ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ"

Transcript

1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_095. Δίνονται οι ευθείες ε 1: λx + y = 1 και ε : x + λy = λ α) Να βρείτε για ποιες τιμές του λ οι δύο ευθείες τέμνονται και να γράψετε τις συντεταγμένες του κοινού τους σημείου συναρτήσει του λ. (Μονάδες 13) β) Για ποια τιμή του λ οι δύο ευθείες είναι παράλληλες; (Μονάδες 6) γ) Αν οι ευθείες ε 1 και ε ταυτίζονται, να αποδείξετε ότι οι ευθείες λx + λ y = λ 3 και x + λy = λ -1 είναι παράλληλες. (Μονάδες 6) ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 4_090 xy 6 α) Να λύσετε το σύστημα (Σ 1) : (Μονάδες 10) x y 13 xy 6 β) Είναι οι λύσεις του συστήματος (Σ 1) λύσεις και του (Σ ) : ; x y 13 Να δικαιολογήσετε την απάντηση σας. (Μονάδες 7) γ) Είναι οι λύσεις του συστήματος (Σ ) λύσεις και του (Σ 1); Να δικαιολογήσετε την απάντηση σας. (Μονάδες 8) ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ _679 Στο παρακάτω σχήμα δίνεται η γραφική παράστασης της συνάρτησης 3 f ( x) x 3 x, x (,) α) Είναι η f άρτια ή περιττή; Να αποδείξετε αλγεβρικά τον ισχυρισμό σας. (Μονάδες 7) β) Χρησιμοποιώντας τη γραφική παράσταση της f, να βρείτε τη μέγιστη και την ελάχιστη τιμή της. (Μονάδες 6) γ) Να βρείτε τις θέσεις των ακρότατων της f. (Μονάδες 1)

2 4_0919 Η περιβαλλοντική ομάδα ενός σχολείου παρέλαβε συρματόπλεγμα μήκους 40m για να περιφράξει, χρησιμοποιώντας όλο το συρματόπλεγμα, έναν ορθογώνιο κήπο για καλλιέργεια λαχανικών. Οι μαθητές της περιβαλλοντικής ομάδας θέλουν να επιλέξουν ένα κήπο που να έχει όσο το δυνατόν μεγαλύτερο εμβαδόν. α) Να δώσετε τις διαστάσεις τριών διαφορετικών ορθογώνιων κήπων με περίμετρο 40m. Να εξετάσετε αν οι τρεις λαχανόκηποι έχουν το ίδιο εμβαδόν. (Μονάδες 7) β) Αν συμβολίσουμε με x το πλάτος και με Ε το εμβαδόν ενός λαχανόκηπου με περίμετρο 40m, να εκφράσετε το Ε ως συνάρτηση του x. (Μονάδες 8) E x γ) Να δείξετε ότι συνάρτησης f x x x Χρησιμοποιώντας την γραφική παράσταση της να κατασκευάσετε την γραφική παράσταση της Ε(x). Από τη γραφική παράσταση της Ε(x) να βρείτε τις διαστάσεις του λαχανόκηπου με το μεγαλύτερο εμβαδόν. (Μονάδες 10) 4_776 Για να κατασκευάσουμε ένα ανοικτό κουτί από ένα ορθογώνιο χαρτόνι με διαστάσεις 5dm και 8dm, κόβουμε ίσα τετράγωνα, πλευράς x,από κάθε γωνία του και γυρίζουμε προς τα πάνω τις πλευρές του (Σχήμα 1). α) Nα δείξετε ότι ο όγκος V του κουτιού εκφράζεται ως συνάρτηση του χ με τον τύπο V ( x) 4x 6x 40 x. (Μονάδες 6) β) Να βρείτε τις τιμές που μπορεί να πάρει το x στο πλαίσιο του προβλήματος. (Μονάδες 5) γ) Να βρείτε τις διαστάσεις (εκφρασμένες σε dm με ακέραιους αριθμούς) του κουτιού αν γνωρίζουμε ότι ο όγκος του είναι 8dm 3. (Μονάδες 7) δ) Στο σχ. δίνεται η γραφική παράσταση της συνάρτησης V ( x) 4x 6x 40 x. για x 0,.5. Χρησιμοποιώντας το σχήμα να βρείτε ποιος είναι ο μεγαλύτερος όγκος που μπορεί να έχει το κουτί. Στη συνέχεια να υπολογίσετε αλγεβρικά τις διαστάσεις του κουτιού με το μεγαλύτερο όγκο. (Μονάδες 7) + 40χ για χ e (0,,5). Χρησιμοποιώντας το σχήμα να βρείτε ποιος είναι ο μεγαλύτερος όγκος που μπορεί να έχει το κουτί. Στη συνέχεια να υπολογίσετε αλγεβρικά τις διαστάσεις του κουτιού με το μεγαλύτερο όγκο.

3 ΚΑΤΑΚΟΡΥΦΗ-ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ 4_094 Δίνεται η συνάρτηση,, f x x R. α) Αν η γραφική παράσταση της f διέρχεται από τα σημεία Α(1, ) και Β(5, 8), να 3 1 δείξετε ότι και. (Μονάδες 8) β) Αν g(x) είναι η συνάρτηση που προκύπτει από τη μετατόπιση της γραφικής παράστασης της f οριζόντια κατά 1 μονάδα προς τα αριστερά και κατακόρυφα κατά 3 μονάδες προς τα κάτω, να βρείτε τον τύπο της g. (Μονάδες 9) 3 γ) Αν h x x 1 είναι η συνάρτηση που προκύπτει από τη μετατόπιση της γραφικής k παράστασης της f οριζόντια κατά κ μονάδες προς τα δεξιά και κατακόρυφα κατά μονάδες κάτω, να βρείτε το κ (κ > 0). (Μονάδες 8) ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 4_0339 Μια ρόδα ποδηλάτου περιστρέφεται γύρω από τον άξονά της. Σημειώνουμε ένα σημείο Ρ της ρόδας (όπως φαίνεται στο σχήμα), το οποίο τη χρονική στιγμή t = 0, είναι το σημείο επαφής της ρόδας με μια επιφάνεια. Η συνάρτηση που εκφράζει την απόσταση h (σε m) του σημείου Ρ από την επιφάνεια, t sec μετά την αρχή της κίνησης δίνεται από τη σχέση: h( t) 0, ( t) 0,, με ω θετική πραγματική σταθερά. Υποθέτουμε ότι το σημείο Ρ κάνει ένα πλήρη κύκλο σε 4sec. α) Να αποδείξετε ότι. (Μονάδες 5) β) Να προσδιορίσετε την απόσταση του Ρ από την επιφάνεια τις στιγμές: t 1 = 1sec, t = sec και t 3 = 7sec. (Μονάδες 6) γ) Να βρείτε την μέγιστη και την ελάχιστη τιμή της h. (Μονάδες 5) δ) Να προσδιορίσετε την ακτίνα της ρόδας. (Μονάδες 9)

4 4_091 Στο παρακάτω σχήμα δίνεται η γραφική παράσταση της συνάρτησης g(x)= αx+ β, όπου α, β πραγματικοί αριθμοί και της συνάρτησης f (x) = ρημ(ωx), όπου ω > 0 και ρ > 0. Και οι δύο συναρτήσεις έχουν πεδίο ορισμού το. Επίσης η f έχει μέγιστο 3. α) Να αποδείξετε ότι ρ = 3 και ω = (Μονάδες 5) β) Να βρείτε τα α, β. (Μονάδες 10) 1x γ) Να βρείτε, γραφικά, το πλήθος των λύσεων της εξίσωσης 3 x 0 στο διάστημα [0, π]. (Μονάδες 10) 4_09 t Δίνεται η συνάρτηση f ( t), t [0,4] α) Να βρείτε την περίοδο της f. (Μονάδες 5) β) Να βρείτε τη μέγιστη και την ελάχιστη τιμή της, καθώς και τις τιμές του t για τις οποίες η f παίρνει τις τιμές αυτές. (Μονάδες1) γ) Να κατασκευάσετε τη γραφική παράσταση της f. (Μονάδες 8) 4_691 Στο παρακάτω σχήμα δίνεται η γραφική παράσταση της συνάρτησης f ( x) x 4. α) Να βρείτε την περίοδο της συνάρτησης f. (Μονάδες 5) β) Το τετράπλευρο ΑΒΓΔ είναι ορθογώνιο με,0. Να βρείτε: 3 i. τις συντεταγμένες του σημείου Δ. (Μονάδες 10) ii. τις συντεταγμένες των σημείων Β και Γ. (Μονάδες 10)

5 4_693 Στο παρακάτω σχήμα δίνεται η γραφική παράσταση της συνάρτησης f x x παραμέτρους α, ω > 0 με Να βρείτε: α) την περίοδο της συνάρτησης f. (Μονάδες 9) β) τους αριθμούς α και ω (Μονάδες 8) γ) τους αριθμούς k για τους οποίους η εξίσωση f (x) = κ έχει μοναδική λύση στο 0, και στη συνέχεια να λυθεί η εξίσωση (Μονάδες 8) ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 4_093 Δίνεται η συνάρτηση f x 3x 1, x. α) Να βρείτε την περίοδο Τ και τη μέγιστη τιμή της f. (Μονάδες 5) β) Στο παρακάτω σχήμα δίνεται η γραφική παράσταση της συνάρτησης g x a x x, i. Nα προσδιορίσετε τα α, β, γ. (Μονάδες 1) ii. Για α = -, β = 1 και γ = 1, να λύσετε την εξίσωση f(x) = g(x) στο διάστημα [0, π). (Μονάδες 8) 4_690 Δίνεται η εξίσωση 1 x 3 x (Α) α) Να αποδείξετε ότι, αν x 0 είναι μία λύση της εξίσωσης (Α), τότε συνx 0 > 0. (Μονάδες 5)

6 β) Θεωρούμε την εξίσωση (1 x) 3 x (Β) η οποία προκύπτει υψώνοντας στο τετράγωνο τα δύο μέλη της εξίσωσης (Α). Να λύσετε την εξίσωση (Β). (Μονάδες 1) γ) Να λύσετε την εξίσωση (Α). (Μονάδες 8) ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΑΘΡΟΙΣΜΑΤΟΣ ΚΑΙ ΔΙΑΦΟΡΑΣ ΓΩΝΙΩΝ _639 α) Να δείξετε ότι : x x 4 4 x. (Μονάδες 13) β) Να βρείτε με την βοήθεια του ερωτήματος α) την ελάχιστη και τη μέγιστη τιμή της συνάρτησης f ( x) x x, x 4 4. (Μονάδες 1) ΠΟΛΥΩΝΥΜΑ ΔΙΑΙΡΕΣΗ ΠΟΛΥΩΝΥΜΩΝ _649 α) Να βρείτε το υπόλοιπο και το πηλίκο της διαίρεσης ( x 6x 11x ) : ( x 3). (Μονάδες 10) β) Αν P( x) x 6x 11x να βρείτε το, ώστε η διαίρεση P( x) : ( x 3) να έχει υπόλοιπο 0. (Μονάδες 15) _680 Δίνονται τα πολυώνυμα: 3 P x x + ( x 1 ) ( x 1) 9 και Q x 1 x x 9 x,. α) Ένας μαθητής ισχυρίζεται ότι και τα δύο πολυώνυμα είναι 3ου βαθμού. Συμφωνείτε με την άποψη αυτή; Να δικαιολογήσετε την απάντησή σας. (Μονάδες 13) β) Να βρείτε την τιμή του λ για την οποία τα πολυώνυμα Ρ(x) και Q(x) είναι ίσα. (Μονάδες 1) 4_76 4 Δίνεται το πολυώνυμο ( x) 3x 1x 8x x, όπου α, β σταθεροί πραγματικοί αριθμοί. Αν το πολυώνυμο Ρ(x) διαιρούμενο με x +1 αφήνει υπόλοιπο 16 + Ρ(1) και διαιρούμενο με x -1 αφήνει υπόλοιπο 16 - Ρ (-1), τότε: α) να αποδείξετε ότι Ρ(1) = 0 και Ρ(-1) = 16 (Μονάδες 8) β) να αποδείξετε ότι α = 4 και β = -3 (Μονάδες 9) (Μονάδες 8) γ) να αποδείξετε ότι

7 4_764 Έστω Ρ(x) πολυώνυμο τρίτου βαθμού το οποίο διαιρείται με το πολυώνυμο x είναι τέτοιο, ώστε Ρ (1) = 0 και P() = 8. α) Να αποδείξετε ότι x και x x x x. (Μονάδες 10) β) Να λύσετε την εξίσωση Ρ(x) = 8. (Μονάδες 6) γ) Nα λύσετε την ανίσωση Ρ(x) >. (Μονάδες 9) ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ _640 Δίνεται το πολυώνυμο P( x) x x x 1 α) Να δικαιολογήσετε γιατί το διώνυμο x-3 είναι παράγοντας του P(x). (Μονάδες 13) β) Να λύσετε την εξίσωση Px () 0. (Μονάδες 1) _641 Δίνεται το πολυώνυμο P( x) x ax 11x 30 με για το οποίο γνωρίζουμε ότι έχει ρίζα το 5. α) Να υπολογίσετε την τιμή του α. (Μονάδες 1) β) Για α=-4 να λύσετε την εξίσωση Px () 0. (Μονάδες 13) _64 Δίνεται το πολυώνυμο P( x) x ax 11x 30 με για το οποίο γνωρίζουμε ότι η τιμή του για x=1 είναι 16. α) Να υπολογίσετε την τιμή του α. (Μονάδες 1) β) Αν α=-4 και το είναι ρίζα της εξίσωσης Px () 0 να προσδιορίσετε τις άλλες ρίζες της εξίσωσης Px () 0. (Μονάδες 13) _643 Δίνεται το πολυώνυμο P( x) x x x με,, το οποίο έχει ρίζες τους αριθμούς 0,1 και 3. α) Να δείξετε ότι β=-4,γ=3 και δ=0. (Μονάδες 15) β) Να λύσετε την ανίσωση Px () 0. (Μονάδες 10) _644 3 Δίνεται το πολυώνυμο P( x) x 4x 3 με. α) Να βρείτε τις τιμές του λ ώστε το P(x) να έχει παράγοντα το x-1. (Μονάδες 10) β) Αν λ=3 να βρείτε όλες τις ρίζες του πολυωνύμου P(x). (Μονάδες 15)

8 _645 4 Αν η γραφική παράσταση της συνάρτησης f ( x) x x ax 5x 6 διέρχεται από το σημείο Μ(-,0), α) να αποδείξετε ότι α=-14 (Μονάδες 1) β) να βρείτε τα σημεία τομής της γραφικής παράστασης της f με τους άξονες χ χ και y y. (Μονάδες 13) _646 Δίνεται το πολυώνυμο P( x) 3x 10 x + 9x. α) Να κάνετε τη διαίρεση του πολυωνύμου P(x) με το πολυώνυμο 3x 4x 1 και να γράψετε την ταυτότητα της ευκλείδειας διαίρεσης. (Μονάδες 15) β) Να λύσετε την εξίσωση Px () 0. (Μονάδες 10) _647 Δίνεται η συνάρτηση f ( x) x x 5x. α) Nα βρείτε τα σημεία τομής της γραφικής παράστασης της f με τον άξονα χ χ (Μονάδες 15) β) Να βρείτε τα διαστήματα στα οποία η γραφική παράσταση της f βρίσκεται κάτω από τον άξονα χ χ. (Μονάδες 10) _648 Δίνεται το πολυώνυμο P( x) x x -5x με,. α) Αν το πολυώνυμο P(x) έχει ρίζα το 1 και το υπόλοιπο της διαίρεσής του με το x- είναι ίσο με - 4, να βρείτε τα,. (Μονάδες13) β) Αν α=- και β=6, να λύσετε την εξίσωση Px () 0. (Μονάδες 1) _681 Δίνεται το πολυώνυμο Ρ(x) = x 3 + αx + βx + Αν το Ρ(x) έχει παράγοντα το x + 1 και Ρ() = 18,τότε: α) Να αποδείξετε ότι α = 1 και β = (Μονάδες 10) β) Να λύσετε την εξίσωση: Ρ(x) = 0 (Μονάδες 8) γ) Να λύσετε την ανίσωση: ( x) 0 (Μονάδες 7) _68 Δίνεται το πολυώνυμο P x x k x x k ( ) ( 6) 7. α) Να βρείτε για ποια τιμή του k, το είναι ρίζα του Ρ(x). (Μονάδες 1) β) Αν κ = 6, να λύσετε την εξίσωση Ρ(x) = 0. (Μονάδες 13) _683 Δίνεται το πολυώνυμο x x x x 6. α) Αν γνωρίζετε ότι η τιμή του πολυωνύμου για x = 1 είναι ίση με 10 και P() = 10, να βρείτε τα, (Μονάδες 1) β) Αν α = -5 και β = 8, να λύσετε την ανίσωση Ρ(x) > 10. (Μονάδες 13)

9 _684 Μια εταιρεία κατασκευάζει κουτιά σχήματος ορθογωνίου παραλληλεπιπέδου με διαστάσεις 3cm, 4cm και 5cm. Ένας νέος πελάτης ζήτησε από την εταιρεία να κατασκευάσει κουτιά με όγκο 10 cm 3, δηλαδή διπλάσιο από εκείνον που κατασκευάζει. Η εταιρεία αποφάσισε να κατασκευάσει τα κουτιά που ζήτησε ο πελάτης της, αυξάνοντας τις διαστάσεις του αρχικού κουτιού κατά σταθερό ακέραιο μήκος x. α) Να αποδείξετε ότι το x θα είναι λύση της εξίσωσης x 3 1x 47x (Ο όγκος V ορθογωνίου παραλληλεπιπέδου με διαστάσεις α, β, γ δίνεται από τον τύπο: V = α β γ) (Μονάδες 1) β) Να βρείτε τον θετικό ακέραιο x λύνοντας την εξίσωση που δίνεται στο ερώτημα α). (Μονάδες 13) _685 Δίνονται τα πολυώνυμα x 3 x 3 x 1 και Q x x x 3 1, όπου α θετικός πραγματικός αριθμός. α) Να βρείτε το α ώστε τα πολυώνυμα Ρ(x) και Q(x) να είναι ίσα. (Μονάδες 13) β) Αν α = 1, να αποδείξετε ότι η εξίσωση P(x) = 0 δεν έχει ακέραιες ρίζες. (Μονάδες 1) _686 Δίνεται το πολυώνυμο ( x) x + x 4x. α) Αν Ρ(-1) = 6, να δείξετε ότι λ = 1. (Μονάδες 11) β) Nα λύσετε την εξίσωση Ρ(x) = 0. (Μονάδες 14) _687 P x x x x 3 1 είναι 3ου βαθμού. Το πολυώνυμο α) Να δείξετε ότι λ = -1. (Μονάδες 9) β) Να βρείτε το P(x). (Μονάδες 7) γ) Να βρείτε τις ρίζες του P(x). (Μονάδες 9) _688 Το πολυώνυμο Ρ(x) αν διαιρεθεί με το (x - ) δίνει πηλίκο x 3x και υπόλοιπο τον πραγματικό αριθμό υ. α) Να γράψετε την ταυτότητα της παραπάνω διαίρεσης. (Μονάδες 8) β) Αν Ρ(1) = 10, να βρείτε το υ. (Μονάδες 9) γ) Αν υ=10,να βρείτε το P(x). (Μονάδες 8) 4_734 Δίνεται ορθογώνιο τρίγωνο με εμβαδό E 30cm του οποίου η υποτείνουσα είναι κατά 1cm μεγαλύτερη από τη μία κάθετη πλευρά. Αν ονομάσουμε x το μήκος αυτής της κάθετης πλευράς και y το μήκος της άλλης κάθετης (σε cm), τότε: 60 α) Να δείξετε ότι οι αριθμοί x, y ικανοποιούν τις σχέσεις: y και (x1) x y x (Μονάδες 4) β) Να δείξετε ότι ο αριθμός x ικανοποιεί την εξίσωση: x x (Μονάδες 4)

10 γ) Αν γνωρίζετε ότι το μήκος της πλευράς x είναι αριθμός ακέραιος και μικρότερος του 15, να βρείτε την τιμή του x καθώς και τα μήκη των άλλων πλευρών του τριγώνου. (Μονάδες 1) δ) Να εξετάσετε αν υπάρχει άλλο ορθογώνιο τρίγωνο (με διαφορετικά μήκη πλευρών από αυτά που προσδιορίσατε στο ερώτημα γ)) το οποίο ικανοποιεί τα αρχικά δεδομένα του προβλήματος. (Μονάδες 5) 4_759 Στο παρακάτω σχήμα δίνεται τμήμα της γραφικής παράστασης της συνάρτησης 1 3 f ( x) x x, x R και γ, δ πραγματικές σταθερές. 3 α) Με βάση τη γραφική παράσταση, να αποδείξετε ότι γ = -1 και δ = 0. (Μονάδες 5) 1 3 β) Θεωρώντας τώρα δεδομένο ότι f ( x) x x, x R : 4 i. Να αποδείξετε ότι f ( x) f ( x), για κάθε x R. (Μονάδες 5) ii. Να μεταφέρετε στην κόλα σας το σχήμα και να συμπληρώσετε τη γραφική παράσταση της f για x < 0. (Μονάδες 5) 3 iii. Να επαληθεύσετε ότι f (1) και, στη συνέχεια, να λύσετε τις εξισώσεις f( x) και f( x). (Μονάδες 10) 4 4 4_777 Στο σχήμα φαίνονται η γραφική παράσταση της συνάρτησης f ( x) x x και η ευθεία που διέρχεται από τα σημεία Α (0, 1) και Β (1, -). α) Να βρείτε την εξίσωση της ευθείας. (Μονάδες 7) β) Αν η ευθεία έχει εξίσωση y = -3x + 1, να βρείτε τις συντεταγμένες των κοινών σημείων της ευθείας με τη γραφική παράσταση της f. (Μονάδες 9) γ) Να λύσετε την ανίσωση x x 3x 1 (Μονάδες 9)

11 ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ ΠΟΥ ΑΝΑΓΟΝΤΑΙ ΣΕ ΠΟΛΥΩΝΥΜΙΚΕΣ 4_ Δίνεται το πολυώνυμο ( x) 1 x 1 x 1 x 3 x,,. α) Να υπολογίσετε τις τιμές των κ και λ αν το πολυώνυμο Ρ(x) είναι 3ου βαθμού και το υπόλοιπο της διαίρεσης του Ρ(x) με το x -1 είναι ίσο με - 4. (Μονάδες 7) β) Για κ = 1 και λ = - i. Να γράψετε την ταυτότητα της Ευκλείδειας διαίρεσης του πολυωνύμου Ρ(x) με το x -1. (Μονάδες 5) ii. Να λύσετε την εξίσωση Ρ(x) + 4 = x -1. (Μονάδες 7) Px ( ) iii. Να λύσετε την ανίσωση 1. (Μονάδες 6) ( x1) ( x) 4_769 Δίνεται το πολυώνυμο P x x ax x με,. α) Αν το πολυώνυμο P(x) έχει παράγοντα το x - και το υπόλοιπο της διαίρεσής του με το x +1 είναι ίσο με -6, να βρείτε τα,. (Μονάδες 7) β) Αν α = -5 και β = 1, να λύσετε την εξίσωση P(x) = 0. (Μονάδες 8) γ) Να λύσετε την εξίσωση (Μονάδες 10) 4_77 4 Δίνεται το πολυώνυμο P(x) x x x x με,. α) Να βρείτε τις τιμές των, όταν το πολυώνυμο P(x) έχει ρίζα το 1 και παράγοντα το x +. (Μονάδες 7) β) Για κ = -7 και λ = 6 να λυθεί η εξίσωση P(x) = 0. (Μονάδες 9) ( x) γ) Για κ = -7 και λ = 6 να λυθεί η ανίσωση 0. x 5 (Μονάδες 9) 4_773 Δίνεται το πολυώνυμο P( x) x x 7x 5, για το οποίο γνωρίζουμε ότι το υπόλοιπο της διαίρεσής του με το x είναι ίσο με 6 και ότι έχει ρίζα το 1. α) Να βρείτε τις τιμές των α και β (Μονάδες 8) β) Για 1 και 0, να λύσετε i. την ανίσωση Px () 0 (Μονάδες 8) ii. την εξίσωση P( x) x 1 (Μονάδες 9) 4_774 Δίνεται το πολυώνυμο x 3 x x x, με. α) Να κάνετε τη διαίρεση P(x):(x - α) και να γράψετε την ταυτότητα της διαίρεσης. (Μονάδες 7) β) Να βρείτε τις τιμές του α για τις οποίες το (x - α) διαιρεί το Ρ(x). (Μονάδες 6) γ) Αν 1, τότε: i. Να λύσετε την ανίσωση ( x) 0. (Μονάδες 6) ii. Να λύσετε την ανίσωση x x 1 0. (Μονάδες 6)

