ΠΑΡΑΡΤΗΜΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ.
|
|
- Αελλαι Μάγκας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΑΡΑΡΤΗΜΑ Α ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ. Αρκετές φορές τα πειραματικά δεδομένα πρέπει να απεικονίζονται υπό μορφή γραφικών παραστάσεων σε ορθογώνιο σύστημα αξόνων καρτεσιανών συντεταγμένων. Με τις γραφικές παραστάσεις επιτυγχάνονται τα εξής: (1) Δημιουργία εικόνας για τη συνολική πορεία συμπεριφοράς του φαινομένου και της αλληλεξάρτησης των μεταβλητών του. () Γίνεται άμεση εκτίμηση της κλίμακας των αριθμητικών τιμών των μεγεθών που συμμετέχουν και (3) Διερευνάται η ύπαρξη κάποιας ένδειξης για τη μαθηματική σχέση που μπορεί να συνδέει τις μεταβλητές αυτές. Η πρώτη ενέργεια για τη δημιουργία μιας γραφικής παράστασης σε χιλιοστομετρικό χαρτί - είναι η κατάλληλη επιλογή της κλίμακας και των δυο αξόνων. Σημειώνεται ότι δεν είναι αναγκαίο η κλίμακα αυτή να είναι η ίδια για τον οριζόντιο και τον κατακόρυφο άξονα. Απεναντίας πολύ σπάνια είναι η περίπτωση όπου η ίδια κλίμακα και στους δυο άξονες δημιουργεί μία ικανοποιητική γραφική παράσταση. Κριτήριο για την επιλογή της κλίμακας σε κάθε άξονα είναι αφ' ενός μεν η διάσταση που επιθυμούμε να έχει το χιλιοστομετρικό χαρτί και αφ' ετέρου η μεταβολή του μεγέθους που απεικονίζεται στον συγκεκριμένο άξονα. Θα πρέπει η κλίμακα που επιλέγουμε για κάθε υποδιαίρεση του χιλιοστομετρικού χαρτιού, να είναι ίση ή ακέραιο πολλαπλάσιο των αριθμών, 5 ή 10. 'Έτσι γίνεται περισσότερο εύκολος ο προσδιορισμός σημείων που αντιστοιχούν σε ενδιάμεσες τιμές, όχι μόνο κατά τη δημιουργία της γραφικής παράστασης αλλά και κατά το στάδιο της μετέπειτα αξιοποίησής της. Θα πρέπει ακόμη οι άξονες να συμβολίζονται με το φυσικό μέγεθος που απεικονίζουν όπως επίσης και με την αντίστοιχη μονάδα μέτρησης. Τέλος, η κάθε γραφική παράσταση θα πρέπει να συμβολίζεται αξιοποιώντας τα καθιερωμένα σύμβολα των φυσικών μεγεθών και για τους δυο άξονες π.χ. u=f(t) ή s=f(t) Με δεδομένη τη διασπορά των πειραματικών σημείων, η πειραματική καμπύλη που θα χαραχθεί οφείλει να είναι όσο το δυνατόν πιο ομαλή. Σε περιπτώσεις όπου δεν επιδιώκεται μαθηματική ακρίβεια, η εκτίμηση για την καλύτερη καμπύλη καθορίζεται προσεγγιστικά με το μάτι ούτως ώστε τα πειραματικά σημεία να κατανέμονται ισόρροπα γύρω από τη χαραχθείσα καμπύλη. Αν τα πειραματικά σημεία φαίνεται να ανήκουν σε ευθεία γραμμή χαράσσουμε την ευθεία με τον χάρακα, ενώ αν η κατανομή τους συμφωνεί με καμπύλη, τότε χαράσσουμε την καμπύλη με καμπυλόγραμμο ή με ελεύθερο χέρι. Δεν θα πρέπει να ενώσουμε στη τύχη ή και διαδοχικά όλα τα πειραματικά σημεία. Καμπύλες, όπως του σχήματος 1α, δεν δίνουν σωστή πληροφορία για τα
2 μεταβαλλόμενα μεγέθη, ενώ η ομαλοποιημένη καμπύλη του σχήματος 1β, αν και δεν διέρχεται απ' όλα τα σημεία, εντούτοις περιγράφει ικανοποιητικότερα το φαινόμενο. Σχήμα 1 Αξίζει να σημειωθεί ότι τα σχήματα 1α και 1β αντιστοιχούν στην ίδια ακριβώς χωρική κατανομή πειραματικών σημείων. Στα σχήματα α και β απεικονίζεται η ίδια κατανομή πειραματικών σημείων με διαφορετική όμως χάραξη της πειραματικής ευθείας. Σχήμα Το σχήμα α χαρακτηρίστηκε λάθος, διότι η πειραματική ευθεία υποχρεώθηκε να περάσει από την αρχή των αξόνων χωρίς αυτό να είναι αναγκαίο.η κλίση μιας πειραματικής καμπύλης σε ένα σημείο Α(χο, yo) ορίζεται (Σχ. 3) ως το πηλίκο: x y y1 y x x1
3 Σχήμα 3 Θα πρέπει να σημειωθεί ότι η (ε) είναι η εφαπτομένη ευθεία της καμπύλης στο σημείο Α(χο, yo) και με τη χάραξη της δημιουργείται το ορθογώνιο ΚΛΜ. Το ορθογώνιο τρίγωνο ΚΛΜ έχει ως υποτείνουσα την εφαπτομένη ευθεία (ε), ενώ το σημείο Α βρίσκεται περί το μέσου της υποτείνουσας ΚΜ. Η κλίση λοιπόν είναι το πηλίκο της κατακόρυφης μεταβολής Δy προς την αντίστοιχη οριζόντια μεταβολή Δχ, ανεξάρτητα από την επιλογή του ορθογωνίου τριγώνου ΚΛΜ. Σημειώνεται ότι, η τιμή της κλίσης για τη παραπάνω καμπύλη δεν είναι σταθερή, αλλά εξαρτάται από το σημείο επιλογής Α, δηλαδή η κλίση της ίδιας καμπύλης σε άλλο σημείο θα είναι διαφορετική. Για παράδειγμα στο προηγούμενο σχήμα η κλίση της καμπύλης στο σημείο Β είναι μηδέν. Βέβαια σε περίπτωση όπου η πειραματική καμπύλη ταυτίζεται με ευθεία - και η αναπαράσταση γίνεται σε χιλιοστομετρικό χαρτί - τότε η κλίση παραμένει σταθερή για κάθε σημείο πάνω σε αυτή. Στις γραφικές παραστάσεις που συνοδεύουν μια πειραματική διαδικασία οι όροι Δy και Δχ αντιπροσωπεύουν φυσικά μεγέθη με συγκεκριμένες μονάδες. 'Έτσι η κλίση της καμπύλης δεν είναι καθαρός αριθμός, αλλά διαθέτει μονάδες που προέρχονται απλά από το πηλίκο των επί μέρους μονάδων στους δυο άξονες. Για παράδειγμα σε προβλήματα κινηματικής η κλίση της καμπύλης υ = f(t) έχει μονάδες m/sec, πρόκειται δηλαδή για το μέγεθος της επιτάχυνσης Υ. u Y t Τέλος, αναφέρεται ότι η κλίση που ορίστηκε με τη προηγούμενη σχέση είναι ανεξάρτητη από την επιλογή της κλίμακας των επί μέρους αξόνων για τη χάραξη της καμπύλης. Στη συνέχεια παρουσιάζεται ένας πίνακας μετρήσεων χρόνου - ταχύτητας που αντιστοιχεί σ' ένα τυπικό πρόβλημα κινηματικής. Στο Σχήμα 4 γίνεται η ταυτόχρονη γραφική παράσταση υ= f(t) του προηγούμενου πίνακα με διαφορετική όμως επιλογή του κατακόρυφου άξονα της ταχύτητας. Εύκολα διαπιστώνεται ότι αν και οι δυο προκύπτουσες πειραματικές ευθείες δεν είναι παράλληλες, εν τούτοις η κλίση που κάθε φορά ανεξάρτητα υπολογίστηκε είναι η ίδια και ίση με m/sec. Πρόκειται δηλαδή για τη περιγραφή μιας ευθύγραμμης κίνησης ομαλά επιταχυνόμενης. Παρατηρείται επίσης ότι οι προεκτάσεις των πειραματικών ευθειών - και στις δυο περιπτώσεις - διέρχονται από
4 το σημείο 3 m/sec στον κατακόρυφο άξονα τιμή που αντιστοιχεί στην αρχική ταχύτητα (για τ=0) στο συγκεκριμένο πρόβλημα. Σχήμα 4 Προφανώς γραφικές παραστάσεις δεν γίνονται μόνο σε χιλιοστομετρικά χαρτιά. Υπάρχουν χαρτιά ειδικής χρήσης με μη γραμμική χάραξη των αξόνων των συντεταγμένων. Τέτοια χαρτιά είναι τα ημιλογαριθμικά, τα (πλήρη) λογαριθμικά, τα πολικά κ.α.. Η δημιουργία γραφικών παραστάσεων σε τέτοιου είδους χαρτιά με ιδιαίτερη χάραξη πραγματοποιείται σε σχετικά μικρό αριθμό πειραματικών ασκήσεων στα επί μέρους κείμενα των οποίων ο αναγνώστης θα βρει περισσότερες λεπτομέρειες.
5 B. Μέθοδος ελάχιστων τετραγώνων για χάραξη ευθείας Έστω ευθεία που περιγράφεται από την εξίσωση y=αx+β Όπου α είναι η κλίση της ευθείας και β είναι η τεταγμένη επί της αρχής των αξόνων. Υ β ω Για τη χάραξη της ευθείας y=f(x) αρκεί η εύρεση των μεγεθών α, β. Έστω xi: οι μετρήσεις όπου i=1,.ν x: η μέση τιμή των μετρήσεων ν: ο αριθμός των μετρήσεων Τότε: n xy x x ( x) n y Χ y a n x
6 Γ. Τυχαία σφάλματα Στατική ανάλυση (μετρήσεις που ακολουθούν τη κατανομή Gauss) Ορισμός μέσης τιμής: x x [ ] i i1 x Ορισμός σφάλματος μέσης τιμής (βλέπε άσκηση ) Όπου η μέση τιμή των μετρήσεων ν ο αριθμός των μετρήσεων και η εκάστοτε μέτρηση m x ( x xi ) [( x xi ) ] i1 ( 1) ( 1) A/A x i x x-x i (x-x i ) m x [x] [(x-x i ) ] Διαδικασία υπολογισμού μέσης τιμής μεγέθους και μέσου τετραγωνικού σφάλματος. Υπολογίζουμε το άθροισμα Σ (ΔRχ) και από αυτό το σφάλμα της μέσης τιμής ΔRx. Σ(ΔRx) = Ω ΔRx =..Ω Από το σφάλμα ΔRχ και τη μέση τιμή Rχ υπολογίζουμε το σχετικό σφάλμα: ΔRx/Rx*100% Γράφουμε το τελικό αποτέλεσμα με τη μορφή: Rx Rx (......) Rx Rx......% Rx
7 Δ. ΟΔΗΓΙΕΣ ΔΙΑ ΤΟΝ ΤΡΟΠΟ ΓΡΑΦΗΣ ΤΩΝ ΑΣΚΗΣΕΩΝ. Στο εξώφυλλο του κάθε τετραδίου θα γράφετε το ΟΝΟΜΑΤΕΠΩΝΥΜΟ τον ΑΜ και την ΟΜΑΔΑ του Εργαστηρίου που ανήκετε. Ο τρόπος γραφής της κάθε Άσκησης θα είναι όπως παρακάτω. A. Στην αρχή θα αναγράφετε το τίτλο της Άσκησης. Β. Ακολούθως για πιο σκοπό πραγματοποιούμε αυτή την Άσκηση. Γ. Θα γράφετε την απαιτούμενη θεωρία που πρέπει να κατέχετε για να πραγματοποιήσετε την Άσκηση. Τη θεωρία θα την αντλείτε από οποιοδήποτε βιβλίο ΗΛΕΚΤΡΙΚΩΝ ΜΕΤΡΗΣΕΩΝ διαθέτετε. Δ. Κύκλωμα και ΣΥΝΔΕΣΜΟΛΟΓΙΑ θα σχεδιάζονται λεπτομερής. Ε. Θα αναφέρετε λεπτομερώς τα ΟΡΓΑΝΑ και ΣΥΣΚΕΥΕΣ που χρησιμοποιήσατε. ΣΤ. Θα αναγράφετε την πορεία εργασiας που ακολουθήσατε για να επιλύσετε τα ερωτήματα της Άσκησης και θα ακολουθούν οι πiνακες Μετρήσεων με τις τυχόν ζητούμενες Γρ.Παραστάσεις σε χαρτί Μιλλιμιτρέ, σχεδιασμένες με κλίμακα. Ζ. Όπου είναι πραγματοποιήσιμο θα επιχειρείται στατιστική ανάλυση των μεγεθών (υπολογισμός μέσης τιμής, μέσων τετραγωνικών σφαλμάτων, εκτίμηση ακρίβειας διάφορων σειρών μετρήσεις, ). Η. ΣΥΜΠΕΡΑΣΜΑΤΑ - ΠΑΡΑΤΗΡΗΣΕΙΣ θα γράφετε τι ακριβώς κατανοήσατε πραγματοποιώντας την Άσκηση, θα αιτιολογείτε τις Πειραματικές Μετρήσεις σε σύγκριση με τις θεωρητικές και τη συνέχεια θα γράφετε οποιεσδήποτε παρατηρήσεις πραγματοποιήσατε στο Εργαστήριο κατά την διάρκεια της Άσκησης όσον αφορά τον εξοπλισμό, την κατάσταση των οργάνων και την συμπεριφορά των Εκπαιδευτικών καθώς και τις τυχόν βελτιώσεις στο ΕΡΓΑΣΤΗΡΙΑΚΟ ΦΥΛΛΑΔΙΟ και στην Εργαστηριακή Άσκηση. Θ. Συμπληρωματικά, θα απαντάτε σε επιπλέον ερωτήσεις σχετικά με την άσκηση. Σημείωση: Στην αρχή κάθε εργαστηριακής άσκησης ενδέχεται να εξετάζεστε γραπτά πάνω στην άσκηση που πραγματοποιήσατε την προηγούμενη φορά.
ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων
ΘΕ ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ Γραφικές παραστάσεις, κλίση καµπύλης Μέθοδος των ελαχίστων τετραγώνων 1. Σκοπός Πρόκειται για θεωρητική άσκηση που σκοπό έχει την περιληπτική αναφορά σε θεµατολογίες που αφορούν την
Διαβάστε περισσότεραΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ
ΓΕΝΙΚO ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Γραφικές παραστάσεις Μαρία Κατσικίνη E-mail: katsiki@auth.gr Web: users.auth.gr/katsiki Παρουσίαση αποτελεσμάτων με τη μορφή πινάκων Πίνακας : χρόνος και ταχύτητα του κινητού
Διαβάστε περισσότεραΠερί σφαλμάτων και γραφικών παραστάσεων
Περί σφαλμάτων και γραφικών παραστάσεων Σφάλμα ανάγνωσης οργάνου Το σφάλμα αυτό αναφέρεται σε αβεβαιότητες στη μέτρηση που προκαλούνται από τις πεπερασμένες ιδιότητες του οργάνου μέτρησης και/ή από τις
Διαβάστε περισσότεραΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ
ΜΕΘΟΔΟΣ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ Δημήτρης Στεφανάκης Η Μέθοδος των Ελαχίστων Τετραγώνων (ΜΕΤ) χρησιμοποιείται για την κατασκευή της γραφικής παράστασης που περιγράφει ένα φαινόμενο,
Διαβάστε περισσότεραΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ
ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛ. ΕΤΟΣ 2014-15 1. Εισαγωγή ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Οι γραφικές παραστάσεις (ή διαγράμματα) χρησιμεύουν για την απεικόνιση της εξάρτησης
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ.
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ http://www.physicslab.tuc.gr https://www.eclass.tuc.gr/courses/sci123/ Επιμέλεια παρουσίασης: Ά.Καλλιατάκη,
Διαβάστε περισσότεραΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ.
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΕΡΓΑΣΤΗΡΙΟ ΔΟΜΗΣ ΤΗΣ ΥΛΗΣ ΚΑΙ ΦΥΣΙΚΗΣ ΛΕΪΖΕΡ http://www.physicslab.tuc.gr https://www.eclass.tuc.gr/courses/sci123/ Επιμέλεια παρουσίασης: Ά.Καλλιατάκη,
Διαβάστε περισσότεραΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ (Ε.Ο.Μ.Κ.) Με διάγραμμα :
Νόμος Νόμοι Πρότυπο ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΣΩΜΑΤΩΝ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΥΘΥΓΡΑΜΜΗ ΟΜΑΛΑ ΜΕΤΑΒΑΛΛΟΜΕΝΗ ΚΙΝΗΣΗ (Ε.Ο.Μ.Κ.) Πρότυπο ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης (Ε.Ο.Μ.Κ) Όταν η επιτάχυνση ενός
Διαβάστε περισσότεραΠα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
Πα.Δα. Τμήμα Μηχανικών Πληροφορικής και Υπολογιστών ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Δημήτριος Νικολόπουλος, Καθηγητής Περιβαλλοντική και Ιατρική Φυσική Εξίσωση και κλίση ευθείας Έστω ότι έχουμε δυο σταθερές α και
Διαβάστε περισσότεραΜελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός
Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης Μελέτη της ευθύγραμμης ομαλά μεταβαλλόμενης κίνησης σώματος με χρήση συστήματος φωτοπύλης-χρονομέτρου Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός
Διαβάστε περισσότεραΣφάλματα και στατιστική επεξεργασία πειραματικών μετρήσεων. Γραφικές παραστάσεις, κλίση καμπύλης, μέθοδος των ελαχίστων τετραγώνων.
ΘΕ Σφάλματα και στατιστική επεξεργασία πειραματικών μετρήσεων. Γραφικές παραστάσεις, κλίση καμπύλης, μέθοδος των ελαχίστων τετραγώνων. ΑΝΤΙ ΠΡΟΛΟΓΟΥ ΟΙ ΠΕΙΡΑΜΑΤΙΚΕΣ ΜΕΤΡΗΣΕΙΣ ΣΤΗ ΦΥΣΙΚΗ Ή ΥΠΑΡΧΟΥΝ ΠΟΛΛΟΙ
Διαβάστε περισσότεραΒ Γραφικές παραστάσεις - Πρώτο γράφημα Σχεδιάζοντας το μήκος της σανίδας συναρτήσει των φάσεων της σελήνης μπορείτε να δείτε αν υπάρχει κάποιος συσχετισμός μεταξύ των μεγεθών. Ο συνήθης τρόπος γραφικής
Διαβάστε περισσότεραΕπεξεργασία Δεδομένων - Γραφικές Παραστάσεις
1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή
Διαβάστε περισσότεραΕπεξεργασία Δεδομένων - Γραφικές Παραστάσεις
1. Σκοπός Επεξεργασία Δεδομένων - Γραφικές Παραστάσεις Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή
Διαβάστε περισσότερα11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013
11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013 ΤΟΠΙΚΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΙΚΗ ΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ Σάββατο 8 ΕΚΕΜΒΡΙΟΥ 2012 ΕΚΦΕ ΑΧΑΪΑΣ (ΑΙΓΙΟΥ) (Διάρκεια εξέτασης 60 min) Μαθητές: Σχολική Μονάδα
Διαβάστε περισσότεραΕισαγωγικές Γνώσεις Πειραματική Διαδικασία
ΕΚΦΕ Ν.ΚΙΛΚΙΣ 1 1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Α ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΕΠΕΞΕΡΓΑΣΙΑ : Κ. ΚΟΥΚΟΥΛΑΣ, ΦΥΣΙΚΟΣ - ΡΑΔΙΟΗΛΕΚΤΡΟΛΟΓΟΣ [ Ε.Λ. ΠΟΛΥΚΑΣΤΡΟΥ ] ΜΕΛΕΤΗ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ Στόχοι 1.
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3 Ο 3.2 Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η. (Σ) όπου α, β, α, β, είναι οι
ΚΕΦΑΛΑΙΟ 3 Ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΕΞΙΣΩΣΕΩΝ 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ. Ποια είναι η μορφή ενός συστήματος δύο γραμμικών εξισώσεων, δύο αγνώστων; Να δοθεί παράδειγμα.
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ ΤΡΟΦΙΜΩΝ Οδηγός Συγγραφής Εργαστηριακών Αναφορών
ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ ΤΡΟΦΙΜΩΝ Οδηγός Συγγραφής Εργαστηριακών Αναφορών Βασιλεία Ι. Σινάνογλου Ειρήνη Φ. Στρατή Παναγιώτης Ζουμπουλάκης Σωτήρης Μπρατάκος Εξώφυλλο Εργαστηριακό Τμήμα (ημέρα ώρα)
Διαβάστε περισσότεραΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ. i) Μία ευθεία με συντελεστή διεύθυνσης ίσο με το μηδέν, θα είναι παράλληλη στον άξονα των y.
ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΕΥΘΕΙΑ Β ΛΥΚΕΙΟΥ Θέμα Α. Να αποδείξετε ότι ο συντελεστής διεύθυνσης ευθείας στο επίπεδο της μορφής x y 0, με 0, 0 θα δίνεται από τον τύπο. ( μονάδες) Β. Να γράψετε τους τύπους του εμβαδού
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ. ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv. Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ
ΠΡΟΛΟΓΟΣ... vii ΠΕΡΙΕΧΟΜΕΝΑ... ix ΓΕΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ... xv Κεφάλαιο 1 ΓΕΝΙΚΕΣ ΕΝΝΟΙΕΣ ΑΠΟ ΤΗ ΣΤΑΤΙΣΤΙΚΗ 1.1 Πίνακες, κατανομές, ιστογράμματα... 1 1.2 Πυκνότητα πιθανότητας, καμπύλη συχνοτήτων... 5 1.3
Διαβάστε περισσότεραΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ
ΜΕΛΕΤΗ ΤΗΣ ΚΙΝΗΣΗΣ ΡΑΒΔΟΥ ΓΥΡΩ ΑΠΟ ΣΤΑΘΕΡΟ ΑΞΟΝΑ ΜΕΤΡΗΣΗ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΤΗΣ ΡΑΒΔΟΥ Συνοπτική περιγραφή Μελετάμε την κίνηση μιας ράβδου που μπορεί να περιστρέφεται γύρω από σταθερό οριζόντιο άξονα,
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ
ΕΡΓΑΣΤΗΡΙΟ ΕΝΟΡΓΑΝΗΣ ΑΝΑΛΥΣΗΣ Οδηγός Συγγραφής Εργαστηριακών Αναφορών Εξώφυλλο Στην πρώτη σελίδα περιέχονται: το όνομα του εργαστηρίου, ο τίτλος της εργαστηριακής άσκησης, το ονοματεπώνυμο του σπουδαστή
Διαβάστε περισσότεραΠειραματικός σχεδιασμός της χαρακτηριστικής καμπύλης παθητικής διπολικής συσκευής ηλεκτρικού κυκλώματος. Σκοπός και κεντρική ιδέα της άσκησης
Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης, Δρ Φυσικής Πειραματικός σχεδιασμός της χαρακτηριστικής καμπύλης παθητικής διπολικής συσκευής ηλεκτρικού κυκλώματος Σκοπός και κεντρική ιδέα της άσκησης
Διαβάστε περισσότεραΒΑΣΙΚΟΙ ΚΑΝΟΝΕΣ ΣΧΕΔΙΑΣΗΣ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ
ΒΑΣΙΚΟΙ ΚΑΝΟΝΕΣ ΣΧΕΔΙΑΣΗΣ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Σε πολλές από τις εργαστηριακές ασκήσεις θα ζητηθεί στην έκθεσή σας να περιλάβετε μια ή περισσότερες γραφικές παραστάσεις. Οι γραφικές παραστάσεις μπορεί
Διαβάστε περισσότεραΙωάννης Σ. Μιχέλης Μαθηματικός
1 Άλγεβρα 1 ο Κεφάλαιο Ερώτηση 1 : Τι ονομάζεται αριθμητική και τι αλγεβρική παράσταση; Μία παράσταση, που περιέχει πράξεις με αριθμούς ονομάζεται αριθμητική παράσταση. Μία παράσταση, που περιέχει πράξεις
Διαβάστε περισσότεραΑνακρίνοντας τρία διαγράμματα
Ανακρίνοντας τρία διαγράμματα 1) Ένα σώµα κινείται πάνω στον άξονα x και στο διάγραµµα φαίνεται η θέση του σε συνάρτηση µε το χρόνο. Με βάση πληροφορίες που µπορείτε να αντλήσετε µελετώντας το παραπάνω
Διαβάστε περισσότεραΜια από τις σημαντικότερες δυσκολίες που συναντά ο φυσικός στη διάρκεια ενός πειράματος, είναι τα σφάλματα.
Εισαγωγή Μετρήσεις-Σφάλματα Πολλές φορές θα έχει τύχει να ακούσουμε τη λέξη πείραμα, είτε στο μάθημα είτε σε κάποια είδηση που αφορά τη Φυσική, τη Χημεία ή τη Βιολογία. Είναι όμως γενικώς παραδεκτό ότι
Διαβάστε περισσότεραΕυρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών Προκαταρκτικός Διαγωνισμός Ανατολικής Αττικής. Φυσική
Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 017-18 Προκαταρκτικός Διαγωνισμός Ανατολικής Αττικής Φυσική Σχολείο: Ονόματα των μαθητών της ομάδας: 1) ) 3) Οι στόχοι του πειράματος 1. Η μέτρηση της επιτάχυνσης
Διαβάστε περισσότεραΔΙΔΑΣΚΟΝΤΕΣ Ε. Σπανάκης, Δ. Θεοδωρίδης, Δ. Στεφανάκης, Γ.Φανουργάκης & ΜΤΠΧ
ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ Ι ΕΤΥ203 3 Ώρες εργαστηρίου την ημέρα Προαπαιτούμενo: Φυσική Ι (ΕΤΥ101) Βαθμός Μαθήματος: 0.1*(Μ.Ο. Βαθμών προφορικής εξέτασης) + 0.5*(Μ.Ο. Βαθμών Αναφορών) + 0.4*(Βαθμός Τελικής εξέτασης
Διαβάστε περισσότεραΕΚΦΕ ΑΙΓΑΛΕΩ ΕΚΦΕ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ ΕΚΦΕ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ
ΕΚΦΕ ΑΙΓΑΛΕΩ ΕΚΦΕ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ ΕΚΦΕ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ Προκριματικός διαγωνισμός για την 17 η EUSO 2019 στην Φυσική Σάββατο 08/12/2018 Ονοματεπώνυμα μελών ομάδας 1) 2) 3) Σχολείο: 1 Εισαγωγή ΥΠΟΛΟΓΙΣΜΟΣ
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 A ΦΑΣΗ ÅÍ-ÔÁÎÇ
ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 2016 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό της πρότασης
Διαβάστε περισσότεραΜ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ
Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής ΕΝΟΤΗΤΑ
Διαβάστε περισσότερα1. Πειραματικά Σφάλματα
