id performer_name rec_id song_id Tο ελάχιστο κλειδί του R είναι το {performer_id, rec_id}. Βάσει των τριών FD ο R δεν είναι σε BCNF. Διασπώ... 31
32 Παράδειγμα BCNF (2) R1(song_id, song_title) είναι σε BCNF R2(song_id, rec_id, performer_id, performer_name) συνεχίζω τη διάσπαση R21(performer_id, performer_name) είναι σε BCNF R22(song_id, rec_id, performer_id) συνεχίζω τη διάσπαση R221(rec_id, song_id) είναι σε BCNF R222(rec_id, performer_id) είναι σε BCNF 32
33 Αλγόριθμος διάσπασης BCNF Input: πίνακας R και FDs του R Output: διάσπαση του R σε σύνολο πινάκων σε BCNF Υπολόγισε με τη βοήθεια των FDs τα κλειδιά του R. Επανέλαβε μέχρι να είναι όλοι οι πίνακες σε BCNF: Πάρε έναν πίνακα R' ο οποίος εξαιτίας μιας X Y να μην είναι σε BCNF. Διάσπασε τον R' σε R1(X, Y) και R2(X, υπόλοιπαπεδία). Υπολόγισε τις FDs των R1 και R2. Υπολόγισε τα κλειδιά των R1 και R2. 33
34 Γιατί οι BCNF πίνακες είναι καλοί Δεν έχουν προβλήματα πλεονασμού. Μπορούν να αναδημιουργήσουν τους αρχικούς πίνακες με σύζευξη. 34
35 Πλήρες παράδειγμα (1) T(cd_id, cd_title, year, company_id, company_name, track_position, track_duration, rec_id, rec_duration, song_id, song_title, performer_id, performer_name, composer_id, composer_name, lyricist_id, lyricist_name) 1. song_id song_title 2. composer_id composer_name 3. lyricist_id lyricist_name 4. rec_id song_id, rec_duration 5. performer_id performer_name 6. cd_id, track_position rec_id, track_duration 7. cd_id cd_title, year, company_id 8. company_id company_name Ελάχιστο κλειδί = {cd_id, track_position, performer_id, composer_id, lyricist_id) 35
36 Πλήρες παράδειγμα (2) O T δεν είναι σε BCNF. Διασπώ με την FD 1. song_id song_title Τ1(song_id, song_title) BCNF T2(cd_id, cd_title, year, company_id, company_name, track_position, track_duration, rec_id, rec_duration, song_id, performer_id, performer_name, composer_id, composer_name, lyricist_id, lyricist_name) Κλειδί = {cd_id, track_position, performer_id, composer_id, lyricist_id}, FDs = {2, 3, 4, 5, 6, 7, 8}. 36
37 Πλήρες παράδειγμα (3) O T2 δεν είναι σε BCNF. Διασπώ με τις FDs 2, 3, 5, 7, 8: T3(composer_id, composer_name) BCNF Τ4(lyricist_id, lyricist_name) BCNF T5(performer_id, performer_name) BCNF T6(cd_id, cd_title, year, company_id) BCNF T7(company_id, company_name) BCNF T8(cd_id, track_position, track_duration, rec_id, rec_duration, song_id, performer_id, composer_id, lyricist_id) Κλειδί = {cd_id, track_position, performer_id, composer_id, lyricist_id}fds = {4, 6}. 37
38 Πλήρες παράδειγμα (4) Ο Τ8 δεν είναι σε BCNF. Διασπώ με την 4. rec_id song_id, rec_duration T9(rec_id, song_id, rec_duration) BCNF T10(cd_id, track_position, track_duration, rec_id, performer_id, composer_id, lyricist_id) Κλειδί = {cd_id, track_position, performer_id, composer_id, lyricist_id}, FDs = {6}. 38
39 Πλήρες παράδειγμα (5) O T10 δεν είναι σε BCNF. Διασπώ με την 6. cd_id, track_position rec_id, track_duration T11(cd_id, track_position, rec_id, track_duration) BCNF T12(cd_id, track_position, performer_id, composer_id, lyricist_id) BCNF Κλειδί = {cd_id, track_position, performer_id, composer_id, lyricist_id}, FDs = {}. 39