12 4_775 Μια εταιρεία εκτίμησε ότι το κέρδος της Ρ (σε χιλιάδες ευρώ) από την πώληση ενός συγκεκριμένου προϊόντος ήταν: x 0,5x 1,9 x 1, 0 x 4, όπου x είναι η διαφημιστική δαπάνη (σε χιλιάδες ευρώ). Για αυτό το προϊόν, ξόδεψε για διαφήμιση 3 χιλιάδες ευρώ και το κέρδος της ήταν 4,6 χιλιάδες ευρώ. α) i. Να χρησιμοποιήσετε την παραπάνω γραφική παράσταση της συνάρτησης P(x) για να εκτιμήσετε ένα άλλο ποσό x που θα μπορούσε να δαπανήσει για διαφήμιση η εταιρεία ώστε να έχει το ίδιο κέρδος. (Μονάδες 5) ii. Να επαληθεύσετε αλγεβρικά το αποτέλεσμα του ερωτήματος i. (Μονάδες 10) β) Πόσα χρήματα πρέπει να δαπανήσει η εταιρεία για διαφήμιση, ώστε το κέρδος της να είναι μεγαλύτερο από 4,6 χιλιάδες ευρώ; (Μονάδες 10) ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ _630 Δίνεται η γραφική παράσταση της συνάρτησης f( x) 3 x, με x R α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων x x gx ( ) 3 1 και hx ( ) 3 1, μετατοπίζοντας κατάλληλα τη γραφική παράσταση της συνάρτησης f. ( Μονάδες 1) β) Ποια είναι η ασύμπτωτη της γραφικής παράστασης της g και ποια της γραφικής παράστασης της h; (Μονάδες 13)

13 _633 x 38 Δίνεται συνάρτηση : (0, ) με 4, a (0,1) (1, ). α) Να προσδιορίσετε το είδος της μονοτονίας της συνάρτησης f x 0 αιτιολογώντας την απάντησή σας. (Μονάδες 13) β) Να λύσετε την ανίσωση x 1 1 3x5. (Μονάδες 1) 4_787 Όταν ένας ασθενής παίρνει μια δόση ενός φαρμάκου, τότε ο οργανισμός του το μεταβολίζει έτσι ώστε η ποσότητά του να μειώνεται σύμφωνα με τη συνάρτηση f ( t) q t 0a, t 0 όπου t ο χρόνος (σε ημέρες), f () t η ποσότητα του φαρμάκου(σε mg) και οι αριθμοί α,q 0 είναι κατάλληλες θετικές σταθερές. α) Να εξηγήσετε τι παριστάνει η σταθερά q 0 στο πλαίσιο του προβλήματος και να αιτιολογήσετε γιατί ισχύει 0 < α < 1. (Μονάδες 6) β) Υποθέτουμε τώρα ότι μία ημέρα μετά τη λήψη του φαρμάκου, η ποσότητά του στον οργανισμό του ασθενούς έχει υποδιπλασιαστεί. 1 i. Να αποδείξετε ότι (Μονάδες 5) ii. Να μεταφέρετε στην κόλα σας και να συμπληρώσετε τον παρακάτω πίνακα τιμών της συνάρτησης f, εκφράζοντας τις τιμές f () t συναρτήσει της αρχικής τιμής q 0. (Μονάδες 4) t f(t) q 0 q 0 1 γ) Υποθέτουμε τώρα ότι και ότι η ποσότητα του φαρμάκου που παραμένει στον οργανισμό στο τέλος της 4ης ημέρας είναι 5 mg. i. Να υπολογίσετε την ποσότητα της δόσης που πήρε ο ασθενής. (Μονάδες 5) ii. Να σχεδιάσετε τη γραφική παράσταση της συνάρτησης f στο διάστημα [0,6]. (Μονάδες 5) 4_790 Σε μια περιοχή της ευρωπαϊκής ένωσης λόγω των μέτρων που πάρθηκαν ο πληθυσμός των αγροτών (σε χιλιάδες) μειώνεται σύμφωνα με τον νόμο της εκθετικής μεταβολής ct Q t Qo e ). Ο αρχικός πληθυσμός ήταν 8 χιλιάδες αγρότες και μετά από δύο χρόνια ( έμεινε ο μισός. α) Να αποδείξετε ότι η συνάρτηση που δίνει τον πληθυσμό των αγροτών μετά από t χρόνια είναι: Q t t ln e 8 (Μονάδες 10) β) Ποιος θα είναι ο πληθυσμός των αγροτών ύστερα από τέσσερα χρόνια; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 6) γ) Πόσος χρόνος θα έχει περάσει όταν ο αγροτικός πληθυσμός της περιοχής θα έχει μειωθεί στους χίλιους αγρότες; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 9)

14 4_791 x Δίνεται η συνάρτηση f( x) για κάθε x και a,. Η γραφική παράσταση της συνάρτησης f διέρχεται από τα σημεία Α(1,3) και Β(,13). α) Να αποδείξετε ότι α = 5 και β = -7. (Μονάδες 7) β) Να βρείτε το κοινό σημείο της γραφικής παράστασης της συνάρτησης f με τον άξονα y y. (Μονάδες 4) γ) Να αποδείξετε ότι η συνάρτηση f είναι γνησίως αύξουσα στο. (Μονάδες 7) x δ) Να λύσετε την ανίσωση f ( 31) 3. (Μονάδες 7) ΛΟΓΑΡΙΘΜΟΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ _63 Δίνεται η συνάρτηση f ( x) ln( x 3), x 3. α) Να χαράξετε τη γραφική παράσταση της f μετατοπίζοντας κατάλληλα τη γραφική παράσταση της συνάρτησης g( x) ln x. (Μονάδες 8) β) Σε ποιο σημείο τέμνει η γραφική παράσταση της f τον άξονα x x; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 8) γ) Ποια είναι η ασύμπτωτη της C f; (Μονάδες 9) _634 α) Να βρείτε τις τιμές του x για τις οποίες ορίζεται η παράσταση ln xln( x 6) ( Μονάδες 10) 1 β) Να λύσετε την εξίσωση : ln x ln( x 6) ln 49 ( Μονάδες 15) _635 x Δίνεται η συνάρτηση f x lne e 1. α) Να βρείτε το πεδίο ορισμού της συνάρτησης f. ( Μονάδες 1) β) Να λύσετε την εξίσωση f x 0. (Μονάδες 13)