. Πειραματικά Σφάλματα Σκοπός της εκτέλεσης ενός πειράματος στη Φυσική είναι ο προσδιορισμός ποσοτικός ή/και ποιοτικός- κάποιων φυσικών μεγεθών που περιγράφουν ένα συγκεκριμένο φαινόμενο. Ο ποιοτικός προσδιορισμός
Διαβάστε περισσότεραΆσκηση Σ1 Άμεσες μετρήσεις σφάλματα
Συμπλήρωμα Σ1.ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ Άσκηση Σ1 Άμεσες μετρήσεις σφάλματα (Αφορά το 1ο εργαστήριο. Η αντίστοιχη θεωρία είναι στις σελίδες 13-20 του βιβλίου ενώ εδώ βλέπεις το πειραματικό μέρος επειδή δεν υπάρχει
Διαβάστε περισσότεραΥπολογισμός της σταθεράς του ελατηρίου
Άσκηση 5 Υπολογισμός της σταθεράς του ελατηρίου Σκοπός: Ο υπολογισμός της σταθεράς ενός ελατηρίου. Αυτό θα γίνει με δύο τρόπους: 1. Από την κλίση μιας πειραματικής καμπύλης 2. Από τον τύπο της περιόδου
Διαβάστε περισσότεραΆσκηση ΓΠ Γραφικές Παραστάσεις
ΓΠ. ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ Άσκηση ΓΠ Γραφικές Παραστάσεις (Αφορά το 5ο εργαστήριο. Η αντίστοιχη θεωρία των γραφικών παραστάσεων είναι στις σελίδες,23, 24, 25, 26, 27, 28 του βιβλίου. Εδώ βλέπεις το πειραματικό
Διαβάστε περισσότεραΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ )
ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ ΜΕΛΕΤΗ ΕΥΘ. ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ( ΜΕΣΩ ΤΗΣ ΕΛΕΥΘΕΡΗΣ ΠΤΩΣΗΣ ) Α. ΣΤΟΧΟΙ Η ικανότητα συναρμολόγησης μιας απλής πειραματικής διάταξης. Η σύγκριση των πειραματικών
Διαβάστε περισσότεραENOTHTA 1.1 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ
ENOTHTA. ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΜΕΡΟΣ ο. Πώς προσδιορίζουμε τη θέση των αντικειμένων; A O M B ' y P Ì(,y) Ð Για τον προσδιορισμό της θέσης πάνω σε μία ευθεία πρέπει να έχουμε ένα σημείο της
Διαβάστε περισσότεραΚ Ε Φ Α Λ Α Ι Ο 1ο Ε Υ Θ Υ Γ Ρ Α Μ Μ Η Κ Ι Ν Η Σ Η
1 Σκοπός Να αποκτήσουν οι μαθητές τη δυνατότητα να απαντούν σε ερωτήματα που εμφανίζονται στην καθημερινή μας ζωή και έχουν σχέση με την ταχύτητα, την επιτάχυνση, τη θέση ή το χρόνο κίνησης ενός κινητού.
Διαβάστε περισσότεραΚεφάλαιο 3 Παρουσίαση πειραματικών αποτελεσμάτων
Κεφάλαιο 3 Παρουσίαση πειραματικών αποτελεσμάτων Σύνοψη Πέραν από την ιδιαίτερη προσοχή που θα πρέπει να επιδείξουμε κατά τη λήψη μετρήσεων σε ένα πείραμα, μεγάλη σημασία έχει ο τρόπος που θα παρουσιάσουμε
Διαβάστε περισσότεραΕυρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική. Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3)
ΠΑΝΕΚΦΕ Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011 Πανελλήνιος προκαταρκτικός διαγωνισμός στη Φυσική Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) Σχήμα 1 Εργαστηριακή Άσκηση: Μέτρηση της μάζας κινούμενου
Διαβάστε περισσότεραΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α
ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση θεωρίας 1 ΘΕΜΑ Α Τι ονομάζουμε πραγματική συνάρτηση
Διαβάστε περισσότερα1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
Διαβάστε περισσότεραΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8
ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,
Διαβάστε περισσότεραΆσκηση 5 Υπολογισμός της σταθεράς ελατηρίου
Άσκηση 5 Υπολογισμός της σταθεράς ελατηρίου Σύνοψη Σκοπός της συγκεκριμένης άσκησης είναι ο υπολογισμός της σταθεράς ενός ελατηρίου. Αυτό θα γίνει με δύο τρόπους: από την κλίση της (πειραματικής) ευθείας
Διαβάστε περισσότεραΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ
ΚΙΝΗΜΑΤΙΚΗ ΥΛΙΚΟΥ ΣΗΜΕΙΟΥ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΘΕΣΗ ΤΡΟΧΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΙ ΔΙΑΣΤΗΜΑ. Παρατηρώντας τις εικόνες προσπαθήστε να ορίσετε τις θέσεις των διαφόρων ηρώων των κινουμένων σχεδίων. Ερώτηση: Πότε ένα σώμα
Διαβάστε περισσότεραΘΕΜΑ A: ΔΙΑΡΚΕΙΑ: 120min ΤΜΗΜΑ:. ONOMA:. ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ 1 ο ΘΕΜΑ 2 ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ
ΦΥΣΙΚΗ A ΛΥΚΕΙΟΥ ΔΙΑΡΚΕΙΑ: 1min ONOMA:. ΕΠΩΝΥΜΟ: ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ:. ΘΕΜΑ 1 ο ΘΕΜΑ ο ΘΕΜΑ 3 ο ΘΕΜΑ 4 ο ΣΥΝΟΛΟ ΜΟΝΑΔΕΣ ΘΕΜΑ A: 1. Στην ομαλά επιταχυνόμενη κίνηση: Α. η αρχική ταχύτητα είναι πάντα μηδέν,
Διαβάστε περισσότεραΤοπικός Διαγωνισμός EUSO2019 Πειραματική δοκιμασία Φυσικής
ΕΚΦΕ Νέας Ιωνίας ΕΚΦΕ Χαλανδρίου Τοπικός Διαγωνισμός EUSO2019 Πειραματική δοκιμασία Φυσικής Ένα «ακατάλληλο» δυναμόμετρο! 8 Δεκεμβρίου 2018 ΣΧΟΛΙΚΗ ΜΟΝΑΔΑ: ΟΜΑΔΑ ΜΑΘΗΤΩΝ: 1) 2). 3).. Τα δυναμόμετρα Το
Διαβάστε περισσότεραΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ
ΕΠΙΣΚΟΠΗΣΗ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΕΓΧΕΙΡΙΔΙΟ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΔΗΜΗΤΡΙΟΣ ΘΕΟΔΩΡΙΔΗΣ Κεφάλαιο 1.1 Ευθύγραμμη κίνηση 1. Τι ονομάζουμε κίνηση; Τι ονομάζουμε τροχιά; Ποια είδη τροχιών γνωρίζετε; Κίνηση ενός αντικειμένου
Διαβάστε περισσότεραΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.
ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε
Διαβάστε περισσότεραΕξάρτηση της ηλεκτρικής αντίστασης από το μήκος κυλινδρικού αγωγού Μέτρηση ειδικής ηλεκτρικής αντίστασης αγωγών ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ
Ε.Κ.Φ.Ε. Αγίων Αναργύρων Προκριματικός Διαγωνισμός για τη 15 η Ευρωπαϊκή Ολυμπιάδα Επιστημών - EUSO 2017 Εξέταση στη Φυσική Σάββατο 10/12/2016 Ονοματεπώνυμα μελών ομάδας 1).... 2).... 3).... Σχολείο:...
Διαβάστε περισσότεραy x y x+2y=
ΜΕΡΟΣ Α 3.1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ 59 3. 1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ Η εξίσωση α+β=γ Λύση μιας εξίσωσης α + β = γ ονομάζεται κάθε ζεύγος αριθμών (, ) που την επαληθεύει. Για παράδειγμα η
Διαβάστε περισσότεραΒΑΣΙΚΟΙ ΚΑΝΟΝΕΣ ΣΧΕ ΙΑΣΗΣ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ
ΒΑΣΙΚΟΙ ΚΑΝΟΝΕΣ ΣΧΕ ΙΑΣΗΣ ΓΡΑΦΙΚΩΝ ΠΑΡΑΣΤΑΣΕΩΝ Σε πολλές από τις εργαστηριακές ασκήσεις θα ζητηθεί στην έκθεσή σας να περιλάβετε µια ή περισσότερες γραφικές παραστάσεις. Αυτές οι γραφικές παραστάσεις µπορεί
Διαβάστε περισσότεραΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της κάθε μιας και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση:
ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ A ΤΑΞΗ ΛΥΚΕΙΟΥ ΗΜΕΡΑ ΤΕΤΑΡΤΗ 19/04/2017 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της κάθε μιας και
Διαβάστε περισσότεραδίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.
3.1 Η έννοια της συνάρτησης Ορισμοί Συνάρτηση f από ένα συνόλου Α σε ένα σύνολο Β είναι μια αντιστοιχία των στοιχείων του Α στα στοιχεία του Β, κατά την οποία κάθε στοιχείο του Α αντιστοιχεί σε ένα μόνο
Διαβάστε περισσότεραΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG
1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 Α. ΣΤΟΧΟΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ MULTILOG Η πραγματοποίηση αρμονικής ταλάντωσης μικρού πλάτους με τη χρήση μάζας δεμένης σε ελατήριο. Η εφαρμογή
Διαβάστε περισσότεραψψαριαα0001.jpg ψψαριαα0001.jpg Κ.-Α. Θ. Θωμά
Οι διαφάνειες που ακολουθούν είναι βοηθητικές για το μάθημα της Φυσικής που διδάσκεται στους φοιτητές του Βιολογικού Τμήματος του Πανεπιστημίου Πατρών. Επειδή, στο καλωσόρισμα, ακόμη και όταν πρόκειται
Διαβάστε περισσότεραΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ
ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει
Διαβάστε περισσότεραΔιαγώνισμα Φυσικής Α Λυκείου 9/11/2014
1 Διαγώνισμα Φυσικής Α Λυκείου 9/11/2014 Ζήτημα 1 o Α) Να επιλέξτε την σωστή απάντηση 1) Η μετατόπιση ενός κινητού που κινείται ευθύγραμμα σε άξονα Χ ΟΧ είναι ίση με μηδέν : Αυτό σημαίνει ότι: α) η αρχική
Διαβάστε περισσότεραΠερι-Φυσικής. Θέµα 1ο. 1ο ιαγώνισµα - Κινηµατική της Ευθύγραµµης Κίνησης. Ονοµατεπώνυµο: Βαθµολογία %
1ο ιαγώνισµα - Κινηµατική της Ευθύγραµµης Κίνησης Ηµεροµηνία : Νοέµβρης 2012 ιάρκεια : 3 ώρες Ονοµατεπώνυµο: Βαθµολογία % Θέµα 1ο Στις ερωτήσεις 1.1 1.4 επιλέξτε την σωστη απάντηση (4 5 = 20 µονάδες )
Διαβάστε περισσότεραΑ Λυκείου Σελ. 1 από 13
ΟΔΗΓΙΕΣ: 1. Εκτός αν η εκφώνηση ορίζει διαφορετικά, οι απαντήσεις σε όλα τα ερωτήματα θα πρέπει να αναγραφούν στο Φύλλο Απαντήσεων που θα σας δοθεί μαζί με τις εκφωνήσεις. 2. Η επεξεργασία των θεμάτων
Διαβάστε περισσότεραΜελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο. Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός
Εργαστήριο Φυσικής Λυκείου Επιμέλεια: Κ. Παπαμιχάλης Μελέτη της κίνησης σώματος πάνω σε πλάγιο επίπεδο Περιγραφή - Θεωρητικές προβλέψεις - Σχεδιασμός Βασικές έννοιες, σχέσεις και διαδικασίες Αδρανειακό
Διαβάστε περισσότεραΤοπικός Μαθητικός Διαγωνισμός EUSO
Τοπικός Μαθητικός Διαγωνισμός EUSO 2014-2015 ΟΜΑΔΑ : 1] 2] 3] Γενικό Λύκειο Άργους Ορεστικού. 6 - Δεκ. - 1014 Φυσική Θέμα: Μέτρηση επιτάχυνσης. 1] Θεωρητική εισαγωγή Κίνηση είναι η αλλαγή της θέσης ενός
Διαβάστε περισσότεραΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ 22 ΝΟΕΜΒΡΙΟΥ 2015 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ
ΦΡΟΝΤΙΣΤΗΡΙΑ «ΠΡΟΟΔΟΣ» ΚΥΡΙΑΚΗ ΝΟΕΜΒΡΙΟΥ 5 ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ» Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο A. Να δώσετε τον ορισμό της συνέχειας μιας συνάρτησης στο πεδίο ορισμού της. ( Μονάδες)
Διαβάστε περισσότεραΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα
Διαβάστε περισσότεραΣύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ.
Σύνολα Ορισµός συνόλου (κατά Cantor): Σύνολο είναι κάθε συλλογή αντικειµένων, που προέρχεται από το µυαλό µας ή την εµπειρία µας, είναι καλά ορισµένο και τα αντικείµενα ξεχωρίζουν το ένα από το άλλο, δηλαδή
Διαβάστε περισσότεραΕυρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 2010 Προκαταρκτικός διαγωνισµός στη Φυσική. Σχολείο:
ΕΚΦΕ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ Ευρωπαϊκή Ολυµπιάδα Φυσικών Επιστηµών 010 Προκαταρκτικός διαγωνισµός στη Φυσική Σχολείο: Ονόµατα των µαθητών της οµάδας 1) ) 3) Οι στόχοι του πειράµατος 1. Η µέτρηση της επιτάχυνσης
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ II ΕΤΥ20
ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ II ΕΤΥ20 204 3 Ώρες εργαστηρίου την εβδομάδα Προαπαιτούμενo: Φυσική ΙΙ (ΕΤΥ102) Βαθμός Μαθήματος: 0.1*( 1*(Μ.Ο. Βαθμών προφορικής εξέτασης) + 0.5*(Μ.Ο. Βαθμών Αναφορών) + Βαθμός Τελικής
Διαβάστε περισσότεραΦύλλο Εργασίας Οριζόντια βολή. Ονοματεπώνυμο Τμήμα Ημερομηνία
Ενότητα Καμπυλόγραμμες κινήσεις Φύλλο Εργασίας Οριζόντια βολή Φυσική Β Λυκείου Γενικής Παιδείας Ονοματεπώνυμο Τμήμα Ημερομηνία Στόχοι και σκοποί της άσκησης : Να επαληθεύσετε ότι η οριζόντια βολή είναι
Διαβάστε περισσότεραΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και
7 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση
Διαβάστε περισσότεραΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 2. Σταύρος Παπαϊωάννου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ Μαθηματικά Σταύρος Παπαϊωάννου Ιούνιος 5 Τίτλος Μαθήματος Περιεχόμενα Χρηματοδότηση... Error! Bookmark not defned. Σκοποί Μαθήματος (Επικεφαλίδα
Διαβάστε περισσότεραΕργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ
ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ Εργαστήριο Δομής της Ύλης και Φυσικής Λέιζερ Παρουσίαση οργάνωσης των Εργαστηρίων Φυσικής Ι Ακαδ. Έτους 2013-14 http://www.physicslab.tuc.gr physicslab@isc.tuc.gr
Διαβάστε περισσότεραΚεφάλαιο 1. Δx: απόλυτο σφάλμα του μεγέθους x. (Το Δx έχει τις ίδιες μονάδες με το x). Δx x Δx x
Κεφάλαιο 1 Σύνοψη Θεωρία Σφαλμάτων: Βασικές γνώσεις περί σφαλμάτων με στόχο την κατανόηση των διαφόρων πηγών σφάλματος πειραματικών μετρήσεων, του τρόπου ποσοτικής εκτίμησης της επίδρασής τους στην (αν-)ακρίβεια
Διαβάστε περισσότεραMETΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ
ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τ. Ε. Ι. Σ Ε Ρ Ρ Ω Ν ΕΞΕΤΑΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟΥ ΦΥΣΙΚΗΣ ΟΝΟΜΑTΕΠΩΝΥΜΟ ΑΡΙΘΜΟΣ ΜΗΤΡΩΟΥ METΡΗΣΗ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ ΜΕ ΤΟ ΑΠΛΟ ΕΚΚΡΕΜΕΣ Χρησιμοποιώντας
Διαβάστε περισσότεραΠΑΡΟΥΣΙΑΣΗ ΣΤΑΤΙΣΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ
ο Κεφάλαιο: Στατιστική ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΚΑΙ ΟΡΙΣΜΟΙ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ Πληθυσμός: Λέγεται ένα σύνολο στοιχείων που θέλουμε να εξετάσουμε με ένα ή περισσότερα χαρακτηριστικά. Μεταβλητές X: Ονομάζονται
Διαβάστε περισσότερα4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x
1 4.3 Η ΣΥΝΑΡΤΗΣΗ f () A Ομάδας Ασκήσεις σχολικού βιβλίου σελίδας 164 167 1. Να βρείτε τη γωνία που σχηματίζει με τον άξονα η ευθεία = + = 3 1 i = + 1 iv) = 3 + εφω = 1 ω = 45 ο εφω = 3 ω = 60 ο i εφω
Διαβάστε περισσότεραΟΔΗΓΟΣ ΣΥΓΓΡΑΦΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΝΑΦΟΡΑΣ
ΤΕΙ ΑΘΗΝΑΣ ΤΜΗΜΑ ΑΚΤΙΝΟΛΟΓΙΑΣ ΚΑΙ ΑΚΤΙΝΟΘΕΡΑΠΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΑΚΤΙΝΟΠΡΟΣΤΑΣΙΑΣ ΑΝΑΠΛΗΡΩΤΗΣ ΚΑΘΗΓΗΤΗΣ Α. ΜΠΑΚΑΣ ΟΔΗΓΟΣ ΣΥΓΓΡΑΦΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΝΑΦΟΡΑΣ Στον οδηγό αυτό παρατίθενται συμβουλές για την συγγραφή
Διαβάστε περισσότεραΑ και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ
Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 2011-12 Τοπικός διαγωνισμός στη Φυσική 10-12-2011 Σχολείο: Ονόματα των μαθητών της ομάδας: 1) 2) 3) Κεντρική ιδέα της άσκησης Στην άσκηση μελετάμε την κίνηση ενός
Διαβάστε περισσότεραΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Α Λυκείου Σελ. 1 από 13 ΟΔΗΓΙΕΣ: ΕΚΦΩΝΗΣΕΙΣ: ΘΕΜΑ 1 Ο
ΟΔΗΓΙΕΣ: 1. Οι απαντήσεις σε όλα τα ερωτήματα θα πρέπει να αναγραφούν στο Φύλλο Απαντήσεων που θα σας δοθεί χωριστά από τις εκφωνήσεις.. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε φύλλα Α4 ή σε τετράδιο
Διαβάστε περισσότεραΜΕΛΕΤΗ ΤΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΗΣ ΚΑΜΠΥΛΗΣ ΗΛΕΚΤΡΙΚΗΣ ΠΗΓΗΣ
1 ο ΕΚΦΕ (Ν. ΣΜΥΡΝΗΣ) Δ Δ/ΝΣΗΣ Δ. Ε. ΑΘΗΝΑΣ 1 ΜΕΛΕΤΗ ΤΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΗΣ ΚΑΜΠΥΛΗΣ ΗΛΕΚΤΡΙΚΗΣ ΠΗΓΗΣ Α. ΣΤΟΧΟΙ Η εξοικείωση στη συναρμολόγηση ηλεκτρικών κυκλωμάτων. Η εξοικείωση με τη σύνδεση και τη χρήση
Διαβάστε περισσότεραΗμερομηνία: Κυριακή 30 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Ημερομηνία: Κυριακή 30 Οκτωβρίου 016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθμό
Διαβάστε περισσότεραΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ-ΦΥΣΙΚΗ Ι, 2013-14
ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΕΩΝ Με τη λέξη σφάλμα στις θετικές επιστήμες αναφερόμαστε στην αβεβαιότητα που υπάρχει στην εύρεση του αποτελέσματος που προκύπτει από μια μέτρηση. Το να εκτιμήσουμε και να βρούμε τα σφάλμα
Διαβάστε περισσότεραΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ Μ.ΠΗΛΑΚΟΥΤΑ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ
ΓΡΑΦΙΚΕΣ ΣΚΟΠΟΣ Σκοπός της άσκησης είναι να εξοικειωθούν οι σπουδαστές με τη γραφική απεικόνιση των δεδομένων τους, την χρήση των γραφικών παραστάσεων για την εξαγωγή συμπερασμάτων σχετικά με την ποιοτική
Διαβάστε περισσότερα6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ
ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς
Διαβάστε περισσότεραΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ
ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ Ευθύγραμμη Ομαλή Κίνηση Επιμέλεια: ΑΓΚΑΝΑΚΗΣ.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscorses.wordpress.com/ Βασικές Έννοιες Ένα σώμα καθώς κινείται περνάει από διάφορα σημεία.