40 Πλήρες παράδειγμα (6) Τελικό BCNF Σχήμα: SONG(song_id, song_title) COMPOSER(composer_id, composer_name) LYRICIST(lyricist_id, lyricist_name) PERFORMER(performer_id, performer_name) CD(cd_id, cd_title, year, company_id) COMPANY(company_id, company_name) RECORDING(rec_id, song_id, rec_duration) TRACK(cd_id, track_position, rec_id, track_duration) TRACK_CONTRIB(cd_id, track_position, performer_id, composer_id, lyricist_id) 40
41 Τέλος Ενότητας
ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι. Ενότητα 11: Εξαρτήσεις πολλαπλών τιμών - 4NF, 1NF, 2NF, 3NF, Μελέτη Περίπτωσης
Ενότητα 11: Εξαρτήσεις πολλαπλών τιμών - 4NF, 1NF, 2NF, 3NF, Μελέτη Περίπτωσης Ευαγγελίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι. Ενότητα 2: Μοντελο Συσχετίσεων Οντοτήτων, Μελέτη Περίπτωσης: Η βάση δεδομένων των CD
Ενότητα 2: Μοντελο Συσχετίσεων Οντοτήτων, Μελέτη Περίπτωσης: Η βάση δεδομένων των CD Ευαγγελίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Βάσεις Δεδομένων Ι. Παραδείγματα. Γεώργιος Ευαγγελίδης, Καθηγητής Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα # 4: Σχεσιακή Άλγεβρα Παραδείγματα Γεώργιος Ευαγγελίδης, Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που
ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι. Ενότητα 7β: SQL (Πρακτική Εξάσκηση 1) Ευαγγελίδης Γεώργιος. Τμήμα Εφαρμοσμένης Πληροφορικής ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι
Ενότητα 7β: SQL (Πρακτική Εξάσκηση 1) Ευαγγελίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε
Βάσεις Δεδομένων. Ενότητα 5: ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ. Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών
Βάσεις Δεδομένων Ενότητα 5: ΚΑΝΟΝΙΚΟΠΟΙΗΣΗ ΒΑΣΗΣ ΔΕΔΟΜΕΝΩΝ Πασχαλίδης Δημοσθένης Τμήμα Ιερατικών σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι. Ενότητα 7α: SQL (NULL, Διαίρεση) Ευαγγελίδης Γεώργιος. Τμήμα Εφαρμοσμένης Πληροφορικής ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι
Ενότητα 7α: SQL (NULL, Διαίρεση) Ευαγγελίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου
ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι. Ενότητα 9α: Περιορισμοί (Constraints) Εναύσματα (Triggers) Ευαγγελίδης Γεώργιος Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 9α: Περιορισμοί (Constraints) Εναύσματα (Triggers) Ευαγγελίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι. Ενότητα 5: SQL (Απλή SELECT) Ευαγγελίδης Γεώργιος. Τμήμα Εφαρμοσμένης Πληροφορικής ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι
Ενότητα 5: SQL (Απλή SELECT) Ευαγγελίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου
Κανονικοποίηση για Σχεσιακές Βάσεις Δεδομένων Αντζουλάτος Γεράσιμος antzoulatos@upatras.gr Τμήμα Εφαρμογών Πληροφορικής στην Διοίκηση και Οικονομία ΤΕΙ Πατρών - Παράρτημα Αμαλιάδας 06 Δεκεμβρίου 2012 Περιεχομενα
Μοντελοποίηση Λογικών Κυκλωμάτων
Μοντελοποίηση Λογικών Κυκλωμάτων Ενότητα 7: Η γλώσσα VHDL, Μοντελοποίηση, διαχείριση χρόνου Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Αρχεία και Βάσεις Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 14η: Κανονικές Μορφές Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Κανονικές Μορφές (Normal Forms) Παρέχουν ένα τυπικό πλαίσιο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Συστήματα Αυτομάτου Ελέγχου. Ενότητα Α: Γραμμικά Συστήματα
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου Ενότητα Α: Γραμμικά Συστήματα Όνομα Καθηγητή: Ραγκούση Μαρία Τμήμα: Ηλεκτρονικών Μηχανικών Τ.Ε. Άδειες
ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι. Ενότητα 8: SQL (Πρακτική Εξάσκηση 2) Ευαγγελίδης Γεώργιος. Τμήμα Εφαρμοσμένης Πληροφορικής ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι
Ενότητα 8: SQL (Πρακτική Εξάσκηση 2) Ευαγγελίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου
ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ
Ε.Μ.Π. ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙΧΜΗΣ ΠΕΡΙΟΧΗ ΟΙΚΟΔΟΜΙΚΗΣ ntua ACADEMIC OPEN COURSES ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ ΤΗΣ ΟΙΚΟΔΟΜΙΚΗΣ II Β. ΤΣΟΥΡΑΣ Επίκουρος Καθηγητής Άδεια
Σχεδίαση Β.Δ. (Database Design)
Σχεδίαση Β.Δ. (Database Design) Η σχεδίαση ενός σχήματος μιας Β.Δ. βασίζεται σε μεγάλο βαθμό στη διαίσθηση του σχεδιαστή σχετικά με τον κόσμο που θέλει να αναπαραστήσει. Η εννοιολογική σχεδίαση υπαρκτών
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 4: Μετασχηματισμοί Ισοδυναμίας Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Αρχεία και Βάσεις Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 12η: Συναρτησιακές Εξαρτήσεις - Αξιώματα Armstrong Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Συναρτησιακές Εξαρτήσεις
Θεωρία Κανονικοποίησης
Θεωρία Κανονικοποίησης Πρώτη Κανονική Μορφή (1NF) Αποσύνθεση Συναρτησιακές Εξαρτήσεις Δεύτερη (2NF) και Τρίτη Κανονική Μορφή (3NF) Boyce Codd Κανονική Μορφή (BCNF) Καθολική Διαδικασία Σχεδίασης ΒΔ Βασική
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 10: Αριθμητική υπολοίπων - Κυκλικές ομάδες: Διαιρετότητα - Ευκλείδειος αλγόριθμος - Κατάλοιπα Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 11: Επιλογή μεταβλητών στην παλινδρόμηση Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Λογιστικές Εφαρμογές Εργαστήριο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Λογιστικές Εφαρμογές Εργαστήριο Ενότητα #7: Αναλυτικό Ημερολόγιο Διαφόρων Πράξεων Μαρία Ροδοσθένους Τμήμα Λογιστικής και Χρηματοοικονομικής
Λογική. Δημήτρης Πλεξουσάκης. Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση
Λογική Δημήτρης Πλεξουσάκης Ασκήσεις 2ου Φροντιστηρίου: Προτασιακός Λογισμός: Κανονικές Μορφές, Απλός Αλγόριθμος Μετατροπής σε CNF/DNF, Άρνηση Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης a. Το παρόν εκπαιδευτικό
Μαθηματικά. Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 6: Ασκήσεις Ορίων Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Κανονικές Μορφές. Τι συμβαίνει με το (πρωτεύον) κλειδί και τις συναρτησιακές εξαρτήσεις; Παράδειγμα 1. Παράδειγμα 2
Κανονικές Μορφές: Εισαγωγή Κανονικές Μορφές Στόχος: οσμένου ενός σχήματος, αν είναι «καλό» ή χρειάζεται περαιτέρω διάσπαση. Πως; Κανονικές μορφές. Ξέρουμε ότι αν ένα σχήμα είναι σε κάποια Κανονική Μορφή
Συναρτησιακές Εξαρτήσεις και Κανονικοποίηση
Συναρτησιακές Εξαρτήσεις και Κανονικοποίηση Κανονικές Μορφές - Πρώτη κανονική μορφή (1NF) - Δεύτερη κανονική μορφή (2NF) - Τρίτη κανονική μορφή (3NF) 1 Κανονικοποίηση Κανονικές Μορφές Οι σχέσεις μπορούν
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 13: Ελαχιστοποίηση αυτομάτων Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που
antzoulatos@upatras.gr
Κανονικοποίηση για Σχεσιακές Βάσεις Δεδομένων Αντζουλάτος Γεράσιμος antzoulatos@upatras.gr Τμήμα Εφαρμογών Πληροφορικής στην Διοίκηση και Οικονομία ΤΕΙ Πατρών - Παράρτημα Αμαλιάδας 10 Ιανουαρίου 2013 Περιεχομενα
