Derivation of the Filter Coefficients for the Ramp Invariant Method as Applied to Base Excitation of a Single-degree-of-Freedom System Revision B
|
|
- Αριστοκλής Παπαδόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Dervao of he Fler Coeffce for he Ramp Ivara Meho a Apple o Bae Excao of a Sgle-egree-of-Freeom Sem Revo B B om Irve Emal: om@vbraoaa.com Aprl, 0 Irouco Coer he gle-egree-of-freeom em Fgure. m &&x k c && Fgure. where m Ma c vcou ampg coeffce k Sffe x abolue placeme of he ma bae pu placeme A free-bo agram how Fgure. &&x m k(-x) c(& x& ) Fgure.
2 Summao of force he vercal reco Le F mx && () mx && c(& x& ) k ( x) () u x u& x& & && u && x && && x && u && Subug he relave placeme erm o equao () el m(u & && ) cu& ku () m & u cu& ku m & () Dvg hrough b ma el & u (c / m)u& (k / m)u & (5) B coveo, ( c / m) ξ (6) ( k / m) (7) where he aural frequec (raa/ec), a ξ he ampg rao. Subue he coveo erm o equao (5). & u ξ u & u & (8)
3 Equao (8) oe o have a cloe-form oluo for he geeral cae whch & & a arbrar fuco. A covoluo egral approach mu be ue o olve he equao. Noe ha he mpule repoe fuco embee he covoluo egral. Dplaceme he ampe aural frequec - ξ (9) he placeme equao va a covoluo egral u() ( τ) 0 [ { ξ - τ) }][ ( - τ) ] τ ( (0) he correpog mpule repoe fuco for he placeme ĥ () [ ( ξ )][ ] () Furher eal regarg h ervao are gve Referece. he correpog Laplace raform H () () ξ he Z-raform for he ramp vara mulao Ĥ () ( ) Z L ( ) ξ where he me ep ()
4 Evaluae he vere Laplace raform. ( ) [ ] ( ) [ ] ( ) ξ ξ ξ ξ co L () he Z-raform become ( ) ( ) [ ] ( ) [ ] ( ) ξ ξ ξ ξ co Z () Ĥ (5) Le [ ] ξ α (6) β ξ (7)
5 Evaluae he Z-raform. Ĥ () - β ( ) ( ) ( ) ( ) β{ [ ξ ]} { [ ]} co { [ ξ ] }{ co[ ] } { [ ξ ] } ( ) α{ [ ξ ]} { [ ]} { [ ξ ] }{ co[ ] } [ ξ ] { } (8) Ĥ () ( β) ( ) β{ [ ξ ]} { [ ]} co { [ ξ ] }{ co[ ] } { [ ξ ] } ( ) α{ [ ξ ]} { [ ]} { [ ξ ] }{ co[ ] } [ ξ ] { } (9) 5
6 Ĥ () ( β) ( ) β{ [ ξ ]} { [ ]} α{ [ ξ ]} { [ ]} { [ ]} { [ ]} { [ ]} co ξ co ξ (0) Ĥ () β β β ( ξ ) { α( ) βco( ) } [( ) ] { ( ξ ) }{ co( ) } ( ξ ) { } () Le ψ ( ξ ) { α( ) βco( ) } () { ( ξ ) }{ co( ) } ρ λ ( ξ ) () () η β (5) B ubuo, [ ] β ψ Ĥ () [ β η] ( ) ρ λ (6) ρ λ [ β η ] [ ] β ψ Ĥ () ρ λ ρ λ (7) 6
7 7 [ ] [ ] [ ] [ ] ρ λ ψ β ρ λ ψ β ρ λ ψ β ρ λ ρ λ η ρ λ ρ λ β () Ĥ (8) ρ λ ψ β ρ λ ψ β ρ λ ψ β ρ λ ηλ ηρ η ρ λ βλ βρ β () Ĥ (9) ( ) ρ λ ψ β ψ β ψ ηλ β ηρ η βλ βρ β () Ĥ (0)
8 ( βρ ψ η β) ( βλ ηρ ψ β) ( ηλ ψ) ( ρ λ) Ĥ () () Solve for he fler coeffce ug he meho Referece. b 0 b b a a [( βρ ψ η β) ( βλ ηρ ψ β) ( ηλ ψ) ] ρ λ / m () Solve for a. ( ξ ) co( ) a ρ () Solve for a. ( ) a λ ξ () Noe ha he a a a coeffce are commo for placeme, veloc a accelerao. Solve for b 0. [ βρ ψ η β ] b / 0 (5) [ ψ η β ( ρ )] b / 0 (6) b0 ( ξ ) [ α ( ) βco( ) ] β β[ ( ξ ) co( ) ] (7) 8
9 b0 ( ξ ) [ α ( ) β co( ) ] β β[ ( ξ ) co( ) ] (8) b0 ( ξ ) [ ξ ] ( ) ξ co( ) ξ ξ [ ( ξ ) co( ) ] (9) b0 [ ] ( ξ ) [ ξ ] ( ) ξ ( ξ ) co( ) (0) b0 [ ] ( ξ ) [ ξ ] ( ) ξ ( ξ ) co( ) () 9
