Σχεδιασμός Συνεργασία - Παρουσίαση Αριθμός μαθητών Ώρες Λειτουργίας Διάρκεια Προγράμματος Κόστος συμμετοχής
|
|
- Θησεύς Πολίτης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Τέχνη & Μαθηματικά Μια παράλληλη περιήγηση στα Μαθηματικά της Τέχνης και την Τέχνη των Μαθηματικών Σχεδιασμός Άρης Μαυρομμάτης Αποστόλης Παπανικολάου Συνεργασία - Παρουσίαση Ναταλία Κωτσάνη Γιώργος Μαυρομμάτης Αριστοτέλης Παναγιωτόπουλος Αριθμός μαθητών έως 75 άτομα ανά δίωρο Ώρες Λειτουργίας 9:00-11:00 & 11:00-13:00 Διάρκεια Προγράμματος 2 ώρες Κόστος συμμετοχής 2.50 ανά μαθητή συνοδοί & εκπαιδευτικοί δωρεάν Μια πορεία αναζήτησης της σχέσης Τέχνης και Μαθηματικών, μέσα από την αλληλεπίδραση με έργα Τέχνης και διαδραστικά εκθέματα. Αναζητούνται τα σημεία όπου συναντώνται και αλληλοεπηρεάζονται οι δυο αυτοί τομείς της ανθρώπινης σκέψης και έκφρασης, με έμφαση στη γεωμετρική περίοδο της Ελληνικής τέχνης, στη σχέση Μαθηματικών και Μουσικής (Πυθαγόρεια κλίμακα), στην κλασική τέχνη (Παρθενών Αναλογίες Χρυσή Τομή), στη γραμμική προοπτική (Αναγέννηση), στη Γεωμετρία της μοντέρνας τέχνης (Κυβισμός, Κονστρουκτιβισμός, Bauhauss) και τέλος στη σύγχρονη λεγόμενη «μαθηματική τέχνη» των μορφοκλασματικών (fractals). Με αφορμή κατάλληλα επιλεγμένα έργα των M. C. Escher και V. Vasarely αλλά και άλλων καλλιτεχνών, οι μαθητές εισάγονται αβίαστα στη φύση και κυρίως στη φιλοσοφία σημαντικών μαθηματικών εννοιών.
2 Πρόγραμμα Γυμνασίου Περιγραφή Το πρόγραμμα «Τέχνη και Μαθηματικά» για το γυμνάσιο, αποτελείται από τρία διδακτικά μέρη, δύο εκ των οποίων είναι κοινά για τους μαθητές όλων των τάξεων (Μέρη Α & Β ) και από ένα ειδικό μέρος (Μέρος Γ ), το οποίο είναι κατάλληλα προσαρμοσμένο στις γνωστικές δυνατότητες κάθε τάξης. Στο τέλος, οι μαθητές καλούνται να συμπληρώσουν ένα έντυπο αξιολόγησης. Μέρος Α : Γενικό Εισαγωγικό διάρκεια: 15 λεπτά Παράλληλη περιήγηση με προβολή κατάλληλου οπτικοακουστικού υλικού, στην ιστορία αφενός της Τέχνης και αφετέρου των Μαθηματικών, επικεντρωμένη σε τρεις βασικές περιόδους: (Π1) Αρχαία Ελληνική και κλασική Τέχνη: σύνδεση με τα αρχαία Ελληνικά Μαθηματικά. (Π2) Αραβικός πολιτισμός και Αναγέννηση: σύνδεση με τις αντίστοιχες μαθηματικές και επιστημονικές κατακτήσεις. (Π3) Μοντέρνα Τέχνη: σύνδεση με τις αντίστοιχες μαθηματικές και επιστημονικές κατακτήσεις. Μέρος Β : Επίσκεψη των δύο εκθεσιακών χώρων του μουσείου διάρκεια: 30 λεπτά Περιήγηση στην τρέχουσα έκθεση του Μουσείου Ηρακλειδών. Μέχρι τέλη Ιανουαρίου 2011 εκτίθενται έργα του Sol Lewitt, κατόπιν θα γίνει αντικατάσταση με έργα των M. C. Escher και V. Vasarely. Μέρος Γ : Παρουσίαση ειδικού θέματος στις αίθουσες διαλόγου και αλληλεπίδρασης διάρκεια: 60 λεπτά Ο διάλογος με αφορμή επιλεγμένα έργα τέχνης, πολυμεσικό υλικό και αλληλεπιδραστικά εκθέματα, επικεντρώνεται σε μία συγκε- κριμένη για κάθε τάξη θεματική ενότητα. Ακολουθεί αναλυτική περιγραφή των προτεινόμενων θεματικών ενοτήτων του ειδικού μέρους για κάθε τάξη, από τις οποίες μπορούν να επιλέξουν οι εκπαιδευτικοί. Μέρος Δ : Ανατροφοδότηση - Αξιολόγηση διάρκεια: 15 λεπτά Συμπλήρωση εντύπου αξιολόγησης με ανώνυμη και ελεύθερη καταγραφή παρατηρήσεων και εντυπώσεων για το πρόγραμμα. Σκοπός του εκπαιδευτικού προγράμματος «Τέχνη και Μαθηματικά» είναι να αποτελέσει συμπλήρωμα της διδασκόμενης ύλης των Μαθηματικών, στην κατεύθυνση της κοινά επιθυμητής από όλους τους ερευνητές της Διδακτικής, «διαθεματικότητας», διασυνδέοντας τα Μαθηματικά με την Ιστορία της Επιστήμης και της Τέχνης, τη Φιλοσοφία και τα κλασικά γράμματα.
3 Γυμνάσιο Ειδικό Μέρος Όσον αφορά στο ειδικό μέρος (Μέρος Γ) του προγράμματος του Γυμνασίου, οι εκπαιδευτικοί μπορούν να επιλέξουν μία από τις παρακάτω έξι θεματικές ενότητες: I. Εισαγωγή στην αλληλεπίδραση τέχνης & μαθηματικών II. III. IV. Οι οφθαλμαπάτες της τέχνης & τα παράδοξα της λογικής Μουσική & μαθηματικά Οι διαστάσεις του χώρου & η προοπτική V. Σχήματα & λόγοι Χρώματα & αριθμοί VI. Μετασχηματισμοί, συμμετρίες & γεωμετρικά μοτίβα Ακολουθεί αναλυτική περιγραφή των παραπάνω θεματικών ενοτήτων.
4 I. Εισαγωγή στην αλληλεπίδραση τέχνης & μαθηματικών Γυμνάσιο Η θεματική ενότητα (Ι), αποτελεί μία εισαγωγική ενότητα αλληλεπίδρασης της τέχνης και των μαθηματικών. Μπορεί να αποτελέσει μια αφετηρία για μεταγενέστερες επισκέψεις ενός τμήματος στο μουσείο (για τις περισσότερο εξειδικευμένες ενότητες ΙΙ, ΙΙΙ, ΙV, V και VI) ή να επιλεγεί από τμήματα που προτιμούν μια γενική περιήγηση στην αναζήτηση τομών μεταξύ τέχνης και μαθηματικών χωρίς να επικεντρωθούν σε ειδικότερα θέματα. «Αφανής αρμονία κρείττων φανερής.» Α, Β & Γ Γυμνασίου Ειδικότερα, μέσα από διάλογο, και ειδικά σχεδιασμένη προβολή, οι μαθητές: o Ανακαλύπτουν τις αμφισημίες και το γεωμετρικό υπόβαθρο των έργων του V. Vasarely, του M.C. Escher και άλλων καλλιτεχνών. o Αναζητούν την ύπαρξη μαθηματικών αναλογιών στην τέχνη και το ρόλο της χρυσής τομής στη φύση και την αισθητική. o Εμπλέκονται στις αναζητήσεις του Πυθαγόρα και ανακαλύπτουν τα απλά κλάσματα που κρύβονται πίσω από την αρμονία, τη μελωδία και το ρυθμό της μουσικής. o Ανακαλύπτουν τις ζωγραφικές τεχνικές δημιουργίας βάθους στον δισδιάστατο καμβά με έμφαση στη γραμμική προοπτική. o Εισάγονται στην ιδέα της αυτοομοιότητας μέσα από τους πίνακες του M. C. Escher.