καλών σχεσιακών σχημάτων
Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Λογικός Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης (γενική μεθοδολογία) Επιθυμητές Ιδιότητες της Αποσύνθεσης Συνένωση Άνευ
Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ᄃ Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF Ασκήσεις Ενότητας: Πομποδέκτες, Μείκτες, Ενισχυτές Στυλιανός Μυτιληναίος Τμήμα Ηλεκτρονικής,
Θεωρία Πιθανοτήτων & Στατιστική
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ & Στατιστική Ενότητα η : Τυχαίες Μεταβλητές, Συναρτήσεις Κατανομής Πιθανότητας. Γεώργιος Ζιούτας Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών
Κανονικές Μορφές 8ο Φροντιστήριο. Βάρσος Κωνσταντίνος
ΗΥ-360 Αρχεια και Βασεις εδοµενων, Τµηµα Επιστηµης Υπολογιστων, Πανεπιστηµιο Κρητης Κανονικές Μορφές Βάρσος Κωνσταντίνος 30 Νοεµβρίου 2017 Κανονικοποίηση Ορισµός 1. Κανονικοποίηση είναι µια διαδικασία
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Θεωρία Υπολογισμού Ενότητα 18: Λήμμα Άντλησης για ΓΧΣ Τμήμα Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που
ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι. Ενότητα 1: Ορισμοί βασικών εννοιών: Μια πρώτη μοντελοποίηση. Ευαγγελίδης Γεώργιος Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 1: Ορισμοί βασικών εννοιών: Μια πρώτη μοντελοποίηση Ευαγγελίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Κανονικές Μορφές. Βάσεις Δεδομένων : Κανονικές Μορφές. ηλαδή, i = 1,.., n R i R. Σύντομη επανάληψη αποσύνθεσης.
Κανονικές Μορφές Σύντομη επανάληψη αποσύνθεσης Βάσεις Δεδομένων 2008-2009 Ευαγγελία Πιτουρά 1 Βάσεις Δεδομένων 2008-2009 Ευαγγελία Πιτουρά 2 Αλγόριθμος Σχεδιασμού Αλγόριθμος Σχεδιασμού Ένας γενικός (θεωρητικός)
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
καλών σχεσιακών σχημάτων
Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Λογικός Σχεδιασμός Σχεσιακών Σχημάτων Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης (γενική μεθοδολογία) Επιθυμητές Ιδιότητες
ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι. Ενότητα 6: SQL (Συζεύξεις, Εμφώλευση, Ομαδοποίηση) Ευαγγελίδης Γεώργιος. Τμήμα Εφαρμοσμένης Πληροφορικής ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι
Ενότητα 6: SQL (Συζεύξεις, Εμφώλευση, Ομαδοποίηση) Ευαγγελίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 8: Πιθανότητες ΙΙ Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ ΧΡΗΣΗΣ Το
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 8. Κανονικοποίηση Σχεδιασμός Βάσεων Δεδομένων Χρήστος Δουλκερίδης 2017-18 Θεµατολογία Διάλεξης Σχεδιασμός
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Κανονικές Μορφές. Συνενώσεις Άνευ Απωλειών. Προσοχή με τις τιμές null στην αποσύνθεση
Κανονικές Μορφές Βάσεις Δεδομένων 2009-2010 Ευαγγελία Πιτουρά 1 Συνενώσεις Άνευ Απωλειών Προσοχή με τις τιμές null στην αποσύνθεση Αιωρούμενες πλειάδες (dangling tuples) Παράδειγμα: Εργαζόμενος - Τμήμα
Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Θερμοδυναμική - Εργαστήριο
Θερμοδυναμική - Εργαστήριο Ενότητα 3: Σφάλμα - Προσέγγιση - Στρογγυλοποίηση Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Βάσεις δεδομένων. (9 ο μάθημα) Ηρακλής Βαρλάμης
Βάσεις δεδομένων (9 ο μάθημα) Ηρακλής Βαρλάμης varlamis@hua.gr Περιεχόμενα Βελτίωση σχεδιασμού Αποσύνθεση σχέσης Συναρτησιακές εξαρτήσεις Θεωρία κανονικών μορφών 1 η NF 2 η NF 3 η NF 2 Βελτίωση σχεδιασμού
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 4.1: Μεθοδολογία Παράστασης Τομών Επιφανειών Στερεών Σωμάτων (Συμπαγών και μη Συμπαγών) Σταματίνα Γ. Μαλικούτη
Ιστορία της μετάφρασης
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Υπολογιστικά & Διακριτά Μαθηματικά
Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 1: Εισαγωγή- Χαρακτηριστικά Παραδείγματα Αλγορίθμων Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών
Οικονομετρία Εξειδίκευση του υποδείγματος Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών Τμήμα: Αγροτικής Οικονομίας & Ανάπτυξης Διδάσκων: Λαζαρίδης Παναγιώτης Μαθησιακοί Στόχοι
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Πληροφοριακά Συστήματα & Περιβάλλον Ασκήσεις
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πληροφοριακά Συστήματα & Περιβάλλον Ασκήσεις Παναγιώτης Λεφάκης και Ζαχαρούλα Ανδρεοπούλου Τμήμα Α.Π.Θ. Θεσσαλονίκη, Οκτώβριος 2013 Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Τεχνικό Σχέδιο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνικό Σχέδιο Ενότητα 4.2: Μεθοδολογία Παράστασης Τομών Επιφανειών Στερεών Σωμάτων (Συμπαγών και μη Συμπαγών) Σταματίνα Γ. Μαλικούτη
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 19: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Φροντιστήριο 6: Προτασιακός Λογισμός: Μέθοδος Επίλυσης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και
Lecture 23: Functional Dependencies and Normalization
Department of Computer Science University of Cyprus EPL342 Databases Lecture 23: Functional Dependencies and Normalization Normalization and Normal Forms (Chapter 10.3-10.4, Elmasri-Navathe 5ED) ιδάσκων:
Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ Ι Ενότητα 3:
Ενότητα 3: Σχεσιακό Μοντέλο. Από το ιδεατό στο λογικό (σχεσιακό) μοντέλο. Από το λογικό στο φυσικό (SQL) μοντέλο Ευαγγελίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία
Παιδαγωγικό Τμήμα Νηπιαγωγών Νέες Τεχνολογίες και Καλλιτεχνική Δημιουργία Ενότητα # 9: Ψηφιακός Ήχος - Audacity Θαρρενός Μπράτιτσης Παιδαγωγικό Τμήμα Νηπιαγωγών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 8β: Ταξινόμηση-Ταξινόμηση του Shell Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Μαθηματικά. Ενότητα 12: Ακρότατα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 12: Ακρότατα Συνάρτησης Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Οργανωσιακή Συμπεριφορά Ενότητα 1: Η έννοια της οργάνωσης και διοίκησης
Οργανωσιακή Συμπεριφορά Ενότητα 1: Η έννοια της οργάνωσης και διοίκησης Δρ. Σερδάρης Παναγιώτης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Λογική. Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Φροντιστήριο 3: Συνεπαγωγή/Ισοδυναμία, Ταυτολογίες/Αντινομίες, Πλήρης Αλγόριθμος Μετατροπής σε CNF Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες
Διαφωτισμός και διαμόρφωση των πολιτικών ιδεολογιών στην Ελλάδα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διαφωτισμός και διαμόρφωση των πολιτικών ιδεολογιών στην Ελλάδα Ενότητα 4: Εθνικισμός στα Βαλκάνια Σπύρος Μαρκέτος Άδειες Χρήσης Το παρόν
Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων
Εισαγωγή Θα εξετάσουµε πότε ένα σχεσιακό σχήµα για µια βάση δεδοµένων είναι «καλό» Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης Επιθυµητές Ιδιότητες της Αποσύνθεσης Συνένωση
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Κανονικοποίηση και Συναρτησιακές Εξαρτήσεις ΙII Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Εισαγωγή στις έννοιες: Κανονικοποιήση (Normalization) και Κανονικές Μορφές (Normal
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 5: Αρχή Εγκλεισμού - Αποκλεισμού Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 18: Επίλυση Γενικών Γραμμικών Προβλημάτων Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
Τίτλος Μαθήματος: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 5: Ασκήσεις Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Θερμοδυναμική - Εργαστήριο
Θερμοδυναμική - Εργαστήριο Ενότητα 2: Εισαγωγή σε έννοιες προγραμματισμού με υπολογιστή Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ Ενότητα # 3: Αριθμητικά Περιγραφικά Μέτρα Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής ΑΔΕΙΕΣ
ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών
ΤΕΧΝΟΛΟΓΙΑ, ΚΑΙΝΟΤΟΜΙΑ ΚΑΙ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΤΗΤΑ 9 Ο εξάμηνο Χημικών Μηχανικών Γιώργος Μαυρωτάς, Αν.Καθηγητής ΕΜΠ mavrotas@chemeng.ntua.gr ΑΝΑΛΥΣΗ ΕΥΑΙΣΘΗΣΙΑΣ ΑΝΑΛΥΣΗ ΡΙΣΚΟΥ Άδεια Χρήσης Το παρόν εκπαιδευτικό
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος
ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΔΙΚΤΥΑ ΥΨΗΛΩΝ ΣΥΧΝΟΤΗΤΩΝ (Θ) Ενότητα 3: Μικροκυματικές Διατάξεις ΔΙΔΑΣΚΩΝ: Δρ. Στυλιανός Τσίτσος ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ. Ενότητα 9: Προτασιακή λογική. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 9: Προτασιακή λογική Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου
Μαθηματικά. Ενότητα 9: Όριο Συνάρτησης στο Διηνεκές. Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής
Μαθηματικά Ενότητα 9: Όριο Συνάρτησης στο Διηνεκές Σαριαννίδης Νικόλαος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Μάθηση σε νέα τεχνολογικά περιβάλλοντα
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μάθηση σε νέα τεχνολογικά περιβάλλοντα Ενότητα 10: Θεωρία Συνδεσιασμού Βασιλική Μητροπούλου-Μούρκα Άδειες Χρήσης Το παρόν εκπαιδευτικό
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ. Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια. Ρεφανίδης Ιωάννης Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 9: Απείρως επαναλαμβανόμενα παίγνια Ρεφανίδης Ιωάννης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra
Εισαγωγή στους Αλγορίθμους Ενότητα 1η Άσκηση Αλγόριθμος Dijkra Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upara.gr Άδειες Χρήσης Το παρόν
Κανονικοποίηση Σχεδιασμός Βάσεων Δεδομένων Μαρία Χαλκίδη
Κανονικοποίηση Σχεδιασμός Βάσεων Δεδομένων Μαρία Χαλκίδη 1 Κανονικές Μορφές: Εισαγωγή Στόχος: Δεδομένου ενός σχήματος, ελέγχουμε εάν είναι «καλός» σχεδιασμός ή χρειάζεται περαιτέρω διάσπαση. Ξέρουμε ότι
Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας Ενότητα 7η: Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Κανονικές Μορφές. Αποσύνθεση (decomposition)
Σχεδιασµός Σχεσιακών Σχηµάτων Κανονικές Μορφές Γενικές Οδηγίες Η Μέθοδος της Αποσύνθεσης Επιθυµητές Ιδιότητες της Αποσύνθεσης Συνένωση Άνευ Απωλειών ιατήρηση Εξαρτήσεων Αποφυγή Επανάληψης Πληροφορίας 1
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ
ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΜΕ ΧΡΗΣΗ Η/Υ Ενότητα 7: Έλεγχοι σημαντικότητας πολλών ανεξάρτητων δειγμάτων Κωνσταντίνος Ζαφειρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Κανονικοποίηση Σχήµατος. Βάσεις εδοµένων Ευαγγελία Πιτουρά 1
Κανονικοποίηση Σχήµατος Ευαγγελία Πιτουρά 1 Λογικός Σχεδιασµός Σχεσιακών Σχηµάτων - Αποσύνθεση (διάσπαση) καθολικού σχήµατος Επιθυµητές ιδιότητες - διατήρηση εξαρτήσεων (F + = F + ) - όχι απώλειες στη
Λογικός Σχεδιασμός Σχεσιακών Σχημάτων: Αποσύνθεση
Λογικός Σχεδιασμός Σχεσιακών Σχημάτων: Αποσύνθεση Βάσεις Δεδομένων 2010-2011 Ευαγγελία Πιτουρά 1 Εισαγωγή Θα εξετάσουμε πότε ένα σχεσιακό σχήμα για μια βάση δεδομένων είναι «καλό» Γενικές Οδηγίες Η Μέθοδος
ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ
ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ Ενότητα 11: «Ασκήσεις 1» ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ Τμήμα ΛΟΓΙΣΤΙΚΗΣ ΚΑΙ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών
Λογική Δημήτρης Πλεξουσάκης Ασκήσεις στον Κατηγορηματικό Λογισμό Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons και ειδικότερα Αναφορά
Οικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης Γιώργος Τσουρβάκας, Αναπληρωτής Καθηγητής Τμήμα Δημοσιογραφίας και ΜΜΕ Σχολή
Κανονικοποίηση. Σημασιολογία Γνωρισμάτων. Άτυπες Οδηγίες. Παράδειγμα. Αξιολόγηση Σχεσιακών Σχημάτων ΒΔ. Περιττές Τιμές και Ανωμαλίες Ενημέρωσης
Αξιολόγηση Σχεσιακών Σχημάτων ΒΔ Κανονικοποίηση Παύλος Εφραιμίδης Βάσεις Δεδομένων Κανονικοποίηση 1 Πως μπορούμε να κρίνουμε εάν ένα Σχεσιακό Σχήμα είναι καλό ή αποδοτικό ή αν έχει λάθη; Σε γενικές γραμμές
Αυτοματοποιημένη χαρτογραφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Αυτοματοποιημένη χαρτογραφία Ενότητα # 6: Μοντέλα Χαρτογραφικών Βάσεων Μέρος 1 ο Ιωάννης Γ. Παρασχάκης Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών
Διαχείριση Χρόνου & Δίκτυα στη Διοίκηση Έργων. Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ
Διαχείριση Χρόνου & Δίκτυα στη Διοίκηση Έργων Κηρυττόπουλος Κωνσταντίνος Επ. Καθηγητής ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,
Εργαστήριο Χημείας Ενώσεων Συναρμογής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εργαστήριο Χημείας Ενώσεων Συναρμογής Ενότητα 9: Μέτρηση Αγωγιμότητας Διαλυμάτων Περικλής Ακρίβος Άδειες Χρήσης Το παρόν εκπαιδευτικό
Μάρκετινγκ Αγροτικών Προϊόντων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μάρκετινγκ Αγροτικών Προϊόντων Ενότητα 4 η : Οι Παραγωγοί Αγροτικών Προϊόντων Χρίστος Καμενίδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Ανάλυση ευαισθησίας Ανάλυση ρίσκου. Μαυρωτά Γιώργου Αναπλ. Καθηγητή ΕΜΠ
Ανάλυση ευαισθησίας Ανάλυση ρίσκου Μαυρωτά Γιώργου Αναπλ. Καθηγητή ΕΜΠ Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Εκκλησιαστικό Δίκαιο
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 11η: Οργανισμοί της Εκκλησίας της Ελλάδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Υδραυλικά & Πνευματικά ΣΑΕ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Υδραυλικά & Πνευματικά ΣΑΕ Ενότητα # 6: Υδραυλικά Κυκλώματα Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό