A bst ract. Review. m wal u; j woo pa.arizona.ed u
|
|
- Φίλανδρος Οικονόμου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 A bst ract Review m wal ker@arizona.ed u; j woo ders@b pa.arizona.ed u
2 any
3 playing playing play well
4
5 i.e. distribution
6 2 2 1 T he 2 2 Point G a me 2 2 point ga me i.e. 2 2 i.e.
7 sr 1 sr sr 1 sr 2 2 sr sr 2 2 sr L L R L R R L R 1 match
8 i.e. 1 L L 1 L R 1 R R 1 R L L L L R R R R L M ixed St ra tegy C on dition 1 2 A ssu m p t ion 1: 2 2 T he T ennis M a t c h as a G ame games sets match infinite-horizon
9 two binary Markov games sr
10 , Va r ia t io n in P oin t G ames i.e. sr should not
11 A ssu m p t ion 2: 2 O n Testing t he T heor y i.i.d. sr
12 estimate are sr does win ra tes for his serves A l t e r n a t iv e M o de l s o f t he P oin t G ame
13 were
14 T he D a t a
15 sr 2 2 equilibrium i.e.
16 4 Testing for E quality of W inning P robabilities null hypothesis
17 H ypo t heses a nd T es t s f o r t he T ennis D a t a i.e. = 1 40 i j i.e. success failure i j S i j F i j i.e. null hy pot hesis i L = i R i
18 i L = i i R = i i = X j L, R " ( i j S i j i ) 2 i j i + ( j i F i j (1 i )) 2 # i j (1 i ) i i N L i S + N R i S i i n i L + n i R i i i.e. 1 according to the theory i.e. joint all forty i L = i R each one = 1 40 i.i.d.
19 i L i R i P i.e. 40 i = 1 i fewer i.e. i i L = i R i i i i [0 1] etc [0 1] ( ) ( ) = 1 ( ) 0 1 Pr[ ( ) ] = Pr[1 ( ) ] = Pr[ ( ) 1 ] = Pr[ 1 (1 )] = 1 ( 1 (1 )) = 1 (1 ) =
20 c.d.f i.e. ( ) = [0 1] 40 ˆ ( ) ˆ ( ) = P 40 i = 1 [0,x] ( i ) [0,x] ( i ) = 1 i [0,x] ( i ) = = 40 sup x [0,1] ˆ ( ) = viz. viz.
21 typical A pp l y in g o u r T es t s t o O N ei l l s D a t a
22 1 50 joint every P 50 i = 1 i i.e.
23 = T he P o w e r o f O u r T es t s % 3 i.e % viz.
24 = 2 3 L R L ( ) = (1 ) R ( ) = (1 ) i.e. = 2 3 P 40 i = 1 i 5% P 40 i = 1 i = 2 3 L = R P 40 i = 1 i i.e
25 0 = 2 3 = 5 i.e. 58 L = 685 R = 610) = 6 i.e Serial I ndependence i.e. i.i.d. H ypo t heses a nd T es t s f o r t he T ennis D a t a i = ( 1 i i n i L + n ) i R i n i L i R i i run i.e.
26 L R ( ; L R ) ( ; L R ) i.e. ( ; L R ) = P rk = 1 ( ; L R ) ( i ; i L i R ) ( i 1; i L i R ) 025 i.e. i 025 i 025 i i ( 1) ( ) i 1 i each = ( )
27 continuous ( 1) ( ) i i L i R i [ ( i 1; i L i R)( i ; i L i R )] i [0 1] 1 40 = i i.e. Se r ia l In dependen c e in O Nei l l s D a t a [0 1] L R ( ) ( ; L R ) Pr[ ] = i.e. ( 1) ( ) Pr[ ] = (2) + + ( 1) + ( ) x F ( r 1) F ( r ) F ( r 1) = ( ) ( 1) = ( ) (2) + + ( 1) = ( 1) i
28 i i =
29 6 C oncluding R emar ks some 2 2 viz
30
31 R eferences Econometrica 58 Thinking Strategically: The Competitive Edge in Business, Politics, and Everyday Life American Economic Review 88 Hard Courts Nonparametric Statistical Inference Introduction to the Theory of Statistics Proceedings of the National Academy of Sciences 84 Psychological Bulletin 77
32 Table 1: Mixtures and Win Rates in Tennis Data Serve Direction Total Mixture Points Won Win Rates Match Hnd Server Court L R C Srvs L R C L R C L R C 74Wimbldn R Rosewall Ad Wimbldn R Rosewall Deuce Wimbldn R Smith Ad Wimbldn R Smith Deuce Wimbldn R Borg Ad Wimbldn R Borg Deuce Wimbldn L McEnroe Ad Wimbldn L McEnroe Deuce USOpen L McEnroe Ad USOpen L McEnroe Deuce USOpen R Borg Ad USOpen R Borg Deuce Wimbldn L Connors Ad Wimbldn L Connors Deuce Wimbldn L McEnroe Ad Wimbldn L McEnroe Deuce French R Lendl Ad French R Lendl Deuce French L McEnroe Ad French L McEnroe Deuce Australn R Edberg Ad Australn R Edberg Deuce Australn R Cash Ad Australn R Cash Deuce Australn R Wilander Ad Australn R Wilander Deuce Australn R Cash Ad Australn R Cash Deuce Masters R Becker Ad Masters R Becker Deuce Masters R Lendl Ad Masters R Lendl Deuce USOpen R Sampras Ad USOpen R Sampras Deuce USOpen R Agassi Ad USOpen R Agassi Deuce USOpen L Korda Ad USOpen L Korda Deuce USOpen R Sampras Ad USOpen R Sampras Deuce Totals
33 Table 2: Testing for Equality of Winning Probabilities in Tennis Data Serves Total Mixture Pts Won Win Rates Pearson Match Hand Server Court L R Srvs L R L R L R statistic p-value 74Wimbldn R Rosewall Ad Wimbldn R Rosewall Deuce Wimbldn R Smith Ad Wimbldn R Smith Deuce Wimbldn R Borg Ad Wimbldn R Borg Deuce Wimbldn L McEnroe Ad Wimbldn L McEnroe Deuce USOpen L McEnroe Ad USOpen L McEnroe Deuce USOpen R Borg Ad USOpen R Borg Deuce Wimbldn L Connors Ad ** 82Wimbldn L Connors Deuce Wimbldn L McEnroe Ad Wimbldn L McEnroe Deuce French R Lendl Ad French R Lendl Deuce French L McEnroe Ad French L McEnroe Deuce Australn R Edberg Ad Australn R Edberg Deuce Australn R Cash Ad Australn R Cash Deuce Australn R Wilander Ad Australn R Wilander Deuce Australn R Cash Ad Australn R Cash Deuce Masters R Becker Ad Masters R Becker Deuce Masters R Lendl Ad Masters R Lendl Deuce USOpen R Sampras Ad USOpen R Sampras Deuce * 95USOpen R Agassi Ad USOpen R Agassi Deuce USOpen L Korda Ad USOpen L Korda Deuce USOpen R Sampras Ad USOpen R Sampras Deuce Totals * and ** indicate rejection at the 5% and 10% level of significance, respectively.
34 Table 3: Testing for Equality of Winning Probabilities in O'Neill's Data Mixtures Win Rates Pair Player Joker Non-J Joker Non-J Pearson Q p-value ** * ** * * * ** * * ** * ** * * * * 10 rejections at 5% ** 15 rejections at 10%
35 Table 4: Runs Tests on Tennis Data Serves Runs Match Hnd Server Court L R Total r i F(r i -1) F(r i ) U[F(r i -1),F(r i )] 74Wimbldn R Rosewall Ad Wimbldn R Rosewall Deuce Wimbldn R Smith Ad Wimbldn R Smith Deuce Wimbldn R Borg Ad Wimbldn R Borg Deuce Wimbldn L McEnroe Ad Wimbldn L McEnroe Deuce USOpen L McEnroe Ad USOpen L McEnroe Deuce USOpen R Borg Ad USOpen R Borg Deuce Wimbldn L Connors Ad * Wimbldn L Connors Deuce ** Wimbldn L McEnroe Ad Wimbldn L McEnroe Deuce French R Lendl Ad French R Lendl Deuce ** French L McEnroe Ad French L McEnroe Deuce * Australn R Edberg Ad * Australn R Edberg Deuce Australn R Cash Ad ** Australn R Cash Deuce Australn R Wilander Ad Australn R Wilander Deuce Australn R Cash Ad Australn R Cash Deuce * Masters R Becker Ad Masters R Becker Deuce Masters R Lendl Ad Masters R Lendl Deuce USOpen R Sampras Ad USOpen R Sampras Deuce * USOpen R Agassi Ad USOpen R Agassi Deuce USOpen L Korda Ad USOpen L Korda Deuce USOpen R Sampras Ad USOpen R Sampras Deuce * and ** indicate rejection at the 5% and 10% level of significance, respectively.
36 Table 5: Runs Tests on O'Neill's Data Choice Runs Pair Player J N r i F(r i -1) F(r i ) U[F(r i -1),F(r i )] * * ** * * * * ** ** * ** * * * * * * * * * and ** indicate rejection at the 5% and 10% levels of significance.
37 Figure 1: A Typical Point Game Receiver L R Server L π LL π LR R π RL π RR Outcomes (cell entries) are probability Server wins the point. Example Receiver Server's L R Minimax Server L /3 R /3 Rec's Minimax: 2/3 1/3 Value =.65
38 Figure 2: The Tennis Court Server's Side Deuce Ad Ad Court Deuce Court L R L R Ad Deuce (Odd; 1) (Even; 0) Receiver's Side
39 Figure 3 Win Rates in Tennis Data: Histogram of p-values p-values
40 Figure 4 Win Rates in Tennis: Kolmogorov Test k=.670 (p-value =.76)
41 Figure 5 Win Rates in O'Neill: Histogram of p-values p-values
42 Figure 6 Win Rates in O'Neill: Kolmogorov Test k=1.704 (p-value =.006)
43 Figure 7 The Power Function Probablity of rejecting null Receiver probability of Left
44 Figure 8 Runs in Tennis Data: Kolmogorov Test k=1.948 (p-value =.001)
45 Figure 9 Runs in O'Neill's Data: Kolmogorov Test k=2.503 (p=value = )
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Models for Probabilistic Programs with an Adversary
Models for Probabilistic Programs with an Adversary Robert Rand, Steve Zdancewic University of Pennsylvania Probabilistic Programming Semantics 2016 Interactive Proofs 2/47 Interactive Proofs 2/47 Interactive
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science
Statistics & Research methods Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science 30 25 1,65 20 1,66 15 10 5 1,67 1,68 Κανονική 0 Height 1,69 Καμπύλη Κανονική Διακύμανση & Ζ-scores
557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING
Most Powerful Tests 557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING To construct and assess the quality of a statistical test, we consider the power function β(θ). Consider a
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell
20104 Chinese Journal of Applied Probability and Statistics Vol.26 No.2 Apr. 2010 P (,, 200083) P P. Wang (2006)P, P, P,. : P,,,. : O212.1, O212.8. 1., (). : X 1, X 2,, X n N(θ, σ 2 ), σ 2. H 0 : θ = θ
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns
Depth versus Rigidity in the Design of International Trade Agreements Leslie Johns Supplemental Appendix September 3, 202 Alternative Punishment Mechanisms The one-period utility functions of the home
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 13η: Multi-Object Auctions Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 13η: Multi-Object Auctions Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών MULTI OBJECT AUCTIONS Sealed bid auctions for identical units -
Μενύχτα, Πιπερίγκου, Σαββάτης. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο ανεξάρτητα δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,..., Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ )
Μαντζούνη, Πιπερίγκου, Χατζή. ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 5 ο
Κατανομές Στατιστικών Συναρτήσεων Δύο δείγματα από κανονική κατανομή Έστω Χ= ( Χ, Χ,..., Χ ) τ.δ. από Ν( µ, σ ) μεγέθους n και 1 n 1 1 Y = (Y, Y,...,Y ) τ.δ. από Ν( µ, σ ) 1 n 1 Χ Y ( µ µ ) S σ Τ ( Χ,Y)
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
χ 2 test ανεξαρτησίας
χ 2 test ανεξαρτησίας Καθηγητής Ι. Κ. ΔΗΜΗΤΡΙΟΥ demetri@econ.uoa.gr 7.2 Το χ 2 Τεστ Ανεξαρτησίας Tο χ 2 τεστ ανεξαρτησίας (όπως και η παλινδρόμηση) είναι στατιστικά εργαλεία για τον εντοπισμό σχέσεων μεταξύ
p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95
r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis
Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis Xue Han, MPH and Matt Shotwell, PhD Department of Biostatistics Vanderbilt University School of Medicine March 14, 2014
557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING
557: MATHEMATICAL STATISTICS II HYPOTHESIS TESTING A statistical hypothesis test is a decision rule that takes as an input observed sample data and returns an action relating to two mutually exclusive
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Όρια Πιστότητας (Confidence Limits) 2/4/2014 Υπολογ.Φυσική ΣΣ 1 Τα όρια πιστότητας -Confidence Limits (CL) Tα όρια πιστότητας μιας μέτρησης Μπορεί να αναφέρονται
Δεδομένα (data) και Στατιστική (Statistics)
Δεδομένα (data) και Στατιστική (Statistics) Η Στατιστική (Statistics) ασχολείται με την ανάλυση δεδομένων (data analysis): Πρόσφατες παιδαγωγικές εξελίξεις υποδεικνύουν ότι η Στατιστική πρέπει και να διδάσκεται
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools Firms - Basics of Industrial
Target # North Carolina Senior Games
Archery 600 Scoresheet A 600 Round Consists of 4 ends of 5 Arrows per end. There are 4 ends at each distance with a possible 00 point total. Target # H = Number of Scoring Hits ET = End Total (of 5 arrow)
SECTION II: PROBABILITY MODELS
SECTION II: PROBABILITY MODELS 1 SECTION II: Aggregate Data. Fraction of births with low birth weight per province. Model A: OLS, using observations 1 260 Heteroskedasticity-robust standard errors, variant
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Group 2 Methotrexate 7.5 mg/week, increased to 15 mg/week after 4 weeks. Methotrexate 7.5 mg/week, increased to 15 mg/week after 4 weeks
Group 1 Methotrexate 7.5 mg/week, increased to 15 mg/week after 4 weeks Group 2 Methotrexate 7.5 mg/week, increased to 15 mg/week after 4 weeks Sulfasalazine 2000-3000 mg/day Leflunomide 20 mg/day Infliximab
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
John Nash. Παύλος Στ. Εφραιµίδης. Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών ορισµένα αποτελέσµατα του τα σηµεία ισορροπίας Nash (NE Nash Equilibrium) ύπαρξη σηµείου
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
NOB= Dickey=Fuller Engle-Granger., P. ( ). NVAR=Engle-Granger/Dickey-Fuller. 1( ), 6. CONSTANT/NOCONST (C) Dickey-Fuller. NOCONST NVAR=1. TREND/NOTREN
CDF(BIVNORM or CHISQ or DICKEYF or F or NORMAL or T or WTDCHI, DF=CHISQ T, DF1=F, DF2=F, NLAGS= Dickey-Fuller, NOB=, NVAR=, RHO=BIVNORM, EIGVAL=WTDCHI, LOWTAIL or UPTAIL or TWOTAIL, CONSTANT, TREND, TSQ,
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Theorem 8 Let φ be the most powerful size α test of H
Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
FINAL TEST B TERM-JUNIOR B STARTING STEPS IN GRAMMAR UNITS 8-17
FINAL TEST B TERM-JUNIOR B STARTING STEPS IN GRAMMAR UNITS 8-17 Name: Surname: Date: Class: 1. Write these words in the correct order. /Γράψε αυτέσ τισ λέξεισ ςτη ςωςτή ςειρά. 1) playing / his / not /
ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ
A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές
STAT200C: Hypothesis Testing
STAT200C: Hypothesis Testing Zhaoxia Yu Spring 2017 Some Definitions A hypothesis is a statement about a population parameter. The two complementary hypotheses in a hypothesis testing are the null hypothesis
Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation
Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.
A. ΈΛΕΓΧΟΣ ΚΑΝΟΝΙΚΟΤΗΤΑΣ A 1. Έλεγχος κανονικότητας Kolmogorov-Smirnov. Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov. Μηδενική υπόθεση:
Exercise 2: The form of the generalized likelihood ratio
Stats 2 Winter 28 Homework 9: Solutions Due Friday, March 6 Exercise 2: The form of the generalized likelihood ratio We want to test H : θ Θ against H : θ Θ, and compare the two following rules of rejection:
[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1
1,a) Bayesian Approach An Application of Monte-Carlo Tree Search Algorithm for Shogi Player Based on Bayesian Approach Daisaku Yokoyama 1,a) Abstract: Monte-Carlo Tree Search (MCTS) algorithm is quite
ΣΗΜΑΣΙΑ ΤΩΝ ΤΕΧΝΙΚΩΝ ΔΕΞΙΟΤΗΤΩΝ ΣΤΗΝ ΚΑΤΑΚΤΗΣΗ Ή ΑΠΩΛΕΙΑ ΣΕΤ ΣΤΗΝ ΠΕΤΟΣΦΑΙΡΙΣΗ ΑΝΔΡΩΝ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ.
ΣΗΜΑΣΙΑ ΤΩΝ ΤΕΧΝΙΚΩΝ ΔΕΞΙΟΤΗΤΩΝ ΣΤΗΝ ΚΑΤΑΚΤΗΣΗ Ή ΑΠΩΛΕΙΑ ΣΕΤ ΣΤΗΝ ΠΕΤΟΣΦΑΙΡΙΣΗ ΑΝΔΡΩΝ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. THE ROLE OF TECHNICAL SKILLS IN WINNING OR LOSING A SET IN MEN S PROFESSIONAL VOLLEYBALL Δρίκος Σωτήρης
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. Γενικά στοιχεία Όνομα Επίθετο Θέση E-mail Πέτρος Μαραβελάκης Επίκουρος καθηγητής στο Πανεπιστήμιο Πειραιώς, Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων με αντικείμενο «Εφαρμογές Στατιστικής
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Thin Film Chip Resistors
FETURES PRECISE TOLERNCE ND TEMPERTURE COEFFICIENT EI STNDRD CSE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERLE (Pb FREE TERMINTION FINISH) Type EI Size Power Rating at 70
ο),,),--,ο< $ι ιι!η ι ηι ι ιι ιι t (t-test): ι ι η ι ι. $ι ι η ι ι ι 2 x s ι ι η η ιη ι η η SE x
η &, ε ε 007!# # # ι, ι, η ιι ι ι ι ι η (.. ι, η ι η, ι & ι!ι η 50, ι ηιη 000 ι, ι, ',!,! )!η. (, ηι, ι ι ι ι "!η. #, ι "ι!η ι, ηι, ι ι ι η. ι, ι ι, ' ι ι ι η ι ι ι ι # ι ι ι ι ι 7. ο),,),--,ο< $ι ιι!η
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Η δυναμική ενός μοντέλου Keynsian Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Στατιστική Ανάλυση Δεδομένων II. Γραμμική Παλινδρόμηση με το S.P.S.S.
Στατιστική Ανάλυση Δεδομένων II Γραμμική Παλινδρόμηση με το S.P.S.S. μέρος Α (απλή παλινδρόμηση) Νίκος Τσάντας Πρόγραμμα Μεταπτυχιακών Σπουδών Τμήμ. Μαθηματικών Μαθηματικά και Σύγχρονες Εφαρμογές Ακαδημαϊκό
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions
Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions Hirofumi Wakaki (Math. of Department, Hiroshima Univ.) 20.7. Hiroshima Statistical Group Meeting at
department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι
She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee
Ψηφιακή Οικονομία. Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 11η: Markets and Strategic Interaction in Networks Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΟΛΟΚΛΗΡΩΜΕΝΗ ΑΝΑΠΤΥΞΗ & ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΑΓΡΟΤΙΚΟΥ ΧΩΡΟΥ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Οικονομετρική διερεύνηση
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
OLS. University of New South Wales, Australia
1997 2007 5 OLS Abstract An understanding of the macro-level relationship between fertility and female employment is relevant and important to current policy-making. The objective of this study is to empirically
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Μηχανική μάθηση. Ενότητα 3: Hypothesis testing basics. Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική μάθηση Ενότητα 3: Hypothesis testing basics Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών Hypotheses in Machine Learning Regarding the application of
HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?
HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1
ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 3, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 1 5.1: Εισαγωγή 5.2: Πιθανότητες 5.3: Τυχαίες Μεταβλητές καθ. Βασίλης Μάγκλαρης
Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed
Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ
ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΘΕΩΡΙΑ ΠΑΙΓΝΙΩΝ: Ο ΡΟΛΟΣ ΤΩΝ ΚΕΝΤΡΙΚΩΝ ΤΡΑΠΕΖΩΝ ΣΕ ΕΝΑ ΣΕΝΑΡΙΟ ΑΠΟΣΤΑΘΕΡΟΠΟΙΗΣΗΣ
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Εισαγωγή στα δυναμικά συστήματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
1. Τελικό Αποτέλεσμα Επιλογές: 1,Χ,2. 2. Χάντικαπ πόντων (με παράταση) Επιλογές: 1,2 Περιγραφή: Νικητής αγώνα με πλεονέκτημα (συμπερ.
Basketball Μπάσκετ 1. Τελικό Αποτέλεσμα Επιλογές: 1,Χ,2 2. Χάντικαπ πόντων (με παράταση) Περιγραφή: Νικητής αγώνα με πλεονέκτημα (συμπερ. Παράταση) 3. Over/Under πόντων αγώνα (συμπερ. Παράταση) 4. Νικητής
CE 530 Molecular Simulation
C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
5. Choice under Uncertainty
5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Thin Film Chip Resistors
FETURES PRECISE TOLERNCE ND TEMPERTURE COEFFICIENT EI STNDRD CSE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERLE (Pb FREE TERMINTION FINISH) RoHS Compliant includes all homogeneous
Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S.
Σημειώσεις για το μάθημα Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S. Παπάνα Αγγελική E mail: papanagel@yahoo.gr, agpapana@gen.auth.gr Α.Τ.Ε.Ι. Θεσσαλονίκης ΠΑΡΑΡΤΗΜΑ ΚΑΤΕΡΙΝΗΣ Τμήμα Τυποποίησης και
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Κεφάλαιο 5. Βασικές έννοιες ελέγχων υποθέσεων και έλεγχοι κανονικότητας
Κεφάλαιο 5 Σύνοψη Βασικές έννοιες ελέγχων υποθέσεων και έλεγχοι κανονικότητας Βασικές έννοιες και ορισμοί του ελέγχου υποθέσεων, γραφικοί έλεγχοι κανονικότητας μέσω των ιστογραμμάτων (διαδρομές Analyze
Thin Film Chip Resistors
FEATURES PRECISE TOLERANCE AND TEMPERATURE COEFFICIENT EIA STANDARD CASE SIZES (0201 ~ 2512) LOW NOISE, THIN FILM (NiCr) CONSTRUCTION REFLOW SOLDERABLE (Pb FREE TERMINATION FINISH) Type Size EIA PowerRating
ίκτυο προστασίας για τα Ελληνικά αγροτικά και οικόσιτα ζώα on.net e-foundatio //www.save itute: http:/ toring Insti SAVE-Monit
How to run a Herdbook: Basics and Basics According to the pedigree scheme, you need to write down the ancestors of your animals. Breeders should be able easily to write down the necessary data It is better
ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΚΤΙΜΗΣΗ ΤΟΥ ΚΟΣΤΟΥΣ ΤΩΝ ΟΔΙΚΩΝ ΑΤΥΧΗΜΑΤΩΝ ΚΑΙ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΑΡΑΓΟΝΤΩΝ ΕΠΙΡΡΟΗΣ ΤΟΥ ΔΙΑΤΡΙΒΗ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΔΗΜΗΤΡΙΟΥ Ν. ΠΙΤΕΡΟΥ
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
( ) ( ) STAT 5031 Statistical Methods for Quality Improvement. Homework n = 8; x = 127 psi; σ = 2 psi (a) µ 0 = 125; α = 0.
STAT 531 Statistical Methods for Quality Improvement Homework 3 4.8 n = 8; x = 17 psi; σ = psi (a) µ = 15; α =.5 Test H : µ = 15 vs. H 1 : µ > 15. Reject H if Z > Z α. x µ 17 15 Z = = =.88 σ n 8 Z α =
þÿ ɺÁ Ä ÅÂ, ±»Î¼ Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å
Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2016 þÿ ͽ Á ¼ µà±³³µ»¼±ä¹º  þÿµ¾ Å ½Éà  ³º» ³¹ºÎ½ ½ à þÿ ɺÁ Ä ÅÂ,
Δείγμα (μεγάλο) από οποιαδήποτε κατανομή
ΒΙΟΣΤΑΤΙΣΤΙΚΗ Εργαστήριο 4ο Κατανομές Στατιστικών Συναρτήσεων Δείγμα από κανονική κατανομή Έστω Χ= Χ Χ Χ τ.δ. από Ν µσ τότε ( 1,,..., n) (, ) Τ Χ Χ Ν Τ Χ σ σ Χ Τ Χ n Χ S µ S µ 1( ) = (0,1), ( ) = ( n 1)
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Repeated measures Επαναληπτικές μετρήσεις
ΠΡΟΒΛΗΜΑ Στο αρχείο δεδομένων diavitis.sav καταγράφεται η ποσότητα γλυκόζης στο αίμα 10 ασθενών στην αρχή της χορήγησης μιας θεραπείας, μετά από ένα μήνα και μετά από δύο μήνες. Μελετήστε την επίδραση
PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h
PHOS π, ask PHOS π analysis, for production, R AA, and Flow analysis, Henrik Qvigstad henrik.qvigstad@fys.uio.no University of Oslo --5 PHOS π, ask ask he task we use, AliaskPiFlow was written prior, for
ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 4Β: Έλεγχοι Κανονικότητας Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες
mapper κανάλι slicer/ demapper AWGN P e Υπολογισµός BER
EE725 Ειδικά Θέµατα Ψηφιακών Επικοινωνιών ηµήτρης Τουµπακάρης 07/06/2007 Τελική εργασία µαθήµατος Μέρος 1 ο Στο πρώτο µέρος της εργασίας θα υλοποιηθεί ένα απλό σύστηµα διαµόρφωσης/αποδιαµόρφωσης και µετάδοσης
Correction Table for an Alcoholometer Calibrated at 20 o C
An alcoholometer is a device that measures the concentration of ethanol in a water-ethanol mixture (often in units of %abv percent alcohol by volume). The depth to which an alcoholometer sinks in a water-ethanol
2 4 5
f Æ 2 4 5 6 e D S. 7 8 9 : H ; BhL Ä,giU W? i?t ),giu 2 b 6 6 6 6 6 6 6 6 6 f < 43 3 3 2 2 2 44 45 46 w wã4 w wã4 BhL Ä,giU W? i?t ),giu 2 e D S ^ 2 M^ e D S ^ M^ Figure 1 US GDP and Exports, 1980-1994
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι