arxiv: v1 [physics.atom-ph] 21 Jul 2015
|
|
- Θεοφιλά Δεσποτόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 CODATA Recommended Values of the Fundamental Physical Constants: 2014 Peter J. Mohr, David B. Newell, Barry N. Taylor National Institute of Standards and Technology, Gaithersburg, Maryland , USA (Dated: July 30, 2015) arxiv: v1 [physics.atom-ph] 21 Jul 2015 This document gives the 2014 self-consistent set of values of the constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA). These values are based on a least-squares adjustment that takes into account all data available up to 31 December The recommended values may also be found at physics.nist.gov/constants. This report was prepared by the authors under the auspices of the CODATA Task Group on Fundamental Constants. The members of the task group are: F. Cabiati, Istituto Nazionale di Ricerca Metrologica, Italy J. Fischer, Physikalisch-Technische Bundesanstalt, Germany J. Flowers (deceased), National Physical Laboratory, United Kingdom K. Fujii, National Metrology Institute of Japan, Japan S. G. Karshenboim, Pulkovo Observatory, Russian Federation E. de Mirandés, Bureau international des poids et mesures P. J. Mohr, National Institute of Standards and Technology, United States of America D. B. Newell, National Institute of Standards and Technology, United States of America F. Nez, Laboratoire Kastler-Brossel, France K. Pachucki, University of Warsaw, Poland T. J. Quinn, Bureau international des poids et mesures C. Thomas, Bureau international des poids et mesures B. N. Taylor, National Institute of Standards and Technology, United States of America B. M. Wood, National Research Council, Canada Z. Zhang, National Institute of Metrology, China (People s Republic of) Electronic address: mohr@nist.gov Electronic address: dnewell@nist.gov Electronic address: barry.taylor@nist.gov
2 2 TABLE I An abbreviated list of the CODATA recommended values of the fundamental constants of physics and chemistry based on the 2014 adjustment. speed of light in vacuum c,c m s 1 exact magnetic constant µ 0 4π 10 7 N A 2 = N A 2 exact electric constant 1/µ 0c 2 ǫ F m 1 exact Newtonian constant of gravitation G (31) m 3 kg 1 s Planck constant h (81) J s h/2π h (13) J s elementary charge e (98) C magnetic flux quantum h/2e Φ (13) Wb conductance quantum 2e 2 /h G (18) 10 5 S electron mass m e (11) kg proton mass m p (21) kg proton-electron mass ratio m p/m e (17) fine-structure constant e 2 /4πǫ 0 hc α (17) inverse fine-structure constant α (31) Rydberg constant α 2 m ec/2h R (65) m Avogadro constant N A,L (74) mol Faraday constant N Ae F (59) C mol molar gas constant R (48) J mol 1 K Boltzmann constant R/N A k (79) J K Stefan-Boltzmann constant (π 2 /60)k 4 / h 3 c 2 σ (13) 10 8 W m 2 K Non-SI units accepted for use with the SI electron volt (e/c) J ev (98) J (unified) atomic mass unit 1 12 m(12 C) u (20) kg
3 3 TABLE II: The CODATA recommended values of the fundamental constants of physics and chemistry based on the 2014 adjustment. UNIVERSAL speed of light in vacuum c,c m s 1 exact magnetic constant µ 0 4π 10 7 N A 2 = N A 2 exact electric constant 1/µ 0c 2 ǫ F m 1 exact characteristic impedance of vacuum µ 0c Z Ω exact Newtonian constant of gravitation G (31) m 3 kg 1 s G/ hc (31) (GeV/c 2 ) Planck constant h (81) J s (25) ev s h/2π h (13) J s (40) ev s hc (12) MeV fm Planck mass ( hc/g) 1/2 m P (51) 10 8 kg energy equivalent m Pc (29) GeV Planck temperature ( hc 5 /G) 1/2 /k T P (33) K Planck length h/m Pc = ( hg/c 3 ) 1/2 l P (38) m Planck time l P/c = ( hg/c 5 ) 1/2 t P (13) s ELECTROMAGNETIC elementary charge e (98) C e/h (15) A J magnetic flux quantum h/2e Φ (13) Wb conductance quantum 2e 2 /h G (18) 10 5 S inverse of conductance quantum G (29) Ω Josephson constant 1 2e/h K J (30) 10 9 Hz V von Klitzing constant 2 h/e 2 = µ 0c/2α R K (59) Ω Bohr magneton e h/2m e µ B (57) J T (26) 10 5 ev T µ B/h (86) 10 9 Hz T µ B/hc (29) m 1 T µ B/k (39) K T nuclear magneton e h/2m p µ N (31) J T (15) 10 8 ev T µ N/h (47) MHz T µ N/hc (16) 10 2 m 1 T µ N/k (21) 10 4 K T ATOMIC AND NUCLEAR General fine-structure constant e 2 /4πǫ 0 hc α (17) inverse fine-structure constant α (31) Rydberg constant α 2 m ec/2h R (65) m R c (19) Hz R hc (27) J (84) ev Bohr radius α/4πr = 4πǫ 0 h 2 /m ee 2 a (12) m Hartree energy e 2 /4πǫ 0a 0 = 2R hc = α 2 m ec 2 E h (54) J (17) ev quantum of circulation h/2m e (17) 10 4 m 2 s h/m e (33) 10 4 m 2 s Electroweak 1 See Table IV for the conventional value adopted internationally for realizing representations of the volt using the Josephson effect. 2 See Table IV for the conventional value adopted internationally for realizing representations of the ohm using the quantum Hall effect.
4 4 TABLE II: (Continued). Fermi coupling constant 3 G F/( hc) (6) 10 5 GeV weak mixing angle 4 θ W (on-shell scheme) sin 2 θ W = s 2 W 1 (m W/m Z) 2 sin 2 θ W (21) Electron, e electron mass m e (11) kg (16) 10 4 u energy equivalent m ec (10) J (31) MeV electron-muon mass ratio m e/m µ (11) electron-tau mass ratio m e/m τ (26) electron-proton mass ratio m e/m p (52) electron-neutron mass ratio m e/m n (27) electron-deuteron mass ratio m e/m d (96) electron-triton mass ratio m e/m t (84) electron-helion mass ratio m e/m h (88) electron to alpha particle mass ratio m e/m α (45) electron charge to mass quotient e/m e (11) C kg electron molar mass N Am e M(e),M e (16) 10 7 kg mol Compton wavelength h/m ec λ C (11) m λ C/2π = αa 0 = α 2 /4πR λ C (18) m classical electron radius α 2 a 0 r e (19) m Thomson cross section (8π/3)re 2 σ e (91) m electron magnetic moment µ e (57) J T to Bohr magneton ratio µ e/µ B (26) to nuclear magneton ratio µ e/µ N (17) electron magnetic moment anomaly µ e /µ B 1 a e (26) electron g-factor 2(1+a e) g e (52) electron-muon magnetic moment ratio µ e/µ µ (46) electron-proton magnetic moment ratio µ e/µ p (20) electron to shielded proton magnetic moment ratio (H 2O, sphere, 25 C) µ e/µ p (72) electron-neutron magnetic moment ratio µ e/µ n (23) electron-deuteron magnetic moment ratio µ e/µ d (12) electron to shielded helion magnetic moment ratio (gas, sphere, 25 C) µ e/µ h (10) electron gyromagnetic ratio 2 µ e / h γ e (11) s 1 T γ e/2π (17) MHz T Muon, µ muon mass m µ (48) kg (25) u energy equivalent m µc (43) J (24) MeV muon-electron mass ratio m µ/m e (46) muon-tau mass ratio m µ/m τ (54) muon-proton mass ratio m µ/m p (25) muon-neutron mass ratio m µ/m n (25) muon molar mass N Am µ M(µ),M µ (25) 10 3 kg mol muon Compton wavelength h/m µc λ C,µ (26) m λ C,µ/2π λ C,µ (42) m Value recommended by the Particle Data Group (Olive et al., 2014). 4 Based on the ratio of the masses of the W and Z bosons m W /m Z recommended by the Particle Data Group (Olive et al., 2014). The value for sin 2 θ W they recommend, which is based on a particular variant of the modified minimal subtraction (MS) scheme, is sin 2ˆθ W (M Z ) = (5).
5 5 TABLE II: (Continued). muon magnetic moment µ µ (10) J T to Bohr magneton ratio µ µ/µ B (11) to nuclear magneton ratio µ µ/µ N (20) muon magnetic moment anomaly µ µ /(e h/2m µ) 1 a µ (63) muon g-factor 2(1+a µ) g µ (13) muon-proton magnetic moment ratio µ µ/µ p (71) Tau, τ tau mass 5 m τ (29) kg (17) u energy equivalent m τc (26) J (16) MeV tau-electron mass ratio m τ/m e (31) tau-muon mass ratio m τ/m µ (15) tau-proton mass ratio m τ/m p (17) tau-neutron mass ratio m τ/m n (17) tau molar mass N Am τ M(τ),M τ (17) 10 3 kg mol tau Compton wavelength h/m τc λ C,τ (63) m λ C,τ/2π λ C,τ (10) m Proton, p proton mass m p (21) kg (91) u energy equivalent m pc (18) J (58) MeV proton-electron mass ratio m p/m e (17) proton-muon mass ratio m p/m µ (20) proton-tau mass ratio m p/m τ (48) proton-neutron mass ratio m p/m n (51) proton charge to mass quotient e/m p (59) 10 7 C kg proton molar mass N Am p M(p), M p (91) 10 3 kg mol proton Compton wavelength h/m pc λ C,p (61) m λ C,p/2π λ C,p (97) m proton rms charge radius r p (61) m proton magnetic moment µ p (97) J T to Bohr magneton ratio µ p/µ B (46) to nuclear magneton ratio µ p/µ N (85) proton g-factor 2µ p/µ N g p (17) proton-neutron magnetic moment ratio µ p/µ n (34) shielded proton magnetic moment µ p (18) J T (H 2O, sphere, 25 C) to Bohr magneton ratio µ p/µ B (17) to nuclear magneton ratio µ p/µ N (30) proton magnetic shielding correction 1 µ p/µ p (H 2O, sphere, 25 C) σ p (11) proton gyromagnetic ratio 2µ p/ h γ p (18) 10 8 s 1 T γ p/2π (29) MHz T shielded proton gyromagnetic ratio 2µ p/ h (H 2O, sphere, 25 C) γ p (33) 10 8 s 1 T γ p/2π (53) MHz T Neutron, n neutron mass m n (21) kg (49) u This and all other values involving m τ are based on the value of mτc 2 in MeV recommended by the Particle Data Group (Olive et al., 2014).
