ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ
|
|
- Κέφαλος Αποστόλου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι η κατανόηση της γραφικής παράστασης της συνάρτησης f(x)=ax+b δηλαδή της ευθείας και της σύνδεσή της με τον πίνακα τιμών και τον τύπο της συνάρτησης. Οι μαθητές θα ασκηθούν ώστε να ερμηνεύουν το ρόλο των παραμέτρων α και β στην ευθεία, και να βρίσκουν τα σημεία στα οποία αυτή τέμνει τους άξονες καθώς επίσης και το πότε τέτοιες ευθείες είναι παράλληλες ή ταυτίζονται. 2) Η διδασκαλία θα υλοποιηθεί στην αίθουσα διδασκαλίας και η χρονική διάρκεια θα είναι 1 διδακτικής ώρας. Οι μαθητές θα εργαστούν σε ομάδες ανά δύο (ζεύγος μαθητών στο ίδιο θρανίο) με βάση φύλλο εργασίας που θα τους δοθεί. Β) Διδακτική μέθοδος και εργαλεία. Τα διδακτικά εργαλεία που θα χρησιμοποιηθούν είναι το φύλλο εργασίας και ο πίνακας. Η μέθοδος που θα χρησιμοποιηθεί είναι η «καθοδηγούμενη ανακάλυψη». Συγκεκριμένα οι μαθητές θα εμπλακούν σε δραστηριότητες με τις οποίες θα κληθούν να βγάλουν συμπεράσματα και να προχωρήσουν σε γενικεύσεις μετά από παρατηρήσεις που θα κάνουν. Σε αυτό θα συμβάλει η στοχευμένη βοήθεια και η συστηματική καθοδήγηση του καθηγητή. Σε κάθε μαθητή θα δοθεί ένα φύλλο εργασίας, στο οποίο θα συνεργάζεται με το συμμαθητή του στο ίδιο θρανίο. Όταν ο διδάσκων κρίνει σε κάθε βήμα ότι η εργασία έχει προχωρήσει αρκετά, θα ερωτήσει ή θα σηκώσει ένα μαθητή στον πίνακα, για να παρουσιάσει την εργασία του και να διατυπώσει, όπου χρειάζεται, το σχετικό συμπέρασμα-κανόνα. Η εργασία αυτή επαναλαμβάνεται μέχρι να ολοκληρωθεί η διδασκαλία.
2 Γ) Απαραίτητες γνώσεις που πρέπει να διαθέτουν οι μαθητές. 1) Τι είναι σύστημα καρτεσιανών συντεταγμένων στο επίπεδο και πως ορίζεται η θέση ενός σημείου σ αυτό. 2) Τι ονομάζουμε γωνία που σχηματίζει μια ευθεία με τον άξονα χ χ και πως ορίζεται η εφαπτόμενη μιας γωνίας. 3) Τι είναι η γραφική παράσταση συνάρτησης. Δ) Διδακτικοί στόχοι. 1) Να κατανοήσουν οι μαθητές την έννοια της γραφικής παράστασης της συνάρτησης f(χ)=αχ+β σαν ένα σύνολο σημείων και τη σχέση που έχουν αυτά τα σημεία με ένα πίνακα τιμών της συνάρτησης. 2) Να μπορούν να βρίσκουν αν ένα σημείο ανήκει στην ευθεία, τα σημεία στα οποία η ευθεία τέμνει τους άξονες και τη σχετική της θέση ως προς τον άξονα χ χ. 3) Να μπορούν να ερμηνεύουν το ρόλο των παραμέτρων α και β στην ευθεία. 4) Να μπορούν να διακρίνουν πότε τέτοιες ευθείες είναι παράλληλες ή ταυτίζονται. Ε) Αναμενόμενη διδακτική πορεία. Α Φάση: Σ αυτό το μάθημα αρχικά γίνεται υπενθύμιση προς τους μαθητές πως ορίζεται η γωνία που σχηματίζει μια ευθεία με τον άξονα χ χ και η εφαπτόμενη μιας τέτοιας γωνίας. Στη συνέχεια θα ζητηθεί από τους μαθητές να συμπληρώσουν το 1 ο φύλλο εργασίας όπου καλούνται να συμπληρώσουν τον πίνακα και στη συνέχεια να παραστήσουν τα σημεία πάνω στο ορθοκανονικό σύστημα και να κάνουν παρατηρήσεις για τη θέση των σημείων και τι θα συμβεί αν το πεδίο ορισμού της συνάρτησης δεν περιλαμβάνει μόνο 5 στοιχεία αλλά είναι ένα διάστημα ή ολόκληρο το σύνολο των πραγματικών αριθμών. Παρατηρείται από τους μαθητές η πύκνωση των σημείων που προκύπτουν. Γίνεται γενίκευση και εξαγωγή συμπερασμάτων σχετικά με τη γραφική παράσταση της συνάρτησης f(x)=αx+β. Συμπληρώνοντας το δεύτερο πίνακα οι μαθητές ερμηνεύουν το ρόλο των παραμέτρων α και β και τι εκφράζει ο συντελεστής διευθύνσεως της ευθείας. Οι ερωτήσεις θα οδηγήσουν τους μαθητές στην διατύπωση κανόνων σχετικά με τη σχέση των αριθμών α και β με τη γωνία που σχηματίζει η ευθεία με τον χ χ και με τα σημεία στα οποία αυτή τέμνει τους άξονες. Μέση διάρκεια 20 λεπτά. Β Φάση:
3 Οι μαθητές συμπληρώνουν το 2ο φύλλο εργασίας και με τη βοήθεια του διδάσκοντα καταλήγουν σε συμπεράσματα σχετικά με τα σημεία στα οποία μια ευθεία τέμνει τους άξονες και την παραλληλία ευθειών. Επίσης εξετάζονται ειδικές περιπτώσεις ευθειών (α=0, β=0, α=1, α=-1). Μέση διάρκεια 15 λεπτά. Γ Φάση: Στη συνέχεια με την καθοδήγηση και τη βοήθεια του καθηγητή ζητείται από τους μαθητές να συμπληρώνουν το 3 ο φύλλο εργασίας. Η εργασία γίνεται σε ζεύγη ανά θρανίο και στη συνέχεια στον πίνακα, όπου οι μαθητές με βάση τα προηγούμενα συμπεράσματα καλούνται να απαντήσουν στα ερωτήματα και με αυτόν τον τρόπο αξιολογείται άμεσα η επίτευξη των στόχων. Μέση διάρκεια 10 λεπτά. Στους μαθητές δίνεται σαν άσκηση για το σπίτι η συμπλήρωση του 4 ου φύλου εργασίας καθώς επίσης και οι ασκήσεις του βιβλίου στη σελίδα
4 Δίνεται η συνάρτηση f(χ)=2χ+1 με χ Συμπληρώστε τον παρακάτω πίνακα τιμών: χ f(χ) Συνάρτηση f(x)=αx+ β ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 ο Α={ 2, 1, 0,1, 2}. Γράψτε τις συντεταγμένες των σημείων Μ(χ,f(χ)) με χ Α : Μ 1 (.,..), Μ 2 (.,..), Μ 3 (.,..), Μ 4 (.,..), Μ 5 (.,..) Στη συνέχεια παραστήστε γραφικά αυτά τα σημεία στο παρακάτω σύστημα συντεταγμένων. Παρατηρούμε ότι τα σημεία βρίσκονται πάνω σε.. που σχηματίζει γωνία ω με τον άξονα χ χ. Η εφαπτομένη της γωνίας ω είναι x1 x2 f(x1 f(x ) 2) f x2 f x1 λ = ( ) ( ) x x 2 1 Ποια είναι η σχέση του λόγου λ του παραπάνω πίνακα με την εφω.
5 ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 2 Α) Στο παρακάτω σύστημα αξόνων να γίνει η γραφική παράσταση των συναρτήσεων: f(x)= -2x g(x)= -2x+1 h(x)= -2x-3 ο Β) Να βρεθούν τα σημεία στα οποία οι ευθείες αυτές τέμνουν τους άξονες. Γ) Σε κάθε περίπτωση να σημειώσετε τη γωνία που σχηματίζει η αντίστοιχη ευθεία με τον άξονα χ χ και να βρείτε το συντελεστή διευθύνσεως της. Τι παρατηρείτε;... Δ) Ποια είναι τα συμπεράσματά σας για τις ευθείες της μορφής y=-2x+β όπου β. Ε) Δύο ευθείες ε 1 και ε 2 με εξισώσεις y=α 1 x+β 1 και y=α 2 x+β 2 αντίστοιχα είναι : παράλληλες αν. και ταυτίζονται αν.
6 ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 3 Ο Δίνονται οι ευθείες: ε : y = (λ 2) x+ 11, ε : y = 5x+ β όπου λ,β. 1 2 α) Να βρείτε τις τιμές του λ για τις οποίες ε 1// ε 2. β) Αν η ευθεία ε 2 διέρχεται από το σημείο Α (1, 15) να αποδείξετε ότι β=10 γ) Η ευθεία ε 1 τέμνει τον άξονα ψ ψ στο σημείο Β (.,.). δ) Να βρείτε τις τιμές του λ ώστε η ευθεία ε 1 να σχηματίζει γωνία αμβλεία με τον άξονα χ χ.. ε) Να βρείτε τις τιμές του λ ώστε η ευθεία ε1 να είναι παράλληλη με τον άξονα χ χ.. στ) Να γράψετε την εξίσωση μιας ευθείας που να τέμνει τον άξονα yy στο σημείο ( 0, 4) Γ και να είναι παράλληλη προς την ε 2.
7 ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 4 Ο Στο παρακάτω σύστημα αξόνων να γίνει η γραφική παράσταση της συνάρτησης: f(x) = 3x + 5, x 2 2, 2 < x 1 2x + 4, x > 1..
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ
Μυλωνάκης Κων/νος ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Α Λυκείου τμήμα.. Καθηγητής/τρια: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό αντικείμενο της διδασκαλίας είναι
ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ. Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ
Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΔΕΙΚΤΙΚΟ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΓΕΩΜΕΤΡΙΑ B ΛΥΚΕΙΟΥ Σχολείο: Ημερομηνία: / / Β Λυκείου τμήμα.. Καθηγητής/τρια:Τάξη: Α) Το θέμα και το μαθησιακό περιβάλλον. 1) Το γνωστικό
α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.
ΜΟΝΟΤΟΝΙΑ. ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ Μια συνάρτηση f λέγεται: α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν για οποιαδήποτε χ,χ Δ με χ
ΕΦΑΠΤΟΜΕΝΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ
ΕΝΟΤΗΤΑ 1.4. 5 ο ΜΑΘΗΜΑ ΕΦΑΠΤΟΜΕΝΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΜΙΑΣ ΣΥΝΑΡΤΗΣΗΣ Σκοπός της ενότητας Σκοπός της ενότητας είναι ο ορισμός εφαπτομένης της γραφικής παράστασης μιας συνάρτησης σε κάποιο σημείο της,
1ο τεταρτημόριο x>0,y>0 Ν Β
ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ( 6.2 ) Καρτεσιανό σύστημα συντεταγμένων ονομάζεται ένα επίπεδο εφοδιασμένο με δύο κάθετους άξονες οι οποίοι έχουν κοινή αρχή Ο και είναι αριθμημένοι με τις ίδιες μονάδες μήκους.
Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx
Παιδαγωγικό σενάριο : Μελέτη της συνάρτησης y=αx Στόχος: Το παιδαγωγικό σενάριο αναφέρεται στη μελέτη της συνάρτησης y=αx και στη κατανόηση της κλίσης ευθείας. Λογισμικό: Για την εφαρμογή του σεναρίου
Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης
Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις
6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ
ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς
Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης
Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις
ΣΧΕ ΙΑΣΜΟΣ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ
ΣΧΕ ΙΑΣΜΟΣ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ 140 ΣΧΕ ΙΑΣΜΟΣ ΤΗΣ ΑΞΙΟΛΟΓΗΣΗΣ Για την αξιολόγηση του µαθητή και της διδασκαλίας ενός µαθήµατος θα πρέπει να υπάρχει ένας συνολικός σχεδιασµός κατά ευρύτερη διδακτική ενότητα
ΕΝΔΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΔΙΑΣΜΟΥ ΤΗΣ ΔΙΔΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ.
Στέφανος Κεΐσογλου Σχολικός σύμβουλος ΕΝΕΙΚΤΙΚΟΙ ΤΡΟΠΟΙ ΣΧΕΙΑΣΜΟΥ ΤΗΣ ΙΑΣΚΑΛΙΑΣ ΤΗΣ ΜΕΛΕΤΗΣ ΠΡΟΣΗΜΟΥ ΤΡΙΩΝΥΜΟΥ. Στο κείμενο που ακολουθεί έχει γίνει προσπάθεια να φανεί ότι ο σχεδιασμός της διδασκαλίας
Ζ ΕΝΟΤΗΤΑ. Μελέτη βασικών συναρτήσεων. Ζ.1 (7.1 παρ/φος σχολικού βιβλίου) Ζ.2 (7.2 παρ/φος σχολικού βιβλίου) Ζ.3 (7.3 παρ/φος σχολικού βιβλίου) 2
Ζ ΕΝΟΤΗΤΑ Μελέτη βασικών συναρτήσεων Ζ.1 (7.1 παρ/φος σχολικού βιβλίου) Μελέτη της συνάρτησης f(x) = αx Ζ. (7. παρ/φος σχολικού βιβλίου) Μελέτη της συνάρτησης f x α x Ζ.3 (7.3 παρ/φος σχολικού βιβλίου)
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 3: ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο 2.1: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ ΘΕΜΑ Β
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΦΑΠΤΟΜΕΝΗ [Κεφάλαιο.: Πρόβλημα εφαπτομένης του σχολικού βιβλίου]. ΠΑΡΑΔΕΙΓΜΑΤΑ Παράδειγμα. ΘΕΜΑ Β Έστω μια παραγωγίσιμη στο συνάρτηση, τέτοια ώστε για κάθε x
ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ
ΣΕΝΑΡΙΟ ΤΠΕ ΓΕΝΙΚΕΥΜΕΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ - ΝΟΜΟΣ ΣΥΝΗΜΙΤΟΝΩΝ Γνωστική Περιοχή: Γεωμετρία Β Λυκείου Θέμα Το Πυθαγόρειο Θεώρημα είναι γνωστό στους μαθητές από το Γυμνάσιο. Το προτεινόμενα θέμα αφορά την
Η λογαριθµική συνάρτηση και οι ιδιότητές της
ΕΚΦΩΝΗΣΗ ΕΛΕΥΘΕΡΟΥ ΘΕΜΑΤΟΣ Η λογαριθµική συνάρτηση και οι ιδιότητές της Η διδασκαλία της λογαριθµικής συνάρτησης, στο σχολικό εγχειρίδιο της Β Λυκείου, έχει σαν βάση την εκθετική συνάρτηση και την ιδιότητα
ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου
ΣΕΝΑΡΙΟ: Εφαπτομένη οξείας γωνίας στη Β Γυμνασίου Συγγραφέας: Κοπατσάρη Γεωργία Ημερομηνία: Φλώρινα, 5-3-2014 Γνωστική περιοχή: Μαθηματικά (Γεωμετρία) Β Γυμνασίου Προτεινόμενο λογισμικό: Προτείνεται να
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1
Δ Ι Α Γ Ω Ν Ι Σ Μ Α Θ έ μ α Α Α. α. Πότε η εξίσωση αx + βx + γ = 0, α 0 έχει διπλή ρίζα; Ποια είναι η διπλή ρίζα της; 4 μονάδες β. Ποια μορφή παίρνει το τριώνυμο αx + βx + γ, α 0, όταν Δ = 0; 3 μονάδες
Η συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.
Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί
wwwaskisopolisgr Άλγεβρα Α Λυκείου Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ 006-08 Δίνεται ότι και y Πραγματικοί αριθμοί α) i Να βρεθούν τα όρια μεταξύ των οποίων περιέχεται το ii Να βρεθούν τα όρια μεταξύ
ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 5 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ Σ. Ανδρεαδάκης Β. Κατσαργύρης Σ. Παπασταυρίδης Γ. Πολύζος Α. Σβέρκος Η συγγραφή και η επιμέλεια του βιβλίου πραγματοποιήθηκε υπό την αιγίδα
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ
ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό σας. ΚΕΦΑΛΑΙΟ 1 1. Να συμπληρώσετε
ΝΙΚΟΣ ΤΑΣΟΣ. Αλγ ε β ρ α. Γενικής Παιδειασ
ΝΙΚΟΣ ΤΑΣΟΣ Αλγ ε β ρ α Β Λυ κ ε ί ο υ Γενικής Παιδειασ Α Τό μ ο ς 3η Εκ δ ο σ η Πρόλογος Το βιβλίο αυτό έχει σκοπό και στόχο αφενός μεν να βοηθήσει τους μαθητές της Β Λυκείου να κατανοήσουν καλύτερα την
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 6 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός
Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 6 Θέμα Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και την 6.3 Ασκήσεις: όλες Άσκηση 1 Δίνεται η συνάρτηση f, με x 5x+ 6 f ( x) =. x 3 α) Να βρείτε
Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων. Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ. Γραφική παράσταση τριωνύµου
Σενάριο 10. Ελάχιστη Απόσταση δυο Τρένων Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η συνάρτηση ψ= αχ 2 +βχ+γ Γραφική παράσταση τριωνύµου Εξισώσεις κίνησης. Θέµα: To προτεινόµενο θέµα αφορά την µελέτη της µεταβολής
ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
1 ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Πότε µια συνάρτηση f σε ένα διάστηµα του πεδίου ορισµού της λέγεται γνησίως αύξουσα και πότε γνησίως φθίνουσα; 2. Να αποδείξετε ότι η παράγωγος
Σημεία τομής της ευθείας αx+βy=γ με τους άξονες
ΣΥΝΑΡΤΗΣΗ y=αx+β Η ευθεία με εξίσωση y=αx+β. ΣΥΝΑΡΤΗΣΗ y=αx+β Η γραφική παράσταση της y = αx + β, β 0 είναι µια ευθεία παράλληλη της ευθείας µε εξίσωση y = αx, που διέρχεται από το σημείο β του άξονα y'y.
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ )
5 1 1 1η σειρά ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ( ΘΕΡΙΝΑ ) ΘΕΜΑ 1 Α. Ας υποθέσουμε ότι x 1,x,...,x κ είναι οι τιμές μιας μεταβλητής X, που αφορά τα άτομα ενός δείγματος μεγέθους
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ
6ο κεφάλαιο: Συναρτήσεις ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΑΠΟΣΤΟΛΟΥ ΓΙΩΡΓΟΣ ΜΑΘΗΜΑΤΙΚΟΣ ) Copyright 2014 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoo.com άδεια χρήσης 3η Εκδοση, Αύγουστος 2014 Περιεχόµενα
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΑΛΓΕΒΡΑ ΘΕΜΑ A Α1. Να αποδείξετε ότι: αβ α β (Μονάδες 15) A. Χαρακτηρίστε ως Σωστό (Σ) ή Λάθος (Λ) τις ακόλουθες προτάσεις: 1. Η εξίσωση
Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Function Probe.
9.3.3 Σενάριο 10. Τριγωνομετρικές συναρτήσεις Γνωστική περιοχή: Άλγεβρα Β Λυκείου. Η συνάρτηση ψ= ρ ημ(λχ+κ). Γραφική παράσταση τριγωνομετρικών συναρτήσεων. Γραφική επίλυση τριγωνομετρικής εξίσωσης. Θέμα:
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 ΑΒ ΒΓ ΓΔ ΔΑ ΟΑ ΟΓ ΒΔ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ 1 ΕΝΟΤΗΤΑ : ΠΑΡΑΓΡΑΦΟΣ 3.2 - ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΜΑΘΗΜΑ :ΠΑΡΑΣΤΑΣΗ ΣΗΜΕΙΩΝ, ΥΠΟΛΟΓΙΣΜΟΣ ΜΗΚΩΝ -ΕΜΒΑΔΟΝ ΑΣΚΗΣΗ Δίνονται τα σημεία Α=(1,2), Β=(1,-2), Γ = (-1,-2), Δ=(-1,-2) α ) σε ένα
Δημήτρης Διαμαντίδης, Γεωργία Ευθυμίου, Αναστάσιος Κουπετώρης, Ιωάννης Σταμπόλας. Άλγεβρα Α Λυκείου B ΤΟΜΟΣ
Δημήτρης Διαμαντίδης, Γεωργία Ευθυμίου, Αναστάσιος Κουπετώρης, Ιωάννης Σταμπόλας Άλγεβρα Α Λυκείου B ΤΟΜΟΣ Θέση υπογραφής δικαιούχου δικαιωμάτων πνευματικής ιδιοκτησίας, εφόσον η υπογραφή προβλέπεται από
ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ
ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ ΙΟΥΝΙΟΥ 4 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:
ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ
ΣΕΝΑΡΙΟ του Κύπρου Κυπρίδηµου, µαθηµατικού ΤΟ ΠΡΟΣΗΜΟ ΤΟΥ ΤΡΙΩΝΥΜΟΥ Περίληψη Στη δραστηριότητα αυτή οι µαθητές καλούνται να διερευνήσουν το πρόσηµο του τριωνύµου φ(x) = αx 2 + βx + γ. Προτείνεται να διδαχθεί
6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ
6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ακριβώς ένα στοιχείο
ΔΙΔΑΣΚΑΛΙΑ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ: ΜΕΛΕΤΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ 1 ου ΒΑΘΜΟΥ
386 ΔΙΔΑΣΚΑΛΙΑ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ: ΜΕΛΕΤΗ ΤΗΣ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ 1 ου ΒΑΘΜΟΥ Λαμπρινίδης Κωνσταντίνος Καθηγητής Δευτεροβάθμιας Εκπαίδευσης. mail@14gm-perist.att.sch.gr ΠΕΡΙΛΗΨΗ Α) Αναλυτική χάραξη
Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.
Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη
ΘΕΜΑ 2. Δίνονται οι συναρτήσεις
ΘΕΜΑ 2 Δίνονται οι συναρτήσεις (, x R 3 f ( x) = x και g x) = x α) Να δείξετε ότι οι γραφικές παραστάσεις των συναρτήσεων f, g τέμνονται σε τρία σημεία τα οποία και να βρείτε. (Μονάδες 13) β) Αν Α, Ο,
Σύνολα. 1) Με αναγραφή των στοιχείων π.χ. 2) Με περιγραφή των στοιχείων π.χ.
Σύνολα Ορισµός συνόλου (κατά Cantor): Σύνολο είναι κάθε συλλογή αντικειµένων, που προέρχεται από το µυαλό µας ή την εµπειρία µας, είναι καλά ορισµένο και τα αντικείµενα ξεχωρίζουν το ένα από το άλλο, δηλαδή
Εφαπτομένη γραφικής παράστασης συνάρτησης
Εφαπτομένη Γραφικής Παράστασης Συνάρτησης 1 Στοιχεία Θεωρίας Εφαπτομένη γραφικής παράστασης συνάρτησης Αν η f συνάρτηση είναι παραγωγίσιμη στο 0, τότε η εφαπτομένη ε της γραφικής παράστασης της συνάρτησης
Ευθείες και παράγωγοι
Ευθείες και παράγωγοι Όταν κατασκευάζουμε τη γραφική παράσταση μιας συνάρτησης, μπορούμε συχνά να σχεδιάζουμε ευθείες, οι οποίες περνούν «ξυστά» από τη γραφική παράσταση. Με άλλα λόγια, δεν την τέμνουν,
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (42)
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Θέμα ο (4) -- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Άλγεβρας Β Λυκείου - Φεργαδιώτης Αθανάσιος ΚΕΦΑΛΑΙΟ
Κατακόρυφη - Οριζόντια μετατόπιση συνάρτησης
ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ Β ΕΠΙΠΕΔΟΥ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗΝ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΚΣΕ 4 ου ΣΕΚ ΠΕΡΙΣΤΕΡΙΟΥ ΕΠΙΜΟΡΦΩΤΗΣ: ΜΗΤΡΟΓΙΑΝΝΟΠΟΥΛΟΥ ΑΓΓΕΛΙΚΗ ΔΙΔΑΚΤΙΚΟ ΣΕΝΑΡΙΟ Κατακόρυφη - Οριζόντια
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 1 ο : ΣΥΣΤΗΜΑΤΑ 1. α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε
3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή
ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του
ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ
Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε
y είναι πάντα σταθερός και ίσος µε α, δηλα- y x 0.O λόγος αυτός λέγεται κλίση της ευθείας y = αx. x ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ
ΜΕΡΟΣ Α. ΣΥΝΑΡΤΗΣΗ =α. ΣΥΝΑΡΤΗΣΗ =α Ποσά ανάλογα- Η συνάρτηση =α Δύο ποσά λέγονται ανάλογα, όταν πολλαπλασιάζοντας τις τιµές του ενός ποσού µε έναν αριθµό, τότε και οι αντίστοιχες τιµές του άλλου πολλαπλασιάζονται
lim είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο x 0. β) Να εξετάσετε τη συνέχεια της συνάρτησης f (x) =
Ερωτήσεις ανάπτυξης. ** α) Να αποδείξετε ότι αν τα όρια lim - f () - f - είναι πραγµατικοί αριθµοί, τότε η f είναι συνεχής στο. ( ) και β) Να εξετάσετε τη συνέχεια της συνάρτησης f () = lim + στο σηµείο
Κάθε φορά, που νιώθουμε τρελή λαχτάρα να μιλήσουμε για ευθείες, φανταζόμαστε εξισώσεις της παρακάτω μορφής : y = αx + β
ΕΥΘΕΙΕΣ Κάθε φορά, που νιώθουμε τρελή λαχτάρα να μιλήσουμε για ευθείες, φανταζόμαστε εξισώσεις της παρακάτω μορφής : y = αx + β Η εξίσωση αυτή θα πρέπει να γίνει στο μυαλό μας συνώνυμη της λέξης και του
Μάθηµα 8. , δέχεται εφαπτοµένη στο σηµείο της ( k, f ( k)), k D
Μάθηµα 8 Κεφάλαιο : ιαφορικός Λογισµός Θεµατικές Ενότητες: Εξίσωση Εφαπτοµένης Η προϋπόθεση ύπαρξης εφαπτοµένης (ένα κατά συνθήκη ψεύδος) και η εξίσωσή της Η γραφική παράσταση µιας συνάρτησης µε πεδίο
Σχέδια μαθήματος Μαθηματικών Α ΕΠΑ.Λ. για τη συνδιδασκαλία
ο ΠΕ.Κ.Ε.Σ.ΝΟΤΙΟΥ ΑΙΓΑΙΟΥ, 1ο, ο ΕΠΑ.Λ. ΡΟΔΟΥ Σχέδια μαθήματος Μαθηματικών Α ΕΠΑ.Λ. για τη συνδιδασκαλία Στο πλαίσιο της ΜΝΑΕ για τα ΕΠΑ.Λ. 1ο και ο ΕΠΑ.Λ. Ρόδου 018-019 ΠΡΟΛΟΓΟΣ Στη συνέχεια δίνονται
«Διδακτική Δραστηριότητα στην αίθουσα των υπολογιστών»
«Διδακτική Δραστηριότητα στην αίθουσα των υπολογιστών» Καθηγητής ΜΠΟΥΖΑΛΗΣ ΜΙΧΑΛΗΣ e mail mbouzalis@otenet.gr Κλάδος Π Ε, Μαθηματικός Σχολείο ο Ενιαίο Λύκειο Καλαμαριάς Τάξη Θετική - Τεχνολογική κατεύθυνση
ΘΕΜΑ 2 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο.
α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. (Μονάδες 10) β) Να παραστήσετε γραφικά στο επίπεδο τις δυο εξισώσεις
με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4).
Δίνεται το σύστημα: x 2y= 9 ax+ βy= γ με παραμέτρους α, β, γ R α) Να επιλέξετε τιμές για τις παραμέτρους α, β, γ, ώστε το σύστημα αυτό να έχει μοναδική λύση το ζεύγος (1,-4). (Μονάδες 13) β) Να επιλέξετε
Μαθηματικά Κατεύθυνσης (Προσανατολισμού)
Θέματα ενδοσχολικών εξετάσεων στα Μαθηματικά Προσανατολισμού Β Λυκείου Σχ έτος 03-04, Ν Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Μαθηματικά Κατεύθυνσης (Προσανατολισμού) ΣΧΟΛΙΚΟ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΜΑΘΗΜΑ ΣΤΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ
ΕΠΑΝΑΛΗΠΤΙΚΟ ΜΑΘΗΜΑ ΣΤΙΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Β ΛΥΚΕΙΟΥ Mια καινοτόμος συνδιδασκαλία των εκπαιδευτικών: ΚΑΒΒΑΔΑ ΕΥΑΓΓΕΛΙΑ 2 ο ΛΥΚΕΙΟ ΠΕΥΚΗΣ ΚΑΡΔΑΜΙΤΣΗΣ ΣΠΥΡΟΣ Πρότυπο Πειραματικό Λύκειο ΑΝΑΒΡΥΤΩΝ
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 3 Ιανουαρίου 2019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑΤΑ
ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 3 Ιανουαρίου 019 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΘΕΜΑΤΑ Α1 Αν μια συνάρτηση f είναι παραγωγίσιμη στο σημείο x 0, να αποδείξετε ότι
Διδακτική Μαθηματικών Ι Ενδεικτικές οδηγίες για τη δραστηριότητα
Διδακτική Μαθηματικών Ι Ενδεικτικές οδηγίες για τη δραστηριότητα Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Διδακτική Μαθηματικών Ι: Ενδεικτικές οδηγίες για τη δραστηριότητα (εργασία) (To
ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ
ΕΠΙΜΟΡΦΩΣΗ ΤΩΝ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΓΙΑ ΤΗΝ ΑΞΙΟΠΟΙΗΣΗ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΩΝ ΤΠΕ ΣΤΗ ΔΙΔΑΚΤΙΚΗ ΠΡΑΞΗ ΔΙΔΑΣΚΑΛΙΑ ΤΗΣ ΕΝΝΟΙΑΣ ΤΟΥ ΟΡΙΟΥ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΕΞ ΑΡΙΣΤΕΡΩΝ ΚΑΙ ΕΚ ΔΕΞΙΩΝ ΣΥΓΓΡΑΦΕΑΣ: ΚΟΥΤΙΔΗΣ ΙΩΑΝΝΗΣ
ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός
01 ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΙΑ ΕΞΕΤΑΣΕΙΣ Βαγγέλης ΕΠΙΜΕΛΕΙΑ Βαγγέλης Νικολακάκης Μαθηματικός ΣΗΜΕΙΩΜΑ Το παραπάνω φυλλάδιο φτιάχτηκε για να προσφέρει λίγη βοήθεια κυρίως στους
ΑΣΚΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ
Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΣΥΝΟΛΑ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ «ΣΩΣΤΟ ΛΑΘΟΣ». {,3,5,7,... } { / = ν +, ν Ν} =. = {} 0 3. Αν Α Β τότε Α Β = Α 4. 5 {,3,5,7 } 5. Αν Α= {, 3,7} και Β= {,3} 7, τότε Α=Β 6.
Το σενάριο προτείνεται να διεξαχθεί με τη χρήση του Cabri Geometry II.
9.2.3 Σενάριο 6. Συμμεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωμετρία Β Λυκείου. Συμμεταβολή μεγεθών. Εμβαδόν ισοσκελούς τριγώνου. Σύστημα συντεταγμένων. Γραφική παράσταση συνάρτησης. Μέγιστη
«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano»
«Χρήση εκπαιδευτικού λογισμικού για τη διδασκαλία του θεωρήματος του Bolzano» Ιορδανίδης Ι. Φώτιος Καθηγητής Μαθηματικών, 2 ο Γενικό Λύκειο Πτολεμαΐδας fjordaneap@gmail.com ΠΕΡΙΛΗΨΗ Το θεώρημα του Bolzano
Μαθηματικές Συναντήσεις
Μαθηματικές Συναντήσεις ΣΗΜΕΙΩΜΑ ο / ΝΟΕΜΒΡΙΟΣ ΔΕΚΕΜΒΡΙΟΣ 7 Θέματα Ανάλυσης για διδασκαλία στην τάξη (Διαφορικός και Ολοκληρωτικός Λογισμός / εκδοχή η) Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών
3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ
ΚΩΝΙΚΕ ΤΟΜΕ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ 1. Να σημειώσετε το σωστό () ή το λάθος () στους παρακάτω ισχυρισμούς: 1. Η εξίσωση + = α (α > 0) παριστάνει κύκλο.. Η εξίσωση + + κ + λ = 0 µε κ, λ 0 παριστάνει
ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ
ΕΦΑΠΤΟΜΕΝΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Ορισμός εφαπτομένης καμπύλης Αν μία συνάρτηση f είναι παραγωγίσιμη στο x, τότε ορίζουμε ως εφαπτομένη της γραφικής παράστασης της f στο σημείο Α(x, f(x )) την
Τράπεζα Θεμάτων-4ο Β Λυκείου- ΑΛΓΕΒΡΑ
Τράπεζα Θεμάτων-ο Β Λυκείου- ΑΛΓΕΒΡΑ ΘΕΜΑ (178) Δίνεται η συνάρτηση f (x) f x 8 x 8 x α) Να βρείτε το πεδίο ορισμού της συνάρτησης f. (Μονάδες 5) β) Να εξετάσετε αν η συνάρτηση f είναι άρτια ή περιττή.
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ
1 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Β ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΘΕΜΑ ο GI_V_ALG 16950 1.1 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β)
Μεθοδολογία Παραβολής
Μεθοδολογία Παραβολής Παραβολή είναι ο γεωμετρικός τόπος των σημείων που ισαπέχουν από μια σταθερή ευθεία, την επονομαζόμενη διευθετούσα (δ), και από ένα σταθερό σημείο Ε που λέγεται εστία της παραβολής.
