Διδακτικές ενότητες Στόχος
|
|
- Ἁλκυόνη Αποστολίδης
- 9 χρόνια πριν
- Προβολές:
Transcript
1
2 Η διδασκαλία του τριγωνομετρικού κύκλου με τον παραδοσιακό τρόπο στον πίνακα, είναι μία διαδικασία όχι εύκολα κατανοητή για τους μαθητές, με αποτέλεσμα τη μηχανική παπαγαλίστικη χρήση των τύπων της τριγωνομετρίας. Η ανίχνευση, διερεύνηση, ανακάλυψη των εννοιών και διατύπωση των σχετικών κανόνων με χρήση εφαρμογής σε περιβάλλον εκπαιδευτικού λογισμικού (CAS GeoGebra) από τους ίδιους τους μαθητές (τριμελής ομάδα μαθητών σε κάθε Η/Υ), που καθοδηγούνται με οδηγίες χρήσης της εφαρμογής και κατάλληλες ερωτήσεις από το φύλλο εργασίας, προσφέρει την πλήρη κατανόηση αφομοίωση και εφαρμογή όλων των εννοιών της τριγωνομετρίας, με χρήση της κίνησης, των πολλαπλών αναπαραστάσεων και την απειρία μετασχηματισμών απλά με ένα κλικ ή ένα σύρσιμο του ποντικιού και το κυριότερο την εκμάθηση των εννοιών με βάση την εικόνα του τριγωνομετρικού κύκλου. Έτσι η μετωπική δασκαλοκεντρική διδασκαλία μετατρέπεται σε μαθητοκεντρική ανακαλυπτική διαδικασία με πρωταγωνιστή το μαθητή. Σελίδα 2 από 17
3 Διδακτικές ενότητες: ακτίνιο αριθμός π Μήκος του κύκλου σε ακτίνια Αντιστοιχία μοιρών ακτινίων Τρόποι κίνησης πάνω στον κύκλο (θετική αρνητική φορά) Στοιχεία του τριγωνομετρικού κύκλου Θετικές αρνητικές γωνίες τόξα Γωνίες μεγαλύτερες των 360ο και μικρότερες των -360ο και αντίστοιχα τόξα Άπειρα τόξα με ίδιο πέρας Τριγωνομετρικοί αριθμοί γωνιών τόξων Τριγωνομετρικοί αριθμοί των τόξων: α+β=0, α±β=± π 2, α±β=± Τριγωνομετρικές συναρτήσεις με τις γραφικές τους παραστάσεις Λύση τριγωνομετρικών εξισώσεων πάνω στον τριγωνομετρικό κύκλο Στόχος η γνωσιοθεωρητική προσέγγιση του μαθήματος να γίνει με σύγχρονες κοινωνικές και εποικοδομιστικές προσεγγίσεις, δηλαδή με δυναμικό τρόπο, απειρία μετασχηματισμών και πολλαπλές αναπαραστάσεις, με ομαδοσυνεργατική δουλειά για τη διαπραγμάτευση των απόψεων και τελικών συμπερασμάτων από τους μαθητές (ομάδα με 3 μαθητές ανά Η/Υ), με φύλλα εργασίας με προσεκτικά σχεδιασμένες οδηγίες χρήσης της εφαρμογής και μαθηματικές ερωτήσεις και ο διδάσκων στο ρόλο του εξυπηρετητή της μάθησης του μαθητή, μέσα από το σχεδιασμό κατάλληλων περιβαλλόντων μάθησης και όχι στο ρόλο του πομπού γνώσεων, που συνήθως συμβαίνει στο περιβάλλον μιας παραδοσιακής τάξης. Σελίδα 3 από 17
4 Οι μαθητές πρέπει: Να κατανοήσουν την σημασία του αριθμού π. Να συνδέσουν την έννοια του ακτινίου με την έννοια της μοίρας Να αξιοποιήσουν την έννοια της θετικής και αρνητικής φοράς κίνησης στον κύκλο στην κατανόηση των θετικών αρνητικών γωνιών Να κατανοήσουν ότι κάθε πραγματικός αριθμός μπορεί να θεωρηθεί γωνία ή τόξο Να αξιοποιήσουν στα επόμενα μαθήματα την αλγεβρική σχέση που συνδέει τα τόξα με ίδιο πέρας για να κατανοήσουν την περιοδικότητα των τριγωνομετρικών συναρτήσεων και να λύσουν τριγωνομετρικές εξισώσεις Να οικοδομήσουν όλη την φιλοσοφία που διέπει την χρήση του τριγωνομετρικού κύκλου για όλες τις σχετικές μ αυτόν έννοιες θεωρήματα τύπους Να πειραματιστούν με διάφορους μετασχηματισμούς και πολλαπλές αναπαραστάσεις ώστε να αφομοιώσουν όσο το δυνατόν καλύτερα τις έννοιες και τους κανόνες της τριγωνομετρίας Να αναπτύξουν σχέσεις μεταξύ τους ως αποτέλεσμα της ομαδικής τους εργασίας. Να μάθουν να οργανώνουν καλύτερα τον τρόπο εργασίας τους ατομικής ή ομαδικής Να γίνει περισσότερο φιλικό προς αυτούς το περιβάλλον του εκπαιδευτικού λογισμικού Σελίδα 4 από 17
5 Προτείνεται οι μαθητές να εργαστούν εξ ολοκλήρου στο εργαστήριο υπολογιστών. Ο εκπαιδευτικός θα ελέγχει τα συμπεράσματα των μαθητών, θα συνεργάζεται μαζί τους και τους καθοδηγεί ώστε να αντιλαμβάνονται καλύτερα τα αποτελέσματά τους και θα τους ενθαρρύνει να συνεχίσουν την διερεύνηση. Εναλλακτικά, το μάθημα μπορεί να γίνει σε αίθουσα με βιντεοπροβολέα, αλλά ο διδάσκων πρέπει να είναι κατάλληλα προετοιμασμένος, ώστε απευθυνόμενος στο σύνολο της τάξης, οι ερωτήσεις του να οδηγούν τους μαθητές στην ανακάλυψη των προς μάθηση εννοιών και διατύπωση των σχετικών κανόνων. Επιλέξτε από την παρακάτω λίστα την τάξη στην οποία εφαρμόστηκε η ανοιχτή εκπαιδευτική πρακτική. Αν η δραστηριότητα είναι συνεργατική μπορείτε να επιλέξετε παραπάνω από μία τάξεις. Νηπιαγωγείο A γυμνασίου Α δημοτικού Β γυμνασίου Β δημοτικού Γ γυμνασίου Γ δημοτικού Α λυκείου Δ δημοτικού Χ Β λυκείου Ε δημοτικού Γ λυκείου ΣΤ δημοτικού Σελίδα 5 από 17
6 Προσδιορίστε παρακάτω τη διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής. Ώρες διδασκαλίας Διδακτική ενότητα ωρών μαθητικής δραστηριότητας Άλλη: Προσδιορίστε την διάρκεια: 8 10 διδακτικές ώρες π.χ. 12 ώρες δραστηριότητας σε διάστημα ενός τριμήνου Οι μαθητές: Θα εργαστούν σε ομάδες των 3 ατόμων σε κάθε Η/Υ (ομαδοσυνεργατική μάθηση). Η σύνθεση κάθε ομάδας είναι ανομοιογενής ως προς την επίδοση στο συγκεκριμένο μάθημα, τις διαπροσωπικές σχέσεις των μαθητών, την κοινωνική τους προέλευση και τη δυσκολία με την οποία εκδηλώνονται απέναντι σε καθηγητή, συμμαθητές. Ο ένας χειρίζεται την εφαρμογή, ο δεύτερος υπαγορεύει τις οδηγίες ερωτήσεις του φύλλου εργασίας, ο τρίτος παρακολουθεί τη σωστή εφαρμογή τους και όλοι μαζί συζητούν, αποφασίζουν και διατυπώνουν τις απαντήσεις. Φυσικά οι ρόλοι αυτοί μπορούν να εναλλάσσονται. Θα συμπληρώσουν ένα κοινό φύλλο εργασίας που περιέχει ερωτήσεις σχετικές με το θέμα. Μπορεί το φύλλο εργασίας να αφήνει μια σχετική ελευθερία στους μαθητές ώστε να θέτουν τα δικά τους ερωτήματα και να απαντούν σ αυτά. Σελίδα 6 από 17
7 Δραστηριότητα 1: Ακτίνιο, Αριθμός, Μήκος Κύκλου Ακολουθώντας τις οδηγίες του φύλλου εργασίας, μετατρέπουμε την καμπύλη του κύκλου σε ευθύγραμμο τμήμα, μετράμε το μήκος του μισού ευθύγραμμου τμήματος με μέτρο την ακτίνα του κύκλου, εφαρμόζουμε το μετρημένο ευθύγραμμο τμήμα στο ημικύκλιο και αλλάζοντας το μήκος της ακτίνας σε διαδοχικές τιμές μαθαίνουμε τον αριθμό π, το ακτίνιο και την αντιστοιχία ακτινίων μοιρών. Δραστηριότητα 2: Τρόποι κίνησης πάνω στον κύκλο Ακολουθώντας τις οδηγίες του φύλλου εργασίας πατάμε διαδοχικά τα κουμπιά από πάνω προς τα κάτω αφήνοντας κάποιο χρονικό διάστημα μεταξύ τους, π.χ. 10 δευτερολέπτων, οπότε παρατηρώντας τα κινητά, την κίνηση των δεικτών του ρολογιού και τα βέλη, καταλήγουμε στον ορισμό της θετικής φοράς κίνησης πάνω στον κύκλο Σελίδα 7 από 17
8 Δραστηριότητα 3: Τριγωνομετρικός κύκλος, θετική αρνητική γωνία τόξο, Γωνίες μεγαλύτερες των 360 ο και μικρότερες των -360 ο, Γωνίες τόξα με το ίδιο πέρας Ακολουθώντας τις οδηγίες του φύλλου εργασίας, παρατηρούμε τα χαρακτηριστικά του τριγωνομετρικού κύκλου, δημιουργούμε τα τεταρτημόριά του, δίνουμε θετικές ή αρνητικές τιμές μεταξύ των -360ο και 360ο και παρακολουθούμε τον σχηματισμό των γωνιών αντίστοιχων τόξων με κίνηση για να καταλάβουμε τι συμβολίζει το πρόσημο στη γωνία, Σελίδα 8 από 17
9 δίνουμε τιμές μεγαλύτερες του 360 ή μικρότερες του -360 και με κίνηση δημιουργείται γωνία τόξο με μέτρο τον δοθέντα αριθμό, δίνουμε οποιαδήποτε γωνία μεταξύ των -360ο και 360ο και παρατηρούμε ότι άπειρα θετικά και αρνητικά τόξα έχουν το ίδιο πέρας με το αντίστοιχο τόξο της δοθείσας γωνίας και μαθαίνουμε την αλγεβρική σχέση μεταξύ αυτών των τόξων και μεταξύ των αντιστοίχων επίκεντρων γωνιών τους. Σελίδα 9 από 17
10 Δραστηριότητα 4: Τριγωνομετρικοί αριθμοί γωνίας - τόξου Ακολουθώντας τις οδηγίες του φύλλου εργασίας, ανακαλύπτουμε τις έννοιες και τους αντίστοιχους άξονες των τριγωνομετρικών αριθμών, παρατηρώντας για μεν το ημίτονο και το συνημίτονο τις συντεταγμένες των προβολών του πέρατος του τόξου πάνω στους άξονες του ορθοκανονικού συστήματος, για δε την εφαπτομένη και συνεφαπτομένη τις τομές της επιβατικής ακτίνας του πέρατος με τους άξονες εφαπτομένων συνεφαπτομένων αντίστοιχα. Το πέρας του τόξου διαγράφει τον κύκλο κατά την θετική και την αρνητική φορά. Επίσης με κλικ στα αντίστοιχα κουμπιά εμφανίζονται τα ορθογώνια τρίγωνα που επιτρέπουν το μαθητή να ανακαλύψει το βασικό θεώρημα της τριγωνομετρίας και τις αλγεβρικές σχέσεις των τριγωνομετρικών αριθμών. Σελίδα 10 από 17
11 Δραστηριότητα 5: Τριγωνομετρικοί αριθμοί τόξων: α+β=0, α±β=± π 2, α±β=± Ακολουθώντας τις οδηγίες του φύλλου εργασίας, δημιουργούμε τα τόξα α, β που πληρούν τις σχέσεις α+β=0, α±β=± π, α±β=±, με κλικ στο κατάλληλο σημείο μετακινούμε το τόξο 2 β (αν χρειάζεται) ώστε η αρχή του να ταυτιστεί με την αρχή του τριγωνομετρικού κύκλου, εμφανίζουμε τους τριγωνομετρικούς αριθμούς και ανακαλύπτουμε τις σχέσεις τους. Σελίδα 11 από 17
12 Δραστηριότητα 6: Τριγωνομετρικές συναρτήσεις, γραφικές παραστάσεις Ακολουθώντας τις οδηγίες του φύλλου εργασίας, παρακολουθούμε ταυτόχρονα την εναλλαγή των τιμών των τριγωνομετρικών αριθμών, που προκαλεί η κίνηση του πέρατος του τόξου στον τριγωνομετρικό κύκλο στο αριστερό παράθυρο της οθόνης, τη δημιουργία των αντίστοιχων γραφικών παραστάσεων στο δεξί παράθυρο της οθόνης και ανακαλύπτουμε τις τριγωνομετρικές συναρτήσεις, την περιοδικότητά τους, τα τόξα που συμπίπτουν οι τιμές των τριγωνομετρικών αριθμών, κλπ. Σελίδα 12 από 17
13 Δραστηριότητα 7: Τριγωνομετρικές εξισώσεις Ακολουθώντας τις οδηγίες του φύλλου εργασίας, εντοπίζουμε το σημείο πάνω στον αντίστοιχο άξονα με συντεταγμένη την τιμή του τριγωνομετρικού της εξίσωσης και με διαδοχικά κλικ επάνω στα κατάλληλα σημεία, βρίσκουμε τα πέρατα των τόξων που οι αντίστοιχοι τριγωνομετρικοί αριθμοί επαληθεύουν την εξίσωση. Γνωρίζοντας δε από τη δραστηριότητα 3 τις αλγεβρικές σχέσεις των άπειρων τόξων με το ίδιο πέρας, βρίσκουμε τη μορφή των άπειρων λύσεων της αντίστοιχης εξίσωσης. Επιλέξτε από την παρακάτω λίστα τα βασικά χαρακτηριστικά του ρόλου του διδάσκοντα. Υπάρχει η δυνατότητα πολλαπλών επιλογών. Διδακτικός Προπονητικός Ενθαρρυντικός Υποστηρικτικός Συμβουλευτικός Διευκολυντικός Συντονιστικός Ηγετικός Διαχειριστικός Μέντωρ Υποκινητικός Κριτικός Επιμελητής περιεχομένου (curator) Τεχνική υποστήριξη Διαμεσολαβητικός Άλλος ρόλος:.. Εποπτικός Σελίδα 13 από 17
14 Πηγές του Ψηφιακού Εκπαιδευτικού Περιεχόμενου που αξιοποιήθηκαν κατά τον σχεδιασμό της ανοιχτής εκπαιδευτικής πρακτικής Τίτλος ψηφιακού πόρου: Καινοτομίες: Η γνωσιοθεωρητική προσέγγιση του μαθήματος γίνεται με σύγχρονες κοινωνικές και εποικοδομιστικές προσεγγίσεις, δηλαδή με δυναμικό τρόπο, απειρία μετασχηματισμών και πολλαπλές αναπαραστάσεις. Ομαδοσυνεργατική δουλειά για τη διαπραγμάτευση των απόψεων και τελικών συμπερασμάτων από τους μαθητές. Φύλλα εργασίας με προσεκτικά σχεδιασμένες οδηγίες χρήσης της εφαρμογής και ερωτήσεις. Καθηγητής στο ρόλο του εξυπηρετητή της μάθησης του μαθητή και όχι στο ρόλο του πομπού γνώσεων, που συνήθως συμβαίνει στο περιβάλλον μιας παραδοσιακής τάξης. Προστιθέμενη αξία: Με τη χρήση των εφαρμογών των εκπαιδευτικών λογισμικών κάθε ομάδα μαθητών θα αλληλεπιδράσει, θα μετασχηματίσει δυναμικά, θα διερευνήσει και θα ανακαλύψει τις εξής έννοιες: Ακτίνιο, αριθμός π, μήκος κύκλου, αντιστοιχία μοιρών ακτινίων: στο συμβατικό βιβλίο ο μαθητής διαβάζει και βλέπει μια στατική εικόνα, όπου περιγράφεται πως ο κύκλος καλύπτεται με μία κλωστή, η οποία κατόπιν μετατρέπεται σε ευθύγραμμο τμήμα και μετριέται με μονάδα την εκάστοτε ακτίνα του. Στην εφαρμογή του λογισμικού, ο μαθητής μετασχηματίζει την καμπύλη που καλύπτει τον κύκλο σε εφαπτόμενο στον κύκλο Σελίδα 14 από 17
15 ευθύγραμμο τμήμα, μετράει το μισό αυτού με μονάδα την ακτίνα του κύκλου και κατόπιν μετασχηματίζει πάλι το ευθύγραμμο τμήμα σε ημικύκλιο, ανακαλύπτοντας ότι το μήκος του ημικυκλίου είναι π = 3, ακτίνες, ανεξάρτητα από το εκάστοτε μήκος της ακτίνας. Κατόπιν δίνονται στις ομάδες των μαθητών γωνίες σε μοίρες και τόξα σε ακτίνια και τους ζητείται να βρουν αλγεβρικά την αντιστοιχία μοιρών ακτινίων και να επαληθεύσουν τις απαντήσεις τους με χρήση της εφαρμογής. Τρόποι κίνησης πάνω στον κύκλο (ορισμός θετικής αρνητικής φοράς): Η χρήση της ε- φαρμογής η οποία δείχνει δύο κινητά κινούμενα με αντίθετη φορά πάνω σε κυκλικές ομόκεντρες τροχιές και ταυτόχρονα την κίνηση των δεικτών ρολογιού, επιτρέπει στον μαθητή να ανακαλύψει τους διαφορετικούς τρόπους κίνησης πάνω στον κύκλο και να ορίσει τη θετικής και αρνητική φορά περιστροφής. Ορισμός κατασκευή του τριγωνομετρικού κύκλου: Παρουσιάζεται ο τριγωνομετρικός κύκλος, ως κύκλος ακτίνας 1, με προσαρτημένο ορθοκανονικό σύστημα συντεταγμένων, το σημείο τομής κύκλου θετικού οριζόντιου ημιάξονα με την επισήμανση «αρχή τόξων», βέλος θετικής φοράς κίνησης και ζητείται από τους μαθητές η περιγραφή των χαρακτηριστικών του και ο τρόπος που καθορίζονται τα τεταρτημόριά του. Θετικές αρνητικές γωνίες τόξα: Ο μαθητής δίνοντας στον άξονα (δρομέα): αντίθετες γωνίες (π.χ. 30ο,-30ο,125ο,-125ο, 225ο,-225ο, κλπ) και κάνοντας κλικ στο κουμπί κίνησης, κατανοεί τι συμβολίζει το πρόσημο μπροστά από το μέτρο της γωνίας ή του αντιστοίχου τόξου. Γωνίες μεγαλύτερες των 360 και μικρότερες των -360: Ο μαθητής δίνοντας στον άξονα (δρομέα): τιμές μεγαλύτερες του 360 ή μικρότερες του -360 και με κλικ στο κουμπί κίνησης, παρατηρεί ότι κάθε πραγματικός αριθμός μπορεί να θεωρηθεί γωνία ή τόξο και του ζητείται η εύρεση αλγεβρικά του πέρατος αυτού του τόξου. Άπειρα τόξα με το ίδιο πέρας και αλγεβρική σχέση μεταξύ τους: Δίνοντας πάνω στον άξονα: τιμές θετικές ή αρνητικές και κάνοντας κλικ στο κουμπί κίνησης, ο μαθητής ανακαλύπτει, άπειρες γωνίες τόξα κατά την θετική και κατά την αρνητική φορά με πέρας το πέρας του αντίστοιχου τόξου της δοθείσης γωνίας και την αλγεβρική σχέση γωνιών τόξων με το ίδιο πέρας. Τριγωνομετρικοί αριθμοί γωνιών τόξων: Ο μαθητής κάνοντας κλικ στο κουμπί κίνησης, παρατηρεί τις τιμές των τριγωνομετρικών αριθμών πάνω στους αντίστοιχους άξονες, διατυπώνει τους ορισμούς στο φύλλο εργασίας και από την ομοιότητα των αντίστοιχων τριγώνων ανακαλύπτει τις αλγεβρικές σχέσεις μεταξύ των τριγωνομετρικών αριθμών. Σελίδα 15 από 17
16 Τριγωνομετρικοί αριθμοί των τόξων: α+β=0, α±β=± π, α±β=± : Ο μαθητής δημιουργώντας στον τριγωνομετρικό κύκλο τόξα α, β που ικανοποιούν κάποια από τις παραπάνω 2 σχέσεις, μετακινεί τα τόξα ώστε να έχουν αρχή την αρχή μέτρησης τόξων του τριγωνομετρικού κύκλου και παρατηρώντας τις τιμές των τριγωνομετρικών τους αριθμών ανακαλύπτει τις σχέσεις μεταξύ τους. Τριγωνομετρικές συναρτήσεις, γραφικές παραστάσεις: Ο μαθητής με κλικ στο κουμπί κίνησης παρακολουθεί ταυτόχρονα, στην πρώτη οθόνη τις τιμές των τριγωνομετρικών αριθμών στον τριγωνομετρικό κύκλο και στη δεύτερη οθόνη το σχηματισμό των αντίστοιχων γραφικών παραστάσεων των τριγωνομετρικών συναρτήσεων. Λύση τριγωνομετρικών εξισώσεων πάνω στον τριγωνομετρικό κύκλο: Ο μαθητής, για κάθε τριγωνομετρική εξίσωση των μορφών: ημx = α, συνx = α, -1 α 1, εφx = β, σφx = β, β R, βρίσκει μετακινώντας σημείο πάνω στους άξονες, το σημείο με τετμημένη ή τεταγμένη την τιμή α ή β και με κλικ στα αντίστοιχα σημεία εντοπίζει τα πέρατα των δύο τόξων του ικανοποιούν την αντίστοιχη ισότητα. Ο σχεδιασμός και η εφαρμογή αυτής της ανοιχτής εκπαιδευτικής πρακτικής δεν βασίστηκε σε άλλη πρακτική. Το σενάριο θα λέγαμε ότι αποτελεί ένα «πρότυπο» της ανακαλυπτικής μαθητοκεντρικής διδασκαλίας με χρήση Τ.Π.Ε. Με την ίδια φιλοσοφία μπορούμε να ανακαλύψουμε όλες τις έννοιες των μαθηματικών και της γεωμετρίας που απαιτούν σχήματα και χρειάζονται πολλαπλές αναπαραστάσεις για να γίνουν κατανοητές. Αξιολόγηση μετά την εφαρμογή: Ως προς τις επιδιώξεις του σεναρίου: Ο εκπαιδευτικός ελέγχει κατά πόσο επιτεύχθηκαν οι στόχοι του σεναρίου και εξετάζει του λόγους για τους οποίους κάποιοι δεν επιτεύχθηκαν ώστε να παρέμβει ανάλογα στο σενάριο. Ως προς τα εργαλεία: Ο εκπαιδευτικός ελέγχει την ευκολία με την οποία οι μαθητές αξιοποίησαν τα εργαλεία του προτεινόμενου λογισμικού σε συνδυασμό με την σαφήνεια των οδηγιών και των περιγραφών των φύλλων εργασίας. Αφού αξιολογήσει τα δεδομένα του επεμβαίνει ανάλογα στο σενάριο για την επόμενη εφαρμογή. Ως προς την διαδικασία υλοποίησης: Ο εκπαιδευτικός αξιολογεί την διαδικασία υλοποίησης του σεναρίου αξιολογώντας τα στοιχεία που δεν δούλεψαν καλά και αναπροσαρμόζει το σενάριο. Σελίδα 16 από 17
17 Ως προς την προσαρμογή και επεκτασιμότητα: Η δυνατότητα επέκτασης του σεναρίου και η ευκολία προσαρμογής σε ένα σχολικό περιβάλλον ή στην διδακτική ατζέντα ενός εκπαιδευτικού ή στην κουλτούρα μιας σχολικής τάξης είναι ένα από τα στοιχεία που το καθιστούν σημαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραμέτρους και να προσαρμόσει το σενάριο ανάλογα. Ιδιαίτερα αν εφαρμόσει το σενάριο πολλές φορές και σε διαφορετικές τάξεις ή ανταλλάξει ιδέες με άλλους συναδέλφους του θα έχει δεδομένα με τα οποία θα μπορεί να κάνει ουσιαστικές προσαρμογές. Όλες οι προς μάθηση έννοιες παρουσιάζονται με επτά εφαρμογές του εκπαιδευτικού λογισμικού CAS GeoGebra, οι οποίες είναι κατασκευασμένες με τέτοιο τρόπο, ώστε ο μαθητής να τις χειρίζεται μόνο σύροντας ή επιλέγοντας αντικείμενα με το δείκτη του ποντικιού, χωρίς ιδιαίτερες γνώσεις χρήσης του λογισμικού. Απαιτούμενα βοηθητικά υλικά και εργαλεία: τετράδιο για να κρατούν σημειώσεις κατά την πορεία της διερεύνησης, να καταγράφουν τα συμπεράσματά τους και να εκτελούν τις αλγεβρικές διαδικασίες όπου απαιτείται. Βιβλίο για να ανατρέχουν σε προηγούμενες έννοιες. Φύλλα εργασίας τα οποία δίνονται από τον διδάσκοντα και έχουν ως στόχο να καθοδηγούν τους μαθητές στη διερεύνηση - ανακάλυψη των προς μάθηση εννοιών και διατύπωση των σχετικών κανόνων. Γεωμετρικά όργανα για κατασκευές στο τετράδιο Σελίδα 17 από 17
«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε.
«Εισαγωγή στον Τριγωνομετρικό Κύκλο» Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Μπολοτάκης Γιώργος Μαθηματικός, Επιμορφωτής Β επιπέδου, Διευθυντής Γυμνασίου Αγ. Αθανασίου Δράμας, Τραπεζούντος 7, Άγιος Αθανάσιος,
ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ
ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΒΑΣΙΛΗΣ ΦΑΓΟΓΕΝΗΣ ΣΧΟΛΕΙΟ 5 ο ΓΕΛ ΚΕΡΚΥΡΑΣ ΚΕΡΚΥΡΑ 25.6.2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Με χρήση του λογισμικού
Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Θέμα: «Διανύσματα: Έννοιες, Πράξεις, Ανάλυση, Συντεταγμένες»
Διδάσκοντας Μαθηματικά με Τ.Π.Ε. Θέμα: «Διανύσματα: Έννοιες, Πράξεις, Ανάλυση, Συντεταγμένες» Βέλτιστο Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΓΕΩΡΓΙΟΣ ΜΠΟΛΟΤΑΚΗΣ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ
ΔΙΔΑΣΚΑΛΙΑ ΤΗΣεφx ΣΤΗΝ ΒΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑΑΝΑΠΤΥΞΗΣ
ΔΙΔΑΣΚΑΛΙΑ ΤΗΣεφx ΣΤΗΝ ΒΓΥΜΝΑΣΙΟΥ ΟΜΑΔΑΑΝΑΠΤΥΞΗΣ Χριστόφορος Δερμάτης ΠΕ 0 3 Γυμνάσιο - Λυκειακές τάξεις Κασσιόπης Κέρκυρα 01/07/2015 1. Συνοπ τική π εριγραφή της ανοιχτής εκπαιδευτικής π ρακτικής Γίνεται
Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II.
9.2.3 Σενάριο 6. Συμμεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωμετρία Β Λυκείου. Συμμεταβολή μεγεθών. Εμβαδόν ισοσκελούς τριγώνου. Σύστημα συντεταγμένων. Γραφική παράσταση συνάρτησης. Μέγιστη
Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.
Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη
Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra.
9.3. Σενάριο 9. Μελέτη της συνάρτησης f(x) = αx +βx+γ Γνωστική περιοχή: Άλγεβρα Α Λυκείου. Η συνάρτηση ψ= αχ +βχ+γ (γραφική παράσταση, μονοτονία, ακρότατα). Θέμα: Το προτεινόμενο θέμα αφορά την κατασκευή
Η λογαριθµική συνάρτηση και οι ιδιότητές της
ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα
Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.
Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον
ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ
ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ Γνωστική Περιοχή: Γεωμετρία Β Λυκείου Θέμα Το Πυθαγόρειο Θεώρημα είναι γνωστό στους μαθητές από το Γυμνάσιο. Το προτεινόμενα θέμα αφορά την
Η παραγωγή της επιχείρησης και το κόστος ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ
Η παραγωγή της επιχείρησης και το κόστος ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Δημήτριος Βουδούρης, Οικονομολόγος ΣΧΟΛΕΙΟ Γυμνάσιο Γουμέρου Πύργος, 22/03/2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Η παρούσα
Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).
τάξης είναι ένα από τα στοιχεία που το καθιστούν σηµαντικό. Ο εκπαιδευτικός πρέπει να λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο
Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα
Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.
ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ
ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ
Εικόνα 31. To σενάριο προτείνεται να διεξαχθεί µε τη χρήση του λογισµικού Geogebra.
Σενάριο 4. Η µέτρηση του εµβαδού ενός παραβολικού οικοπέδου Γνωστική περιοχή: Μαθηµατικά Γ' Λυκείου. Παραβολή. Τετραγωνική συνάρτηση. Εµβαδόν. Ορισµένο ολοκλήρωµα Θέµα: Οι τέσσερις πλευρές ενός οικοπέδου
Πιο αναλυτικά, δημιουργήθηκε, μια ιστοσελίδα τύπου wiki όπου προστέθηκαν οι ανάλογες αναφορές σε δραστηριότητες από το Φωτόδεντρο.
ΣΧΟΛΕΙΟ Στα πλαίσια της ευέλικτης ζώνης, με θέμα την διατροφή, οι μαθητές με την χρήση των Τ.Π.Ε, εξερευνούν, πειραματίζονται και δοκιμάζουν τις γνώσεις τους σε μια σειρά από ψηφιακές δραστηριότητες. Οι
Ερωτήµατα σχεδίασης και παρατήρησης (για εστίαση σε συγκεκριµένες πτυχές των αλλαγών στο σχήµα).
λάβει σοβαρά υπόψη του αυτές τις παραµέτρους και να προσαρµόσει το σενάριο ανάλογα. Ιδιαίτερα όταν εφαρµόσει το σενάριο πολλές φορές και σε διαφορετικές τάξεις ή ανταλλάξει ιδέες µε άλλους συναδέλφους
Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες
ΣΧΟΛΕΙΟ Η εκπαιδευτική πρακτική αφορούσε τη διδασκαλία των μεταβλητών στον προγραμματισμό και εφαρμόστηκε σε μαθητές της τελευταίας τάξης ΕΠΑΛ του τομέα Πληροφορικής στα πλαίσια του μαθήματος του Δομημένου
1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία
1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός
ΜΙΑ ΟΠΤΙΚΗ ΑΠΟΔΕΙΞΗ ΤΟΥ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ
ΜΙΑ ΟΠΤΙΚΗ ΑΠΟΔΕΙΞΗ ΤΟΥ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Νικόλαος Τερψιάδης, Μαθηματικός ΣΧΟΛΕΙΟ Πειραματικό Λύκειο Πανεπιστημίου Μακεδονίας ΘΕΣΣΑΛΟΝΙΚΗ, 2015 1. Συνοπτική περιγραφή της ανοιχτής
Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου
Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ Γραφική παράσταση τριωνύµου Εξισώσεις κίνησης. Θέµα: To προτεινόµενο θέµα αφορά την µελέτη της µεταβολής
Εισαγωγή στην έννοια του Αλγορίθμου
Εισαγωγή στην έννοια του Αλγορίθμου ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Νίκος Μιχαηλίδης, Πληροφορικός ΠΕ19 ΣΧΟΛΕΙΟ 2 ο Πρότυπο Πειραματικό Γυμνάσιο Θεσσαλονίκης Θεσσαλονίκη, 24 Φεβρουαρίου 2015 1. Συνοπτική περιγραφή της
Μαθητές Β ΕΠΑ.Λ. Σωτήρης Δ. Χασάπης. 4-5 διδακτικές ώρες, ανάλογα με το γενικότερο επίπεδο της τάξης.
Τίτλος σεναρίου : Η συνάρτηση f (x)=α ημ(ωx)+ β Γνωστική περιοχή : Θέμα : Τεχνολογικά εργαλεία : Πλαίσιο εφαρμογής Σε ποιους απευθύνεται : Διδάσκων : Χρόνος υλοποίησης : Χώρος υλοποίησης : 1 Σκεπτικό Βασική
Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης
ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ Β ΕΠΙΠΕΔΟΥ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΚΣΕ 4 ου ΣΕΚ ΠΕΡΙΣΤΕΡΙΟΥ ΕΠΙΜΟΡΦΩΤΗΣ: ΜΗΤΡΟΓΙΑΝΝΟΠΟΥΛΟΥ ΑΓΓΕΛΙΚΗ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ Κατακόρυφη - Οριζόντια
ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου
ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου Συγγραφέας: Κοπατσάρη Γεωργία Ημερομηνία: Φλώρινα, 5-3-2014 Γνωστική περιοχή: Μαθηματικά (Γεωμετρία) Β Γυμνασίου Προτεινόμενο λογισμικό: Προτείνεται να
Να υπολογίζουμε τους τριγωνομετρικούς αριθμούς οξείας γωνίας. Τη γωνία σε κανονική θέση και τους τριγωνομετρικούς αριθμούς γωνίας σε κανονική θέση.
Ενότητα 4 Τριγωνομετρία Στην ενότητα αυτή θα μάθουμε: Να υπολογίζουμε τους τριγωνομετρικούς αριθμούς οξείας γωνίας. Τη γωνία σε κανονική θέση και τους τριγωνομετρικούς αριθμούς γωνίας σε κανονική θέση.
πολυγώνων που µπορούν να χρησιµοποιηθούν για να καλυφθεί το επίπεδο γύρω από µια
Κάθε οµάδα παρουσιάζει στην τάξη: (1) Τις logo διαδικασίες µε τις οποίες σχεδίασε τα κανονικά πολύγωνα. (2) Τις διαδικασίες µε τις οποίες σχεδίασαν τα κανονικά πολύγωνα γύρω από µια περιοχή. (3) Τα τεχνουργήµατα
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου Αθήνα, Φεβρουάριος 2008 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ Ε ΔΗΜΟΤΙΚΟΥ «Ο ΚΥΚΛΟΣ» Νικόλαος Μπαλκίζας Ιωάννα Κοσμίδου 1.
ιαγωνισμός video Ένας εναλλακτικός τρόπος αξιολόγησης μαθητών στη Φυσική
ιαγωνισμός video Ένας εναλλακτικός τρόπος αξιολόγησης μαθητών στη Φυσική ΟΜΑ Α ΑΝΑΠΤΥΞΗΣ Σοφία Αναστασιάδου,ΠΕ04.01(MSc) 1ο Γυμνάσιο Ξάνθης ΞΑΝΘΗ, ΣΧΟΛΙΚΟ ΕΤΟΣ 2016-2017 1. Συνοπτική περιγραφή της ανοιχτής
ΑΣΦΑΛΗΣ ΠΛΟΗΓΗΣΗ ΣΤΟΔΙΑΔΙΚΤΥΟ
ΑΣΦΑΛΗΣ ΠΛΟΗΓΗΣΗ ΣΤΟΔΙΑΔΙΚΤΥΟ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Ειρήνη Τζοβλά, Δασκάλα ΣΧΟΛΕΙΟ 4 ο Δημοτικό Σχολείο Πεύκης Πεύκη, Φεβρουάριος 2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Η συγκεκριμένη
Εκπαιδευτικό Σενάριο: Αναλογίες. Βασίλης Παπαγεωργίου
Εκπαιδευτικό Σενάριο: Αναλογίες Ιανουάριος 2011 1. Τίτλος Αναλογίες 2. Ταυτότητα Συγγραφέας: Γνωστική περιοχή των μαθηματικών: Άλγεβρα, Γεωμετρία Θέμα: Αναλογίες Συντεταγμένες στο επίπεδο 3. Σκεπτικό 2
Σε ποιους απευθύνεται: Χρόνος υλοποίησης: Χώρος υλοποίησης: Κοινωνική ενορχήστρωση της τάξης Στόχοι:... 4
Περιεχόμενα Νικόλαος Μανάρας... 2 Σενάριο για διδασκαλία/ εκμάθηση σε μια σύνθεση μεικτής μάθησης (Blended Learning) με τη χρήση του δυναμικού μαθηματικού λογισμικού Geogebra σε διαδραστικό πίνακα και
Γνωριμία με το Διαδίκτυο και τις υπηρεσίες του
Γνωριμία με το Διαδίκτυο και τις υπηρεσίες του ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Παπαντώνη Μαρία, ΠΕ19 ΣΧΟΛΕΙΟ 9 ο Γυμνάσιο Καλλιθέας «Μάνος Χατζιδάκις» Αθήνα, Μάιος 2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής
ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ. Μελέτη της συνάρτησης f(x)=ηµx
ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Μελέτη της συνάρτησης f(x)=ηµx Στη Γ' γυµνασίου, το ηµίτονο µελετάται ως τριγωνοµετρικός αριθµός µε βάση τις συντεταγµένες ενός σηµείου Μ µιας ηµιευθείας ΟΜ που σχηµατίζει µε
Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου
Λογισμικό διδασκαλίας των μαθηματικών της Γ Τάξης Γυμνασίου Δρ. Βασίλειος Σάλτας 1, Αλέξης Ηλιάδης 2, Ιωάννης Μουστακέας 3 1 Διδάκτωρ Διδακτικής Μαθηματικών, Επιστημονικός Συνεργάτης ΑΣΠΑΙΤΕ Σαπών coin_kav@otenet.gr
Ηλεκτρονικό ταχυδρομείο ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ
Ηλεκτρονικό ταχυδρομείο ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Παπαντώνη Μαρία, ΠΕ19 ΣΧΟΛΕΙΟ 9ο Γυμνάσιο Καλλιθέας «Μάνος Χατζιδάκις» Αθήνα, Μάιος 2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Γενικός σκοπός
Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας
Οδηγίες για το Geogebra Μωυσιάδης Πολυχρόνης Δόρτσιος Κώστας Η πρώτη οθόνη μετά την εκτέλεση του προγράμματος διαφέρει κάπως από τα προηγούμενα λογισμικά, αν και έχει αρκετά κοινά στοιχεία. Αποτελείται
«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano»
«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» Ιορδανίδης Ι. Φώτιος Καθηγητής Μαθηματικών, 2 ο Γενικό Λύκειο Πτολεμαΐδας fjordaneap@gmail.com ΠΕΡΙΛΗΨΗ Το θεώρημα του Bolzano
Γνωστικοί στόχοι: Μετά το τέλος της πρακτικής, οι μαθητές πρέπει να μπορούν να:
ΣΧΟΛΕΙΟ Με αφόρμηση τα ενημερωτικά σποτ του ιστότοπου http://www.saferinternet.gr οι μαθητές εντοπίζουν αρχικά τα κυριότερα προβλήματα που σχετίζονται με τη μη ορθή χρήση του Διαδικτύου. Στη συνέχεια αφού
Η ανοικτή αυτή πρακτική έχει διάρκεια 2 διδακτικών ωρών και λαμβάνει μέρος στο εργαστήριο πληροφορικής του σχολείου.
ΣΧΟΛΕΙΟ Η συγκεκριμένη εκπαιδευτική πρακτική υλοποιήθηκε από τους μαθητές της Ε τάξης δημοτικού κατά την διάρκεια των παρεμβάσεων «εφαρμογής στην τάξη» της 6ης περιόδου επιμόρφωσης Β επιπέδου ΤΠΕ, αξιοποιώντας
ΔΟΣΟΛΟΓΙΑ ΦΑΡΜΑΚΩΝ ΓΙΑ ΠΑΙΔΙΑ ΕΩΣ 12 ΕΤΩΝ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ
ΔΟΣΟΛΟΓΙΑ ΦΑΡΜΑΚΩΝ ΓΙΑ ΠΑΙΔΙΑ ΕΩΣ 12 ΕΤΩΝ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Αγγελική Γριβοπούλου, ΤΕ01.13-ΠΕ20 ΣΧΟΛΕΙΟ 1 ο Ε.Κ. Μεσολογγίου Μεσολόγγι, 14/07/2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής
Βοηθήστε τη ΕΗ. Ένα µικρό νησί απέχει 4 χιλιόµετρα από την ακτή και πρόκειται να συνδεθεί µε τον υποσταθµό της ΕΗ που βλέπετε στην παρακάτω εικόνα.
Γιώργος Μαντζώλας ΠΕ03 Βοηθήστε τη ΕΗ Η προβληµατική της Εκπαιδευτικής ραστηριότητας Η επίλυση προβλήµατος δεν είναι η άµεση απόκριση σε ένα ερέθισµα, αλλά ένας πολύπλοκος µηχανισµός στον οποίο εµπλέκονται
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΦΛΩΡΙΝΑ ΕΡΓΑΣΙΑ ΓΙΑ ΤΟ ΜΑΘΗΜΑ: ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΧΡΗΣΗ ΤΠΕ ΘΕΜΑ ΕΡΓΑΣΙΑΣ: ΜΕΤΑΤΡΟΠΗ ΤΟΥ ΣΕΝΑΡΙΟΥ
Γ. Μπολοτάκης. Γυμνάσιο Δοξάτου,
Εργαστήριο "Εκπαιδευτικό Λογισμικό Μαθηματικών GeoGebra: Περιβάλλον - Εργαλεία - Δημιουργία Εφαρμογών - Διδακτικές Προτάσεις με Προσομοιώσεις - Φύλλα Εργασίας" Γ. Μπολοτάκης Γυμνάσιο Δοξάτου, gbolotis@gmail.com
Γραμμικά Συστήματα. δεν είναι λύση του συστήματος. β) Ποιο από τα παραπάνω ζεύγη είναι λύση του συστήματος
8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y 4, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το 4, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,
Γραμμικά Συστήματα Δίνεται η εξίσωση 4x y 11(1). α) Ποια από τα ζεύγη (2, 3),(0, 11), (1, 8) κα (7, 0) είναι λύση της εξίσωσης (1);
8808Δίνεται η εξίσωση x y 7 Γραμμικά Συστήματα α) Να επαληθεύσετε ότι το ζεύγος αριθμών x, y, είναι μια λύση της εξίσωσης β) Να αποδείξετε ότι το, 88Δίνεται η εξίσωση x y 8 δεν είναι λύση του συστήματος
ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ
184 1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ ΕΦΑΠΤΟΜΕΝΗ ΓΩΝΙΑΣ ΚΑΙ ΚΛΙΣΗ ΕΥΘΕΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β' ΓΥΜΝΑΣΙΟΥ Ιωάννου Στυλιανός Εκπαιδευτικός Μαθηματικός Β θμιας Εκπ/σης Παιδαγωγική αναζήτηση Η τριγωνομετρία
Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx
Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Στόχος: Το παιδαγωγικό σενάριο αναφέρεται στη μελέτη της συνάρτησης y=αx και στη κατανόηση της κλίσης ευθείας. Λογισμικό: Για την εφαρμογή του σεναρίου
ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ
ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΜΑΡΙΑ ΤΣΙΚΑΛΟΠΟΥΛΟΥ,ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΟΛΕΙΟ - ΣΚΥΔΡΑ,2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής Το αντικείμενο με το οποίο θα ασχοληθούμε είναι τα
ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ
ΤΙΤΛΟΣ ΑΝΟΙΧΤΗΣ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΡΑΚΤΙΚΗΣ ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΣΚΥΔΡΑΣ Ομάδα ανάπτυξης Μαρία Τσικαλοπούλου, Μαθηματικός Σ Κ Υ Δ Ρ Α / 2 0 1 5 Το αντικείμενο με το οποίο θα ασχοληθούμε είναι τα μαθηματικά της
Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe.
9.3.3 Σενάριο 10. Τριγωνομετρικές συναρτήσεις Γνωστική περιοχή: Άλγεβρα Β Λυκείου. Η συνάρτηση ψ= ρ ημ(λχ+κ). Γραφική παράσταση τριγωνομετρικών συναρτήσεων. Γραφική επίλυση τριγωνομετρικής εξίσωσης. Θέμα:
ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:
To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe.
Σενάριο 7. Η Οµοιότητα Τριγώνων ως Λόγος Πλευρών Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η γραµµική συνάρτηση ψ= αχ. Συντελεστής διεύθυνσης ευθείας. Γεωµετρία Α' Λυκείου Οµοιότητα τριγώνων Θέµα: To προτεινόµενο
1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία
1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός
Μπολοτάκης Γιώργος. Μαθηματικός, Επιμορφωτής Β επιπέδου, συγγραφέας του βιβλίου «GeoGebra εύκολα και απλά»
«Αξιοποίηση των Τ.Π.Ε. στη Διδακτική Πράξη» «Διδασκαλία μαθήματος μαθηματικών Άλγεβρας Α Λυκείου, με εφαρμογή του λογισμικού GeoGebra και χρήση φύλλων εργασίας, «Εξίσωση-Ανίσωση 2ου βαθμού, Μορφές - Πρόσημο
1 ΘΕΩΡΙΑΣ...με απάντηση
1 ΘΕΩΡΙΑΣ.....με απάντηση ΑΛΓΕΒΡΑ Κεφάλαιο 1 0 Εξισώσεις Ανισώσεις 1. Τι ονομάζεται Αριθμητική και τι Αλγεβρική παράσταση; Ονομάζεται Αριθμητική παράσταση μια παράσταση που περιέχει πράξεις μεταξύ αριθμών.
Geogebra. Μακρή Βαρβάρα. Λογισµικό Geogebra
Λογισµικό Geogebra 1 Τι είναι το πρόγραµµα Geogebra; Το πρόγραµµα GeoGebra, είναι ένα δυναµικό µαθηµατικό λογισµικό που συνδυάζει Γεωµετρία, Άλγεβρα και λογισµό. Αναπτύσσεται από τον Markus Hohenwarter
ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ
ΣΕΝΑΡΙΟ του Κύπρου Κυπρίδηµου, µαθηµατικού ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ Περίληψη Στη δραστηριότητα αυτή οι µαθητές καλούνται να διερευνήσουν το πρόσηµο του τριωνύµου φ(x) = αx 2 + βx + γ. Προτείνεται να διδαχθεί
ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ (µεγάλες τάξεις ηµοτικού) Σχεδιασµός σεναρίου µε θέµα «Αναπνευστικό σύστηµα» µε τη χρήση λογισµικών γενικής χρήσης, οπτικοποίησης, διαδικτύου και λογισµικών εννοιολογικής χαρτογράφησης.
ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ
ΒΡΙΣΚΩ ΤΟ ΜΙΣΟ ΚΑΙ ΤΟ ΟΛΟΚΛΗΡΟ ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΜΑΡΙΑ ΤΣΙΚΑΛΟΠΟΥΛΟΥ,ΜΑΘΗΜΑΤΙΚΟΣ ΣΧΟΛΕΙΟ Δημοτικό σχολείο Σκύδρας ΣΚΥΔΡΑ,2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής Το αντικείμενο με το οποίο
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε
Νιώθω, νιώθεις, νιώθει.νιώθουμε ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ ΣΧΟΛΕΙΟ. Χανιά
Νιώθω, νιώθεις, νιώθει.νιώθουμε ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Σμαράγδα Τσιραντωνάκη, ΠΕ70 ΣΧΟΛΕΙΟ Ιδιωτικά Εκπαιδευτήρια Θεοδωρόπουλου Χανιά Μάϊος 2015 Σελίδα 1 από 10 1. Συνοπτική περιγραφή της καλής πρακτικής Η παρούσα
ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ 13/11/2016 ΠΑΙΖΟΝΤΑΣ ΜΕ ΙΣΟΠΛΕΥΡΑ ΤΡΙΓΩΝΑ ΜΑΘΗΜΑ ΚΑΤΑΣΚΕΥΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΜΕ ΤΗ ΧΡΗΣΗ ΤΠΕ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ:
ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ
ΑΛΓΕΒΡΑ Α Τάξης Ημερησίου ΓΕΛ ΔΙΔΑΚΤΕΑ ΥΛΗ Ι. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως, της απόλυτης τιμής, των προόδων, της συνάρτησης κ.ά.,
Γρήγορη Εκκίνηση. Όταν ξεκινήσετε το GeoGebra, εμφανίζεται το παρακάτω παράθυρο:
Τι είναι το GeoGebra; Γρήγορη Εκκίνηση Λογισμικό Δυναμικών Μαθηματικών σε ένα - απλό στη χρήση - πακέτο Για την εκμάθηση και τη διδασκαλία σε όλα τα επίπεδα της εκπαίδευσης Συνδυάζει διαδραστικά γεωμετρία,
ΣΕΝΑΡΙΟ ΜΑΘΗΜΑΤΟΣ ΣΤΗ ΦΥΣΙΚΗ
ΣΕΝΑΡΙΟ ΜΑΘΗΜΑΤΟΣ ΣΤΗ ΦΥΣΙΚΗ Ι ΑΣΚΩΝ: ΣΦΑΕΛΟΣ Ι. ΤΑΞΗ: Α ΛΥΚΕΙΟΥ ΘΕΜΑ: ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ - ΚΑΤΑΚΟΡΥΦΗ ΒΟΛΗ Βασική ιδέα: Οι µαθητές παρακολουθώντας τις προσοµοιώσεις για την ελεύθερη πτώση, την πτώση σώµατος
1.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ (Επαναλήψεις Συμπληρώσεις) Τριγωνομετρικοί αριθμοί οξείας γωνίας
. ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ (Επαναλήψεις Συμπληρώσεις) Τριγωνομετρικοί αριθμοί οξείας γωνίας Έστω οξεία γωνία ω. Αν πάνω στη μία από τις δύο πλευρές της γωνίας πάρουμε τυχαία σημεία Μ και Ν και φέρουμε
Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel.
Στρατηγική επίλυσης προβλημάτων: Διερεύνηση περιμέτρου κι εμβαδού με τη βοήθεια του Ms Excel. Έντυπο Α Φύλλα εργασίας Μαθητή Διαμαντής Κώστας Τερζίδης Σωτήρης 31/1/2008 Φύλλο εργασίας 1. Ομάδα: Ημερομηνία:
Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738)
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ Το μαθηματικό λογισμικό GeoGebra ως αρωγός για τη λύση προβλημάτων γεωμετρικών κατασκευών Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738) Επιβλέπων Καθηγητής
Ανάλυση δραστηριότητας- φύλλο εργασίας
Ανάλυση δραστηριότητας- φύλλο εργασίας Τίτλος : Δύο δραστηριότητες σε ευθεία-κύκλο. α) Η «χρυσή ευθεία» β) οι γεωμετρικοί τόποι μιας οικογένειας κύκλων. Τάξη: Δίωρο μάθημα σε μαθητές Β λυκείου σε αίθουσα
ΥΛΟΠΟΙΗΣΗ ΔΙΑΘΕΜΑΤΙΚΩΝ ΣΥΝΔΙΔΑΣΚΑΛΙΩΝ ΣΤΑ ΘΡΗΣΚΕΥΤΙΚΑ ΚΑΙ ΤΗΝ ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ, ΒΑΣΕΙ ΠΡΟΣΧΕΔΙΑΣΜΕΝΩΝ ΣΕΝΑΡΙΩΝ.
ΥΛΟΠΟΙΗΣΗ ΔΙΑΘΕΜΑΤΙΚΩΝ ΣΥΝΔΙΔΑΣΚΑΛΙΩΝ ΣΤΑ ΘΡΗΣΚΕΥΤΙΚΑ ΚΑΙ ΤΗΝ ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ, ΒΑΣΕΙ ΠΡΟΣΧΕΔΙΑΣΜΕΝΩΝ ΣΕΝΑΡΙΩΝ. ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Σμαράγδα Φαρίδου, Θεολόγος Δημήτριος Χατζημιχαήλ, Φιλόλογος.
Η ώρα του κώδικα (Hour of code)
Η ώρα του κώδικα (Hour of code) ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Ράλια Θωμά, ΠΕ 70 ΣΧΟΛΕΙΟ Δημοτικό Σχολείο Βασιλικών Σαλαμίνας Σαλαμίνα, 30 Απριλίου 2015 1. Συνοπτική περιγραφή της ανοιχτής εκπαιδευτικής πρακτικής Η συγκεκριμένη
GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί. Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης
GEOGEBRA και Γεωμετρία, Μέτρηση και Αριθμοί Ανδρέας Σάββα Σύμβουλος Πληροφορικής ΤΠΕ, Δημοτικής Εκπαίδευσης Ενημερωτική Συνάντηση Ομάδων Εργασίας Ν.Α.Π. Παιδαγωγικό Ινστιτούτο, Λευκωσία, 8 Μαΐου 2012 Ιδιότητες
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ
Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι
ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ
2 Ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 475 ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΕΝΝΟΙΩΝ ΕΝΤΑΣΗ ΚΑΙ ΔΥΝΑΜΙΚΟ ΣΕ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ ΠΟΥ ΔΗΜΙΟΥΡΓΕΙΤΑΙ ΑΠΟ ΔΥΟ ΣΗΜΕΙΑΚΑ ΦΟΡΤΙΑ Μαστρογιάννης Αθανάσιος Εκπαιδευτικός Δευτεροβάθμιας
ΥΛΟΠΟΙΗΣΗ ΔΙΑΘΕΜΑΤΙΚΩΝ ΣΥΝΔΙΔΑΣΚΑΛΙΩΝ ΣΤΑ ΘΡΗΣΚΕΥΤΙΚΑ ΚΑΙ ΤΗΝ ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ, ΒΑΣΕΙ ΠΡΟΣΧΕΔΙΑΣΜΕΝΩΝ ΣΕΝΑΡΙΩΝ.
ΥΛΟΠΟΙΗΣΗ ΔΙΑΘΕΜΑΤΙΚΩΝ ΣΥΝΔΙΔΑΣΚΑΛΙΩΝ ΣΤΑ ΘΡΗΣΚΕΥΤΙΚΑ ΚΑΙ ΤΗΝ ΑΡΧΑΙΑ ΕΛΛΗΝΙΚΗ ΓΛΩΣΣΑ ΤΗΣ Γ ΓΥΜΝΑΣΙΟΥ, ΒΑΣΕΙ ΠΡΟΣΧΕΔΙΑΣΜΕΝΩΝ ΣΕΝΑΡΙΩΝ. ΟΜΑΔΑ ΑΝΑΠΤΥΞΗΣ Σμαράγδα Φαρίδου, Θεολόγος Δημήτριος Χατζημιχαήλ, Φιλόλογος.
Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία
Γωνίες μεταξύ παραλλήλων ευθειών που τέμνονται από τρίτη ευθεία Επαρκές Σενάριο Γνωστικό αντικείμενο: Μαθηματικά (ΔΕ) Δημιουργός: ΙΩΑΝΝΗΣ ΟΙΚΟΝΟΜΟΥ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ,
Το ανοργάνωτο Parking
Δημοτικό Υπαίθριο Parking Περίληψη: Σε κάθε πόλη είναι σημαντικό η δημιουργία όσο το δυνατόν περισσότερων θέσεων parking, ειδικά στο κέντρο της, ώστε να διευκολύνονται οι πολίτες και η εμπορική αγορά.
Η παρούσα εφαρμογή επιχειρεί την αξιοποίηση των ΤΠΕ (δημιουργία ταινιών):
ΣΧΟΛΕΙΟ Οι μαθητές της Πέμπτης Τάξης (2014-2015) του 5 ου Δημοτικού Σχολείου διοργάνωσαν μια ηλεκτρονική καμπάνια ευαισθητοποίησης για τον εκφοβισμό. Η προσπάθεια αυτή είχε ως σκοπό να ευαισθητοποιήσει
ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ
Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Β Λυκείου τμήμα.. Καθηγητής/τρια:Τάξη: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό
222 Διδακτική των γνωστικών αντικειμένων
222 Διδακτική των γνωστικών αντικειμένων 8. Χελωνόκοσμος (απαιτεί να είναι εγκατεστημένο το Αβάκιο) (6 ώρες) Τίτλος: Ιδιότητες παραλληλογράμμων Δημιουργός: Μιχάλης Αργύρης ΕΜΠΛΕΚΟΜΕΝΕΣ ΓΝΩΣΤΙΚΕΣ ΠΕΡΙΟΧΕΣ
ΚΕΦΑΛΑΙΟ 3 ο ΘΕΩΡΙΑ. 3.1 Τριγωνομετρικοί Αριθμοί Γωνίας
ΚΕΦΑΛΑΙΟ 3 ο ΘΕΩΡΙΑ Τριγωνομετρικοί αριθμοί οξείας γωνίας Δίνεται ορθογώνιο τρίγωνο ΑΒΓ, με Α = 90 ο, κάθετες πλευρές β, γ και οξεία γωνία ω. απέναντι κάθετη Ορίζουμε, ημω = υποτείνουσα συνω = προσκείμενη
Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14
Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες
«Ανάλογα ποσά Γραφική παράσταση αναλογίας» ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ
ΠΡΟΤΕΙΝΟΜΕΝΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: Μαθηματικά ΤΑΞΗ: Α Γυμνασίου ΕΝΟΤΗΤΕΣ: 1. Ανάλογα ποσά Ιδιότητες αναλόγων ποσών 2. Γραφική παράσταση σχέσης αναλογίας ΕΙΣΗΓΗΤΕΣ: Άγγελος Γιαννούλας Κωνσταντίνος Ρεκούμης
1.0 Βασικές Έννοιες στην Τριγωνομετρία
.0 Βασικές Έννοιες στην Τριγωνομετρία Εύρεση τριγωνομετρικών αριθμών οξείας γωνίας σε ορθογώνιο τρίγωνο. ΑΠΑΝΤΗΣΗ Έστω ορθογώνιο τρίγωνο ΑΒΓ (Α= 90 0 ). Οι τριγωνομετρικοί αριθμοί μιας οξείας γωνίας ορίζονται
Β Γενική Τριγωνομετρία
Β Γενική Τριγωνομετρία 40 Γενικευμένη γωνία - Γενικευμένα τόξα - Το ακτίνιο Τριγωνομετρικός κύκλος - Τριγωνομετρικοί αριθμοί γενικευμένης γωνίας 1. Η γωνία ω του παρακάτω σχήματος είναι θετική. α) Συνδέστε
Φύλλο Εργασίας για την y=αx 2
Πρόβλημα Σε ένα τετραγωνικό περιβόλι πλευράς 10m πρόκειται να χτιστεί μια αποθήκη σχήματος ορθογωνίου, όπως φαίνεται στο διπλανό σχήμα. Α) Να βρεθούν οι διαστάσεις της αποθήκης συναρτήσει του x, αν γνωρίζετε
Η έννοια της κάλυψης του επιπέδου με κανονικά πολύγωνα.
9.1.3 Σενάριο 3. Διερεύνηση των κανονικών πολυγώνων σε περιβάλλον που αξιοποιεί λογισμικό συμβολικής έκφρασης, την κοινωνική δικτύωση και τη συλλογική διαπραγμάτευση. Γνωστική περιοχή: Μαθηματικά Β Γυμνασίου.
τα βιβλία των επιτυχιών
Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από
Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ
1 ο ΣΥΝΕΔΡΙΟ ΣΤΗ ΣΥΡΟ ΤΠΕ ΣΤΗΝ ΕΚΠΑΙΔΕΥΣΗ 171 Η ΘΕΡΜΟΚΡΑΣΙΑ ΤΩΝ ΑΘΗΝΩΝ Νίκος Καμπράνης Μαθηματικός, Επιμορφωτής νέων τεχνολογιών http://www.geocities.com/kampranis ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΤΑΞΗ:.
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα:
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:. -. (Προτείνεται να διατεθούν 5 διδακτικές ώρες).3 (Προτείνεται να διατεθούν
ΘΕΩΡΗΜΑ BOLZANO Μία διδακτική προσέγγιση
Μία διδακτική προσέγγιση ΣΕΝΑΡΙΟ Δ. Ε. ΚΟΝΤΟΚΩΣΤΑΣ ΜΑΘΗΜΑΤΙΚΟΣ Σενάριο τεσσάρων 2ωρων μαθημάτων διδασκαλίας της Γ Λυκείου στα Μαθηματικά Κατεύθυνσης Τίτλος σεναρίου: Διερεύνηση Θεωρήματος Bolzano (Θ.Β.)
Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ
ΞΑΝΘΗ ΔΕΚΕΜΒΡΙΟΣ 2016 ΙΑΝΟΥΑΡΙΟΣ 2017 Επιμορφωτικό Σεμινάριο Διδακτικής των Μαθηματικών με ΤΠΕ ΕΠΙΜΟΡΦΩΤΗΣ : ΓΙΑΝΝΗΣ ΚΟΥΤΙΔΗΣ Μαθηματικός www.kutidis.gr Διδακτική της Άλγεβρας με χρήση ψηφιακών τεχνολογιών
«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή»
«Οι γραφικές παραστάσεις απαραίτητο εργαλείο στη φαρέτρα του μαθητή» Αρδαβάνη Καλλιόπη 1, Μαργιόρα Φιλίππα 2, Μαυρουδής Σπύρος 3 1 Καθηγήτρια Μαθηματικών 3ο Γυμνάσιο Γλυφάδας, επιμορφώτρια Β επιπέδου popiardv@hotmail.com
ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ
ΣΕΝΑΡΙΟ 1 Ο ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Γνωστική περιοχή: Γεωµετρία Β Λυκείου Αναλογίες γεωµετρικών µεγεθών, Οµοιότητα τριγώνων, Εµβαδόν Τετραγώνου. Εµβαδόν Τριγώνου Βασικές γνώσεις Ευκλείδειας Γεωµετρίας Α
Cabri II Plus. Λογισμικό δυναμικής γεωμετρίας
Cabri II Plus Λογισμικό δυναμικής γεωμετρίας Cabri II Plus Ο Jean-Marie LABORDE ξεκίνησε το 1985 το πρόγραμμα με σκοπό να διευκολύνει τη διδασκαλία και την εκμάθηση της Γεωμετρίας Ο σχεδιασμός και η κατασκευή
ΔΙΔΑΣΚΑΛΙΑ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ: ΜΕΛΕΤΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ 1 ου ΒΑΘΜΟΥ
386 ΔΙΔΑΣΚΑΛΙΑ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ: ΜΕΛΕΤΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ 1 ου ΒΑΘΜΟΥ Λαμπρινίδης Κωνσταντίνος Καθηγητής Δευτεροβάθμιας Εκπαίδευσης. mail@14gm-perist.att.sch.gr ΠΕΡΙΛΗΨΗ Α) Αναλυτική χάραξη
0 0 30 π/6 45 π/4 60 π/3 90 π/2
Βασικός Πίνακας Μοίρες (Degrees) Ακτίνια (Radians) ΓΩΝΙΕΣ 0 0 30 π/6 45 π/4 60 π/3 90 π/2 Έστω ότι θέλω να μετατρέψω μοίρες σε ακτίνια : Έχω μία γωνία σε φ μοίρες. Για να την κάνω σε ακτίνια, πολλαπλασιάζω
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014
ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.