5 ΙΙ. Οι οφθαλμαπάτες της τέχνης & τα παράδοξα της λογικής Στόχος της ενότητας αυτής είναι η δημιουργία αμφισβήτησης στην εμπιστοσύνη προς τις αισθήσεις και συνειδητοποίησης της ανάγκης να χρησιμοποιηθεί η λογική - μαθηματική σκέψη για την εξαγωγή ασφαλών συμπερασμάτων, μέσω της παρατήρησης πινάκων που εμπεριέχουν οφθαλμαπάτες και αμφισημίες οι οποίες οδηγούν σε αβεβαιότητες και αντιφάσεις. Στόχος αυτής της θεματικής ενότητας είναι επίσης μια περιήγηση των μαθητών στα διάφορα παράδοξα, που κατά καιρούς απασχόλησαν μαθηματικούς, φιλοσόφους και καλλιτέχνες, καθώς και η συνεισφορά τους στην εξέλιξη της ανθρώπινης σκέψης. Πώς οι καλλιτέχνες της op art πειραματίζονται με την ανθρώπινη πλάνη; Ποιος είναι ο ρόλος της λογικής - μαθηματικής σκέψης στην αντιμετώπιση των παραδόξων; Πιο συγκεκριμένα, μέσα από διάλογο, ομαδικά παιχνίδια, ζωγραφικούς πίνακες και κατάλληλα σχεδιασμένη προβολή, οι μαθητές: o Προσδιορίζουν το ρόλο της ψευδαίσθησης και της αμφισημίας στα έργα του V. Vasarely (αμφισημία της ισομετρικής προβολής, φαινόμενο του κύβου του Necker), στην προσπάθεια παρακίνησης των θεατών να αποκτήσουν ενεργή συμμετοχή απέναντι στα έργα της op art. o Αναζητούν το ρόλο της απόδειξης ως μοναδικό μέσο εύρεσης της αλήθειας, μακριά από κάθε ψευδαίσθηση και οφθαλμαπάτη. o Εμπλέκονται σε «παιχνίδια διαστάσεων» μέσα από αδύνατα σχήματα των μαθηματικών, μερικά από τα οποία απεικονίζονται στην τέχνη του M.C. Escher. o Παρακινούνται να αντιμετωπίσουν το παράδοξο του δρομέα, εμπλέκονται στους προβληματισμούς του Ζήνωνα καθώς και σε άλλα λογικά και συνολοθεωρητικά παράδοξα. o Εισάγονται στην έννοια της αυτοαναφοράς μέσα από γλωσσικά παιχνίδια και τους πίνακες του M.C. Escher. o Καλούνται να προσδιορίσουν το ρόλο της γλώσσας στη δημιουργία παραδόξων. Ποιoς είναι ο ρόλος της μαθηματικής σκέψης στην αντιμετώπιση των λογικών και συνολοθεωρητικών παραδόξων; Ποιοι είναι οι νόμοι που διέπουν την ανθρώπινη αντίληψη; Α, Β & Γ Γυμνασίου
6 IV. Μουσική και Μαθηματικά Πώς οι μαθηματικές αναλογίες εμπλέκονται στην αντίληψη του ρυθμού; Ποιες είναι οι μαθηματικές σχέσεις που διέπουν την Πυθαγόρεια αρμονία; Α, Β & Γ Γυμνασίου Στόχος της ενότητας αυτής είναι οι μαθητές να αναπτύξουν μαθηματικές και παράλληλα μουσικές δεξιότητες μέσα από μουσικά παιχνίδια, πειραματισμό με μουσικά όργανα και ακρόαση κομματιών της κλασικής αλλά και της σύγχρονης μουσικής δημιουργίας (jazz, ethnic, blues, rock). Οι μαθητές παρακινούνται να πειραματιστούν με τον ήχο, τη μουσική και τα συναισθήματα που αυτή δημιουργεί, καθώς αλλάζουν οι συνθήκες παραγωγής του, να απελευθερώσουν τη δημιουργική τους ικανότητα και να ανακαλύψουν ότι η τέχνη της μουσικής αποτελεί ένα μέσο έκφρασης και μια γλώσσα επικοινωνίας μεταξύ των ανθρώπων διαφορετικών πολιτισμών και εθνικοτήτων. Μέσα από βιωματικές δραστηριότητες, δημιουργικά παιχνίδια, μουσικά παραδείγματα και κατάλληλα επιλεγμένο οπτικοακου- στικό υλικό: o Εμπλέκονται σε βιωματικές δραστηριότητες στις οποίες ασκούνται στον στοιχειώδη έλεγχο της φωνής τους, καθώς και ποικίλων μουσικών οργάνων, και μέσα από αυτές μαθαίνουν να αναγνωρίζουν και τα βασικά χαρακτηριστικά του ήχου: ένταση, οξύτητα, χροιά και διάρκεια. o Ανακαλύπτουν τη συμμετρία και την κανονικότητα που δημιουργεί μουσικούς ήχους, σε αντίθεση με την ασυμμετρία του θορύβου. o Ανακαλύπτουν την έννοια του ρυθμού και την οργάνωση του χρόνου στη μουσική, ενώ παράλληλα αναζητούν μαθηματικές αναλογίες στα ρυθμικά μοτίβα που καλούνται να δημιουργήσουν ή να αναπαράγουν μέσα από ομαδικά παιχνίδια με κρουστά. o Πειραματίζονται με το μονόχορδο του Πυθαγόρα και μέσα από τη διαφωνία ή τη συμφωνία των μουσικών συνηχήσεων που δημιουργούν, οδηγούνται στην αναζήτηση των μαθηματικών σχέσεων που διέπουν την αρμονία. o Κατασκευάζουν τη μείζονα κλίμακα και εξασκούνται στην αναγνώριση των μουσικών διαστημάτων από τα οποία αποτελείται. o Μέσα από παιχνίδια ρόλων φτιάχνουν τα δικά τους μουσικά κομμάτια συνδέοντας ρυθμούς με μελωδίες και παρατηρούν τις ακουστικές εντυπώσεις των δημιουργιών τους.
7 IV. Οι διαστάσεις του χώρου & η προοπτική Στόχος του προγράμματος είναι η εξοικείωση των μαθητών με την έννοια της διάστασης και η συνειδητοποίηση της αναγκαιότητας της προοπτικής για τη δημιουργία βάθους στη ζωγραφική και στην αρχιτεκτονική σχεδίαση. Οι μαθητές ταξιδεύουν μαζί με τους ήρωες της «Επιπεδοχώρας», του γνωστού διηγήματος του E. Abbott, σε κόσμους διαφορετικών διαστάσεων, βιώνοντας την καθημερινότητα και τους προβληματισμούς των υποθετικών κατοίκων τους. Ένα ταξίδι σε κόσμους διαφορετικών διαστάσεων για την αναζήτηση των μυστικών της προοπτικής που κρύβουν οι πίνακες της αναγέννησης... Α, Β & Γ Γυμνασίου Ειδικότερα, μέσα από την αφήγηση, παρατήρηση ζωγραφικών πινάκων, ομαδικές δραστηριότητες και κατάλληλα σχεδιασμένη προβολή, οι μαθητές: o Συλλαμβάνουν την έννοια της διάστασης καθώς, με αφετηρία τον τρισδιάστατο περιβάλλοντα χώρο, οδηγούνται στον κόσμο της Επιπεδοχώρας, της Γραμμοχώρας αλλά και στον τετραδιάστατο χωρο- χρόνο. o Εμπλέκονται σε βιωματικά παιχνίδια επίλυσης προβλημάτων με στόχο την κατανόηση των περιορισμών της κίνησης σε λιγότερες από τρεις διαστάσεις. o Αναζητούν το ρόλο της σκιάς στην οπτική αντίληψη. o Αναζητούν την ύπαρξη κανόνων που οδηγούν στην απεικόνιση του τρισδιάστατου χώρου, πάνω στη δισδιάστατη επιφάνεια του ζωγραφικού καμβά. o Παρακινούνται με βάση τους κανόνες που ανακάλυψαν, να κατασκευάσουν το δικό τους προοπτικό σχέδιο, ενός δοσμένου φυσικού αντικειμένου. o Αναζητούν το πραγματικό μαθηματικό υπόβαθρο της γραμμικής προοπτικής στους πίνακες της Αναγέννησης.
8 V. Ομοιότητα - Σχήματα & λόγοι Στόχος της ενότητας αυτής είναι η ανάδειξη μέσα από έργα ζωγραφικής, γλυπτικής και αρχιτεκτονικής, της θεμελιώδους έννοιας του λόγου στη μαθηματική της διάσταση, καθώς και της αναλογίας. Ο λόγος δυο μεγεθών προσδιορίζει πόσες φορές μεγαλύτερο ή μικρότερο είναι ένα μέγεθος από κάποιο άλλο ομοειδές του. Η παρουσία σταθερού λόγου μεταξύ κάποιων μερών ενός σχήματος, είναι αυτή που αναδεικνύει την έννοια της αναλογίας, προσδιορίζει τη μεγέθυνση ή τη σμίκρυνση ενός σχήματος και οδηγεί στη γενικότερη έννοια της ομοιότητας των σχημάτων. «Λόγον έχειν προς άλληλα μεγέθη λέγεται α δύναται πολλαπλασιαζόμενα αλλήλων υπερέχειν.» Α & Β Γυμνασίου Πιο συγκεκριμένα, μέσα από εικαστικές προκλήσεις που δημιουργούνται από την παρατήρηση ειδικά επιλεγμένων ζωγραφικών πινάκων, το διάλογο, τα ομαδικά «παιχνίδια», και την αξιοποίηση της σύγχρονης τεχνολογίας οι μαθητές: o Κατανοούν την έννοια του λόγου και της αναλογίας σε γεωμετρικά σχήματα που τους παρέχονται σε διάφορα υλικά. o Αναγνωρίζουν διαισθητικά μέσα από ένα πλήθος ειδικά επιλεγμένων ζωγραφικών πινάκων, εκείνους τους πίνακες, που κατά την εκτίμησή τους, στα εικονιζόμενα μέρη τους διαθέτουν αναλογίες. o Χρησιμοποιώντας όργανα μέτρησης υπολογίζουν λόγους και αναλογίες ομοίων σχημάτων σε ζωγραφικούς πίνακες. o Αλλάζοντας την τιμή του λόγου, μεγεθύνουν ή σμικρύνουν γεωμετρικά σχήματα. o Αναζητούν γεωμετρικά δομικά στοιχεία του πίνακα και υπολογίζουν το λόγο σε βασικά μεγέθη τους όπως: γωνίες, μήκη, εμβαδά, όγκους.
9 VI. Μετασχηματισμοί, συμμετρίες & γεωμετρικά μοτίβα Στόχος της ενότητας αυτής είναι η ανάδειξη της θεμελιώδους έννοιας της συμμετρίας και των άλλων επίπεδων μετασχηματισμών μέσω της πρόκλησης του ωραίου που προσφέρει η παρατήρηση επιλεγμένων ζωγραφικών πινάκων. Ο πλούτος των πινάκων του Μ.C. Escher, του V. Vasarely αλλά και άλλων καλλιτεχνών, με παρουσία αξονικής και κεντρικής συμμετρίας, εισάγει αβίαστα τους μαθητές σε αυτές τις έννοιες, μέσα σε ένα ευχάριστο καλλιτεχνικό περιβάλλον. Παράλληλα, δίνεται η ευκαιρία να γίνει επέκταση και στους υπόλοιπους επίπεδους μετασχηματισμούς που δεν εμπεριέχονται στην σχολική ύλη, καθώς και στα αποτελέσματα της σύνθεσης (διαδοχικής επενέργειας) αυτών των μετασχηματισμών. Πιο συγκεκριμένα, μέσα από εικαστικές προκλήσεις που δημιουργούνται από την παρατήρηση ειδικά επιλεγμένων ζωγραφικών πινάκων, το διάλογο, τα ομαδικά «παιχνίδια», και την αξιοποίηση της σύγχρονης τεχνολογίας οι μαθητές: o Αναγνωρίζουν διαισθητικά μέσα από ένα πλήθος ειδικά επιλεγμένων ζωγραφικών πινάκων, εκείνους τους πίνακες, που κατά την εκτίμησή τους, διαθέτουν συμμετρίες ή άλλους μετασχηματισμούς. o Διακρίνουν τα διαφορετικά είδη συμμετριών και μετασχηματισμών. o Κατανονούν τη μαθηματική έννοια της συμμετρίας και διατυπώνουν ορισμούς. o Αναγνωρίζουν συμμετρίες σε δοσμένα γεωμετρικά μοτίβα ζωγραφικών πινάκων. o Κατανοούν την έννοια του γεωμετρικού μοτίβου και συμπληρώνουν επεκτείνουν γεωμετρικά μοτίβα. o Επιχειρούν να αναγνωρίσουν το ρόλο της συμμετρίας τόσο στην τέχνη, όσο και στα μαθηματικά. o Κατασκευάζουν τα δικά τους γεωμετρικά μοτίβα. «Σύμμετρον όπερ εκατέρου των άκρων απέχει.» A, Β & Γ Γυμνασίου
10 VIΙ. Ο θαυμαστός κόσμος των fractals Στόχος του προγράμματος είναι η εξερεύνηση του κόσμου των fractals μέσα από την αναζήτηση της δομής και της αισθητικής επιλεγμένων φυσικών μορφών. Η απλότητα των γεωμετρικών σχημάτων αντιτάσσεται στην πολυπλοκότητα του φυσικού κόσμου και της μοντέρνας τέχνης καθώς ο άνθρωπος κάνει ένα ακόμη βήμα για την αποκρυπτογράφηση των μυστικών του σύμπαντος. Μέσα από το διάλογο, κατάλληλα σχεδιασμένη προβολή και ομαδικές δραστηριότητες οι μαθητές: o Aναζητούν την προέλευση της πανανθρώπινης και έμφυτης αντίληψης της αισθητικής μέσα από τα φυσικά και κοινωνικά πρότυπα. o Περιηγούνται με τη βοήθεια ειδικού λογισμικού και αντίστοιχα βίντεο σε γνωστά fractal όπως το Mandelbrot και το τρίγωνο του Sierpinski. o Εξοικειώνονται με την ιδέα της αυτοομοιότητας μέσα από ομαδικά παιχνίδια. o Κατασκευάζουν τα δικά τους fractal μέσα από επαναληπτικές αλγοριθμικές διαδικασίες, τις οποίες καλούνται να κωδικοποιήσουν με ένα απλό αλφάβητο. o Μαθαίνουν να αναγνωρίζουν αυτοόμοια μοτίβα στη φύση και στα έργα του M. C. Escher και αναζητούν τη σύνδεση τεχνικής και αποτελέσματος στους πίνακες του J. Pollock. «Τα σύννεφα δεν είναι σφαίρες, τα βουνά δεν είναι κώνοι, οι ακτογραμμές δεν είναι κύκλοι και το γάβγισμα δεν είναι ομαλό, ούτε η αστραπή δεν ταξιδεύει σε ευθεία γραμμή.» The fractal geometry of nature Benoit Mandelbrot Γ Γυμνασίου
11 Συνοπτικός Πίνακας Ακολουθεί συνοπτικός πίνακας με τις θεματικές ενότητες για το γυμνάσιο που προτάθηκαν παραπάνω και τις τάξεις στις οποίες αντιστοιχούν. Η ταξινόμηση που ακολουθεί δεν είναι υποχρεωτική καθώς, κατόπιν συνεννόησης με τους εκπαιδευτικούς, κάποια θεματική ενότητα μπορεί να παρουσιασθεί σε μαθητές διαφορετικών τάξεων από τις προτεινόμενες, ενώ μπορεί να επιλεγεί και ένας συνδυασμός τους. Θεματικές Ενότητες Γυμνάσιο Α Β Γ I. Εισαγωγή στην αλληλεπίδραση τέχνης και μαθηματικών II. Οι οφθαλμαπάτες της τέχνης & τα παράδοξα της λογικής III. Μουσική και μαθηματικά IV. Οι διαστάσεις του χώρου και η προοπτική V. Ομοιότητα - Σχήματα & λόγοι VI. Μετασχηματισμοί, συμμετρίες & γεωμετρικά μοτίβα VII. Ο θαυμαστός κόσμος των fractals
Σχεδιασμός Συνεργασία - Παρουσίαση Αριθμός μαθητών Ώρες Λειτουργίας Διάρκεια Προγράμματος Κόστος συμμετοχής
Τέχνη & Μαθηματικά Μια παράλληλη περιήγηση στα Μαθηματικά της Τέχνης και την Τέχνη των Μαθηματικών Σχεδιασμός Άρης Μαυρομμάτης Αποστόλης Παπανικολάου Συνεργασία - Παρουσίαση Ναταλία Κωτσάνη Γιώργος Μαυρομμάτης
Νηπιαγωγείο - Δημοτικό
Νηπιαγωγείο - Δημοτικό Το πρόγραμμα «Τέχνη και Μαθηματικά» για το νηπιαγωγείο δημοτικό, αποτελείται από τρία διδακτικά μέρη, δύο εκ των οποίων είναι κοινά για τους μαθητές όλων των τάξεων (Μέρη Α & Β )
Σχεδιασμός Αριθμός μαθητών Ώρες Λειτουργίας Διάρκεια Προγράμματος Κόστος συμμετοχής
Τέχνη & Μαθηματικά Μια παράλληλη περιήγηση στα Μαθηματικά της Τέχνης και την Τέχνη των Μαθηματικών Σχεδιασμός Άρης Μαυρομμάτης Αποστόλης Παπανικολάου Αριθμός μαθητών έως 75 άτομα ανά δίωρο Ώρες Λειτουργίας
Σχεδιασμός Αριθμός μαθητών Ώρες Λειτουργίας Διάρκεια Προγράμματος Κόστος συμμετοχής
Τέχνη & Μαθηματικά Μια παράλληλη περιήγηση στα Μαθηματικά της Τέχνης και την Τέχνη των Μαθηματικών Σχεδιασμός Άρης Μαυρομμάτης Αποστόλης Παπανικολάου Αριθμός μαθητών έως 75 άτομα ανά δίωρο Ώρες Λειτουργίας
ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ: «ΦΥΣΗ, ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ:
ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ: «ΦΥΣΗ, ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ: Η αισθητική της Φύσης και της Τέχνης και η Λογική των Μαθηματικών» για όλες τις εκπαιδευτικές βαθμίδες Το Εκπαιδευτικό Πρόγραμμα «ΤΕΧΝΗ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ»,
Τέχνη & Μαθηματικά. Εκπαιδευτικό πρόγραμμα μαθητών πρωτοβάθμιας και προσχολικής εκπαίδευσης
w Τέχνη & Μαθηματικά Σχεδιασμός Αποστόλης Παπανικολάου Άρης Μαυρομμάτης Εκπαιδευτικό πρόγραμμα μαθητών πρωτοβάθμιας και προσχολικής εκπαίδευσης Στο ανανεωμένο Εκπαιδευτικό πρόγραμμα Τέχνη και Μαθηματικά
ΘΕΡΙΝΑ ΟΛΟΗΜΕΡΑ ΕΡΓΑΣΤΗΡΙΑ ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ. MathemArtics Camp
ΘΕΡΙΝΑ ΟΛΟΗΜΕΡΑ ΕΡΓΑΣΤΗΡΙΑ ΓΙΑ ΠΑΙΔΙΑ 8-12 ΕΤΩΝ MathemArtics Camp Τα Θερινά Ολοήμερα Εργαστήρια του Μουσείου Ηρακλειδών MathemArtics Camp πραγματοποιούνται σε κύκλους των δύο εβδομάδων. Για το καλοκαίρι
8/θ Π.Π.Σ.Π.Π. Τάξεις:Ε1-Ε2 Πολιτιστικό Πρόγραμμα "Τέχνη και Ψευδαίσθηση"
8/θ Π.Π.Σ.Π.Π. Τάξεις:Ε1-Ε2 Πολιτιστικό Πρόγραμμα "Τέχνη και Ψευδαίσθηση" Σχολικό έτος 2012-2013 Υπεύθυνη Εκπαιδευτικός: Κεκεμπάνου Αθανασία Συνεργαζόμενοι: Ρουσσάκη Μαρία,Κουτσομητρόπουλος Δημήτριος Θεματολογία
ΠΑΙΖΩ ΚΑΙ ΚΑΤΑΛΑΒΑΙΝΩ ΜΑΘΗΜΑΤΙΚΑ
1oς ΚΥΚΛΟΣ - ΠΑΙΖΟΥΜΕ ΚΑΙ ΜΑΘΑΙΝΟΥΜΕ ΤΟΥΣ ΑΡΙΘΜΟΥΣ Α Ενότητα Ανακαλύπτουμε τις ιδιότητες των υλικών μας, τα τοποθετούμε σε ομάδες και διατυπώνουμε κριτήρια ομαδοποίησης Οι μαθητές μαθαίνουν να αναπτύσσουν
1 ο ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ Α ΡΙΑΝΟΥ 114 10558 ΑΘΗΝΑ Τηλέφωνο: 2103231788 - Fax: 2103223296
1 ο ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ Α ΡΙΑΝΟΥ 114 10558 ΑΘΗΝΑ Τηλέφωνο: 2103231788 - Fax: 2103223296 Πολιτιστικό πρόγραµµα: Επίσκεψη στο Μουσείο Ηρακλειδών 21/2/2012 Σ.Πατσιοµίτου Η επίσκεψη στο Μουσείο
W. Kandinsky. Επιστημονικός και Εκπαιδευτικός Σχεδιασμός: Άρης Μαυρομμάτης Αποστόλης Παπανικολάου
Επιστημονικός και Εκπαιδευτικός Σχεδιασμός: Άρης Μαυρομμάτης Αποστόλης Παπανικολάου Ένα συναρπαστικό ταξίδι, στα θεμέλια της επιστημονικής σκέψης και αναζήτησης, στην Αισθητική της Τέχνης και στη Λογική
Μουσική Παιδαγωγική Θεωρία και Πράξη
Μουσική Παιδαγωγική Θεωρία και Πράξη Σκοποί Στόχοι - Δραστηριότητες Ζωή Διονυσίου Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 2: Απόδειξη Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Η ΔΙΑΧΥΣΗ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΕΜΒΑΔΟΥ ΣΤΗΝ ΠΡΩΤΟΒΑΘΜΙΑ
ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης)
ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Β Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΓΕΝΙΚΟΙ ΣΚΟΠΟΙ ΚΑΙ ΣΤΟΧΟΙ Το μάθημα απευθύνεται σε μαθητές με ειδικό ενδιαφέρον για το ΣΧΕΔΙΟ (Ελεύθερο και Προοπτικό) και που ενδέχεται
εργαλείο δυναμικής διαχείρισης γεωμετρικών σχημάτων και αλγεβρικών παραστάσεων δυνατότητα δυναμικής αλλαγής των αντικειμένων : είναι δυνατή η
εργαλείο δυναμικής διαχείρισης γεωμετρικών σχημάτων και αλγεβρικών παραστάσεων δυνατότητα δυναμικής αλλαγής των αντικειμένων : είναι δυνατή η μετακίνηση, περιστροφή, αυξομείωση, ανάκλαση και απόκρυψη του
Επίσκεψη στο Μουσείο Ηρακλειδών
1 ο ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ Επίσκεψη στο Μουσείο Ηρακλειδών 19/3/2012 Σ.Πατσιοµίτου 1 Η επίσκεψη στο Μουσείο Ηρακλειδών στο Θησείο, πραγματοποιήθηκε στις 19/3/2012 από τους μαθητές της Γ τάξης
Επίσκεψη στο Μουσείο Ηρακλειδών
1 ο ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΑΘΗΝΩΝ Επίσκεψη στο Μουσείο Ηρακλειδών 19/3/2012 Σ.Πατσιοµίτου 1 Η επίσκεψη στο Μουσείο Ηρακλειδών στο Θησείο, πραγματοποιήθηκε στις 19/3/2012 από τους μαθητές της Γ τάξης
ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ. Άσε το Χάος να βάλει τάξη. ΘΕΜΑΤΙΚΗ ΟΜΙΛΟΥ. Fractals Πλακοστρώσεις(Penrose) Χάος. Α Β Γ Λυκείου ΑΡΙΘΜΟΣ ΜΑΘΗΤΩΝ
ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ Δρ ΣΩΤΗΡΟΠΟΥΛΟΣ ΝΙΚΟΛΑΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΕΚΠ/ΚΟΥ ΕΙΔΙΚΟΤΗΤΑ ΘΕΜΑΤΙΚΗ ΟΜΙΛΟΥ ΤΑΞΗ Άσε το Χάος να βάλει τάξη. Fractals Πλακοστρώσεις(Penrose) Χάος Α Β Γ Λυκείου
Ένα συναρπαστικό ταξίδι, στα θεμέλια της επιστημονικής σκέψης και αναζήτησης, στην Αισθητική της Τέχνης και στη Λογική των Μαθηματικών
Ένα συναρπαστικό ταξίδι, στα θεμέλια της επιστημονικής σκέψης και αναζήτησης, στην Αισθητική της Τέχνης και στη Λογική των Μαθηματικών Επιστημονικός και Εκπαιδευτικός Σχεδιασμός Αποστόλης Παπανικολάου-
Το μουσείο ζωντανεύει με ταξίδι σχολικό! Σχέδια εργασίας σχολείων-μουσείων σχολικού έτους 2011-2012. ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΕΠΙΣΚΕΨΕΙΣ ΜΑΘΗΤΩΝ ποδράσηη
ΕΚΠΑΙΔΕΥΤΙΚΕΣ ΕΠΙΣΚΕΨΕΙΣ ΜΑΘΗΤΩΝ 9 5 ποδράσηη Σχέδια εργασίας σχολείων-μουσείων σχολικού έτους 2011-2012 Μουσείο Επιστημών και Τεχνολογίας Πανεπιστημίου Πατρών 2ο Δημοτικό Σχολείο Ακράτας Δημοτικό Μουσείο
ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ
ΔΙΔΑΚΤΙΚΉ ΤΩΝ ΜΑΘΗΜΑΤΙΚΏΝ 2. Εκπαιδευτικό Λογισμικό για τα Μαθηματικά 2.1 Κύρια χαρακτηριστικά του εκπαιδευτικού λογισμικού για την Διδακτική των Μαθηματικών 2.2 Κατηγορίες εκπαιδευτικού λογισμικού για
O μετασχηματισμός μιας «διαθεματικής» δραστηριότητας σε μαθηματική. Δέσποινα Πόταρη Πανεπιστήμιο Πατρών
O μετασχηματισμός μιας «διαθεματικής» δραστηριότητας σε μαθηματική Δέσποινα Πόταρη Πανεπιστήμιο Πατρών Η έννοια της δραστηριότητας Δραστηριότητα είναι κάθε ανθρώπινη δράση που έχει ένα κίνητρο και ένα
Τέχνη και Μαθηματικά για όλους Μπορεί ο Η/Υ να σχεδιάσει ένα έργο του V.Vasarely;
Ημερίδα«Η διδασκαλία της Πληροφορικής στην Α/θμια και Β/θμια εκπαίδευση» Ομάδα Ηλεκτρονικής Μάθησης Τμήμα Κοινωνικής και Εκπαιδευτικής Πολιτικής, Πανεπιστήμιο Πελοποννήσου ΣχέδιοεργασίαςγιατηνΒ ήγ Γυμνασίου
ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ
ΠΛΑΙΣΙΟ ΠΡΟΓΡΑΜΜΑΤΩΝ ΣΠΟΥΔΩΝ (ΠΣ) Χρίστος Δούκας Αντιπρόεδρος του ΠΙ Οι Δ/τές ως προωθητές αλλαγών με κέντρο τη μάθηση Χαράσσουν τις κατευθύνσεις Σχεδιάσουν την εφαρμογή στη σχολική πραγματικότητα Αναπτύσσουν
Ελληνικό Παιδικό Μουσείο Κυδαθηναίων 14, 105 58 Αθήνα Τηλ.: 2103312995, Fax: 2103241919 E-Mail: info@hcm.gr, www.hcm.gr
Ελληνικό Παιδικό Μουσείο Κυδαθηναίων 14, 105 58 Αθήνα Τηλ.: 2103312995, Fax: 2103241919 E-Mail: info@hcm.gr, www.hcm.gr Το έργο υλοποιείται με δωρεά από το Σύντομη περιγραφή Το Ελληνικό Παιδικό Μουσείο
Επιστήμη, Τέχνη & Μαθηματικά, Πρόγραμμα Λυκείου
Επιστήμη, Τέχνη & Μαθηματικά, 2014-15 Πρόγραμμα Λυκείου Ένα συναρπαστικό ταξίδι, στα θεμέλια της επιστημονικής σκέψης και αναζήτησης, στην Αισθητική της Τέχνης και στη Λογική των Μαθηματικών Σχεδιασμός
II ΔΙΔΑΚΤΕΑ ΥΛΗ. Κεφ.3ο: Τρίγωνα 3.1. Είδη και στοιχεία τριγώνων
ΔΙΔΑΚΤΕΑ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ (version 22-10-2016) Τα παρακάτω προέρχονται (με δικές μου αλλαγές μορφοποίησης προσθήκες και σχολιασμό) από το έγγραφο (σελ.15 και μετά) με Αριθμό Πρωτοκόλλου 150652/Δ2, που
Προτιμήσεις εκπαιδευτικών στην επίλυση προβλημάτων με συμμετρία. Στόχος έρευνας
Προτιμήσεις εκπαιδευτικών στην επίλυση προβλημάτων με συμμετρία Πουλιτσίδου Νιόβη- Χριστίνα Τζιρτζιγάνης Βασίλειος Φωκάς Δημήτριος Στόχος έρευνας Να διερευνηθούν οι παράγοντες, που επηρεάζουν την επιλογή
ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ
ΣΥΝΘΕΤΙΚΕΣ ΑΡΧΕΣ ΕΙΚΟΝΩΝ ΤΙ ΡΩΤΑΜΕ ΜΙΑ ΕΙΚΟΝΑ ; ΤΙ ΜΑΣ ΑΦΗΓΕΙΤΑΙ ΜΙΑ ΕΙΚΟΝΑ ; ΠΩΣ ΜΑΣ ΤΟ ΑΦΗΓΕΙΤΑΙ ΜΙΑ ΕΙΚΟΝΑ ; ΣΥΝΘΕΣΗ: Οργάνωση ενός συνόλου από επιμέρους στοιχεία σε μια ενιαία διάταξη Αρχική ιδέα σύνθεσης
Πορεία παρουσίασης 1. Θεωρητικό πλαίσιο - Άξονες περιεχοµένων 2. Επιλογή κεφαλαίου 3. Προσδιορισµός κυρίαρχου στόχου 4. Υλοποίηση δραστηριότητας ανακά
Θεωρητικό πλαίσιο Μαθηµατικά Β Γιώργος Αλβανόπουλος Σχολικός 1 Πορεία παρουσίασης 1. Θεωρητικό πλαίσιο - Άξονες περιεχοµένων 2. Επιλογή κεφαλαίου 3. Προσδιορισµός κυρίαρχου στόχου 4. Υλοποίηση δραστηριότητας
ΕΥΚΛΕΙΔΗΣ ΚΑΙ ΤΟ ΕΡΓΟ ΤΟΥ
ΕΥΚΛΕΙΔΗΣ Η ΖΩΗ ΚΑΙ ΤΟ ΕΡΓΟ ΤΟΥ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Κυριακή Ιορδανίδου, ΠΕ03 Μαθηματικών ΣΧΟΛΕΙΟ 1 ο Γυμνάσιο Χαριλάου Θεσσαλονίκη, 2018 Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Σε αυτή την
ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ
ΕΛΕΥΘΕΡΟ - ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ Γ' Ενιαίου Λυκείου (Μάθημα : Κατεύθυνσης) ΓΕΝΙΚΟΙ ΣΚΟΠΟΙ ΚΑΙ ΣΤΟΧΟΙ Το μάθημα απευθύνεται σε μαθητές με ειδικό ενδιαφέρον για το ΕΛΕΥΘΕΡΟ-ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ( Εικαστική και Αρχιτεκτονική
Ελληνικό Παιδικό Μουσείο Κυδαθηναίων 14, 105 58 Αθήνα Τηλ.: 2103312995, Fax: 2103241919 E-Mail: info@hcm.gr, www.hcm.gr
Ελληνικό Παιδικό Μουσείο Κυδαθηναίων 14, 105 58 Αθήνα Τηλ.: 2103312995, Fax: 2103241919 E-Mail: info@hcm.gr, www.hcm.gr Το έργο υλοποιείται με δωρεά από το ΕΠΜ_2014 Εκπαιδευτικό Έργο «Το Κινητό Μουσείο»
Ο ΑΞΟΝΑΣ της ΔΙΑΘΕΜΑΤΙΚΟΤΗΤΑΣ στο ψηφιακό μουσικό ανθολόγιο ΕΥΤΕΡΠΗ ΜΑΙΗ ΚΟΚΚΙΔΟΥ
Ο ΑΞΟΝΑΣ της ΔΙΑΘΕΜΑΤΙΚΟΤΗΤΑΣ στο ψηφιακό μουσικό ανθολόγιο ΕΥΤΕΡΠΗ ΜΑΙΗ ΚΟΚΚΙΔΟΥ Διαθεματικότητα -Ιδανικό της ολιστικής γνώσης -Διασυνδέσεις με νόημα μεταξύ γνωστικών περιοχών -Μελέτη σύνθετων ερωτημάτων
ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ
ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Γιατί η Ρομποτική στην Εκπαίδευση; A) Τα παιδιά όταν σχεδιάζουν, κατασκευάζουν και προγραμματίζουν ρομπότ έχουν την ευκαιρία να μάθουν παίζοντας και να αναπτύξουν δεξιότητες Η
Μουσική και Μαθηματικά!!!
Μουσική και Μαθηματικά!!! Η μουσική είναι ίσως από τις τέχνες η πιο δεμένη με τα μαθηματικά, με τη μαθηματική σκέψη, από την ίδια τη φύση της. Η διατακτική δομή μπορεί να κατατάξει τα στοιχεία ενός συνόλου,
ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO
1 ΚΑΤΑΣΚΕΥΗ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΩΝ ΜΕ ΧΡΗΣΗ LOGO ΦΥΛΛΑ ΕΡΓΑΣΙΑΣ ΜΑΘΗΤΗ ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 1. Τοποθέτησε μια χελώνα στην επιφάνεια εργασίας. 2. Με ποια εντολή γράφει η χελώνα μας;.. 3. Γράψε την εντολή για να πάει
Γεωµετρικές έννοιες και µετρήσεις µεγεθών. (ή, διαφορετικά, αντίληψη του χώρου)
Γεωµετρικές έννοιες και µετρήσεις µεγεθών (ή, διαφορετικά, αντίληψη του χώρου) αντιλήψεις παιδιών (κι όχι µόνο) τι είναι γεωµετρία; Όταν αντιμετωπίζω προβλήματα γεωμετρίας νιώθω σαν να κάνω ένα είδος μεταγνωστικής
ΣΧΕΔΙΟ ΥΠΟΒΟΛΗΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ Σχ. Έτος:
ΣΧΕΔΙΟ ΥΠΟΒΟΛΗΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ Σχ. Έτος: 2012-2013 ΣΧΟΛΙΚΗ ΜΟΝΑΔΑ Α Αρσάκειο Λύκειο Ψυχικού Ο ΤΙΤΛΟΣ ΤΗΣ ΕΡΕΥΝΗΤΙΚΗΣ ΕΡΓΑΣΙΑΣ: ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ ΤΕΧΝΗΣ ΣΤΟΙΧΕΙΑ ΥΠΕΥΘΥΝΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΥΛΟΠΟΙΗΣΗ
1. Η σκοπιμότητα της ένταξης εργαλείων ψηφιακής τεχνολογίας στη Μαθηματική Εκπαίδευση
1. Η σκοπιμότητα της ένταξης εργαλείων ψηφιακής τεχνολογίας στη Μαθηματική Εκπαίδευση Στη βασική παιδεία, τα μαθηματικά διδάσκονται με στατικά μέσα α) πίνακα/χαρτιού β) κιμωλίας/στυλού γ) χάρτινου βιβλίου.
ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αξονική συµµετρία» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.
A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ
A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη
Α. ΣΤΟΙΧΕΙΑ ΤΗΣ ΓΡΑΦΙΣΤΙΚΗΣ ΕΚΦΡΑΣΗΣ 6. ΧΩΡΟΣ
Α. ΣΤΟΙΧΕΙΑ ΤΗΣ ΓΡΑΦΙΣΤΙΚΗΣ ΕΚΦΡΑΣΗΣ 6. ΧΩΡΟΣ Ο καλλιτέχνης μπορεί να συμπεριλάβει ή να αγνοήσει τη διάσταση του χώρου στην απεικόνιση που εκτελεί. Όταν περιγράφει το βάθος του οπτικού πεδίου με διάφορους
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Άρθρα - Υλικό Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Χειραπτικά εργαλεία Υλικά/εργαλεία στο νέο Πρόγραμμα σπουδών
εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.
εύτερη διάλεξη. Η στα αναλυτικά προγράµµατα. Η Ευκλείδεια αποτελούσε για χιλιάδες χρόνια µέρος της πνευµατικής καλλιέργειας των µορφωµένων ατόµων στο δυτικό κόσµο. Από τις αρχές του 20 ου αιώνα, καθώς
Σχολική Μουσική Εκπαίδευση: αρχές, στόχοι, δραστηριότητες. Ζωή Διονυσίου
Σχολική Μουσική Εκπαίδευση: αρχές, στόχοι, δραστηριότητες Ζωή Διονυσίου Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά
Τα σχέδια μαθήματος 1 Εισαγωγή
Τα σχέδια μαθήματος 1 Εισαγωγή Τα σχέδια μαθήματος αποτελούν ένα είδος προσωπικών σημειώσεων που κρατά ο εκπαιδευτικός προκειμένου να πραγματοποιήσει αποτελεσματικές διδασκαλίες. Περιέχουν πληροφορίες
ΠΡΟΓΡΑΜΜΑ ΓΑΛΛΙΚΩΝ ΣΠΟΥΔΩΝ ΓΑΛ 102 Προφορικός λόγος 6 ΓΑΛ 103 Γραπτός λόγος I 6 ΓΑΛ 170 e-french 6 ΓΑΛ 100-299 Μάθημα περιορισμένης επιλογής 6
πρώτο δεύτερο ΠΡΟΓΡΑΜΜΑ ΓΑΛΛΙΚΩΝ ΣΠΟΥΔΩΝ ΓΑΛ 102 Προφορικός λόγος ΓΑΛ 103 Γραπτός λόγος I ΓΑΛ 170 e-french ΓΑΛ 100-299 Μάθημα περιορισμένης επιλογής ΓΑΛ 104 Γραπτός λόγος II ΓΑΛ 111 Φωνητική ΓΑΛ 1 Από
Μάθηση & Εξερεύνηση στο περιβάλλον του Μουσείου
Βασίλειος Κωτούλας vaskotoulas@sch.gr h=p://dipe.kar.sch.gr/grss Αρχαιολογικό Μουσείο Καρδίτσας Μάθηση & Εξερεύνηση στο περιβάλλον του Μουσείου Η Δομή της εισήγησης 1 2 3 Δυο λόγια για Στόχοι των Ερευνητική
Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου
Γιώργος Μαντζώλας ΠΕ03 Εµβαδόν Παραλληλογράµµου Τριγώνου Τραπεζίου Σύντοµη περιγραφή του σεναρίου Η βασική ιδέα του σεναρίου Το συγκεκριµένο εκπαιδευτικό σενάριο αναφέρεται στην εύρεση των τύπων µε τους
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΣΥΝΤΕΛΕΣΤΕΣ Συγγραφική Ομάδα Βλάμος Παναγιώτης Δρούτσας Παναγιώτης Πρέσβης Γεώργιος Ρεκούμης Κωνσταντίνος Φιλολογική Επιμέλεια Βελάγκου Ευγενία Σκίτσα Βρανάς Θεοδόσης Υπεύθυνος Παιδαγωγικού
Α ΕΙΔΙΚΕΥΣΗ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΓΛΩΣΣΑΣ (ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ)
Ειδίκευση Α ΕΙΔΙΚΕΥΣΗ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΓΛΩΣΣΑΣ (ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ) Η ειδίκευση προσφέρει στις φοιτήτριες και στους φοιτητές σε βάθος θεωρητική κατάρτιση σε ζητήματα διδακτικής της ελληνικής γλώσσας, εξετάζοντας
Πρόταση Διδασκαλίας. Ενότητα: Γ Γυμνασίου. Θέμα: Δραστηριότητες Παραγωγής Λόγου Διάρκεια: Μία διδακτική περίοδος. Α: Στόχοι. Οι μαθητές/ τριες:
Πρόταση Διδασκαλίας Ενότητα: Τάξη: 7 η - Τέχνη: Μια γλώσσα για όλους, σε όλες τις εποχές Γ Γυμνασίου Θέμα: Δραστηριότητες Παραγωγής Λόγου Διάρκεια: Μία διδακτική περίοδος Α: Στόχοι Οι μαθητές/ τριες: Να
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ ΕΛΕΥΘΕΡΟ ΠΡΟΟΠΤΙΚΟ ΣΧΕΔΙΟ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΙΔΑΚΤΕΑΣ ΥΛΗΣ Β ΛΥΚΕΙΟΥ Γνωριμία, συζήτηση Περιγραφή του μαθήματος, στόχοι Παρουσίαση σχεδίων διαφόρων μορφών φωτογραφίες -3 Διαγνωστικό
ΕΝΟΤΗΤΑ 6 ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 2, 5 ΚΑΙ 10. Αρ2.7 Ανακαλύπτουν, διατυπώνουν και εφαρμόζουν τα κριτήρια διαιρετότητας του 2, 5 και του 10.
ΜΟΤΙΒΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΥ 2, 5 ΚΑΙ 10 ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΑΡΙΘΜΟΙ Διερεύνηση αριθμών Αρ1.7 Αναπαριστούν εναδικά κλάσματα ( 1, 1, 1, 1, 1 ) ενός συνόλου ή μιας επιφάνειας, 2 3 4 6 8 χρησιμοποιώντας αντικείμενα,
ΟΡΓΑΝΩΣΗ ΤΗΣ Ι ΑΣΚΑΛΙΑΣ ΑΠΑΙΤΟΥΜΕΝΗ ΥΛΙΚΟΤΕΧΝΙΚΗ ΥΠΟ ΟΜΗ
ΤΙΤΛΟΣ «Ο κύκλος του νερού» ΕΜΠΛΕΚΟΜΕΝΕΣ ΓΝΩΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ Το σενάριο µάθησης περιλαµβάνει δραστηριότητες που καλύπτουν όλα τα γνωστικά αντικείµενα που προβλέπονται από το ΕΠΠΣ νηπιαγωγείου. Συγκεκριµένα
ΣΧΕ ΙΟ ΕΡΓΑΣΙΑΣ ή PROJECT
ΣΧΕ ΙΟ ΕΡΓΑΣΙΑΣ ή PROJECT Η διεξαγωγή σχεδίων εργασίας στο σύγχρονο σχολείο, προβάλλει ως αναγκαιότητα, για την ανάπτυξη της κριτικής και δηµιουργικής σκέψης των µαθητών, καθώς και όλων εκείνων των ιδιοτήτων
Μουσική Παιδαγωγική. Μουσικοκινητική Αγωγή. Α εξάμηνο Θεωρία. Εισαγωγικές έννοιες μουσικής παιδαγωγικής. Τι είναι Μουσική Παιδαγωγική
Μουσικοκινητική Αγωγή Α εξάμηνο Θεωρία Μίχα Παρασκευή, PhD Μουσικολόγος, Μουσικοπαιδαγωγός 1 Μουσικοκινητική Αγωγή (Θ) - ΜΙΧΑ Παρασκευή 1 Μουσική Παιδαγωγική Εισαγωγικές έννοιες μουσικής παιδαγωγικής Μουσικοκινητική
Eκπαίδευση Εκπαιδευτών Ενηλίκων & Δία Βίου Μάθηση
Πρόγραμμα Eξ Aποστάσεως Eκπαίδευσης (E learning) Eκπαίδευση Εκπαιδευτών Ενηλίκων & Δία Βίου Μάθηση Οδηγός Σπουδών Το πρόγραμμα εξ αποστάσεως εκπαίδευσης ( e-learning ) του Πανεπιστημίου Πειραιά του Τμήματος
Math. Mathematics Μαθηματικά. Φυσικές Επιστήμες. Εφαρμοσμένη Μηχανική
Math Science, Technology, Engineering Φυσικές Επιστήμες Τεχνολογία Εφαρμοσμένη Μηχανική Mathematics Μαθηματικά STEM EDUCATION Κατεχάκη 52, 115 25 Αθήνα Τηλ. 210 6777285 e-mail: info@stem.edu.gr www.stem.edu.gr
Αρχαία Ελληνική Επιστήμη και Τεχνολογία
Αρχαία Ελληνική Επιστήμη και Τεχνολογία Αρχαία Ελληνική Επιστήμη και Τεχνολογία Περιοδική Έκθεση Αρχαία Ελληνική Επιστήμη και Τεχνολογία Μια έκθεση που παρουσιάζει την εξέλιξη της σκέψης των Αρχαίων Ελλήνων,
GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί. Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης
GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης Ενημερωτική Συνάντηση Ομάδων Εργασίας Ν.Α.Π. Παιδαγωγικό Ινστιτούτο, Λευκωσία, 8 Μαΐου 2012 Ιδιότητες
Ερευνητική Εργασία µε. Ζωγραφική και Μαθηµατικά
Ερευνητική Εργασία - Ζωγραφική και Μαθηµατικά Ηλίας Νίνος Ερευνητική Εργασία µε θέµα: Μαθηµατικά και Τέχνη Υποθέµα: Μαθηµατικά και Ζωγραφική Οµάδα: Μαρία Βαζαίου- Ηρώ Μπρούφα- Μαθηµατικά εννοούµε την επιστήµη
ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ
ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου
ΣΤΟ ΜΟΥΣΕΙΟ ΤΩΝ ΜΥΚΗΝΩΝ. «Τα μυστικά ενός αγγείου»
ΣΤΟ ΜΟΥΣΕΙΟ ΤΩΝ ΜΥΚΗΝΩΝ «Τα μυστικά ενός αγγείου» ΜΠΙΛΙΟΥΡΗ ΑΡΓΥΡΗ 2011 ΕΚΠΑΙΔΕΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΟΥΣΕΙΑΚΗΣ ΑΓΩΓΗΣ «ΤΑ ΜΥΣΤΙΚΑ ΕΝΟΣ ΑΓΓΕΙΟΥ» ΘΕΜΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ Η παρούσα εργασία αποτελεί το θεωρητικό
ΔΕΠΠΣ. ΔΕΠΠΣ και ΝΕΑ ΒΙΒΛΙΑ
ΔΕΠΠΣ ΔΕΠΠΣ και ΝΕΑ ΒΙΒΛΙΑ Διαθεματικό Ενιαίο Πλαίσιο Προγραμμάτων Σπουδών ΔΕΠΠΣ Φ.Ε.Κ., 303/13-03-03, τεύχος Β Φ.Ε.Κ., 304/13-03-03, τεύχος Β Ποιοι λόγοι οδήγησαν στην σύνταξη των ΔΕΠΠΣ Γενικότερες ανάγκες
«Διδακτική προσέγγιση με τη χρήση των ΤΠΕ στο μάθημα της Ιστορίας Β Λυκείου» Άρια Μαυρογιάννη -Φιλόλογος Μ.Α. 2ο ΓΕΛ Ηρακλείου
«Διδακτική προσέγγιση με τη χρήση των ΤΠΕ στο μάθημα της Ιστορίας Β Λυκείου» Άρια Μαυρογιάννη -Φιλόλογος Μ.Α. 2ο ΓΕΛ Ηρακλείου 1 η προσπάθεια να συσχετιστεί η τέχνη της μουσικής άμεσα με τα ιστορικά της
Η 6η Δέσμη ΚΑΛΩΝ ΤΕΧΝΩΝ
Η 6η Δέσμη ΚΑΛΩΝ ΤΕΧΝΩΝ Η Δέσμη Καλών Τεχνών προσφέρεται ως επιλογή στους μαθητές της Β' και Γ' λυκείου. Για την 6η Δέσμη δεν υπάρχει στην Α' λυκείου αντίστοιχη ΟΜΠ (Ομάδα Μαθημάτων Προσανατολισμού), έτσι
ΓΕΩΜΕΤΡΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΣΤΟ ΧΩΡΟ ΓΝΩΡΙΖΩ ΤΟ ΜΟΥΣΕΙΟ ΤΗΣ ΓΕΙΤΟΝΙΑΣ ΜΟΥ
ΓΕΩΜΕΤΡΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΣΤΟ ΧΩΡΟ ΓΝΩΡΙΖΩ ΤΟ ΜΟΥΣΕΙΟ ΤΗΣ ΓΕΙΤΟΝΙΑΣ ΜΟΥ Σχεδιασμός και υλοποίηση προγραμμάτων σχολικών δραστηριοτήτων Πολιτιστικών Θεμάτων Ε.Ε.Ε.Ε.Κ. ΠΑΥΛΟΥ ΜΕΛΑ 2017-2018 Υπεύθυνοι καθηγητές:
Τα Μαθηματικά μέσα από την Τέχνη
Τα Μαθηματικά μέσα από την Τέχνη Υποδειγματικό Σενάριο Γνωστικό αντικείμενο: Πρόγραμμα Πολιτιστικών Θεμάτων Δημιουργός: ΑΘΑΝΑΣΙΑ ΜΠΑΛΩΜΕΝΟΥ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ
Ρυθµός Κίνηση Χορός Ενοποίηση µουσικοκινητικής αγωγής - χορού. ρ. Απόστολος Ντάνης Σχολικός Σύµβουλος Φ.Α.
Ρυθµός Κίνηση Χορός Ενοποίηση µουσικοκινητικής αγωγής - χορού στα δηµοτικά σχολεία µε Ε.Α.Ε.Π. ρ. Απόστολος Ντάνης Σχολικός Σύµβουλος Φ.Α. Η θεµατική ενότητα «ρυθµός-κίνηση-χορός» στη σχολική Φυσική Αγωγή
Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα»
Εκπαιδευτικό λογισμικό: Αβάκιο Χελωνόκοσμος Δραστηριότητα 1: «Διερευνώντας τα παραλληλόγραμμα» Φύλλο δασκάλου 1.1 Ένταξη δραστηριότητας στο πρόγραμμα σπουδών Τάξη: Ε και ΣΤ Δημοτικού. Γνωστικά αντικείμενα:
Το ΔΕΠΠΣ- ΑΠΣ των Φυσικών Επιστημών της Ε και Στ Δημοτικού Τα Νέα Διδακτικά Βιβλία των Φυσικών Επιστημών της Ε και Στ Δημοτικού
Το ΔΕΠΠΣ- ΑΠΣ των Φυσικών Επιστημών της Ε Τα Νέα Διδακτικά Βιβλία των Φυσικών Επιστημών της Ε Ειδικοί σκοποί ΑΠΣ Κατανόηση: φυσικού κόσμου νόμων που τον διέπουν φυσικών φαινομένων διαδικασιών που οδηγούν
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΧΡΗΣΗ ΤΠΕ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΜΕΤΑΤΡΟΠΗ ΤΟΥ ΣΕΝΑΡΙΟΥ
ΣΔΕ ΘΕΣ/ΝΙΚΗΣ. Συμμετρία και Τέχνη
Συμμετρία και Τέχνη Διεπιστημονική προσέγγιση αριθμητικού και οπτικού γραμματισμού Εκπαιδευτικοί: Αθανασοπούλου Ζαφειρία (οπτικός γραμματισμός) Σαρακινίδου Σοφία (αριθμητικός γραμματισμός) (Αξονική και
ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΙΣΤΟΡΙΑ
ΣΕΝΑΡΙΟ ΔΙΔΑΣΚΑΛΙΑΣ ΓΝΩΣΤΙΚΟ ΑΝΤΙΚΕΙΜΕΝΟ: ΙΣΤΟΡΙΑ ΤΑΞΗ: Α ΓΥΜΝΑΣΙΟΥ, Α ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ: Μυκηναϊκός Πολιτισμός ΕΙΣΗΓΗΤΗΣ: ΚΑΛΛΙΑΔΟΥ ΜΑΡΙΑ ΘΕΜΑ: «Η καθημερινή ζωή στον Μυκηναϊκό Κόσμο» Οι μαθητές
Διδακτική των Μαθηματικών
Διδακτική των Μαθηματικών Ονοματεπώνυμο : Μαμτζέλλη Χρυσούλα Τάξη : Γ Δημοτικού Κεφάλαιο 43 : Η συμμετρία Πρόκειται για ένα εισαγωγικό μάθημα στην αξονική συμμετρία. Οι μαθητές θα μάθουν πότε δύο σχήματα
Θέμα: «2018: Έτος Μαθηματικών»
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ.Ε. Δ/ΝΣΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠ/ΣΗΣ
Φύση και Μαθηματικά. Η χρυσή τομή φ
Φύση και Μαθηματικά Η χρυσή τομή φ Ερευνητική Εργασία (Project) Α' Λυκείου 1ο ΓΕΛ Ξάνθης 2011 2012 Επιβλέποντες καθηγητές Επαμεινώνδας Διαμαντόπουλος Βασιλική Κώττη Φύση και Μαθηματικά 2 Τι είναι η χρυσή
Μεταβλητές. Σενάριο για μαθητές Γ γυμνασίου διάρκειας 3+ ωρών
Σενάριο για μαθητές Γ γυμνασίου διάρκειας 3+ ωρών Κύριος στόχος Εισαγωγή στις μεταβλητές, ένταξή τους στη λειτουργία ενός αλγόριθμου και αντιμετώπιση μερικών δυσκολιών, κυρίως προερχόμενων από τις πρότερες
ΠΡΟΤΑΣΗ ΔΗΜΙΟΥΡΓΙΑΣ ΟΜΙΛΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΣΤΟ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ
ΠΡΟΤΑΣΗ ΔΗΜΙΟΥΡΓΙΑΣ ΟΜΙΛΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΣΤΟ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΓΥΜΝΑΣΙΟ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΣΧΟΛΙΚΟ ΕΤΟΣ 2015-2016 «Τα Μαθηµατικά µέσα από παιχνίδια λογικής, στρατηγικής & δηµιουργίας- Μέρος ΙΙ» ΣΥΝΟΠΤΙΚΗ
ΒΑΣΙΚΕΣ ΣΠΟΥΔΕΣ ΣΤΟ ΤΜΗΜΑ ΦΥΣΙΚΗΣ
ΒΑΣΙΚΕΣ ΣΠΟΥΔΕΣ ΣΤΟ ΤΜΗΜΑ ΦΥΣΙΚΗΣ Εισαγωγή Το νέο πρόγραμμα σπουδών που ισχύει πλέον πλήρως, ξεκίνησε να εφαρμόζεται σταδιακά ανά έτος από το ακαδημαϊκό έτος 2011-12 και είναι αποτέλεσμα αναμόρφωσης και
Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών).
Μάθημα 5ο Ο πρώτος ηλικιακός κύκλος αφορά μαθητές του νηπιαγωγείου (5-6 χρονών), της Α Δημοτικού (6-7 χρονών) και της Β Δημοτικού (7-8 χρονών). Ο δεύτερος ηλικιακός κύκλος περιλαμβάνει την ηλικιακή περίοδο
ΤΑΞΗ: Γ. Προτείνεται να αξιοποιηθούν διδακτικά τα παρακάτω «ψηφιακά δομήματα» από τα εμπλουτισμένα σχ. εγχειρίδια. Προτείνεται να μην
ΤΑΞΗ: Γ ΕΚΠΑΙΔΕΥΤΙΚΟ ΥΛΙΚΟ: Βιβλίο μαθητή, Μαθηματικά Γ Δημοτικού, 2015, ένα τεύχος Τετράδιο εργασιών, Μαθηματικά Γ Δημοτικού, 2015, α τεύχος Τετράδιο εργασιών, Μαθηματικά Γ Δημοτικού, 2015, β τεύχος Τετράδιο
ΓΕΩΜΕΤΡΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΣΤΟ ΧΩΡΟ
ΓΕΩΜΕΤΡΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΣΤΟ ΧΩΡΟ Σχεδιασμός και υλοποίηση προγραμμάτων σχολικών δραστηριοτήτων Πολιτιστικών Θεμάτων Ε.Ε.Ε.Ε.Κ. ΙΝ.Α.Α. ΠΕΥΚΩΝ 2016-2017 Υπεύθυνοι καθηγητές: Παπαδοπούλου Λία, Φράγκου Ζωή,
Εκπαιδευτικό Σενάριο: Αναλογίες. Βασίλης Παπαγεωργίου
Εκπαιδευτικό Σενάριο: Αναλογίες Ιανουάριος 2011 1. Τίτλος Αναλογίες 2. Ταυτότητα Συγγραφέας: Γνωστική περιοχή των μαθηματικών: Άλγεβρα, Γεωμετρία Θέμα: Αναλογίες Συντεταγμένες στο επίπεδο 3. Σκεπτικό 2
14:00 14:10 μ.μ. Απογευματινό κολατσιό
7:00 9:00 π.μ. Φύλαξη 9:00 9:10 π.μ. Υποδοχή μαθητών - μαθητριών 9:10 9:45 π.μ. Ομαδική δραστηριότητα (Συζήτηση Πειράματα- Μαθηματικά- Λογοτεχνία) 9:45 10:10 π.μ. Πρόγευμα 10:10 11:00 π.μ. Διάλειμμα (Στην
ΜΑΘΗΜΑ 1: ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ
ΜΑΘΗΜΑ 1: ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΓΕΩΜΕΤΡΙΚΟΥΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥΣ Δραστηριότητα 1 Εξερευνώντας το σχηματισμό των ψηφιδωτών. Ένα Ολλανδός ζωγράφος, ο M.C. Escher ( 1898-1972 ), έφτιαχνε ζωγραφικούς πίνακες χρησιμοποιώντας
ΠΡΟΣΧΕΔΙΟ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ. Α τάξης Γυμνασίου
ΠΡΟΣΧΕΔΙΟ ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ Α τάξης Γυμνασίου 1 Η ΜΟΡΦΗ ΤΟΥ ΑΝΑΛΥΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ Γενικοί Στόχοι Ειδικοί Στόχοι Α. ΣΤΟΧΟΙ Β. ΟΔΗΓΙΕΣ ΓΙΑ ΤΟΝ/ ΤΗΝ ΕΚΠΑΙΔΕΥΤΙΚΟ και Γ. ΜΕΘΟΔΟΛΟΓΙΑ Δ. ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ Ε.
Μια εισαγωγή στην έννοια της βιωματικής μάθησης Θεωρητικό πλαίσιο. Κασιμάτη Κατερίνα Αναπληρώτρια Καθηγήτρια ΑΣΠΑΙΤΕ
Μια εισαγωγή στην έννοια της βιωματικής μάθησης Θεωρητικό πλαίσιο Κασιμάτη Κατερίνα Αναπληρώτρια Καθηγήτρια ΑΣΠΑΙΤΕ Τι εννοούμε με τον όρο «βιωματική μάθηση»; Πρόκειται για έναν εναλλακτικό τρόπο μάθησης,
Ενότητα στις Εικαστικές Τέχνες
Ενότητα στις Εικαστικές Τέχνες Τίτλος: Ιστορίες δωματίων Βαθμίδα: 2 Τάξη: Ε Διάρκεια: 6 Χ 80 Περιγραφή Ενότητας Οι μαθητές και οι μαθήτριες μέσα από διάφορες δραστηριότητες που αφορούν στο δωμάτιό τους
Μαθησιακές δραστηριότητες με υπολογιστή
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μαθησιακές δραστηριότητες με υπολογιστή Εκπαιδευτικά υπερμεσικά περιβάλλοντα Διδάσκων: Καθηγητής Αναστάσιος Α. Μικρόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΕΝΟΤΗΤΑ 8 ΔΙΣΔΙΑΣΤΑΤΗ ΓΕΩΜΕΤΡΙΑ
ΕΝΟΤΗΤΑ 8 ΔΙΣΔΙΑΣΤΑΤΗ ΓΕΩΜΕΤΡΙΑ ΔΕΙΚΤΕΣ ΕΠΙΤΥΧΙΑΣ ΓΕΩΜΕΤΡΙΑ Διερεύνηση σχημάτων και χώρου Γ1.1 Περιγράφουν και κατασκευάζουν διάφορα είδη γραμμών (ανοιχτές, κλειστές, ευθείες, καμπύλες) και δισδιάστατα
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 6: Γεωμετρικά σχήματα και μεγέθη δύο και τριών διαστάσεων Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία
Πρωινό γεύμα και υγιεινή σώματος στην τουαλέτα.
Προσέλευση νηπίων και αυθόρμητες δραστηριότητες στις οργανωμένες γωνιές της τάξης. Το ελεύθερο παιχνίδι είτε ατομικό,είτε ομαδικό σε ελκυστικά οργανωμένες γωνιές επιτρέπει στα παιδιά να χρησιμοποιούν δημιουργικά
Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.
Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον
Το ανοργάνωτο Parking
Δημοτικό Υπαίθριο Parking Περίληψη: Σε κάθε πόλη είναι σημαντικό η δημιουργία όσο το δυνατόν περισσότερων θέσεων parking, ειδικά στο κέντρο της, ώστε να διευκολύνονται οι πολίτες και η εμπορική αγορά.
ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2
ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ
ΑΝΑΠΤΥΞΗ & ΥΛΟΠΟΙΗΣΗ PROJECT ΣΤΗ ΣΧΟΛΙΚΗ ΤΑΞΗ ΜΕ ΒΑΣΗ ΨΗΦΙΑΚΕΣ ΙΣΤΟΡΙΚΕΣ ΑΦΗΓΗΣΕΙΣ: Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ ΠΕΡΙΟΔΙΚΩΝ ΚΙΝΗΣΕΩΝ
ΑΝΑΠΤΥΞΗ & ΥΛΟΠΟΙΗΣΗ PROJECT ΣΤΗ ΣΧΟΛΙΚΗ ΤΑΞΗ ΜΕ ΒΑΣΗ ΨΗΦΙΑΚΕΣ ΙΣΤΟΡΙΚΕΣ ΑΦΗΓΗΣΕΙΣ: Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ ΠΕΡΙΟΔΙΚΩΝ ΚΙΝΗΣΕΩΝ Γιώργος Γρηγορόπουλος Δευτεροβάθμια εκπαίδευση & ΠΤΔΕ, Παν. Πατρών Βασιλική Σπηλιωτοπούλου