15 _636 Δίνονται οι συναρτήσεις f x lnx +4 και g x lnx ln4. α) Να βρείτε τα πεδία ορισμού των συναρτήσεων f και g. (Μονάδες 1) f x g x. (Μονάδες 13) β) Να λύσετε την εξίσωση _637 Δίνεται η συνάρτηση f x ln3 x 1. α) Να βρείτε το πεδίο ορισμού της συνάρτησης f. ( Μονάδες 13) β) Να λύσετε την εξίσωση f x 0. (Μονάδες 1) _638 Δίνεται η συνάρτηση f x ln x 1 α) Να βρείτε το πεδίο ορισμού της συνάρτησης f. (Μονάδες 8) β) Να βρείτε τα σημεία τομής (αν υπάρχουν) της γραφικής παράστασης της συνάρτησης f με τους άξονες x x και y y. (Μονάδες 10) γ) Να παραστήσετε γραφικά τη συνάρτηση f μετατοπίζοντας κατάλληλα τη γραφική παράσταση της y ln x. (Μονάδες 7) 4_794 Δίνεται το πολυώνυμο x x x x 6,,. α) Να υπολογίσετε τις τιμές των α και β ώστε το πολυώνυμο Ρ(x) να έχει παράγοντα το x +1 και η αριθμητική τιμή του για x = να είναι ίση με 1. (Μονάδες 7) β) Για α=- και β=3 i. Να γράψετε την ταυτότητα της Ευκλείδειας διαίρεσης του πολυωνύμου Ρ(x) με το x -. (Μονάδες 5) ii. Να λύσετε την ανίσωση x x 14. (Μονάδες 7) iii. Να λύσετε την ανίσωση 4_796 x Δίνονται οι συναρτήσεις f x lne 1 lnx ln x 14. (Μονάδες 6) και g x lnx α) Να βρείτε τα πεδία ορισμού των συναρτήσεων f και g. (Μονάδες 4) β) Να λύσετε τις ανισώσεις f (x )> 0 και g (x) < 0. (Μονάδες 8) γ) Να συγκρίνετε τους αριθμούς f ln 3 και g e (Μονάδες 6) δ) Να λύσετε την εξίσωση f x f x g e 1 4_799 Δίνεται η συνάρτηση f x log x. (Μονάδες 7). α) Να βρείτε το πεδίο ορισμού της συνάρτησης f. (Μονάδες 5) β) Να υπολογίσετε τον αριθμό γ) Να λύσετε την εξίσωση log (Μονάδες 7) f ( x) f ( x) log (Μονάδες 13)

α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων

α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Άλγεβρα Β-Λυκείου (2ο πακέτο ασκήσεων) 1 22630 Δίνεται η γραφική παράσταση της συνάρτησης f(x) = 3 x με x R. α) Στο ίδιο σύστημα αξόνων να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων

Διαβάστε περισσότερα

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0 1. α) Να βρείτε το υπόλοιπο και το πηλίκο της διαίρεσης (x 3 6x 2 +11x 2) : (x 3) β) Αν P(x) = x 3 6x 2 +11x + λ να βρείτε το λ R ώστε η διαίρεση P(x) : (x 3) να έχει υπόλοιπο 0. 2. Δίνονται τα πολυώνυμα:

Διαβάστε περισσότερα

ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1

ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΝΑ ΕΝΟΤΗΤΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ 1.1 ΘΕΜΑ ο ΘΕΜΑ 16950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ Α. ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο 1. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι

Διαβάστε περισσότερα

1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R

1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R 1 of 79 Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R α) Να αποδείξετε ότι η f γράφεται στη μορφή f(x) = (x- 2) 2 + 1. (Μονάδες 12) β) Στο σύστημα συντεταγμένων που ακολουθεί, να παραστήσετε γραφικά τη συνάρτηση

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Συνοπτική Θεωρία Ασκήσεις της Τράπεζας Θεμάτων Ερωτήσεις Σωστού-Λάθους Διαγωνίσματα Επιμέλεια: Συντακτική ομάδα mathp.gr Συντονισμός

Διαβάστε περισσότερα

1. Δίνεται η γραφική παράσταση της συνάρτησης f(x)= 3 x με x R.

1. Δίνεται η γραφική παράσταση της συνάρτησης f(x)= 3 x με x R. 1. Δίνεται η γραφική παράσταση της συνάρτησης f(x)= 3 x με x R. α) Στο ίδιο σύστημα να χαράξετε τις γραφικές παραστάσεις των συναρτήσεων: g(x) = 3 x + 1 και h(x) = 3 x 1, μετατοπίζοντας κατάλληλα τη γραφική

Διαβάστε περισσότερα

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι

1. Αν α 3 + β 3 + γ 3 = 3αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P (x) = (α - β) x 2 + (β - γ) x + γ - α είναι _ ΑΣΚΗΣΕΙΣ ΠΟΛΥΩΝΥΜΩΝ 1. Αν α + β + γ = αβγ και α + β + γ 0, δείξτε ότι το πολυώνυµο P () = (α - β) + (β - γ) + γ - α είναι το µηδενικό πολυώνυµο.. Να δειχθεί ότι το πολυώνυµο P () = (κ - ) + (λ + 6) +

Διαβάστε περισσότερα

( ) = 3 2 ΘΕΜΑ 2. Δίνεται η συνάρτηση f( x) 3 2

( ) = 3 2 ΘΕΜΑ 2. Δίνεται η συνάρτηση f( x) 3 2 Δίνεται η συνάρτηση f( x) 3 2 = συν x, x R. α) Να βρείτε την περίοδο, τη μέγιστη και την ελάχιστη τιμή της f. (Μονάδες 12) β) Να συμπληρώσετε τον παρακάτω πίνακα και να παραστήσετε γραφικά την f σε διάστημα

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να

Διαβάστε περισσότερα

Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 21/1/2015

Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 21/1/2015 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα 1 Επιμέλεια: Σακαρίκος Ευάγγελος 133 Θέματα - 1/1/015 Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Τράπεζα Θεμάτων Β Λυκείου Άλγεβρα Κεφάλαιο 1 ο : Συστήματα 3 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΟ ΥΛΙΚΟ. στην ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Κ Ε Φ Α Λ Α Ι Ο 5 ο

ΔΙΔΑΚΤΙΚΟ ΥΛΙΚΟ. στην ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Κ Ε Φ Α Λ Α Ι Ο 5 ο ΔΙΔΑΚΤΙΚΟ ΥΛΙΚΟ στην ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κ Ε Φ Α Λ Α Ι Ο 5 ο Ε Κ Θ ΕΤΙΚΗ ΚΑΙ ΛΟΓΑΡΙΘΜΙΚΗ ΣΥΝΑΡΤΗΣΗ Ερωτήσεις αντικειμενικού τύπου Ερωτήσεις Θεωρίας Θέματα της Τράπεζας Θεμάτων του Υπουργείου Προτεινόμενα

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του

Διαβάστε περισσότερα

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.

ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. (Μονάδες 10) β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις

Διαβάστε περισσότερα

με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4).

με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4). Δίνεται το σύστημα: x 2y= 9 ax+ βy= γ με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4). (Μονάδες 13) β) Να επιλέξετε

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Θέμα ο (4) -- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (2) -2- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015

Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΣΥΣΤΗΜΑΤΑ 1. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ 1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΘΕΜΑ ο GI_V_ALG 16950 1.1 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β)

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Τελευταία ενηµέρωση: Νοέµβριος 016) Ανέστης Τσοµίδης Κατερίνη Περιεχόµενα 1 Συστήµατα 1.1 Μη γραµµικά συστήµατα........................ Ιδιότητες συναρτήσεων 3.1 Μονοτονία,

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 2ο Θέμα

ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 2ο Θέμα Τράπεζα θεμάτων ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 2ο Θέμα ΘΕΜΑ 2 (16950) α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να

Διαβάστε περισσότερα

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1

ΔΑΜΙΑΝΟΣ ΓΙΑΝΝΗΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΦΥΛΛΟ ΕΠΑΝΑΛΗΨΗΣ 1 ΘΕΜΑ Α ΦΥΛΛΟ 1 Α1. Να αποδείξετε ότι το υπόλοιπο υ της διαίρεσης ενός πολυωνύμου P(x) με το x - ρ είναι ίσο με την τιμή του πολυωνύμου για x = ρ. Είναι δηλαδή υ = P(ρ). Α. Να χαρακτηρίσετε τις προτάσεις

Διαβάστε περισσότερα

2. α) Να διατάξετε από το μικρότερο στο μεγαλύτερο τους παρακάτω αριθμούς: x2 )

2. α) Να διατάξετε από το μικρότερο στο μεγαλύτερο τους παρακάτω αριθμούς: x2 ) 1. Δίνεται η συνάρτηση f(x) = 1 συνx, x R α) Ποια είναι η μέγιστη και ποια η ελάχιστη τιμή της συνάρτησης; Ποια είναι η περίοδος της f; β) Να σχεδιάσετε τη γραφική παράσταση της f σε διάστημα πλάτους μιας

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ B ΛΥΚΕΙΟΥ 1 ln 4 i Να βρείτε το πεδίο ορισμού της ii Να δείξετε ότι η παραπάνω συνάρτηση γράφεται: ln iii Να λύσετε την εξίσωση ln 5 ln 3 4 a a1 4,, a i Να βρείτε τον αριθμό

Διαβάστε περισσότερα

1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008

1 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 2008 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 008 α). Να αποδείξετε ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου Ρ(x) με το πρωτοβάθμιο πολυώνυμο x ρ ισούται με την αριθμητική τιμή του Ρ(x) για x =

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη Ειρήνη Μαρωνίτης Λάμπρος Μπουρούνης

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση

Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ α φάση Άλγεβρα Β Λυκείου Επαναληπτικά θέματα ΟΕΦΕ 00-08 α φάση Συναρτήσεις Θεωρούμε τη συνάρτηση Α, 6 wwwaskisopolisgr f κ, με 4,4 και κ η οποία διέρχεται από το σημείο και τμήμα της γραφικής της παράστασης φαίνεται

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Επαναληπτικές Ασκήσεις Έστω ότι το υπόλοιπο της διαίρεσης ενός πολυωνύμου ( x ) α Να γράψετε την ταυτότητα της διαίρεσης β Να βρείτε τα 0 και Ρ γ Αν το πολυώνυμο ( x) είναι x να βρείτε: x + x είναι 3x

Διαβάστε περισσότερα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150) Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Θέμα ο (150) -- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Α Λυκείου Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ

Διαβάστε περισσότερα

β) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5)

β) Αν επιπλέον το υπόλοιπο της διαίρεσης είναι υ(x) = - 3x + 5, τότε να βρείτε το Δ(x). (Απ. α) 5 ος β) Δ(x) = x 5 5x 4 + 6x 3 + 4x 2 11x + 5) ΠΑΝΤΕΛΗΣ ΤΡΙΜΗΣ ΜΑΘΗΜΑΤΙΚΟΣ ΑΛΓΕΒΡΑ B Λυκείου Γενικής Παιδείας Κ Ε Φ Α Λ Α Ι Ο 4ο - Φ Υ Λ Λ Ο Νο 2 Δ Ι Α Ι Ρ Ε Σ Η ΠΟΛΥΩΝΥΜΩΝ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΟΛΥΩΝΥΜΙΚΕΣ ΑΝΙΣΩΣΕΙΣ ΑΣΚΗΣΕΙΣ 1. Ένα πολυώνυμο Δ(x),

Διαβάστε περισσότερα

Τράπεζα Θεμάτων-4ο Β Λυκείου- ΑΛΓΕΒΡΑ

Τράπεζα Θεμάτων-4ο Β Λυκείου- ΑΛΓΕΒΡΑ Τράπεζα Θεμάτων-ο Β Λυκείου- ΑΛΓΕΒΡΑ ΘΕΜΑ (178) Δίνεται η συνάρτηση f (x) f x 8 x 8 x α) Να βρείτε το πεδίο ορισμού της συνάρτησης f. (Μονάδες 5) β) Να εξετάσετε αν η συνάρτηση f είναι άρτια ή περιττή.

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ

ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ www.apodeiis.gr ΑΣΚΗΣΕΙΣ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ 1 1. Να βρείτε το πεδίο ορισμού των συναρτήσεων: 1 i. ii. 1. Να βρείτε τα πεδία ορισμού των συναρτήσεων: i. 1 1 ii. ln. Δίνεται η συνάρτηση g, i. Να αποδείξετε

Διαβάστε περισσότερα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό

Διαβάστε περισσότερα

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός

Διαβάστε περισσότερα

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή

Ρητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται

Διαβάστε περισσότερα

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

1.1 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ 1.2 ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΒΑΣΙΚΕΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Να γίνουν οι γραφικές παραστάσεις των συναρτήσεων : π α) f() = + ηµ β) g() = + συν( ) 6 π π γ) f() = ηµ( ) δ) g() = συν( ) Να γίνει η µελέτη και η γραφική παράσταση

Διαβάστε περισσότερα

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ

ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές, αυτό το βιβλίο αποτελεί ένα σημαντικό βοήθημα για την Άλγεβρα της Β Λυκείου, που είναι

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:

Διαβάστε περισσότερα

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΘΕΜΑ 1. ημ x. 1 σφx 1 σφx 4 ΘΕΜΑ γ ε. 2 δ. 1

ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΘΕΜΑ 1. ημ x. 1 σφx 1 σφx 4 ΘΕΜΑ γ ε. 2 δ. 1 1 ΤΡΙΓΩΝΟΜΕΤΡΙΑ 1. Να αποδείξετε ότι: 1 σφ 1 σφ ΘΕΜΑ 1. Nα λύσετε την εξίσωση: ημ 1 σφ 1σφ 4 ΘΕΜΑ Α. Να βρεθούν οι παρακάτω τριγωνομετρικοί αριθμοί: α. συν330 ο = β. συν (-300 ο ) = γ. συν (-10 ο ) = δ.

Διαβάστε περισσότερα

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω. ΘΕΜΑ ΘΕΜΑ Έστω α, β πραγµατικοί αριθµοί για τους οποίους ισχύουν: α β = 4 και αβ + αβ = 0 α) Να αποδείξετε ότι: α + β = 5. (Μονάδες 0) β) Να κατασκευάσετε εξίσωση ου βαθµού µε ρίζες τους αριθµούς α, β

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ Ερώτηση θεωρίας 1 ΘΕΜΑ Α Τι ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΝΙΣΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4 ο ΑΣΚΗΣΕΙΣ ΓΙΑ ΛΥΣΗ. Nα λυθούν οι ανισώσεις α) 4 β) 4. Nα λυθούν οι ανισώσεις ( )( ) α) + > - (+) β). Nα βρεθούν οι κοινές λύσεις των ανισώσεων: ( ) ( ) 8 4 8 και

Διαβάστε περισσότερα

7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι

7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο ρ πε α εμ των α ματ ών 2014 Γ Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον

Διαβάστε περισσότερα

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,, 1. i) Να αποδείξετε την ταυτότητα 1 ( ) ( ) ( ) + + = + +. ii) Να αποδείξετε ότι για όλους τους,, ισχύει Πότε ισχύει ισότητα; + + + +.. Λέμε ότι μια τριάδα θετικών ακεραίων (,, ) είναι όταν είναι πλευρές

Διαβάστε περισσότερα

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου

Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου Επαναληπτικό Διαγώνισμα Άλγεβρας Β Λυκείου Θέμα Α. Αν α>0 με α, τότε για οποιουσδήποτε θ, θ,θ>0 και κ ισχύει log (θ θ ) log θ log θ Μονάδες 8 α α α Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας

Διαβάστε περισσότερα

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f ( ) 1. Μορφή της συνάρτησης f ( ) Ιδιότητες Έχει πεδίο ορισµού ολο το R Είναι άρτια, άρα συµµετρική ως προς τον άξονα y y Είναι γνησίως φθίνουσα στο διάστηµα (,0] Είναι γνησίως

Διαβάστε περισσότερα

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Εκθετική - Λογαριθµ ική Συνάρτηση)

ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ. ( Κεφάλαιο 4ο : Εκθετική - Λογαριθµ ική Συνάρτηση) ΣΧΕ ΙΑ ΚΡΙΤΗΡΙΩΝ ΑΞΙΟΛΟΓΗΣΗΣ ΤΟΥ ΜΑΘΗΤΗ ( Κεφάλαιο 4ο : Εκθετική - Λογαριθµ ική Συνάρτηση) Τα κριτήρια αξιολόγησης που ακολουθούν είναι ενδεικτικά. Ο καθηγητής έχει τη δυνατότητα διαµόρφωσής τους σε ενιαία

Διαβάστε περισσότερα

Τ ρ α π ε ζ α Θ ε μ α τ ω ν

Τ ρ α π ε ζ α Θ ε μ α τ ω ν Τ ρ α π ε ζ α Θ ε μ α τ ω ν Α λ γ ε β ρ α B Λ υ κ ε ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α B Λ υ κ ε ι ο υ Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Γ ρ α μ μ ι κ α Σ υ σ τ η μ α τ α 16950 16954

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος Κεφάλαιο 2ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ 2. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό

Διαβάστε περισσότερα

3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.

3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος. . Δίνεται η εξίσωση λ + 4(λ ) = 0, με παράμετρο λ R α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε λ R. γ) Αν, είναι οι ρίζες της παραπάνω

Διαβάστε περισσότερα

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ

Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Ε π ι μ έ λ ε ι α Κ Ο Λ Λ Α Σ Α Ν Τ Ω Ν Η Σ Θέμα εξετάσεων 2000 Θ2. Δίνεται η συνάρτηση f: με f(x) = x 2 4x + 4. α. Να υπολογίσετε την παράγωγο της συνάρτησης f. β. Να μελετήσετε ως προς την μονοτονία

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΙΣ. 3. Μια μπάλα πέφτει από την κορυφή ενός πυργου. Το ύψος στο οποίο βρίσκετε μετά από t sec δίνεται από τη συνάρτηση f () x 75 3

ΣΥΝΑΡΤΗΣΕΙΣ. 3. Μια μπάλα πέφτει από την κορυφή ενός πυργου. Το ύψος στο οποίο βρίσκετε μετά από t sec δίνεται από τη συνάρτηση f () x 75 3 ΦΥΛ ΣΥΝΑΡΤΗΣΕΙΣ. Να βρεθούν τα Πεδία Ορισμων συναρτήσεων: i) f () 4 f () i f () 4 f () 6 5 v) f () 9 vi) f () v f () log() vi f () 4, i) f () 8, Να βρεθούν επίσης οι τιμές : n f ( 4),( f ),( f0),(),(0),(

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. β) x 9x. ε) (x 1) 3(x 1) 2(x 1) 0. (2x 1) x 128 0

ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. β) x 9x. ε) (x 1) 3(x 1) 2(x 1) 0. (2x 1) x 128 0 ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1. Να λύσετε τις εξισώσεις: α) x x 10x 0 5 x 9x γ) x 8x 0 x x x 0 x (x ) 9(x ) ε) (x 1) (x 1) (x 1) 0. Να λύσετε τις εξισώσεις: 5 α) x 0 7 γ) (x ) 1 0 (x 1)

Διαβάστε περισσότερα

Τ ρ α π ε ζ α Θ ε μ α τ ω ν

Τ ρ α π ε ζ α Θ ε μ α τ ω ν Τ ρ α π ε ζ α Θ ε μ α τ ω ν Α λ γ ε β ρ α B Λ υ κ ε ι ο υ Ε π ι μ ε λ ε ι α : Τ α κ η ς Τ σ α κ α λ α κ ο ς Α λ γ ε β ρ α B Λ υ κ ε ι ο υ Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Τ Ε Τ Α Ρ Τ Ο Θ Ε Μ Α Γ ρ α μ μ ι κ α Σ υ

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ ΚΑΤΑΚΟΡΥΦΗ-ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ Να σχεδιάσετε στο ίδιο σύστημα αξόνων τις γραφικές παραστάσεις των συναρτήσεων: f ()=, g()= +3,h()= -3 Να σχεδιάσετε στο ίδιο σύστημα

Διαβάστε περισσότερα

ΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και

ΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και 7 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /

Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 / Ανισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 1 0 / 0 1 6 εκδόσεις τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88

Διαβάστε περισσότερα

Γιώργος Μπαρακλιανός τηλ ( ) Κώστας Τζάλλας τηλ ( ) Παραγγελίες : τηλ.

Γιώργος Μπαρακλιανός τηλ ( ) Κώστας Τζάλλας τηλ ( ) Παραγγελίες : τηλ. Γιώργος Μπαρακλιανός τηλ. 69377886 ( mparakgeo@gmail.com ) Κώστας Τζάλλας τηλ. 69733004 ( tzallask@gmail.com ) Παραγγελίες : τηλ. 5407604 Email : mparakgeo@gmail.com Messenger : Giorgos Mparaklianos Πρόλογος

Διαβάστε περισσότερα

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1);

Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1); 8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος

Διαβάστε περισσότερα

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ

OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β, 8B, 9 Έστω Α ένα υποσύνολο του Ονομάζουμε

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ

ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ

Διαβάστε περισσότερα

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ

ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ 5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση

Διαβάστε περισσότερα

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος

ΠΟΛΥΩΝΥΜΑ. Κεφάλαιο 2ο: Ερωτήσεις του τύπου Σωστό-Λάθος Κεφάλαιο ο: ΠΟΛΥΩΝΥΜΑ Ερωτήσεις του τύπου Σωστό-Λάθος 1. * Οι πραγματικοί αριθμοί είναι σταθερά πολυώνυμα. Σ Λ. * Το σταθερό πολυώνυμο 0 λέγεται μηδενικό πολυώνυμο. Σ Λ 3. * Κάθε σταθερό και μη μηδενικό

Διαβάστε περισσότερα

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου.

Άλγεβρα Β Λυκείου. Στέλιος Μιχαήλογλου. Άλγεβρα Β Λυκείου Στέλιος Μιχαήλογλου wwwaskisopolisgr Το φυλλάδιο αυτό δημιουργήθηκε για να χρησιμοποιηθεί ως επέκταση του σχολικού βιβλίου και όχι αυτόνομα δ έκδοση 0--06 Συστήματα Γραμμικές Εξισώσεις

Διαβάστε περισσότερα

2.2 ιαίρεση Πολυωνύμων

2.2 ιαίρεση Πολυωνύμων ιαίρεση Πολυωνύμων 1 Να γίνουν οι διαιρέσεις: α) (x 5 - x + x - 9) : (x - 1) β) (x 4-7x + x - 15) : (x + 5) γ) (x - 4αx + α ) : (x - α) δ) [7x - (9α + 7α ) x + 9α ] : (x - α) Με τη βοήθεια του σχήματος

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει: Να αναγνωρίζει πότε μια αλγεβρική παράσταση της πραγματικής μεταβλητής x, είναι πολυώνυμο και να διακρίνει τα στοιχεία του: όροι, συντελεστές, σταθερός

Διαβάστε περισσότερα

Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1

Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος ΜΑΝΩΛΗ ΨΑΡΡΑ. Μανώλης Ψαρράς Σελίδα 1 Α ΛΥΚΕΙΟ ΓΕΡΑΚΑ ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Σχολικό Έτος 014-15 ΜΑΝΩΛΗ ΨΑΡΡΑ Μανώλης Ψαρράς Σελίδα 1 Α ΣΥΣΤΗΜΑΤΑ ΑΣΚΗΣΗ 1 η Να λυθούν γραφικά τα συστήματα: y y6 y 5 1 : 1 : 3 : y 6 0 y 5

Διαβάστε περισσότερα

Γραμμικά Συστήματα. δεν είναι λύση του συστήματος. β) Ποιο από τα παραπάνω ζεύγη είναι λύση του συστήματος

Γραμμικά Συστήματα. δεν είναι λύση του συστήματος. β) Ποιο από τα παραπάνω ζεύγη είναι λύση του συστήματος 8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y 4, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το 4, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ (ΑΡΙΘΜΗΤΙΚΗ ΤΙΜΗ,ΠΡΑΞΕΙΣ,ΙΣΟΤΗΤΑ) P( x) ( 4) x ( 8) x ( 5 6) x 16 είναι το μηδενικό πολυώνυμο.

ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ (ΑΡΙΘΜΗΤΙΚΗ ΤΙΜΗ,ΠΡΑΞΕΙΣ,ΙΣΟΤΗΤΑ) P( x) ( 4) x ( 8) x ( 5 6) x 16 είναι το μηδενικό πολυώνυμο. ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ (ΑΡΙΘΜΗΤΙΚΗ ΤΙΜΗ,ΠΡΑΞΕΙΣ,ΙΣΟΤΗΤΑ) 1. Δίνονται τα πολυώνυμα: P ( x) x x, Q( x) x x 1. Να βρεθούν: a) P( x) Q( x) ) P( x) Q( x) ) P( x) Q( x). Να βρεθεί η τιμή του λ R για την οποία

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 0 ΘΕΩΡΙΑ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑ - ΜΑΘ. ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΕΞΕΤΑΣΕΩΝ Η ΤΕΛΕΥΤΑΙΑ ΕΠΑΝΑΛΗΨΗ Βαγγέλης Α Νικολακάκης Μαθηματικός ΛΙΓΑ ΛΟΓΑ Η παρούσα εργασία µμου δεν στοχεύει απλά στο κυνήγι

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω.

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ. , ισχύει ότι:. α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Β ΛΥΚΕΙΟΥ 1. Έστω ότι για μια γωνία ω, όπου, ισχύει ότι:. 1 α. Να υπολογίσετε όλους τους τριγωνομετρικούς αριθμούς της γωνίας ω. β. Να υπολογίσετε την τιμή της παράστασης:

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη Ειρήνη Μαρωνίτης Λάμπρος Μπουρούνης

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β κύκλος 6-7 ) Δίνεται η παραγωγίσιμη στο συνάρτηση f για την οποία ισχύει : α) Να δείξετε ότι f()=+e -, f ()+f()=, για κάθε και f()=e+ β) Να βρείτε το όριο ( y f(y)) γ) Να δείξετε

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη Ειρήνη Μαρωνίτης Λάμπρος Μπουρούνης

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη Ειρήνη Μαρωνίτης Λάμπρος Μπουρούνης

Διαβάστε περισσότερα

Η συνάρτηση y = αχ 2 + βχ + γ

Η συνάρτηση y = αχ 2 + βχ + γ Η συνάρτηση y αχ + βχ + γ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y αx + βx + γ με α 0 Μια συνάρτηση της μορφής y αx + βx + γ με α 0 ονομάζεται τετραγωνική

Διαβάστε περισσότερα

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Β' Γενικού Λυκείου. Γενικής Παιδείας. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Β' Γενικού Λυκείου. Γενικής Παιδείας. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ ΘΕΜΑ A ΑΛΓΕΒΡΑ Β' Γενικού Λυκείου Γενικής Παιδείας Σάββατο 1 Απριλίου 018 ιάρκεια Εξέτασης: ώρες ΘΕΜΑΤΑ Α1. Στο επόμενο σχήμα βλέπετε τον τριγωνομετρικό κύκλο, τους άξονες ημιτόνων, συνημιτόνων, εφαπτομένων,

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη Ειρήνη Μαρωνίτης Λάμπρος Μπουρούνης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO 1o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤO o ΚΕΦΑΛΑΙΟ ( ΠΑΡΑΓΩΓΟΙ) ΜΕ ΛΥΣΕΙΣ 000 ΘΕΜΑ ο Α.α) Δίνεται η συνάρτηση F f g αποδείξετε ότι: F f g. cf,. Αν οι συναρτήσεις

Διαβάστε περισσότερα

Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί

Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί wwwaskisopolisgr Άλγεβρα Α Λυκείου Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ 006-08 Δίνεται ότι και y Πραγματικοί αριθμοί α) i Να βρεθούν τα όρια μεταξύ των οποίων περιέχεται το ii Να βρεθούν τα όρια μεταξύ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7-8 Α ΜΕΡΟΣ Δίνεται η παραγωγίσιμη στο συνάρτηση f για την οποία ισχύει : f ()+f()=, για κάθε και f()=e+ α) Να δείξετε ότι f()=+e -, β) Να βρείτε το όριο lim ( lim f(y)) y γ) Να δείξετε

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Μαθηματικά Προσανατολισμού Γ Λυκείου- Μαθηματικός Περιηγητής ΕΝΟΤΗΤΑ

Διαβάστε περισσότερα

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση;

Διαφορικός Λογισμός. Κεφάλαιο Συναρτήσεις. Κατανόηση εννοιών - Θεωρία. 1. Τι ονομάζουμε συνάρτηση; Κεφάλαιο 1 Διαφορικός Λογισμός 1.1 Συναρτήσεις Κατανόηση εννοιών - Θεωρία 1. Τι ονομάζουμε συνάρτηση; 2. Πως ορίζονται οι πράξεις της πρόσθεσης, της διαφοράς, του γινομένου και του πηλίκου μεταξύ δύο συναρτήσεων;

Διαβάστε περισσότερα

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μάκος Σπύρος Μαρωνίτη Ειρήνη Μαρωνίτης Λάμπρος Μπουρούνης

Διαβάστε περισσότερα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7, α) Να αιτιολογήσετε γιατί η (α ν ) είναι αριθμητική πρόοδος και να βρείτε τον εκατοστό όρο της. (Μονάδες 15) β) Να αποδείξετε ότι

Διαβάστε περισσότερα

4.3. ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ

4.3. ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ 4.3. ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΑΝΙΣΩΣΕΙΣ Αν η εξίσωση α ν x ν +α ν-1 x ν-1 +... +α 1 x+α 0 = 0 με α ν,α ν-1,...,α 1,α 0 Ζ : έχει ρίζα τον ακέραιο αριθμό ρ, τότε το ρ διαιρεί το α 0. έχει ρίζα το κλάσμα,

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012. Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 0 Ε_3.ΜλΑ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α A.. Α.. Α.3. ΘΕΜΑ Β Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Ηµεροµηνία: Κυριακή Απριλίου

Διαβάστε περισσότερα

Στοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1

Στοιχεία Συναρτήσεων. 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: στ. x 1 Στοιχεία Συναρτήσεων 1. Να βρεθεί το πεδίο ορισμού των παρακάτω συναρτήσεων: 1 α. f() β. f() 3 6 8 3 1 γ. g() δ. g() ( 6)( 5) 4 ε. h() 4 στ. h() 4 ζ. ε. στ. 1 φ() η. 1 1 1 r() 5 6 1 r() 1 5 6 φ() 5. Στις

Διαβάστε περισσότερα

x 1 δίνει υπόλοιπο 24

x 1 δίνει υπόλοιπο 24 ΓΕΝΙΚΕΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ 3. Δίνεται το πολυώνυμο P() 6 α β το οποίο έχει παράγοντα το και όταν διαιρείται με το δίνει υπόλοιπο i. Να δείξετε ότι: α και β 6 ii. Να λύσετε την εξίσωση

Διαβάστε περισσότερα

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ, ΑΝΙΣΩΣΕΙΣ 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήµατος (α). x 1. ίνονται οι ανισώσεις: 3x 1

Διαβάστε περισσότερα

Διαγώνισμα στις παραγώγους μέχρι και ακρότατα. 0 σε κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως αύξουσα

Διαγώνισμα στις παραγώγους μέχρι και ακρότατα. 0 σε κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως αύξουσα Διαγώνισμα στις παραγώγους μέχρι και ακρότατα Θέμα A Α Έστω μια συνάρτηση f,η οποία είναι συνεχής σ ένα διάστημα Δ Αν στο Δ f x σε κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως αύξουσα Α Θεωρήστε

Διαβάστε περισσότερα

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα, Γενικής Παιδείας 1.4 Εφαρμογές των παραγώγων Το κριτήριο της πρώτης παραγώγου Στην Άλγεβρα της Α Λυκείου μελετήσαμε τη συνάρτηση f(x) = αx + βx + γ, α 0 και είδαμε ότι η γραφική της παράσταση είναι μία

Διαβάστε περισσότερα