10 b0 ξ [ ( ξ ) co( ) ] ( ξ ) [ ξ ] ( ) () Solve for b. b b βλ ηρ ψ β ηρ ψ β ( λ) () () b β ( ξ ) co( ) ( ξ ) [ α( ) βco( ) ] β [ ( ξ ) ] (5) b ( ξ ) co( ) ( ξ ) α ( ) β[ ( ξ ) ] (6) b ( ξ ) co( ) ( ξ ) α ( ) β[ ( ξ ) ] (7) 0
11 b ( ξ ) co( ) [ ξ ] ( ξ ) ( ) ξ [ ( ξ ) ] (8) b ( ξ ) co( ) ξ ( ξ ) Solve for b. [ ] [ ξ ] ( ξ ) ( ) (9) b ηλ ψ (50) b β ( ξ ) ( ξ ) { α( ) βco( ) } (5) b ξ ( ξ ) ( ξ ) [ ξ ] ( ) ξ co( )
12 (5) ( ) ( ) [ ] ( ) ( ) co b ξ ξ ξ ξ ξ (5) he gal recurve flerg relaohp for he relave placeme 0 b b b u a u a u && && && (5)
13 he gal recurve relaohp for he relave placeme hu [ ] [ ] [ ] ( ) ( ) [ ] ( ) [ ] ( ) ( ) ( ) ( ) [ ] [ ] ( ) ( ) ( ) ( ) [ ] ( ) ( ) co co co u u co u ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ && && && (55)
14 Relave Veloc he mpule repoe fuco for he relave veloc repoe ξ ĥ ξ v () (- ) co (56) he correpog Laplace raform Hv () ξ (57) he Z-raform for he ramp vara mulao ( ) ( ) Ĥ v () Z L (58) ξ ( ) ( ) Ĥ v () Z L (59) ξ Evaluae he vere Laplace raform per Referece a. L ( ξ ) ( ξ ) co( ) ( ) ξ (60) he Z-raform for he ramp vara mulao ( ) ξ Ĥ () Z ( ξ ) co( ) v ( ) (6)
15 ( ) ξ Ĥ v () Z ( ξ ) co( ) ( ) (6) he Z-raform evaluae ug he meho Referece 5. Ĥv () ( ) ξ ( ξ) co( ) [ ( ξ ) co( ) ] [ ( ξ ) ( ) ] ( ξ ) (6) Ĥv () ( ) ξ ( ξ) co( ) [ ( ξ ) co( ) ] [ ( ξ ) ( ) ] ( ξ ) (6) Ĥv () ( ) ( ) ξ ( ξ) co( ) [ ( ξ ) co( ) ] [ ( ξ ) ( ) ] ( ξ ) (65) 5
16 Ĥv () ( ) ( ) ξ ( ξ ) co( ) ( ξ) co( ) ( ) ( ξ ) (66) Le ξ ψ ( ξ ) co( ) ( ) (67) { ( ξ ) }{ co( ) } ρ (68) λ ( ξ ) (69) ψ Ĥ v () ( ) ( ) ρ λ (70) ψ Ĥ v () ρ λ (7) ( ) ( ) ( ) ( ) ψ( ) Ĥ v () ρ λ (7) ( ) ( ψ ψ ψ) Ĥ v () ρ λ (7) ψ ψ ψ Ĥ v () ( ) ρ λ (7) 6
17 ( ψ) ( ψ) ψ Ĥ v () ( ) ρ λ (75) ( ψ) ( ψ) ψ Ĥ v () ( ) ρ λ (76) ( ψ) ( ψ) ρ λ ψ Ĥ v () ( ) ρ λ ρ λ (77) ( ψ) ( ψ) ρ λ ρ λ ψ Ĥ v () ρ λ ρ λ (78) ( ρ ) ( λ ρ) λ ( ψ) ( ψ) ψ Ĥ v () ρ λ ρ λ (79) ( ψ ρ ) ( λ ρ ψ) ψ λ Ĥ v () ρ λ (80) ( ψ ρ ) ( λ ρ ψ ) ψ λ Ĥ v () ρ λ (8) 7
18 ( ψ ρ ) ( λ ρ ψ ) ψ λ Ĥ v () ρ λ (8) Solve for he fler coeffce ug he meho Referece. c 0 c c a a ( ψ ρ ) ( λ ρ ψ ) ρ λ ψ λ (8) Solve for a. ( ξ ) co( ) a ρ (8) Solve for a. ( ) a λ ξ (85) Solve for c 0. c0 ψ ρ (86) c0 ξ ( ξ ) co( ) ( ) ( ξ ) co( ) (87) c0 ξ ( ξ ) co( ) ( ) (88) 8
19 Solve for c. λ ρ ψ c (89) ( ξ ) ( ξ ) co( ) ( ξ ) co( ) ( ) c ξ (90) ( ξ ) ( ξ ) ( ) c ξ (9) Solve for c. c ψ λ (9) c ξ ( ξ ) co( ) ( ) ( ξ ) (9) 9
20 0 he gal recurve flerg relaohp for he relave veloc 0 c c c u a u a u && && && & & & (9) [ ] [ ] [ ] ( ) ( ) ( ) ( ) ( ) ) co( ) ( ) ( ) co( ) ( u u co u ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ && && && & & & (95)
21 Abolue Accelerao he mpule repoe fuco for he abolue accelerao repoe ( ) ( ) ( ) ( ) ξ ξ ξ co () ĥ a (96) he correpog Laplace raform ξ ξ a () H (97) he Z-raform ( ) ξ ξ a L Z () Ĥ (98) ξ ξ ξ L L (99) ( ) ξ ξ ξ L L (00)
22 ξ L L ( ξ ) ξ ( ) (0) Evaluae he Z-raform. ( ) Ĥa () Z ( ξ )( ) (0) [ ] [ ] ( ) ξ Ĥ a () (0) ( ) { [ ξ] co[ ] } { [ ξ ] } Ĥa () ( ) [ ξ ] [ ] { [ ξ ] co[ ] } { [ ξ ] } (0) Ĥa () ( ) [ ξ ] [ ] { [ ξ ] co[ ] } { [ ξ ] } (05) Ĥa () [ ξ ] co[ ] [ ξ ] ( ) [ ξ ] [ ] [ ξ ] co[ ] [ ξ ] (06)
23 Ĥa () [ ξ ] co[ ] [ ξ ] ( ) [ ξ ] [ ] [ ξ ] co[ ] [ ξ ] (07) Ĥa () ( ξ ) ( ) [ ξ ] co( ) [ ξ ] ( ξ ) co( ) ( ) ( ξ ) co( ) ( ξ ) ( ξ ) ( ξ ) ( ) ( ξ ) co( ) ( ξ ) (08)
24 c 0 c c a a ( ξ ) ( ) [ ξ ] co( ) [ ξ ] ( ξ ) co( ) ( ) ( ξ ) co( ) ( ξ ) ( ξ ) ( ξ ) ( ) ( ξ ) co( ) ( ξ ) (09) Solve for a. Solve for a. ( ξ ) co( ) a ( ) a ξ (0) () Solve for c 0. c0 ( ξ) ( ) () Solve for c. ( ) c ξ ( ) ( ) co ()
25 Solve for c. c ( ξ) ( ξ) ( ) () he gal recurve flerg relaohp for abolue accelerao && x a&& x a && x c0&& c && c&& (5) && x [ ξ ] co[ ] && x [ ξ ] && x ( ξ ) ( ) && ( ξ ) co( ) ( ) && ( ξ) ( ξ) ( ) && (6) Relave Accelerao he mpule repoe fuco for he relave accelerao repoe 5
26 ĥ () δ() ( ξ ) ξ co( ) ( ξ ra ) ( ) (7) he correpog Laplace raform Hra ( ) (8) ξ he Z-raform ( ) Ĥ a () Z L (9) ξ ( ) Ĥ a () Z L (0) ξ Evaluae he vere Laplace raform. ( ) L L () ξ ξ L ξ ( ξ ) ( ) () he Z-raform for he ramp vara mulao ( ) Ĥ ( ξ ) ra () Z () 6
27 ( ) Ĥ ( ξ ) ra () Z () he Z-raform evaluae a. ( ) [ ( ξ ) ( ) ] ( ) Ĥ () ra (5) ( ξ) co( ) ξ ( ) [ ( ξ ) ( ) ] ( ) Ĥ () ra (6) ( ξ) co( ) ξ ( ξ ) ( ) ( ) ( ) Ĥ () ra (7) ( ξ) co( ) ξ ( ξ ) ( ) ( ) Ĥ () ra (8) ( ξ) co( ) ξ Solve for he fler coeffce. 0 a a ( ξ ) ( ) ( ) ( ξ) co( ) ξ (9) 7
28 Solve for a. ( ξ ) co( ) a ρ (0) Solve for a. ( ) a λ ξ () Solve for 0. 0 ( ξ ) ( ) () Solve for. 0 () Solve for. 0 () he gal recurve flerg relaohp for he relave accelerao && u a&& u a && u 0&& && & (5) && u [ ξ ] co[ ] && u [ ξ ] && u ( ξ) ( ) { && && && } (6) 8
29 Referece. Dav O. Smallwoo, A Improve Recurve Formula for Calculag Shock Repoe Specra, Shock a Vbrao Bulle, No. 5, Ma Irve, he Impule Repoe Fuco for Bae Excao, Vbraoaa, 0... Irve, able of Laplace raform, Revo J, Vbraoaa, 0... Irve, Paral Fraco Shock a Vbrao Aal, Revo I, Vbraoaa, R. Dorf, Moer Corol Sem, Ao-Wele, Reag, Maachue,
Latent variable models Variational approximations.
CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).
Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L
Latent variable models Variational approximations.
CS 3750 Mache Learg Lectre 9 Latet varable moel Varatoal appromato. Mlo arecht mlo@c.ptt.e 539 Seott Sqare CS 750 Mache Learg Cooperatve vector qatzer Latet varable : meoalty bary var Oberve varable :
George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media
Geoge S. A. Shake C477 Udesadg Reflecos Meda Refleco Meda Ths hadou ages a smplfed appoach o udesad eflecos meda. As a sude C477, you ae o equed o kow hese seps by hea. I s jus o make you udesad how some
LAPLACE TRANSFORM TABLE
LAPLACE TRANSFORM TABLE Th Laplac afom of am mpl fuco a gv h Tabl. Fuco U mpul U Sp U Ramp Expoal Rpad Roo S Co Polyomal Dampd Dampd co f δ u -a -a co,,... -a -a co F / / /a /a / /!/ /a a/a Thom : Shf
Note: Please use the actual date you accessed this material in your citation.
MIT OpeCueWae hp://cw.m.eu 6.13/ESD.13J Elecmagec a pplca, Fall 5 Pleae ue he llwg ca ma: Maku Zah, Ech Ippe, a Dav Sael, 6.13/ESD.13J Elecmagec a pplca, Fall 5. (Maachue Iue Techlgy: MIT OpeCueWae). hp://cw.m.eu
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:
G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =
. (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y
The one-dimensional periodic Schrödinger equation
The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly
T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ
Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ
University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10
Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)
Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat
Fracional Calculu Suen: Manal AL-Ali Dr. Aballa Obeia Deignaion Deignaion mean inegraion an iffereniaion of arbirary orer, In oher ereion i mean ealing wih oeraor like,, i arbirary real or Comle value.
EN40: Dynamics and Vibrations
EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio
FORMULAE SHEET for STATISTICS II
Síscs II Degrees Ecoomcs d Mgeme FOMULAE SHEET for STATISTICS II EPECTED VALUE MOMENTS AND PAAMETES - Vr ( E( E( - Cov( E{ ( ( } E( E( E( µ ρ Cov( - E ( b E( be( Vr( b Vr( b Vr( bcov( THEOETICAL DISTIBUTIONS
A NOTE ON ENNOLA RELATION. Jae Moon Kim and Jado Ryu* 1. INTRODUCTION
TAIWANESE JOURNAL OF MATHEMATICS Vol 8, No 5, pp 65-66, Ocober 04 DOI: 0650/m804665 Th paper avalable ole a hp://ouralawamahocorw A NOTE ON ENNOLA RELATION Jae Moo Km ad Jado Ryu* Abrac Eola ve a example
Υπόδειγµα Προεξόφλησης
Αρτίκης Γ. Παναγιώτης Υπόδειγµα Προεξόφλησης Μερισµάτων Γενικό Υπόδειγµα (Geeral Model) Ταµειακές ροές από αγορά µετοχών: Μερίσµατα κατά την διάρκεια κατοχής των µετοχών Μια αναµενόµενη τιµή στο τέλος
Consider a single-degree-of-freedom system in a free-fall due to gravity. &&x
SIMPLE DROP SHOCK Revisio D By Tom Irvie Email: tomirvie@aol.com November 10, 004 DERIVATION Cosier a sigle-egree-of-freeom system i a free-fall ue to gravity. &&x g m k Where m is the mass, k is the sprig
Poularikas A. D. Distributions, Delta Function The Handbook of Formulas and Tables for Signal Processing. Ed. Alexander D. Poularikas Boca Raton: CRC
Pulrik A. D. Diribui, Del Fuci The Hbk f Frmul Tble fr Sigl Prceig. E. Aleer D. Pulrik Bc R: CRC Pre LLC, 999 5 Diribui, Del Fuci 5. Te Fuci 5. Diribui 5.3 Oe-Dimeil Del Fuci 5.4 Emple 5.5 Tw-Dimeil Del
arxiv: v1 [math.pr] 13 Jul 2010
L Soluo of Bacward Sochac Dffereal quao wh Jum Sog Yao arv:17.6v1 mah.pr 13 Jul 1 Abrac I h aer, we udy a mul-dmeoal bacward ochac dffereal equao wh jum BSDJ ha ha o-lchz geeraor ad ubouded radom me horzo.