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ΚΙΝΗΣΗ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕ Ο
ΕΚΦΕ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ ΕΚΦΕ ΝΕΑΣ ΙΩΝΙΑΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΛΕΤΗ ΕΥΘΥΓΡΑΜΜΗΣ ΟΜΑΛΑ ΕΠΙΤΑΧΥΝΟΜΕΝΗΣ ΚΙΝΗΣΗΣ ΚΙΝΗΣΗ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕ Ο N T=ηmgσυνθ mgηµθ θ Σχήµα1 mg Κατά τη διεξαγωγή της άσκησης θα µάθεις
Διαβάστε περισσότεραΦυσική Εικόνας & Ήχου Ι (Ε)
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Φυσική Εικόνας & Ήχου Ι (Ε) Ενότητα 0: Εισαγωγικές έννοιες στα Εργαστήρια Φυσικής Αθανάσιος Αραβαντινός Τμήμα Φωτογραφίας & Οπτικοακουστικών
Διαβάστε περισσότεραΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ
ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 26 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 13 Μαΐου, 2012 Παρακαλώ διαβάστε πρώτα τα πιο κάτω, πριν απαντήσετε οποιαδήποτε ερώτηση Γενικές Οδηγίες: 1) Είναι πολύ σημαντικό
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας
ΑΣΚΗΣΕΙΣ ΓΙΑ ΕΠΑΝΑΛΗΨΗ Ασκήσεις σχολικού βιβλίου σελίδας 07 3. Να αποδείξετε την ταυτότητα + + αβ βγ γα = Να αποδείξετε ότι για όλους τους α, β, γ ισχύει + + αβ + βγ + γα Πότε ισχύει ισότητα; = = + + =
Διαβάστε περισσότεραΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΘΕΜΑ Α Ερώτηση θεωρίας Αν η συνάρτηση f είναι παραγωγίσιμη στο R και c είναι μια πραγματική σταθερά, να δείξετε ότι: ( c f( )) = c f ( ),. Έστω F( )
Διαβάστε περισσότεραΜαθηματική Εισαγωγή Συναρτήσεις
Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς Καστοριά, Ιούλιος 14 A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας
Διαβάστε περισσότεραΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ ΤΗΣ ΒΑΡΥΤΗΤΑΣ (g) ΚΑΤΑ ΤΗΝ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ ΣΩΜΑΤΟΣ
ΕΚΦΕ ΑΙΓΑΛΕΩ ΕΚΦΕ ΑΓΙΩΝ ΑΝΑΡΓΥΡΩΝ ΕΚΦΕ ΔΥΤΙΚΗΣ ΑΤΤΙΚΗΣ Προκριματικός διαγωνισμός για την 16 η EUSO 2018 στην Φυσική Σάββατο 09/12/2017 Ονοματεπώνυμα μελών ομάδας 1) 2) 3) Σχολείο: ΥΠΟΛΟΓΙΣΜΟΣ ΤΗΣ ΕΠΙΤΑΧΥΝΣΗΣ
Διαβάστε περισσότεραΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ - ΙΟΥΝΙΟΥ Όνομα μαθητή/τριας...τμήμα.αριθμός.
ΛΥΚΕΙΟ ΕΘΝΟΜΑΡΤΥΡΑ ΚΥΠΡΙΑΝΟΥ (ΣΤΡΟΒΟΛΟΥ) ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ 009-0 ΤΑΞΗ B ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΕΠΙΛΟΓΗΣ ΗΜΕΡΟΜΗΝΙΑ 0 Μαίου 00 Βαθμός Ολογράφως Υπογραφή ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΙΟΥ - ΙΟΥΝΙΟΥ 00 Όνομα
Διαβάστε περισσότερα6 Γεωμετρικές κατασκευές
6 Γεωμετρικές κατασκευές 6.1 Γενικά Στα σχέδια εφαρμόζουμε γεωμετρικές κατασκευές, προκειμένου να επιλύσουμε προβλήματα που απαιτούν μεγάλη σχεδιαστική και κατασκευαστική ακρίβεια. Τα γεωμετρικά - σχεδιαστικά
Διαβάστε περισσότεραΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα
Σκοπός ΑΣΚΗΣΗ 4 Χάραξη Καμπύλης, Ελάχιστα Τετράγωνα Σκοπός της άσκησης αυτής είναι ο σπουδαστής να μπορέσει να παρουσιάζει τα αποτελέσματα πειραματικών μετρήσεων σε μορφή καμπυλών και να μπορέσει εν τέλει
Διαβάστε περισσότεραΣύνολα. Γνωστά µας σύνολα: Ν σύνολο φυσικών αριθµών Q σύνολο ρητών αριθµών Ζ σύνολο ακεραίων αριθµών R σύνολο πραγµατικών αριθµών
Σύνολα Σελ. 40 Ορισµός συνόλου (κατά Cantor): Σύνολο είναι κάθε συλλογή αντικειµένων, που προέρχεται από το µυαλό µας ή την εµπειρία µας, είναι καλά ορισµένο και τα αντικείµενα ξεχωρίζουν το ένα από το
Διαβάστε περισσότεραΤ.Ε.Ι. ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΟΥΣΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΑΚΟΥΣΤΙΚΗΣ ΜΟΥΣΙΚΗ ΑΚΟΥΣΤΙΚΗ- ΟΡΓΑΝΟΛΟΓΙΑ ΟΔΗΓΙΕΣ ΕΡΓΑΣΤΗΡΙΟΥ ΠΑΠΑΔΑΚΗΣ ΝΙΚΟΣ
Τ.Ε.Ι. ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΟΥΣΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΑΚΟΥΣΤΙΚΗΣ ΜΟΥΣΙΚΗ ΑΚΟΥΣΤΙΚΗ- ΟΡΓΑΝΟΛΟΓΙΑ ΟΔΗΓΙΕΣ ΕΡΓΑΣΤΗΡΙΟΥ ΠΑΠΑΔΑΚΗΣ ΝΙΚΟΣ ΕΙΣΑΓΩΓΗ Καλώς ήρθατε στο εργαστήριο Μουσικής Ακουστικής-Οργανολογίας. Το εργαστήριο
Διαβάστε περισσότεραΡητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή
ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται
Διαβάστε περισσότεραΑ και Β ΕΡΓΑΣΤΗΡΙΑΚΟ ΚΕΝΤΡΟ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΑΝΑΤΟΛΙΚΗΣ ΑΤΤΙΚΗΣ
Ευρωπαϊκή Ολυμπιάδα Φυσικών Επιστημών 03-4 Τοπικός διαγωνισμός στη Φυσική 07--03 Σχολείο: Ονόματα των μαθητών της ομάδας: ) ) 3) Ιδανικά αέρια: o νόμος του Boyle Κεντρική ιδέα της άσκησης Στην άσκηση αυτή
Διαβάστε περισσότερα