6 6 TABLE II: (Continued). energy equivalent m nc (19) J (58) MeV neutron-electron mass ratio m n/m e (90) neutron-muon mass ratio m n/m µ (20) neutron-tau mass ratio m n/m τ (48) neutron-proton mass ratio m n/m p (51) neutron-proton mass difference m n m p (85) kg (51) u energy equivalent (m n m p)c (76) J (48) MeV neutron molar mass N Am n M(n),M n (49) 10 3 kg mol neutron Compton wavelength h/m nc λ C,n (88) m λ C,n/2π λ C,n (14) m neutron magnetic moment µ n (23) J T to Bohr magneton ratio µ n/µ B (25) to nuclear magneton ratio µ n/µ N (45) neutron g-factor 2µ n/µ N g n (90) neutron-electron magnetic moment ratio µ n/µ e (25) neutron-proton magnetic moment ratio µ n/µ p (16) neutron to shielded proton magnetic moment ratio (H 2O, sphere, 25 C) µ n/µ p (16) neutron gyromagnetic ratio 2 µ n / h γ n (43) 10 8 s 1 T γ n/2π (69) MHz T Deuteron, d deuteron mass m d (41) kg (40) u energy equivalent m d c (37) J (12) MeV deuteron-electron mass ratio m d /m e (13) deuteron-proton mass ratio m d /m p (19) deuteron molar mass N Am d M(d),M d (40) 10 3 kg mol deuteron rms charge radius r d (25) m deuteron magnetic moment µ d (36) J T to Bohr magneton ratio µ d /µ B (26) to nuclear magneton ratio µ d /µ N (48) deuteron g-factor µ d /µ N g d (48) deuteron-electron magnetic moment ratio µ d /µ e (26) deuteron-proton magnetic moment ratio µ d /µ p (15) deuteron-neutron magnetic moment ratio µ d /µ n (11) Triton, t triton mass m t (62) kg (11) u energy equivalent m tc (55) J (17) MeV triton-electron mass ratio m t/m e (26) triton-proton mass ratio m t/m p (22) triton molar mass N Am t M(t),M t (11) 10 3 kg mol triton magnetic moment µ t (12) J T to Bohr magneton ratio µ t/µ B (76) to nuclear magneton ratio µ t/µ N (14) triton g-factor 2µ t/µ N g t (28) Helion, h helion mass m h (62) kg (12) u energy equivalent m h c (55) J (17) MeV helion-electron mass ratio m h /m e (27)
7 7 TABLE II: (Continued). helion-proton mass ratio m h /m p (29) helion molar mass N Am h M(h),M h (12) 10 3 kg mol helion magnetic moment µ h (14) J T to Bohr magneton ratio µ h /µ B (14) to nuclear magneton ratio µ h /µ N (25) helion g-factor 2µ h /µ N g h (50) shielded helion magnetic moment µ h (14) J T (gas, sphere, 25 C) to Bohr magneton ratio µ h/µ B (14) to nuclear magneton ratio µ h/µ N (25) shielded helion to proton magnetic moment ratio (gas, sphere, 25 C) µ h/µ p (92) shielded helion to shielded proton magnetic moment ratio (gas/h 2O, spheres, 25 C) µ h/µ p (33) shielded helion gyromagnetic ratio 2 µ h / h (gas, sphere, 25 C) γ h (27) 10 8 s 1 T γ h/2π (43) MHz T Alpha particle, α alpha particle mass m α (82) kg (63) u energy equivalent m αc (73) J (23) MeV alpha particle to electron mass ratio m α/m e (24) alpha particle to proton mass ratio m α/m p (36) alpha particle molar mass N Am α M(α),M α (63) 10 3 kg mol PHYSICOCHEMICAL Avogadro constant N A,L (74) mol atomic mass constant m u = 1 12 m(12 C) = 1 u m u (20) kg energy equivalent m uc (18) J (57) MeV Faraday constant 6 N Ae F (59) C mol molar Planck constant N Ah (18) J s mol N Ahc (54) J m mol molar gas constant R (48) J mol 1 K Boltzmann constant R/N A k (79) J K (50) 10 5 ev K k/h (12) Hz K k/hc (40) m 1 K molar volume of ideal gas RT/p T = K, p = 100 kpa V m (13) 10 3 m 3 mol Loschmidt constant N A/V m n (15) m molar volume of ideal gas RT/p T = K, p = kpa V m (13) 10 3 m 3 mol Loschmidt constant N A/V m n (15) m Sackur-Tetrode (absolute entropy) constant ln[(2πmukt1/h2 ) 3/2 kt 1/p 0] T 1 = 1 K, p 0 = 100 kpa S 0/R (14) T 1 = 1 K, p 0 = kpa (14) Stefan-Boltzmann constant 6 The numerical value of F to be used in coulometric chemical measurements is (12) [ ] when the relevant current is measured in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the internationally adopted conventional values of the Josephson and von Klitzing constants K J 90 and R K 90 given in Table IV. 7 The entropy of an ideal monoatomic gas of relative atomic mass A r is given by S = S R lnar R ln(p/p 0)+ 5 2 R ln(t/k).
