Interval Oscillation Criteria for Fractional Partial Differential Equations with Damping Term

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Interval Oscillation Criteria for Fractional Partial Differential Equations with Damping Term"

Transcript

1 Apple Mahema Publhe Onlne February 6 n SRe hp://wwwrporg/journal/am hp://xoorg/46/am675 Inerval Ollaon Crera for Fraonal Paral Dfferenal Equaon wh Dampng Term Vavel Sahavam Jayapal Kavha * Po Grauae an Reearh Deparmen of Mahema Thruvalluvar Governmen Ar College Rapuram Ina Reeve 8 January 6; aepe 6 February 6; publhe 9 February 6 Copyrgh 6 by auhor an Senf Reearh Publhng In Th work lene uner he Creave Common Arbuon Inernaonal Lene (CC BY hp://reaveommonorg/lene/by/4/ Abra In h arle we wll eablh uffen onon for he nerval ollaon of fraonal paral fferenal equaon of he form D r D u x q x D u x p x f u x g D u x = a u x F x x G= R ( ( ( ( ( ( ( ( ( ( ( I bae on he nformaon only on a equene of ubnerval of he me pae [ raher han whole half lne We oner f o be monoonou an non monoonou By ung a generalze Ra ehnque negral averagng meho Phlo ype kernal an new nerval ollaon rera are eablhe We alo preen ome example o llurae our man reul Keywor Fraonal Parabol Ollaon Fraonal Dfferenal Equaon Dampng Inrouon Fraonal fferenal equaon are now reognze a an exellen oure of knowlege n moellng ynamal proee n elf mlar an porou ruure eleral nework probably an a vo elay elero hemry of orroon elero ynam of omplex meum polymer rheology nural robo * Correponng auhor How o e h paper: Sahavam V an Kavha J (6 Inerval Ollaon Crera for Fraonal Paral Dfferenal Equaon wh Dampng Term Apple Mahema hp://xoorg/46/am675

2 V Sahavam J Kavha eonom boehnology e For he heory an applaon of fraonal fferenal equaon we refer he monograph an journal n he leraure []-[] The uy of ollaon an oher aympo propere of oluon of fraonal orer fferenal equaon ha arae a goo b of aenon n he pa few year []-[] In he la few year he funamenal heory of fraonal paral fferenal equaon wh evang argumen ha unergone nenve evelopmen [4]-[] The qualave heory of h la of equaon ll n an nal age of evelopmen In 965 Wong an Buron [] ue he fferenal equaon of he form u a f u g u = In 97 Buron an Grmer [4] ha been nvegae he qualave propere of ( ru af ( u g ( u = In 9 Nanakumaran an Pangrah [5] erve he ollaory behavor of nonlnear homogeneou fferenal equaon of he form Formulaon of he Problem ( r( y q( y p( f ( y g( y = In h arle we wh o uy he nerval ollaory behavor of non lnear fraonal paral fferenal equaon wh ampng erm of he form ( E D r( D u( x q( x D u( x p( x f ( u( x g D u( x ( ( ( = a u x F x x G= R N where a boune oman n a onan D he Remann-Louvlle fraonal ervave of orer of u wh repe o an he Laplaan operaor n N N u( x he Eulean N-pae R (e u( x = Equaon (E upplemene wh he Neumann r = x bounary onon R wh a peewe mooh bounary ( r u x B µ ( x u( x = ( x R ν where γ enoe he un exeror normal veor o an ( x an R B u x = x R In wha follow we alway aume whou menonng ha r C R R a C R R F C G R ; A ( ( A q C( GR q( = mnq( x ; p CGR ( x for ome T ( A f C( RR onvex wh uf ( u > for u g: R L onnuou where L > ( A 4 [ By a oluon of ( E ( B an ( u( x C ( GR r( D u( x C ( GR µ a non negave onnuou funon on p ( = mnp( x wh p( on any [ T x B we mean a non rval funon u( x C ( GR B a o be ollaory n G f ha ar- E alle ollaory f all oluon are ollaory To he be of our knowlege nohng known regarng he nerval ollaon rera of (E (B an (E (B upo now Movavae by []-[5] we wll eablh new nerval ollaon rera for (E (B an (E (B Our reul are eenally new ( B an ( B A oluon u( x of ( E ( B or brary large zero; oherwe nonollaory An Equaon wh an afe G an he bounary onon E 7

3 V Sahavam J Kavha Defnon A funon H H( where D= ( : < < whh afe H( = H an { } H on D uh ha where h h L ( DR lo Prelmnare H f = belong o a funon la P enoe by H P H C DR H > for > an ha paral ervave H = h H = h H ( ( an ( ( In h eon we wll ee he efnon of fraonal ervave an negral In h paper we ue he Remann-Louvlle lef e efnon on he half ax R The followng noaon wll be ue for he onvenene For [ U u x x x = ( where= ( = = q = q( p = p( = = Γ Γ Γ Γ enoe q Q( = h( H( q Q( = h( H( Defnon [] The Remann-Louvlle fraonal paral ervave of orer < < wh repe o of u x gven by a funon D u x : = ( v u( xv v Γ ( ( prove he rgh han e ponwe efne on R where Γ he gamma funon Defnon [] The Remann-Louvlle fraonal negral of orer > of a funon y: R R on he half-ax R gven by I y : = ( v y( v v for > Γ ( prove he rgh han e ponwe efne on R Defnon [] The Remann-Louvlle fraonal ervave of orer > of a funon y: R R on he half-ax R gven by D y : = I y for > ( ( prove he rgh han e ponwe efne on R where E an Lemma Le y be oluon of Then he elng funon of ( K : = y v v for an > ( K = Γ D y for an > ( 74

4 V Sahavam J Kavha Ollaon wh Monoony of f(x of (E an (B In h eon we aume ha 5 onan Theorem If he fraonal fferenal nequaly A f monoonou an afe he onon f ( u M > ( where M a D r DU q DU p f K LF (4 ha no evenually pove oluon hen every oluon of ( E an ( B ollaory n G [ where = Proof Suppoe o he onrary ha here a non ollaory oluon u( x of he problem (E an ( B whh ha no zero n [ for ome > Whou lo of generaly we may aume ha u( x > n [ Inegrang (E wh repe o x over we have x D r D u x x q x D u x p x f u x g D u x x = a u x x F x x Ung Green formula an bounary onon ( B follow ha u( x u( x x= S= µ ( x u( x S (6 γ By Jenen nequaly an ( A we ge By ung g D u( x ( D u( x x q( D q x u x x ( q( D u( x x (7 q ( DU( ( ( p x f u x g D u x x p f u x g D u x x p f u x x g D u x ( ( p f U g D u x L> we have p( x f ( u( x g D u x x p f( K L (8 In vew of ( (6-(8 (5 yel Take ( D r D U q U Lp f K F x x F = F x x herefore Lp( f ( K ( F ( D r DU q DU Therefore U( evenually pove oluon of (4 Th onra he hypohe an omplee he (5 75

5 V Sahavam J Kavha proof Remark Le Then DU ( U' ( = = = ( = = r r U U p p f K f K F F = we ue h ranformaon n (4 The nequaly beome ( U q U Lp f K F (9 Theorem ( an be ae a f he fferenal nequaly r U ( q U Lp f K F ha no evenually pove oluon hen every oluon of (E an (B ollaory n = [ G where Theorem Suppoe ha he onon (A - (A 5 hol Aume ha for any T here ex δ for = uh ha T < δ < < δ < [ ] [ ] afyng If here ex δ ( H P ( δ where v an φ are efne a > Γ [ ] F( = [ ] an ρ C ([ R ( H( δ ( H( δ uh ha δ H( φ H( φ H δ H ( δ δ ( v Q v Q ( for = δ Γ v = exp M ρ { } = v Lp q M Γ( ( φ ρ ρ ρ Then every oluon of ( E ( B ollaory n G Proof Suppoe o he onrary ha u( x be a non ollaory oluon of he problem ( E ( u( x n [ T T Defne he followng Ra ranformaon funon Then for T Dw for ome = Dv ( K( DU w = vr ρ ( T f ( ( w v By ung f ( K( M ( D r DU DU v( r f K D K D r f K f K ( ( ( ρ > an nequaly (4 we ge ( ( B ay 76

6 V Sahavam J Kavha Dw Dv w v ( ( ( q DU DU F v v( Lp( Mr( D ( K( D ( ρ ( r( f K f K f K F on he n- F on he ner- By aumpon f erval [ ] If val [ ] So herefore nequaly ( beome Dw [ ] u x > hen we an hooe T wh u x < hen we an hooe T wh ( K( Fv f ( [ ] = ( < uh ha < uh ha w q DU DU Dv v Lp Mr D K D r v f K f K = ( ( ( ρ Le w = w v = v q( = q ( U( = U ( p( = p ( K( = K ( ρ( ρ Then Dw = ( DU( = U ( D K( = K ( o ( ranforme no ρ ( ( ( ' q U U v v Lp M K ( ρ v f ( K f ( K Mv ρ v U v q ρ Lp Mr ( U ( r ρ Γ v r f ( K q M Tha Le ( v q ρ Lp M Γ( ρ ( r ρ v r q M ρ MΓ( ( v q Lp M Γ r M Γ ρ ( ρ ( ρ ( ( ( ' q φ MΓ( v δ ( v φ q MΓ( = v be an arbrary pon n ( ( = (4 ubung wh mulplyng boh e of (4 by H( 77

7 V Sahavam J Kavha an negrang over for δ δ = we oban H φ δ r Γ( q MΓ( v M H H q H δ δ δ v = H( δ ( h ( H( w H( w w H( δ δ MΓ( H( = H( δ ( w δ δ v M ( q h ( H( r v Γ( δ r ( ( v v Γ( Γ( q h ( H( r MΓ H v = H( δ ( ( ( δ w Q δ M Q ( v H( δ ( δ Q Γ r v δ Γ δ Leng an vng boh e by H ( δ δ δ δ 4 Γ( ( δ φ δ ( H Q v (5 H M H On he oher han ubung by mulply boh e of (4 by ( ( for δ we oban δ δ δ δ w δ M Γ( ( v ( δ ( δ ( H an negrang over Γ( H φ H H q H = H δ q M h ( H( H( H( v δ H( δ ( Q ( r v δ Γ Leng an vng boh e by H ( δ δ δ ( ( ( H φ w δ Q r v H 4 ( ( δ MΓ H δ Now we lam ha every non rval oluon of fferenal nequaly (9 ha alea one zero n ( δ (6 Suppoe he onrary By remark whou lo of generaly we may aume ha here a oluon of (9 U > Ang (5 an (6 we ge he nequaly uh ha for ( δ ( δ ( δ δ H( φ H( φ H δ H ( δ Q ( v Q ( v Γ H Γ H δ δ δ whh onra he aumpon ( Thu he lam hol 78

8 We oner a equene { T } [ V Sahavam J Kavha j uh ha Tj a j By he aumpon of he heorem for eah j N here ex j δj j R uh ha T j j δ j j an ( hol wh δ replae by j δ j repevely for = j N From ha every non rval oluon U ( of (9 ha j a lea one zero n j ( j Nong ha j j j T j N we ee ha every oluon U ( ha arj brary large zero Th onra he fa ha U ( non ollaory by (9 an he aumpon ux ( n [ for ome > Hene every oluon of he problem ( E ( B ollaory n G Theorem Aume ha he onon (A - (A 5 hol Aume ha here ex H P ρ C ([ ( uh ha for any = an lmup lm up H( φ v Q ( > (7 Γ( H( φ v Q ( > (8 Γ( where v ( an φ are efne a n Theorem Then every oluon of Proof For any T = ha T T le here ex > = uh ha δ δ δ In (8 ake = Then here ex E B ollaory n G = = In (7 ake = Then T H ( φ( ( ( r v Q > (9 Γ δ > = uh ha δ H( φ ( v ( Q ( > ( Γ( Dvng Equaon (9 an ( by H ( δ an H ( δ δ ( φ ( H( δ ( φ δ H δ H H ( δ repevely an ang we ge > Q ( v Q ( v Γ H Γ H δ δ δ Then follow by heorem ha every oluon of ( Coner he peal ae H( = H( hen E B ollaory n G H H = h H = h H ( ( ( ( Thu for H = H( P we have h( = h( an we noe hem by h( onanng uh H The ubla enoe by P Applyng Theorem o P we oban he followng reul Theorem 4 Suppoe ha onon (A - (A 5 hol If for eah T here ex H P C ρ an R wh < uh ha δ ([ ( δ T δ δ H( φ( φ( r v r( v( h ( δ > δ δ Γ ( δ v( δ q( v q h( δ H M Γ ( ( ( δ ( v q δ v q δ δ Γ( H ( r ( 79

9 V Sahavam J Kavha where v ( an φ are efne a n Theorem Then every oluon of ( E an n G Proof Le δ = for = ha = δ hen H H H ( δ = ( δ = For any w L ( we have δ w = w( δ δ δ ( φ = ( φ δ δ δ From ( we have δ H H δ ( = δ δ v q h H v q h H δ ( ( ( = δ δ v h H v h H ( ( ( ( ( δ B ollaory δ H( φ φ( r v r( v( h ( δ > δ δ Γ δ v( δ q( v q h( δ H M Γ v q δ v q δ δ H Γ( ( r δ ( φ ( φ H H > ( Γ Γ ( ( δ ( ( δ v h v h δ δ v q h( H v q h H M Γ δ δ v q H ( Γ( v q ( H δ δ ( φ ( φ H H δ q > r v h ( v q h( H v H Γ( q r v h ( v q h( H v H Γ( δ = Γ ( δ δ q v h( H ( q r v h( H( Γ( δ ne H( H( = we have 8

10 V Sahavam J Kavha δ ( φ ( φ H H δ > v Q ( v Q ( Γ Γ δ ( Hene every oluon of ( Le H( ( δ ( E B ollaory n G by Theorem = where > a onan Then he uffen onon (7 an (8 an be mofe n he form lm up lm up q v > Γ( r ( φ q v > Γ( r ( φ Corollary Aume ha he onon (A - (A 5 hol Aume for eah = ha an for ome > ρ C [ ( we have q lm up ( φ r v > Γ( r an q lm up ( φ r v > Γ( r( Then every oluon of ( E an B ollaory n G Theorem 5 Suppoe ha he onon (A - (A 5 hol If for eah = an for ome > afe he followng onon lmup an lm up q ( φ q > Γ( Γ q ( φ q > Γ( Γ Then every oluon of ( E an ( B ollaory n G Proof Clearly h ( ( / = h / = Noe ha an ( ( lm up h ( lm up ( Γ = Γ ( ( = Γ lm up h lm up Γ = Γ = Γ ( ( 8

11 V Sahavam J Kavha Coner lm up H( φ Q ( > Γ( h ( lm up H ( φ q > Γ( H( lm up ( φ ( q ( q Γ( > lm up h ( > Γ Γ ( ( q ( lm up ( φ q ( > Γ Γ Smlarly we an prove oher nequaly Nex we oner H( = R R where a onan an R = an lm R( r Theorem 6 Aume ha he onon (A - (A 5 hol If for eah = an for ome > ρ C [ ( uh ha an lm up R lm up R ( ( ( ( φ v R R q > Γ( R R( v R R q > Γ( R R ( φ Then every oluon of ( E an Proof From (7 lm up lm up lm up lm up B ollaory n G H( φ v Q ( > Γ( r v h ( r H( φ q Γ( H( > / v R R( r R R q / > Γ( r ( R R( ( ( φ lm up R v R R q > Γ( R R( ( ( φ v ( R R( φ q ( > Γ( R R( = 8

12 V Sahavam J Kavha Smlarly we an prove ha lm up R v ( R R φ q ( > Γ( R R n u If we hooe H( = log > > an H( = we have he followng orollare θ ( u Corollary Suppoe ha he onon (A - (A 5 hol Aume for eah = ha an for ome n > ρ C [ ( we have an lm up lm up n n q log φ ( > ( r Γ log Then every oluon of ( E an n n q log φ > Γ( log B ollaory n G Corollary Suppoe ha he onon (A - (A 5 hol Aume for eah = ha an for ome n > ρ C [ ( we have an lm up lm up n u q n φ θ ( u ( u > Γ θ θ ( u n u q n φ θ ( u ( u > Γ θ θ ( u Then every oluon of ( E an B ollaory n G 4 Ollaon whou Monoony of f(x of (E an (B We now oner non monoonou uaon f ( u ( A6 M > where M a onan u Theorem 4 Suppoe ha he onon (A - (A 4 an (A 6 hol Aume ha for any T here ex δ for = uh ha T < δ < < δ < [ ] [ ] afyng F [ ] [ ] = n (4 8

13 V Sahavam J Kavha If here ex δ ( H P where v an φ are efne a ( δ an C ρ ([ R > 4 Γ ( H ( δ ( H ( δ uh ha δ H( φ H( φ H δ H ( δ δ ( v Q v Q ( for = δ 4Γ ( = ρ v exp { } = v LM p q Γ( ( φ ρ ρ ρ Then every oluon of ( E ( B ollaory n G Proof Suppoe o he onrary ha u( x be a non ollaory oluon of he problem ( E ( u( x n [ T for ome T Defne he Ra ranformaon funon DU( w = vr ρ ( T K( Then for T ( r DU( D Dw Dv v r DK D r v K K f K By ung K w DU = ( ρ ( M an nequaly (4 we ge w Dv v K( Dw ( K( q DU DU F v v MLp( r( D ( K( D ( ρ ( r( K By aumpon f erval [ ] If erval [ ] So u x > hen we an hooe T wh u x < hen we an hooe T wh Therefore nequaly (6 beome [ ] K( Fv K [ ] = < uh ha < uh ha ( (5 B ay (6 F on he n- F On he n- w q DU DU Dw Dv v MLp r( D K D r v K = ( ( ρ Le w = w v = v q( = q ( U( = U ( p( = p ( K( = K ( r( r( Then Dw = ( DU( = U ( D K( = K ( D r( ρ( = ρ forme no ( (7 = o (7 ran- 84

14 V Sahavam J Kavha ( ρ v v ( q ρ v w q U U v v MLp K ( ρ v K K w w U v q ρ MLp ρ Γ( ρ v r r v K ( v q ρ MLp Γ( ρ ( r ρ r v q ρ Γ ( v q LM p r r Γ Γ ρ ( ρ ( ρ ( ' q φ Γ( v where ha ( v φ v LM p q ρ r ( ρ ( r ρ( = Γ φ q Γ( = v ( The remanng par of he proof he ame a ha of heorem n eon an hene ome Corollary 4 Suppoe ha he onon (A - (A 4 an (A 6 hol Aume for eah = ha an for ome > ρ C [ ( we have an lm up lm up q ( φ v > 4Γ( r q ( φ v > 4Γ( r Then every oluon of ( E an B ollaory n G 5 Ollaon wh an whou Monoony of f(x of (E an (B In h eon we eablh uffen onon for he ollaon of all oluon of ( E ( B nee he followng: The malle egen value β of he Drhle problem ( x βω ( x n ω = ω ( x = on For h we 85

15 V Sahavam J Kavha pove an he orreponng egen funon ( x φ pove n Theorem 5 Le all he onon of Theorem be hol Then every oluon of (E an (B ollaory n G Proof Suppoe o he onrary ha here a non ollaory oluon u( x of he problem (E an ( B whh ha no zero n [ for ome > Whou lo of generaly we may aume ha u( x > n [ Mulplyng boh e of he Equaon (E by φ ( x > an hen negrang wh repe o x over we oban for D r( D u( x φ( x x q( x D u( x φ( x x p( x f( ( u( x g( D ( u x φ x x (8 = a( u( x φ( x x F( x φ( x x Ung Green formula an bounary onon ( B follow ha u( x φ( x x= u( x φ( x x β u( x φ( x x = (9 q( x D u( x φ( x x q( D u( x φ( x x ( By ung Jenen nequaly an ( A we ge Se Therefore φ ( φ ( p x f u x g D u x x x p f u x x g D u x x ( p( φ( x xf ( u( x φ( x x φ x x g D u x = ( φ φ ( U u x x x x x φ φ p x f u x g D u x x x p x xf U g D u x ( By ung g D u( x L> we have p( x f ( u( x g D u x x p f( K L φ ( x x ( In vew of ( (9-( ( (8 yel Take D r DU ( q DU ( Lp f( K( F( x φ ( x x φ x F = F( x φ ( x x φ x ( x herefore ( x ( D r DU q DU Lp f K F Re of he proof mlar o ha of Theorem an hene he eal are ome Remark 5 If he fferenal nequaly ( r U q U p f K LF ha no evenually pove oluon hen every oluon of ( E an ( B ollaory n = [ G 86

16 V Sahavam J Kavha where Theorem 5 Le he onon of Theorem hol Then every oluon of (E an (B ollaory n G Theorem 5 Le he onon of Theorem 4 hol Then every oluon of (E an (B ollaory n G Corollary 5 Le he onon of Corollary hol Then every oluon of (E an (B ollaory n G Theorem 54 Le he onon of Theorem 5 hol Then every oluon of (E an (B ollaory n G Theorem 55 Le he onon of Theorem 6 hol Then every oluon of (E an (B ollaory n G Corollary 5 Le he onon of Corollary hol Then every oluon of (E an (B ollaory n G Corollary 5 Le he onon of Corollary hol Then every oluon of (E an (B ollaory n G Theorem 56 Le all he onon of Theorem 4 be hol Then every oluon of (E (B ollaory n G Corollary 54 Le he onon of Corollary 4 hol Then every oluon of (E an (B ollaory n G 6 Example In h eon we gve ome example o llurae our reul eablhe n Seon an 4 Example 6 Coner he fraonal paral fferenal equaon D D u x D u x ( ( ( u( x ( D u x o n π ( oc ( x n S ( x n x = u( x Γ n xo Γ 4 π π 4 n xn for ( x ( π [ wh he bounary onon ( π Here (E u = u = ( = N= r( = q( x = p( x = o n π ( oc ( x n S ( x n x where C( x an S( x are he Frenel negral namely an x x C( x = o π S( x n π = f ( K( = K( K( = u( x gd ( ( u x = D u x a = F( x x x π π = Γ n o Γ n n I eay o ee ha q( = q( x = Bu C( x π an π mn x = mn = x π π o p( x p ( n S x Therefore 87

17 V Sahavam J Kavha we ake = I lear ha he onon (A - (A 5 hol We may ob- erve ha an = an v ( = o ha ρ ( π = =Γ ( = n ( o n f K K D u x x Γ Ung he propery ab a b we ge Coner π f ( K( > ( > = M gd u( x = D u( x > = L Γ { } = v Lp q M Γ( ( φ ρ ρ ρ π = ( π π ( o n Γ q lm up ( φ r v Γ( r π = lm up ( ( π π ( o n 4 Γ Γ > lm up ( 4 Γ Γ > lm up ( 4 π Γ > lm up π = q lm up ( φ r v Γ( r π = lm up ( = ( π π ( o n 4 Γ Γ Thu all onon of Corollary are afe Hene every oluon of (E ( ollae n ( π [ 88

18 V Sahavam J Kavha In fa u x = n xo uh a oluon of he problem (E an ( Example 6 Coner he fraonal paral fferenal equaon D D u x D u x ( ( ( x o n ( u( x n o π ( oc ( x n S ( x ( 4 o xn o x D u( x o xn 9 = u( x Γ 4 8π o xn Γ o xo 8π 4 for ( x ( π [ wh he bounary onon Here = N= r( = q ( x = (E u = u π = (4 x x ( x o n p( x = n o π ( oc ( x n S ( x ( 4 o xn o x where C( x an S( x are a n Example an f ( K( = K( o xn = K u x gd u( x = D u( x a( = 4 9 F( x = Γ o xn Γ o xo 8π 8π 4 I eay o ee ha q( = p( = ( π [ o n ] we ake ρ = I lear ha he onon (A - (A 4 an (A 6 hol We may oberve ha ( K( f = M > = K o xn v = o ha = an 89

19 V Sahavam J Kavha an Coner gd u( x = D u( x > = L { } = v LM p q Γ( ( φ ρ ρ ρ π = ( π ( o n Γ q lm up ( φ r v 4Γ( r π = lm up ( π ( o n Γ 4Γ > lm up ( 4 Γ Γ > lm up ( 4 π Γ π > lm up = q lm up ( φ r v 4Γ( r π = lm up ( = ( π ( o n 4 Γ Γ Thu all he onon of Corollary 4 are afe Therefore every oluon of ( E ( π [ In fa u( x = o xn uh a oluon of he problem ( E an (4 Aknowlegemen (4 ollae n The auhor hank Prof E Thanapan for h uppor o omplee he paper Alo he auhor expre her nere hank o he referee for valuable uggeon Referene [] Abba S Benhohra M an N Guerekaa GM ( Top n Fraonal Dfferenal Equaon Sprnger New York [] Klba AA Srvaava HM an Trujllo JJ (6 Theory an Applaon of Fraonal Dfferenal Equaon 9

20 V Sahavam J Kavha Elever Sene BV Ameram 4 [] Mller KS an Ro B (99 An Inrouon o he Fraonal Calulu an Fraonal Dfferenal Equaon John Wley an Son New York [4] Polubny I (999 Fraonal Dfferenal Equaon Aaem Pre San Dego [5] Zhou Y (4 Ba Theory of Fraonal Dfferenal Equaon Worl Senf Publhng Co Pe L Hakenak hp://xoorg/4/969 [6] Baleanu D Dehelm K Sala E an Trujllo JJ ( Fraonal Calulu Moel an Numeral Meho Sere on Complexy Nonlneary an Chao Worl Senf Publhng Hakenak [7] Hlfer R (99 Applaon of Fraonal Calulu n Phy Worl Senf Publhng Co Hakenak [8] Jumare G (6 Mofe Remann-Louvlle Dervave an Fraonal Taylor Sere of Non Dfferenable Funon Furher Reul Compuer & Mahema wh Applaon hp://xoorg/6/jamwa6 [9] Mahao JT Kryakova V an Manar F ( Reen Hory of Fraonal Calulu Communaon n Nonlnear Sene an Numeral Smulaon hp://xoorg/6/jnn57 [] Manar F ( Fraonal Calulu an Wave n Lnear Voelay Imperal College Pre Lonon [] Feng Q ( Inerval Ollaon Crera for a Cla of Nonlnear Fraonal Dfferenal Equaon wh Nonlnear Dampng Term IAENG Inernaonal Journal of Apple Mahema [] Feng Q an Meng F ( Ollaon of Soluon o Nonlnear Fore Fraonal Dfferenal Equaon Eleron Journal of Dfferenal Equaon 69 - [] Ogrek S (5 Inerval Ollaon Crera for Funonal Dfferenal Equaon of Fraonal Orer Avane n Dfferene Equaon -8 [4] Prakah P Harkrhnan S Neo JJ an Km JH (4 Ollaon of a Tme Fraonal Paral Dfferenal Equaon Eleron Journal of Qualave Theory of Dfferenal Equaon 5 - hp://xoorg/4/ejqe45 [5] Prakah P Harkrhnan S an Benhohra M (5 Ollaon of Ceran Nonlnear Fraonal Paral Dfferenal Equaon wh Dampng Term Apple Mahema Leer hp://xoorg/6/jaml48 [6] Harkrhnan S Prakah P an Neo JJ (5 Fore Ollaon of Soluon of a Nonlnear Fraonal Paral Dfferenal Equaon Apple Mahema an Compuaon hp://xoorg/6/jam474 [7] Sahavam V an Kavha J (5 Fore Ollaon of Soluon of a Neural Nonlnear Fraonal Paral Funonal Dfferenal Equaon Inernaonal Journal of Apple Engneerng Reearh 8-88 [8] Sahavam V an Kavha J (5 Fore Ollaon of Soluon of a Fraonal Neural Paral Funonal Dfferenal Equaon Apple Mahema Reearh 6-7 [9] Sahavam V an Kavha J (5 Fore Ollaon for a Cla of Fraonal Parabol Paral Dfferenal Equaon Journal of Avane n Mahema [] L WN an Sheng WH (6 Ollaon Propere for Soluon of a Kn of Paral Fraonal Dfferenal Equaon wh Dampng Term Journal of Nonlnear Sene an Applaon [] Zhang S an Zhang HQ ( Fraonal Sub-Equaon Meho an I Applaon o Nonlnear Fraonal PDE Phy Leer A hp://xoorg/6/jphylea9 [] Zheng B an Feng Q (4 A New Approah for Solvng fraonal Paral Dfferenal Equaon n he Sene of he Mofe Remann-Louvlle Dervave Mahemaal Problem n Engneerng 7 p [] Wong JS an Buron TA (965 Some Propere of Soluon of u a f( ugu '' ' = Monahefe für Mahemak [4] Buron TA an Grmer R (97 Sably Propere of ( ru af ( u g ( u - hp://xoorg/7/bf44 '' ' = Monahefe für Mahemak 74 [5] Nanakumaran AK an Pangrah S (9 Ollaon Crera for Dfferenal Equaon of Seon Orer Mahemaa Slovaa hp://xoorg/478/ z 9

MATRICES WITH CONVOLUTIONS OF BINOMIAL FUNCTIONS, THEIR DETERMINANTS, AND SOME EXAMPLES

MATRICES WITH CONVOLUTIONS OF BINOMIAL FUNCTIONS, THEIR DETERMINANTS, AND SOME EXAMPLES Journl of Alger umer Teor: Avne n Applon Volume umer 9 Pge -7 MATRICES WITH COVOLUTIOS OF BIOMIAL FUCTIOS THEIR DETERMIATS AD SOME EXAMPLES ORMA C SEVERO n PAUL J SCHILLO Meove Lne Wllmvlle Y USA e-ml:

Διαβάστε περισσότερα

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

The one-dimensional periodic Schrödinger equation

The one-dimensional periodic Schrödinger equation The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly

Διαβάστε περισσότερα

Approximation of the Lerch zeta-function

Approximation of the Lerch zeta-function Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();

Διαβάστε περισσότερα

On homeomorphisms and C 1 maps

On homeomorphisms and C 1 maps arxv:1804.10691v1 [mah.gm] 7 Apr 018 On homeomorphsms and C 1 maps Nkolaos E. Sofronds Deparmen of Economcs, Unversy of Ioannna, Ioannna 45110, Greece. nsofron@oene.gr, nsofron@cc.uo.gr Absrac Our purpose

Διαβάστε περισσότερα

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t). Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Generalized Normal Type-2. Triangular Fuzzy Number

Generalized Normal Type-2. Triangular Fuzzy Number pped Mahemaca Scence, Vo. 7, 203, no. 45, 2239 2252 HIKRI Ld, www.m-hkar.com Generazed orma Type-2 Trangar Fzzy mber bd. Faah Wahab Deparmen of Mahemac, Facy of Scence and Technoogy, Unver Maaya Terenggan,

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION

A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION TAIWANESE JOURNAL OF MATHEMATICS Vol 8, No 5, pp 65-66, Ocober 04 DOI: 0650/m804665 Th paper avalable ole a hp://ouralawamahocorw A NOTE ON ENNOLA RELATION Jae Moo Km ad Jado Ryu* Abrac Eola ve a example

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) = . (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

A Class of Orthohomological Triangles

A Class of Orthohomological Triangles A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων. Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Part 4 RAYLEIGH AND LAMB WAVES

Part 4 RAYLEIGH AND LAMB WAVES Part 4 RAYLEIGH AND LAMB WAVES Rayleigh Surfae Wave x x 1 x 3 urfae wave x 1 x 3 Partial Wave Deompoition Diplaement potential: u = ϕ + ψ Wave equation: 1 ϕ 1 ψ ϕ = = k ϕ an ψ = = k t t ψ Wave veloitie:

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat Fracional Calculu Suen: Manal AL-Ali Dr. Aballa Obeia Deignaion Deignaion mean inegraion an iffereniaion of arbirary orer, In oher ereion i mean ealing wih oeraor like,, i arbirary real or Comle value.