r i-γυχ I Λ Κ Η ΕΡ>ι-Λ ;ε ΐ Λ
Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ο Ε Κ Π Α Ι Ο Ε Υ Τ Ι Κ Ο Ι Ο Ρ Υ Μ Α Κ Α Β Α Λ Α Σ Σ Χ Ο Λ Η Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Ο Ν Ε Φ Α Ρ Μ Ο Γ Ώ Ν Τ Μ Η Μ Α Η Λ Ε Κ Τ Ρ Ο Λ Ο Γ Ι Α Σ i l t r i-γυχ I Λ Κ Η ΕΡ>ι-Λ ;ε ΐ Λ ΑΥΤΟΜΑΤ
Estimators when the Correlation Coefficient. is Negative
It J Cotemp Math Sceces, Vol 5, 00, o 3, 45-50 Estmators whe the Correlato Coeffcet s Negatve Sad Al Al-Hadhram College of Appled Sceces, Nzwa, Oma abur97@ahoocouk Abstract Rato estmators for the mea of
ΓΙΟΡΤΗ ΚΟΛΥΜΒΗΤΗ 13/8/2013 50Μ ΕΛΕΥΘΕΡΟ ΚΟΡΙΤΣΙΑ 9 ΕΤΩΝ
50Μ ΕΛΕΥΘΕΡΟ ΚΟΡΙΤΣΙΑ 9 ΕΤΩΝ ΚΑΡΑΤΖΙΑ ΜΥΡΤΩ ΝΑΒΕ.05.9 2 ΠΑΠΑΓΕΩΡΓΙΟΥ ΑΝΑΣΤΑΣΙΑ ΗΡΑ 3 ΓΕΩΡΓΟΥΛΗ ΚΑΛΛΙΡΟΗ ΝΕΑΠΟΛΗ 0.45.44 4 ΚΑΡΑΛΙΔΟΥ ΝΑΤΑΛΙΑ ΑΡΗΣ 0.5.58 5 ΚΩΝΣΤΑΝΤΙΝΙΔΟΥ ΧΡΥΣΑΝΘΗ ΝΟΚ 0.43.84 ΒΕΛΟΥΖΟΥ ΙΩΑΝΝΑ
Chapter 3 Diode and Thyristor Rectifiers
Cher Doe Thyror Recfer Dewe(D) Xu De. of Elecrcl & Comuer Egeerg Ryero Uery Coe Sgle-he hree-he oe recfer Hrmoc oro New efo of ower fcor Dlceme fcor oro fcor Sgle-he hree-he SCR recfer Mcroroceor corol
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa
Cytotoxcty of oc lqud ad precuror compoud toward huma cell le HeLa Xuefeg Wag, a,b C. Adré Ohl, a Qghua Lu,* a Zhaofu Fe, c Ju Hu, b ad Paul J. Dyo c a School of Chemtry ad Chemcal Techology, Shagha Jao
On Quasi - f -Power Increasing Sequences
Ieaioal Maheaical Fou Vol 8 203 o 8 377-386 Quasi - f -owe Iceasig Sequeces Maheda Misa G Deae of Maheaics NC College (Auooous) Jaju disha Mahedaisa2007@gailco B adhy Rolad Isiue of echoy Golahaa-76008
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
Degenerate Perturbation Theory
R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
6.003: Signals and Systems. Modulation
6.3: Signals and Sysems Modulaion December 6, 2 Subjec Evaluaions Your feedback is imporan o us! Please give feedback o he saff and fuure 6.3 sudens: hp://web.mi.edu/subjecevaluaion Evaluaions are open
APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES
APPENDIX A DERIVAION OF JOIN FAILRE DENSIIES I his Appedi we prese he derivaio o he eample ailre models as show i Chaper 3. Assme ha he ime ad se o ailre are relaed by he cio g ad he sochasic are o his
The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.
hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =
1. Functions and Operators (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) 2. Trigonometric Identities (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.
ECE 3 Mh le Sprig, 997. Fucio d Operor, (. ic( i( π (. ( β,, π (.3 Im, Re (.4 δ(, ; δ( d, < (.5 u( 5., (.6 rec u( + 5. u( 5., > rc( β /, π + rc( β /,
ITU-R P (2009/10)
ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R
Riemann Hypothesis: a GGC representation
Riemann Hypohesis: a GGC represenaion Nicholas G. Polson Universiy of Chicago Augus 8, 8 Absrac A GGC Generalized Gamma Convoluion represenaion for Riemann s reciprocal ξ-funcion is consruced. This provides
www.absolualarme.com met la disposition du public, via www.docalarme.com, de la documentation technique dont les rιfιrences, marques et logos, sont
w. ww lua so ab me lar m.co t me la sit po dis ion du c, bli pu via lar ca do w. ww me.co m, de la ion nta t do cu me on t ed hn iqu tec les en ce s, rι fιr ma rq ue se t lo go s, so nt la pr op riι tι
Lecture 12 Modulation and Sampling
EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion
Finite Integrals Pertaining To a Product of Special Functions By V.B.L. Chaurasia, Yudhveer Singh University of Rajasthan, Jaipur
Global Joal of Scece oe eeac Vole Ie 4 Veo Jl Te: Doble Bld Pee eewed Ieaoal eeac Joal Pble: Global Joal Ic SA ISSN: 975-5896 e Iegal Peag To a Podc of Secal co B VBL Caaa Ydee Sg e of aaa Ja Abac - A
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
www.hepo.gr Αγαπητοί συνεργάτες,
/ΝΣΗ ΑΝΑΠΤΥΞΗΣ ΕΡΓΑΣΙΩΝ Αρµόδια: Ε. Παναγιωταροπούλου Τηλ.: 210 9982342 Fax : 210 9982402 e-mail: panagiotaropoulou@hepo.gr Url: ΚΥΠΡΟΣ - ΛΕΥΚΩΣΙΑ (13-15/12/2009) Αγαπητοί συνεργάτες, Εκατοντάδες ελληνικές
6.003: Signals and Systems
6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,
Fourier Series. Fourier Series
ECE 37 Z. Aliyazicioglu Elecrical & Compuer Egieerig Dep. Cal Poly Pomoa Periodic sigal is a fucio ha repeas iself every secods. x() x( ± ) : period of a fucio, : ieger,,3, x() 3 x() x() Periodic sigal
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
ΕΘΝΙΚΟΝ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΏΝ
ΕΘΝΙΚΟΝ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟΝ ΠΑΝΕΠΙΣΤΗΜΙΟΝ ΑΘΗΝΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΏΝ Βαθμολόγιo για το ακαδ. έτος 2016-2017 και περίοδο ΕΞ(Χ) 2016-2017 Για το μάθημα ΒΑΣΙΚΗ ΑΛΓΕΒΡΑ (12421) Διδάσκoντες:Χ.Αθανασιάδης,Ι.Εμμανουήλ,
forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with
Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We
16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.
SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he
?=!! #! % &! & % (! )!! + &! %.! / ( + 0. 1 3 4 5 % 5 = : = ;Γ / Η 6 78 9 / : 7 ; < 5 = >97 :? : ΑΒ = Χ : ΔΕ Φ8Α 8 / Ι/ Α 5/ ; /?4 ϑκ : = # : 8/ 7 Φ 8Λ Γ = : 8Φ / Η = 7 Α 85 Φ = :
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6
# % & ( ) +, %. / % 0 1 / 1 4 5 6 7 8 # 9 # : ; < # = >? 1 :; < 8 > Α Β Χ 1 ; Δ 7 = 8 1 ( 9 Ε 1 # 1 ; > Ε. # ( Ε 8 8 > ; Ε 1 ; # 8 Φ? : ;? 8 # 1? 1? Α Β Γ > Η Ι Φ 1 ϑ Β#Γ Κ Λ Μ Μ Η Ι 5 ϑ Φ ΒΦΓ Ν Ε Ο Ν
On Zero-Sum Stochastic Differential Games
O Zeo-Sum Sochac Dffeeal Game Eha Bayaka, Sog Yao Abac We geealze he eul of Flemg ad Sougad 13 o zeo-um ochac dffeeal game o he cae whe he cool ae ubouded. We do h by povg a dyamc pogammg pcple ug a coveg
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
( ) S( x ) 2 ( ) = ( ) ( ) = ( ) ( )
Ορίζουμε την πληροφορία κατά Fsher ( σαν το ποσό της πληροφορίας που περιέχει η παρατήρηση για την παράμετρο Συμβολίζοντας με S( την λογαριθμική παράγωγο της πιθανοφάνειας ως προς την παράμετρο (score
Đường tròn : cung dây tiếp tuyến (V1) Đường tròn cung dây tiếp tuyến. Giải.
Đường tròn cung dây tiếp tuyến BÀI 1 : Cho tam giác ABC. Đường tròn có đường kính BC cắt cạnh AB, AC lần lượt tại E, D. BD và CE cắt nhau tại H. chứng minh : 1. AH vuông góc BC (tại F thuộc BC). 2. FA.FH
( , ,
33 9 ( ) V o l. 33 N o. 9 2005 9 Jour. of N o rthw est Sci2T ech U niv. of A gri. and Fo r. (N aṫ Sci. Ed. ) Sep. 2005 Ξ 1, 2, 1, 1, 1, 1, 1, 2 (1 010018; 2 512005) [],, 8 8 9, () (),,,,,, ;, ;,, ;,,,
COMPLICITY COLLECTION autumn / winter
COMP LI C I TY COLLE C TI ON a ut umn / winte r 2 0 1 7 1 8 «T o ρ ο ύ χ ο ε ί ν α ι τ ο σ π ί τ ι τ ο υ σ ώ μ ατ ο ς». Τ ο σ ώ μ α ν τ ύ ν ε τα ι μ ε φ υ σ ι κ ά ν ή μ ατα κ α ι υφά σ μ ατα α π ό τ η
d 1 d 1
É É d 1 d 1 n n ;,x E ; x E X0 X X)0 0Ld 0Ld 0Ld 0Ld 0Ld 0Ld 1 0Ld 0Ld 0 0 0 1 ' 0 0d 0 0d 0 0d 0 0 0 0 0 0 0d 0 0 0 0d 0 0 0 0 0d 0 0 0Ld 0 0Ld 0d 0 0 0 0 0 0 0 0 0 0 \g 0,Q 0 i 0)( 0)( 0 0 0 0d 0 0
P4 Stress and Strain Dr. A.B. Zavatsky HT08 Lecture 5 Plane Stress Transformation Equations
P4 Stre and Strain Dr. A.B. Zavatk HT08 Lecture 5 Plane Stre Tranformation Equation Stre element and lane tre. Stree on inclined ection. Tranformation equation. Princial tree, angle, and lane. Maimum hear
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν
Ε ρ μ ο ύ π ο λ η, 0 9 Μ α ρ τ ί ο υ 2 0 1 2 Π ρ ο ς : Π ε ρ ιφ ε ρ ε ι ά ρ χ η Ν ο τ ίο υ Α ιγ α ί ο υ Α ρ ι θ. Π ρ ω τ. 3 4 2 2 κ. Ι ω ά ν ν η Μ α χ α ι ρ ί δ η F a x : 2 1 0 4 1 0 4 4 4 3 2, 2 2 8 1
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
ON OPTIMIZATION OF MANUFACTURING OF AN AMPLIFIER TO INCREASE DENSITY OF BIPOLAR TRANSISTOR FRAMEWORK THE AMPLIFIER
raoal Joral o Ora Elro (JOE) ol.6 No. Aprl 7 ON OMZAON O MANUAURNG O AN AMER O NREASE ENSY O BOAR RANSSOR RAMEWORK HE AMER E.. arao a E.A. Blaa Nh Nooro Sa Ur 3 Gaar a Nh Nooro 6395 Ra ABSRA h papr or
Α θ ή ν α, 7 Α π ρ ι λ ί ο υ
Α θ ή ν α, 7 Α π ρ ι λ ί ο υ 2 0 1 6 Τ ε ύ χ ο ς Δ ι α κ ή ρ υ ξ η ς Α ν ο ι κ τ ο ύ Δ ι ε θ ν ο ύ ς Δ ι α γ ω ν ι σ μ ο ύ 0 1 / 2 0 1 6 μ ε κ ρ ι τ ή ρ ι ο κ α τ α κ ύ ρ ω σ η ς τ η ν π λ έ ο ν σ υ μ
Η γεωργία στην ΕΕ απαντώντας στην πρόκληση των κλιματικών αλλαγών
Ευρωπαϊκή Επιτροπή Γε ν ι κ ή Δ ι ε ύ θ υ ν σ η Γε ω ρ γ ί α ς κ α ι Αγ ρ ο τ ι κ ή ς Α ν ά π τ υ ξ η ς Ευρωπαϊκή Επιτροπή Γεωργία και αγροτική ανάπτυξη Για περισσότερες πληροφορίες 200 Rue de la Loi,
< = ) Τ 1 <Ο 6? <? Ν Α <? 6 ϑ<? ϑ = = Χ? 7 Π Ν Α = Ε = = = ;Χ? Ν !!! ) Τ 1. Ο = 6 Μ 6 < 6 Κ = Δ Χ ; ϑ = 6 = Σ Ν < Α <;< Δ Π 6 Χ6 Ο = ;= Χ Α
# & ( ) ) +,. /, 1 /. 23 / 4 (& 5 6 7 8 8 9, :;< = 6 > < 6? ;< Β Γ Η. Ι 8 &ϑ Ε ; < 1 Χ6 Β 3 / Κ ;Χ 6 = ; Λ 4 ϑ < 6 Χ ; < = = Χ = Μ < = Φ ; ϑ =
Module 5. February 14, h 0min
Module 5 Stationary Time Series Models Part 2 AR and ARMA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14,
ΣΤΑΤΙΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΔΙΕΡΓΑΣΙΩΝ ΓΙΑ ΠΑΡΑΓΩΓΕΣ ΜΙΚΡΟΥ ΜΕΓΕΘΟΥΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΑΣΦΑΛΙΣΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΦΑΡΜΟΣΜΕΝΗ ΣΤΑΤΙΣΤΙΚΗ ΣΤΑΤΙΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΔΙΕΡΓΑΣΙΩΝ ΓΙΑ ΠΑΡΑΓΩΓΕΣ ΜΙΚΡΟΥ ΜΕΓΕΘΟΥΣ Γαλάτιος Σιγανός
Plantronics Explorer 10. Εγχειρίδιο χρήσης
Plantronics Explorer 10 Εγχειρίδιο χρήσης Περιεχόμενα Λίγα λόγια για τον αγοραστή 3 Περιεχόμενα συσκευασίας 4 Επισκόπηση ακουστικού 5 Η ασφάλεια προέχει 5 Σύζευξη και φόρτιση 6 Σύζευξη 6 Ενεργοποίηση της
Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing
Lecture Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing Lecture Notes Update on Feruary 20, 2018 Aly El-Osery and Kevin Wedeward, Electrical
CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU
Tà lệ kha test đầ xân 4 Á ÔNG THỨ Ự TỊ ĐỆN XOAY HỀ GÁO VÊN : ĐẶNG VỆT HÙNG. Đạn mạch có thay đổ: * Kh thì Max max ; P Max còn Mn ư ý: và mắc lên tếp nha * Kh thì Max * Vớ = hặc = thì có cùng gá trị thì
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
is the home less foreign interest rate differential (expressed as it
The model is solved algebraically, excep for a cubic roo which is solved numerically The mehod of soluion is undeermined coefficiens The noaion in his noe corresponds o he noaion in he program The model
u(x, y) =f(x, y) Ω=(0, 1) (0, 1)
u(x, y) =f(x, y) Ω=(0, 1) (0, 1) u(x, y) =g(x, y) Γ=δΩ ={0, 1} {0, 1} Ω Ω Ω h Ω h h ˆ Ω ˆ u v = fv Ω u = f in Ω v V H 1 (Ω) V V h V h ψ 1,ψ 2,...,ψ N, ˆ ˆ u v = Ω Ω fv v V ˆ ˆ u v = Ω ˆ ˆ u ψ i = Ω Ω Ω
Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP
Georg.otaetter@Corell.eu USPAS Avace Accelerator Phic - ue 6 CESS & EPP CESS & EPP 56 Setupole caue oliear aic which ca be chaotic a utable. l M co i i co l i i co co i i co l l l l ta ta α l ta co i i
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
3.1. Δυνάμεις μεταξύ ηλεκτρικών φορτίων
ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.1 3.1. Δυνάμεις μεταξύ ηλεκτρικών φορτίων 1. Έστω φορτίο Q περιέχει n ηλεκτρόνια - θα έχουμε Q = n-q e, επομέ- Q νως n =, αρα: (α) n = 0,625 10 19 e (β) n = 0,625 10 16 e (γ) n = 0,625
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
'( ( ) ) ( )) !"!##$%!& *+,-, #&!- *+, !/0- # #! &!#" /!!# #$$/.,&! # ! $/! : $/ +!$0# # *!!".., *! /"..