8 TABLE II: (Continued). (π 2 /60)k 4 / h 3 c 2 σ (13) 10 8 W m 2 K first radiation constant 2πhc 2 c (46) W m first radiation constant for spectral radiance 2hc 2 c 1L (15) W m 2 sr second radiation constant hc/k c (83) 10 2 m K Wien displacement law constants b = λ maxt = c 2/ b (17) 10 3 m K b = ν max/t = c/c 2 b (34) Hz K References Olive, K. A., et al., and Particle Data Center, 2014, Chin. Phys. C 38,
9 9 TABLE III The variances, covariances, and correlation coefficients of the values of a selected group of constants based on the 2014 CODATA adjustment. The numbers in bold above the main diagonal are times the numerical values of the relative covariances; the numbers in bold on the main diagonal are times the numerical values of the relative variances; and the numbers in italics below the main diagonal are the correlation coefficients. 1 α h e m e N A m e/m µ F α h e m e N A m e/m µ F The relative covariance is u r(x i,x j) = u(x i,x j)/(x ix j), where u(x i,x j) is the covariance of x i and x j; the relative variance is u 2 r(x i) = u r(x i,x i): and the correlation coefficient is r(x i,x j) = u(x i,x j)/[u(x i)u(x j)]. TABLE IV Internationally adopted values of various quantities. relative atomic mass 1 of 12 C A r( 12 C) 12 exact molar mass constant M u kg mol 1 exact molar mass of 12 C M( 12 C) kg mol 1 exact conventional value of Josephson constant 2 K J GHz V 1 exact conventional value of von Klitzing constant 3 R K Ω exact standard-state pressure 100 kpa exact standard atmosphere kpa exact 1 The relative atomic mass A r(x) of particle X with mass m(x) is defined by A r(x) = m(x)/m u, where m u = m( 12 C)/12 = M u/n A = 1 u is the atomic mass constant, M u is the molar mass constant, N A is the Avogadro constant, and u is the unified atomic mass unit. Thus the mass of particle X is m(x) = A r(x) u and the molar mass of X is M(X) = A r(x)m u. 2 This is the value adopted internationally for realizing representations of the volt using the Josephson effect. 3 This is the value adopted internationally for realizing representations of the ohm using the quantum Hall effect. TABLE V Values of some x-ray-related quantities based on the 2014 CODATA adjustment of the values of the constants. Cu x unit: λ(cukα 1)/ xu(cukα 1) (28) m Mo x unit: λ(mokα 1)/ xu(mokα 1) (53) m ångstrom star: λ(wkα 1)/ Å (90) m lattice parameter 1 of Si (in vacuum, 22.5 C) a (89) m {220} lattice spacing of Si a/ 8 d (32) m (in vacuum, 22.5 C) molar volume of Si M(Si)/ρ(Si) = N Aa 3 /8 V m(si) (61) 10 6 m 3 mol (in vacuum, 22.5 C) 1 This is the lattice parameter (unit cell edge length) of an ideal single crystal of naturally occurring Si free of impurities and imperfections, and is deduced from measurements on extremely pure and nearly perfect single crystals of Si by correcting for the effects of impurities.
10 10 TABLE VI The values in SI units of some non-si units based on the 2014 CODATA adjustment of the values of the constants. Non-SI units accepted for use with the SI electron volt: (e/c) J ev (98) J (unified) atomic mass unit: 12 m(12 C) u (20) kg Natural units (n.u.) n.u. of velocity c,c m s 1 exact n.u. of action: h/2π h (13) J s (40) ev s hc (12) MeV fm n.u. of mass m e (11) kg n.u. of energy m ec (10) J (31) MeV n.u. of momentum m ec (34) kg m s (31) MeV/c n.u. of length: h/m ec λ C (18) m n.u. of time h/m ec (58) s Atomic units (a.u.) a.u. of charge e (98) C a.u. of mass m e (11) kg a.u. of action: h/2π h (13) J s a.u. of length: Bohr radius (bohr) α/4πr a (12) m a.u. of energy: Hartree energy (hartree) e 2 /4πǫ 0a 0 = 2R hc = α 2 m ec 2 E h (54) J a.u. of time h/e h (14) s a.u. of force E h /a (10) 10 8 N a.u. of velocity: αc a 0E h / h (50) 10 6 m s a.u. of momentum h/a (24) kg m s a.u. of current ee h / h (41) 10 3 A a.u. of charge density e/a (67) C m a.u. of electric potential E h /e (17) V a.u. of electric field E h /ea (32) V m a.u. of electric field gradient E h /ea (60) V m a.u. of electric dipole moment ea (52) C m a.u. of electric quadrupole moment ea (28) C m a.u. of electric polarizability e 2 a 2 0/E h (11) C 2 m 2 J a.u. of 1 st hyperpolarizability e 3 a 3 0/Eh (20) C 3 m 3 J a.u. of 2 nd hyperpolarizability e 4 a 4 0/Eh (77) C 4 m 4 J a.u. of magnetic flux density h/ea (14) 10 5 T a.u. of magnetic dipole moment: 2µ B he/m e (11) J T a.u. of magnetizability e 2 a 2 0/m e (90) J T a.u. of permittivity: 10 7 /c 2 e 2 /a 0E h F m 1 exact
11 11 TABLE VII The values of some energy equivalents derived from the relations E = mc 2 = hc/λ = hν = kt, and based on the 2010 CODATA adjustment of the values of the constants; 1 ev = (e/c) J, 1 u = m u = 1 12 m(12 C) = 10 3 kg mol 1 /N A, and E h = 2R hc = α 2 m ec 2 is the Hartree energy (hartree). Relevant unit J kg m 1 Hz 1 J (1 J) = (1 J)/c 2 = (1 J)/hc = (1 J)/h = 1 J kg (62) m (19) Hz 1 kg (1 kg)c 2 = (1 kg) = (1 kg)c/h = (1 kg)c 2 /h = J 1 kg (56) m (17) Hz 1 m 1 (1 m 1 )hc = (1 m 1 )h/c = (1 m 1 ) = (1 m 1 )c = (24) J (27) kg 1 m Hz 1 Hz (1 Hz)h = (1 Hz)h/c 2 = (1 Hz)/c = (1 Hz) = (81) J (91) kg m 1 1 Hz 1 K (1 K)k = (1 K)k/c 2 = (1 K)k/hc = (1 K)k/h = (79) J (88) kg (40) m (12) Hz 1 ev (1 ev) = (1 ev)/c 2 = (1 ev)/hc = (1 ev)/h = (98) J (11) kg (50) 10 5 m (15) Hz 1 u (1 u)c 2 = (1 u) = (1 u)c/h = (1 u)c 2 /h = (18) J (20) kg (34) m (10) Hz 1 E h (1 E h ) = (1 E h )/c 2 = (1 E h )/hc = (1 E h )/h = (54) J (60) kg (13) 10 7 m (39) Hz TABLE VIII The values of some energy equivalents derived from the relations E = mc 2 = hc/λ = hν = kt, and based on the 2010 CODATA adjustment of the values of the constants; 1 ev = (e/c) J, 1 u = m u = 1 12 m(12 C) = 10 3 kg mol 1 /N A, and E h = 2R hc = α 2 m ec 2 is the Hartree energy (hartree). Relevant unit K ev u E h 1 J (1 J)/k = (1 J) = (1 J)/c 2 = (1 J) = (42) K (38) ev (82) 10 9 u (28) E h 1 kg (1 kg)c 2 /k = (1 kg)c 2 = (1 kg) = (1 kg)c 2 = (37) K (34) ev (74) u (25) E h 1 m 1 (1 m 1 )hc/k = (1 m 1 )hc = (1 m 1 )h/c = (1 m 1 )hc = (83) 10 2 K (76) 10 6 ev (61) u (27) 10 8 E h 1 Hz (1 Hz)h/k = (1 Hz)h = (1 Hz)h/c 2 = (1 Hz)h = (28) K (25) ev (20) u (90) E h 1 K (1 K) = (1 K)k = (1 K)k/c 2 = (1 K)k = 1 K (50) 10 5 ev (53) u (18) 10 6 E h 1 ev (1 ev)/k = (1 ev) = (1 ev)/c 2 = (1 ev) = (67) 10 4 K 1 ev (66) 10 9 u (23) 10 2 E h 1 u (1 u)c 2 /k = (1 u)c 2 = (1 u) = (1 u)c 2 = (62) K (57) 10 6 ev 1 u (16) 10 7 E h 1 E h (1 E h )/k = (1 E h ) = (1 E h )/c 2 = (1 E h ) = (18) 10 5 K (17) ev (13) 10 8 u 1 E h
Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r
UNIVERSAL speed of light in vacuum c, c 0 299 792 458 m s 1 exact magnetic constant µ 0 4π 10 7 N A 2 = 12.566 370 614... 10 7 N A 2 exact electric constant 1/µ 0 c 2 ɛ 0 8.854 187 817... 10 12 F m 1 exact
Διαβάστε περισσότεραFundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r
UNIVERSAL speed of light in vacuum c, c 0 299 792 458 m s 1 exact magnetic constant µ 0 4π 10 7 N A 2 = 12.566 370 614... 10 7 N A 2 exact electric constant 1/µ 0 c 2 ɛ 0 8.854 187 817... 10 12 F m 1 exact
Διαβάστε περισσότεραFundamental Physical Constants Complete Listing Relative std. Quantity Symbol Value Unit uncert. u r
UNIVERSAL speed of light in vacuum c, c 0 299 792 458 m s 1 (exact) magnetic constant µ 0 4π 10 7 NA 2 = 12.566 370614... 10 7 NA 2 (exact) electric constant 1/µ 0 c 2 ε 0 8.854 187 817... 10 12 Fm 1 (exact)
Διαβάστε περισσότεραSome Resources, Data Tables etc.
Some Resources, Data Tables etc. Primary SI Units Meter m Kilogram kg Second s Ampere A Kelvin K Mol mol Candela cd Newton N Farad F Joule J Coulomb C Tesla T Hertz Hz Watt W Prefixes for SI Units 10 10
Διαβάστε περισσότεραDuPont Suva 95 Refrigerant
Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Διαβάστε περισσότεραDuPont Suva 95 Refrigerant
Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Διαβάστε περισσότεραTechnical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]
d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic
Διαβάστε περισσότεραDuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG
Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Διαβάστε περισσότεραIV. ANHANG 179. Anhang 178
Anhang 178 IV. ANHANG 179 1. Röntgenstrukturanalysen (Tabellen) 179 1.1. Diastereomer A (Diplomarbeit) 179 1.2. Diastereomer B (Diplomarbeit) 186 1.3. Aldoladdukt 5A 193 1.4. Aldoladdukt 13A 200 1.5. Aldoladdukt
Διαβάστε περισσότεραAn experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 An experimental and theoretical study of the gas phase kinetics of atomic chlorine
Διαβάστε περισσότεραthe total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Διαβάστε περισσότεραMATSEC Intermediate Past Papers Index L. Bonello, A. Vella
2009 MATSEC Intermediate Past Papers Index Louisella Bonello Antonia Vella The Junior College Physics Department 2009 MATSEC INTERMEDIATE PAST PAPERS INDEX WITH ANSWERS TO NUMERICAL PROBLEMS by Louisella
Διαβάστε περισσότεραTHE UNIVERSITY OF MALTA MATSEC SUPPORT UNIT
THE UNIVERSITY OF MALTA MATSEC SUPPORT UNIT PHYSICS FORMULAE AND DATA BOOKLET This booklet is not to be removed from the examination room or marked in any way. THE UNIVERSITY OF MALTA MATSEC SUPPORT UNIT
Διαβάστε περισσότεραt H = sec Rg sv
t H.086 0 7 sec t H :.0867 0 7 sec Rg sv : t H c Ovde sam pokusao da pronadjem tacne cifre magicnih brojeva sa Vajnbergove skale.moja istrazivanja su dovela do zakljucka da su magicni brojevi samo koeficijenti
Διαβάστε περισσότερα[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
Διαβάστε περισσότεραΑπόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Διαβάστε περισσότερα38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4
Fig. A-1-1. Te(OH) NH H PO (NH ) HPO (TAAP). Projection of the crystal structure along the b direction [Ave]. 9 1. 7.5 ( a a )/ a [1 ] ( b b )/ b [1 ] 5..5 1.5 1 1.5 ( c c )/ c [1 ].5 1. 1.5. Angle β 1.
Διαβάστε περισσότεραWritten Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Διαβάστε περισσότεραof the methanol-dimethylamine complex
Electronic Supplementary Information for: Fundamental and overtone virational spectroscopy, enthalpy of hydrogen ond formation and equilirium constant determination of the methanol-dimethylamine complex
Διαβάστε περισσότεραJesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Διαβάστε περισσότεραAnswers to practice exercises
Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)
Διαβάστε περισσότεραAquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Διαβάστε περισσότεραX-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION
X-Y COUPLING GENERATION WITH AC/PULSED SEW QUADRUPOLE AND ITS APPLICATION # Takeshi Nakamura # Japan Synchrotron Radiation Research Institute / SPring-8 Abstract The new method of x-y coupling generation
Διαβάστε περισσότεραDong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample
Διαβάστε περισσότεραElectronic Supplementary Information
Electronic Supplementary Information The preferred all-gauche conformations in 3-fluoro-1,2-propanediol Laize A. F. Andrade, a Josué M. Silla, a Claudimar J. Duarte, b Roberto Rittner, b Matheus P. Freitas*,a
Διαβάστε περισσότεραSTEAM TABLES. Mollier Diagram
STEAM TABLES and Mollier Diagram (S.I. Units) dharm \M-therm\C-steam.pm5 CONTENTS Table No. Page No. 1. Saturated Water and Steam (Temperature) Tables I (ii) 2. Saturated Water and Steam (Pressure) Tables
Διαβάστε περισσότεραFused Bis-Benzothiadiazoles as Electron Acceptors
Fused Bis-Benzothiadiazoles as Electron Acceptors Debin Xia, a,b Xiao-Ye Wang, b Xin Guo, c Martin Baumgarten,*,b Mengmeng Li, b and Klaus Müllen*,b a MIIT Key Laboratory of ritical Materials Technology
Διαβάστε περισσότεραHydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles Sandeep Kumar,
Διαβάστε περισσότεραDipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides
Supplementary Material for Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides Christopher L. Moss, a Thomas W. Chung, a Jean A. Wyer, b Steen Brøndsted Nielsen,
Διαβάστε περισσότεραSupporting Information
Supporting Information Prediction of Novel High-Pressure Structures of Magnesium Niobium Dihydride Chuanzhao Zhang,,, Guoliang Sun, Jingjing Wang, Cheng Lu,*,, Yuanyuan Jin, Xiaoyu Kuang,*, and Andreas
Διαβάστε περισσότερα6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Διαβάστε περισσότεραCycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles
X-Ray crystallographic data tables for paper: Supplementary Material (ESI) for Organic & Biomolecular Chemistry Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically
Διαβάστε περισσότεραLIGHT UNFLAVORED MESONS (S = C = B = 0)
LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότεραHadronic Tau Decays at BaBar
Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton
Διαβάστε περισσότεραw o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Διαβάστε περισσότεραNuclear Physics 5. Name: Date: 8 (1)
Name: Date: Nuclear Physics 5. A sample of radioactive carbon-4 decays into a stable isotope of nitrogen. As the carbon-4 decays, the rate at which the amount of nitrogen is produced A. decreases linearly
Διαβάστε περισσότεραQuantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks
98 Scientific Note X : Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks Kimiko Seno and Yoichi Motoyoshi,**- +, +, ;,**. -,/ Abstract:
Διαβάστε περισσότεραElectronic Supplementary Information (ESI)
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Electronic Supplementary Information (ESI) Cyclopentadienyl iron dicarbonyl (CpFe(CO) 2 ) derivatives
Διαβάστε περισσότεραDERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Διαβάστε περισσότεραProblem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Διαβάστε περισσότεραSupporting Information
Supporting Information Aluminum Complexes of N 2 O 2 3 Formazanate Ligands Supported by Phosphine Oxide Donors Ryan R. Maar, Amir Rabiee Kenaree, Ruizhong Zhang, Yichen Tao, Benjamin D. Katzman, Viktor
Διαβάστε περισσότεραCHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Διαβάστε περισσότεραCalculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
Διαβάστε περισσότεραSupplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3
Supplementary Information Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3 Lewis Pairs: Structures of Intermediates, Kinetics, and Mechanism Qianyi Wang, Wuchao Zhao,
Διαβάστε περισσότεραEngineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design
Engineering Tunable Single and Dual Optical Emission from Ru(II)-Polypyridyl Complexes Through Excited State Design Supplementary Information Julia Romanova 1, Yousif Sadik 1, M. R. Ranga Prabhath 1,,
Διαβάστε περισσότεραDESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Διαβάστε περισσότεραMean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
Διαβάστε περισσότεραSupporting Information. Experimental section
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Experimental section General. Proton nuclear magnetic resonance ( 1
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότεραLecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
Διαβάστε περισσότεραΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση»
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Προστασία ηλεκτροδίων
Διαβάστε περισσότεραA facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes
Διαβάστε περισσότεραΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ
ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΜΖΜΑ
Διαβάστε περισσότερα5.7. TABLE OF PHYSICAL CHARACTERISTICS OF RADIONUCLIDES MENTIONED IN THE EUROPEAN PHARMACOPOEIA
01/2008:50700 5.7. TABLE OF PHYSICAL CHARACTERISTICS OF RADIONUCLIDES MENTIONED IN THE EUROPEAN PHARMACOPOEIA Thefollowingtableisgiventocompletethegeneral monograph Radiopharmaceutical preparations (0125).