Διαβάστε περισσότερα

A summation formula ramified with hypergeometric function and involving recurrence relation

A summation formula ramified with hypergeometric function and involving recurrence relation South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B

Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B Dervao of he Fler Coeffce for he Ramp Ivara Meho a Apple o Bae Excao of a Sgle-egree-of-Freeom Sem Revo B B om Irve Emal: om@vbraoaa.com Aprl, 0 Irouco Coer he gle-egree-of-freeom em Fgure. m &&x k c &&

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Errata (Includes critical corrections only for the 1 st & 2 nd reprint) Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y

Διαβάστε περισσότερα

Χρονοσειρές Μάθημα 3

Χρονοσειρές Μάθημα 3 Χρονοσειρές Μάθημα 3 Ασυσχέτιστες (λευκός θόρυβος) και ανεξάρτητες (iid) παρατηρήσεις Chafield C., The Analysis of Time Series, An Inroducion, 6 h ediion,. 38 (Chaer 3): Some auhors refer o make he weaker

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα Maximum Flow

Αλγόριθμοι και πολυπλοκότητα Maximum Flow ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Maximm Flo Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Maximm Flo χ 3/5 4/6 4/7 1/9 3/5 5/11/2008 11:05 PM Maximm Flo 1 Oline and Reading

Διαβάστε περισσότερα

The Pohozaev identity for the fractional Laplacian

The Pohozaev identity for the fractional Laplacian The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev

Διαβάστε περισσότερα

Υπόδειγµα Προεξόφλησης

Υπόδειγµα Προεξόφλησης Αρτίκης Γ. Παναγιώτης Υπόδειγµα Προεξόφλησης Μερισµάτων Γενικό Υπόδειγµα (Geeral Model) Ταµειακές ροές από αγορά µετοχών: Μερίσµατα κατά την διάρκεια κατοχής των µετοχών Μια αναµενόµενη τιµή στο τέλος

Διαβάστε περισσότερα

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ

Διαβάστε περισσότερα

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero

Διαβάστε περισσότερα

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form: G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.

Διαβάστε περισσότερα

α & β spatial orbitals in

α & β spatial orbitals in The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Latent variable models Variational approximations.

Latent variable models Variational approximations. CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Latent variable models Variational approximations.

Latent variable models Variational approximations. CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :

Διαβάστε περισσότερα

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1

Sarò signor io sol. α α. œ œ. œ œ œ œ µ œ œ. > Bass 2. Domenico Micheli. Canzon, ottava stanza. Soprano 1. Soprano 2. Alto 1 Sarò signor io sol Canzon, ottava stanza Domenico Micheli Soprano Soprano 2 Alto Alto 2 Α Α Sa rò si gnor io sol del mio pen sie io sol Sa rò si gnor io sol del mio pen sie io µ Tenor Α Tenor 2 Α Sa rò

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

A Lambda Model Characterizing Computational Behaviours of Terms

A Lambda Model Characterizing Computational Behaviours of Terms A Lambda Model Characterizing Computational Behaviours of Terms joint paper with Silvia Ghilezan RPC 01, Sendai, October 26, 2001 1 Plan of the talk normalization properties inverse limit model Stone dualities

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

F A S C I C U L I M A T H E M A T I C I

F A S C I C U L I M A T H E M A T I C I F A S C I C U L I M A T H E M A T I C I Nr 46 2011 C. Carpintero, N. Rajesh and E. Rosas ON A CLASS OF (γ, γ )-PREOPEN SETS IN A TOPOLOGICAL SPACE Abstract. In this paper we have introduced the concept

Διαβάστε περισσότερα

New bounds for spherical two-distance sets and equiangular lines

New bounds for spherical two-distance sets and equiangular lines New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

High order interpolation function for surface contact problem

High order interpolation function for surface contact problem 3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300

Διαβάστε περισσότερα

Formal Semantics. 1 Type Logic

Formal Semantics. 1 Type Logic Formal Semantics Principle of Compositionality The meaning of a sentence is determined by the meanings of its parts and the way they are put together. 1 Type Logic Types (a measure on expressions) The

Διαβάστε περισσότερα

MÉTHODES ET EXERCICES

MÉTHODES ET EXERCICES J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com

Διαβάστε περισσότερα

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some

Διαβάστε περισσότερα

MA 342N Assignment 1 Due 24 February 2016

MA 342N Assignment 1 Due 24 February 2016 M 342N ssignment Due 24 February 206 Id: 342N-s206-.m4,v. 206/02/5 2:25:36 john Exp john. Suppose that q, in addition to satisfying the assumptions from lecture, is an even function. Prove that η(λ = 0,

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

Fourier Transform. Fourier Transform

Fourier Transform. Fourier Transform ECE 307 Z. Aliyziioglu Eleril & Compuer Engineering Dep. Cl Poly Pomon The Fourier rnsform (FT is he exension of he Fourier series o nonperiodi signls. The Fourier rnsform of signl exis if sisfies he following

Διαβάστε περισσότερα

Oscillatory integrals

Oscillatory integrals Oscilltory integrls Jordn Bell jordn.bell@gmil.com Deprtment of Mthemtics, University of Toronto August, 0 Oscilltory integrls Suppose tht Φ C R d ), ψ DR d ), nd tht Φ is rel-vlued. I : 0, ) C by Iλ)

Διαβάστε περισσότερα