6131/00 577.3:615.272.4!"!##$%!& '( ( ) ) ) ( )) 14.00.25 *+,-, #&!- *+,- 03.00.04.+-!/0- # #! &!#" /!!# #$$/.,&! # ! $/! : $/ +!$0# # *!!".., $/ +!$0# # *! /".. 2001 ...7 1. 2 (...13 1.1. / %#/%!/!##1!/
i i (3) Derive the fixed-point iteration algorithm and apply it to the data of Example 1.
Howor#3 urvval Aalyss Na: Huag Xw 黃昕蔚 Quso: uppos ha daa ( follow h odl ( ( > ad <
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Japanese Fuzzy String Matching in Cooking Recipes
1 Japanese Fuzzy String Matching in Cooking Recipes Michiko Yasukawa 1 In this paper, we propose Japanese fuzzy string matching in cooking recipes. Cooking recipes contain spelling variants for recipe
ΟΙ ΑΣΚΗΣΕΙΣ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΑΣ: ΤΣΙΤΣΑΣ ΓΡΗΓΟΡΗΣ
Θέµατα από το βιβλίο µου: Οι ασκήσεις των εξετάσεων φυσικής γενικής παιδείας γ λυκείου (υπό έκδοση ) (Περιέχει 111 ασκήσεις πιθανά θέµατα εξετάσεων µε απαντήσεις) ΚΕΦΑΛΑΙΟ 1 ο ΘΕΜΑ 1 ο Πόση είναι η ενέργεια
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ
ΘΕΡΜΟΚΗΠΙΑΚΕΣ ΚΑΛΛΙΕΡΓΕΙΕΣ ΕΚΤΟΣ ΕΔΑΦΟΥΣ ΘΡΕΠΤΙΚΑ ΔΙΑΛΥΜΑΤΑ Θρεπτικό διάλυμα Είναι ένα αραιό υδατικό διάλυμα όλων των θρεπτικών στοιχείων που είναι απαραίτητα για τα φυτά, τα οποία βρίσκονται διαλυμένα
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ
ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ ιπλ ωµατ ική Εργασία του Φοιτητή ιονύση Παππά Τ µ ή µ α Μ ε τ α ν α σ τ ε υ τ ι κ ή ς π ο λ ι τ ι κ ή ς Τίτλος Εργασίας: Η Συµβολή της Τοπικής Αυτοδιοίκησης στην καταπολέµηση
BẢNG GIÁ HỆ THỐNG ĐÈN CHIẾU SÁNG TỦ BẾP & TỦ ÁO
BẢNG GIÁ HỆ THỐNG ĐÈN CHIẾU SÁNG TỦ BẾP & TỦ ÁO Áp dụng từ ngày 01 tháng 01 năm 2016 STT 562mm 1 CL-1009 762mm 800 000 862mm 870 000 957 000 2 CL-1011 762mm 1 010 000 1 111 000 862mm 1 110 000 1 221 000
MACCHINE A FLUIDO 2 CORRELAZIONE RENDIMENTO TURBINA A GAS S.F. SMITH
MACCHINE A FLUIDO CORRELAZIONE RENDIMENTO TURBINA A GAS S.F. SMITH MACCHINE A FLUIDO STADIO R.5 * 4 4 fs f 4 ( ) L MACCHINE A FLUIDO STADIO R.5 ϑ S ϑr a tan ( ) ξ.5 ( ϑ / 9) / 4 ( ) 3 MACCHINE A FLUIDO
Θ έ λ ω ξ ε κ ι ν ώ ν τ α ς ν α σ α ς μ ε τ α φ έ ρ ω α υ τ ό π ο υ μ ο υ ε ί π ε π ρ ι ν α π ό μ ε ρ ι κ ά χ ρ ό ν ι α ο Μ ι χ ά λ η ς
9. 3. 2 0 1 6 A t h e n a e u m I n t e r C o Ο μ ι λ ί α κ υ ρ ί ο υ Τ ά σ ο υ Τ ζ ή κ α, Π ρ ο έ δ ρ ο υ Δ Σ Σ Ε Π Ε σ τ ο ε π ί σ η μ η δ ε ί π ν ο τ ο υ d i g i t a l e c o n o m y f o r u m 2 0 1
TRÌNH TỰ TÍNH TOÁN THIẾT KẾ BỘ TRUYỀN BÁNH RĂNG TRỤ (THẲNG, NGHIÊNG)
TÌ TỰ TÍ TOÁ TIẾT Ế BỘ TUYỀ BÁ ĂG TỤ (TẲG, GIÊG Thôg số đầu à: côg suất P, kw (hặc môme xắ T, mm; số òg quy, g/ph; tỷ số truyề u Chọ ật lệu chế tạ báh răg, phươg pháp hệt luyệ, tr cơ tíh ật lệu hư: gớ