Διαβάστε περισσότεραˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664
ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ 2017.. 48.. 5.. 653Ä664 ˆ Œ ˆ ˆ e + e K + K nπ (n =1, 2, 3) Š Œ ŠŒ -3 Š - ˆ Œ Š -2000 ƒ.. μéμ Î 1,2, μé ³ ±μ²² μ Í ŠŒ -3: A.. ß ±μ 1,2,. Œ. ʲÓÎ ±μ 1,2,.. ̳ ÉÏ 1,2,.. μ 1,.. ÏÉμ μ 1,.
Διαβάστε περισσότεραCite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts
/ / σ/σ σ/σ θ θ θ θ y 1 0.75 0.5 0.25 0 0 0.5 1 1.5 2 θ θ θ x θ θ Φ θ Φ θ Φ π θ /Φ γφ /θ σ θ π θ Φ θ θ Φ θ θ θ θ σ θ / Φ θ θ / Φ / θ / θ Normalized import share: (Xni / Xn) / (XII / XI) 1 0.1 0.01 0.001
Διαβάστε περισσότεραSupporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting information An unusual bifunctional Tb-MOF for highly sensing
Διαβάστε περισσότεραPETROSKILLS COPYRIGHT
Contents Specific Gravity... 2 Formation Volume Factor... 3 Compressibility Equation... 4 Pseudo-Reduced Variables... 5 Pseudo-Critical Variables... 6 SI Conversions... 6 Output... 6 Input... 6 Viscosity...
Διαβάστε περισσότεραFigure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.
Q1.(a) Figure 1 shows how the entropy of a molecular substance X varies with temperature. Figure 1 T / K (i) Explain, in terms of molecules, why the entropy is zero when the temperature is zero Kelvin.
Διαβάστε περισσότεραExercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Διαβάστε περισσότεραElectronic structure and spectroscopy of HBr and HBr +
Electronic structure and spectroscopy of HBr and HBr + Gabriel J. Vázquez 1 H. P. Liebermann 2 H. Lefebvre Brion 3 1 Universidad Nacional Autónoma de México Cuernavaca México 2 Universität Wuppertal Wuppertal
Διαβάστε περισσότεραΣχέση µεταξύ της Μεθόδου των ερµατοπτυχών και της Βιοηλεκτρικής Αντίστασης στον Υπολογισµό του Ποσοστού Σωµατικού Λίπους
Ερευνητική Aναζητήσεις στη Φυσική Αγωγή & τον Αθλητισµότόµος 1(3), 244 251 ηµοσιεύτηκε: 2 8 εκεµβρίου 2003 Inquiries in Sport & Physical Education Volume 1(3), 244 251 Released: December 28, 2003 www.hape.gr/emag.asp
Διαβάστε περισσότεραderivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Διαβάστε περισσότεραChapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Διαβάστε περισσότεραConstitutive Relations in Chiral Media
Constitutive Relations in Chiral Media Covariance and Chirality Coefficients in Biisotropic Materials Roger Scott Montana State University, Department of Physics March 2 nd, 2010 Optical Activity Polarization
Διαβάστε περισσότεραProblem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
Διαβάστε περισσότεραSi + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u
.6.5. y = -.4x +.8 R =.9574 y = - x +.14 R =.9788 y = -.4 x +.7 R =.9896 Si + Al Fe + Mn +Ni y =.55 x.36 R =.9988.149.148.147.146.145..88 core rim.144 4 =.6 ±.6 4 =.6 ±.18.84.88 p.f.u..86.76 y = -3.9 x
Διαβάστε περισσότεραNickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings
ickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings Braulio M. Puerta Lombardi, Rudy M. Braun, Chris Gendy, Chia Yun Chang,
Διαβάστε περισσότεραSupporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory
Supporting Information Dysiherbols A C and Dysideanone E, Cytotoxic and NF-κB Inhibitory Tetracyclic Meroterpenes from a Dysidea sp. Marine Sponge Wei-Hua Jiao,, Guo-Hua Shi,, Ting-Ting Xu,, Guo-Dong Chen,
Διαβάστε περισσότεραApproximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Διαβάστε περισσότεραSupporting Information
Supporting Information rigin of the Regio- and Stereoselectivity of Allylic Substitution of rganocopper Reagents Naohiko Yoshikai, Song-Lin Zhang, and Eiichi Nakamura* Department of Chemistry, The University
Διαβάστε περισσότεραSupporting Information
Supporting Information Vinylogous elimination/heck coupling/allylation domino reactions: access to 2- substituted 2,3-dihydrobenzofurans and indolines Jianguo Yang, *, Hanjie Mo, Xiuxiu Jin, Dongdong Cao,
Διαβάστε περισσότεραEnantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid
Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid Taotao Ling, a Chinmay Chowdhury, a Bryan A. Kramer, a Binh G. Vong, a Michael A. Palladino b and Emmanuel A. Theodorakis a
Διαβάστε περισσότεραΑξιολόγηση Ημιαγώγιμων Υμενίων Σεληνιούχου Καδμίου Σε Υπόστρωμα Νικελίου Για Φωτοβολταϊκές Εφαρμογές
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΛΙΚΩΝ Αξιολόγηση Ημιαγώγιμων Υμενίων Σεληνιούχου Καδμίου Σε Υπόστρωμα
Διαβάστε περισσότεραPHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h
PHOS π, ask PHOS π analysis, for production, R AA, and Flow analysis, Henrik Qvigstad henrik.qvigstad@fys.uio.no University of Oslo --5 PHOS π, ask ask he task we use, AliaskPiFlow was written prior, for
Διαβάστε περισσότεραMetal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting information for Metal-free Oxidative Coupling of Amines with Sodium Sulfinates:
Διαβάστε περισσότεραMath 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Διαβάστε περισσότεραLEPTONS. Mass m = ( ± ) 10 6 u Mass m = ± MeV me + m e
LEPTONS e J = 1 2 Mass m = (548.5799110 ± 0.0000012) 10 6 u Mass m = 0.510998902 ± 0.000000021 MeV me + m e /m < 8 10 9, CL = 90% qe + + q / e e < 4 10 8 Magnetic moment µ =1.001159652187 ± 0.000000000004
Διαβάστε περισσότερα(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
Διαβάστε περισσότεραPyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes
SUPPORTING INFORMATION Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes Eric J. Uzelac, Casey B. McCausland, and Seth C. Rasmussen*
Διαβάστε περισσότεραNotes on the Open Economy
Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.
Διαβάστε περισσότερα10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 Supporting information 10-π-electron arenes à la carte: Structure and Bonding of
Διαβάστε περισσότεραThree coupled amplitudes for the πη, K K and πη channels without data
Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status
Διαβάστε περισσότεραdifluoroboranyls derived from amides carrying donor group Supporting Information
The influence of the π-conjugated spacer on photophysical properties of difluoroboranyls derived from amides carrying donor group Supporting Information Anna Maria Grabarz a Adèle D. Laurent b, Beata Jędrzejewska
Διαβάστε περισσότεραEnantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2016 Enantioselective Organocatalytic Michael Addition of Isorhodanines to α,
Διαβάστε περισσότεραHeterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics
Supporting Information (SI) Heterobimetallic Pd-Sn Catalysis: Michael Addition Reaction with C-, N-, -, S- Nucleophiles and In-situ Diagnostics Debjit Das, a Sanjay Pratihar a,b and Sujit Roy c * a rganometallics
Διαβάστε περισσότεραCRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Διαβάστε περισσότεραP ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.
P3-2009-104.. ² ± μ ˆ ˆ Š Š ˆ œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008. ² ± μ.. ²μ μ ± μé±²μ μé ÓÕÉμ μ ±μ μ ±μ ÉÖ μé Ö μ³μðóõ É μ μ ³ ²ÒÌ Ô P3-2009-104 ÓÕÉμ
Διαβάστε περισσότεραAluminum Electrolytic Capacitors
Aluminum Electrolytic Capacitors Snap-In, Mini., 105 C, High Ripple APS TS-NH ECE-S (G) Series: TS-NH Features Long life: 105 C 2,000 hours; high ripple current handling ability Wide CV value range (47
Διαβάστε περισσότεραMath221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Διαβάστε περισσότεραCERN-ACC-SLIDES
CERN-ACC-SLIDES-2014-0002 13/05/2014 Francesco.Broggi@mi.infn.it Francesco.Broggi@cern.ch RESMM 14 Wroclaw May13 th 2014 Ti5 Nb 3 Sn cable SimpleGeo Plot 1.0x10 12 Activity Decay After Irradiation LHe
Διαβάστε περισσότεραNotations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation
Pi Notations Traditional name Π Traditional notation Π Mathematica StandardForm notation Pi Primary definition.3... Π Specific values.3.3.. Π 3.5965358979338663383795889769399375589795937866868998683853
Διαβάστε περισσότεραSection 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
Διαβάστε περισσότεραHigher Derivative Gravity Theories
Higher Derivative Gravity Theories Black Holes in AdS space-times James Mashiyane Supervisor: Prof Kevin Goldstein University of the Witwatersrand Second Mandelstam, 20 January 2018 James Mashiyane WITS)
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραSupporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supporting Information for A Combined Crossed Molecular Beams and ab Initio Investigation
Διαβάστε περισσότεραStrain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Διαβάστε περισσότεραElectronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates
Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates Zhong-Ling Lang, Guo-Chun Yang, Na-Na Ma, Shi-Zheng Wen,
Διαβάστε περισσότεραAppendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Διαβάστε περισσότερα