δίου ορισμού, μέσου του τύπου εξαρτημένης μεταβλητής του πεδίου τιμών που λέγεται εικόνα της f για x α f α.
3.1 Η έννοια της συνάρτησης Ορισμοί Συνάρτηση f από ένα συνόλου Α σε ένα σύνολο Β είναι μια αντιστοιχία των στοιχείων του Α στα στοιχεία του Β, κατά την οποία κάθε στοιχείο του Α αντιστοιχεί σε ένα μόνο
A. ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ Μάθημα: Μαθηματικά κατεύθυνσης, Τάξη: Γ Λυκείου Ενότητα: Θεώρημα Bolzano ( 3 διδακτικές ώρες)
A ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ Μάθημα: Μαθηματικά κατεύθυνσης, Τάξη: Γ Λυκείου Ενότητα: Θεώρημα Bolzano ( διδακτικές ώρες) 1 Σκοποί Στόχοι α Σκοποί: Οι μαθητές να συνειδητοποιήσουν ότι τα Μαθηματικά μπορεί να είναι
ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ
1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..
Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ
Α. Να συμπληρωθούν οι ισότητες: (α + β) =.., (α β) 3 = και (α + β)(α β) =.. Β. Να αποδείξετε τη δεύτερη. Θέμα ο Να γράψετε τα τρία (3) κριτήρια ισότητας τριγώνων. Να λυθεί η εξίσωση: 3 + 4 = 7 + 1 Άσκηση
ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ
ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του
ΣΧΕ ΙΟ ΜΑΘΗΜΑΤΟΣ : Μαθηµατικά Θετικής και Τεχνολογικής κατεύθυνσης : Β Ενιαίου Λυκείου
ΜΑΘΗΜΑ ΤΑΞΗ ΕΝΟΤΗΤΑ ΕΙΣΗΓΗΤΗΣ : Μαθηµατικά Θετικής και Τεχνολογικής κατεύθυνσης : Β Ενιαίου Λυκείου : Υπερβολή : Λυµπερόπουλος Ιωάννης. Σκοπός : Οι µαθητές να γνωρίζουν : α) Τον ορισµό της υπερβολής. β)
ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΑΠΟ 0/04/018 ΕΩΣ 14/04/018 ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Πέμπτη 1 Απριλίου 018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να αποδείξετε ότι η εφαπτομένη ε του κύκλου
ΠΑΡΑΓΡΑΦΟΣ Α.3.2 ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ Α. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ. Μας δίνουν ένα σημείο Μ στο επίπεδο.για να προσδιορίσουμε την θέση του κάνουμε τα εξής :
ΠΑΡΑΓΡΑΦΟΣ Α.3.2 ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ Α. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Μας δίνουν ένα σημείο Μ στο επίπεδο.για να προσδιορίσουμε την θέση του κάνουμε τα εξής : Μ 1) Σχεδιάζουμε δύο άξονες κάθετους μεταξύ τους, με
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να
Τράπεζα Θεμάτων Διαβαθμισμένης Δυσκολίας- Άλγεβρα Β ΓΕ.Λ.-Σχολικό έτος 2014-2015 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ. Σχολικό έτος: 2014-2015
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ Σχολικό έτος: 014-015 Τα θέματα εμπλουτίζονται με την δημοσιοποίηση και των νέων θεμάτων από το Ι.Ε.Π. Γ ε ν ι κ ή Ε π ι μ έ λ ε ι
ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 2ο Θέμα
Τράπεζα θεμάτων ΣΥΣΤΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ 2ο Θέμα ΘΕΜΑ 2 (16950) α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να
1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος. Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία
1. Τίτλος: Οι κρυµµένοι τριγωνοµετρικοί αριθµοί Συγγραφέας Βλάστος Αιµίλιος Γνωστική περιοχή των µαθηµατικών: Τριγωνοµετρία Θέµα- Σκεπτικό της δραστηριότητας. Η ιδέα πάνω στην οποία έχει στηριχτεί ο σχεδιασµός
ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων
Γεώργιος Α. Κόλλιας - μαθηματικός Περιέχονται 50 συνδυαστικές ασκήσεις επανάληψης και θέματα εξετάσεων. Δεν συμπεριλαμβάνεται το κεφάλαιο των πιθανοτήτων, της γεωμετρικής προόδου, της μονοτονίας συνάρτησης,
Φίλε μαθητή, Το βιβλίο αυτό, που κρατάς στα χέρια σου προέκυψε τελικά μέσα από την εμπειρία και διδακτική διαδικασία πολλών χρόνων στον Εκπαιδευτικό Όμιλο Άλφα. Είναι το αποτέλεσμα συγγραφής πολλών καθηγητών
ΓΕ.Λ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ. 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου
ΓΕΛ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : 013-014 ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου Ω, τότε να αποδείξετε
Επαναληπτικές ασκήσεις για το Πάσχα.
Μαθηματικά B Γυμνασίου Επαναληπτικές ασκήσεις για το Πάσχα. Άλγεβρα. Κεφάλαιο 1 ο. 1. Να υπολογιστούν οι παρακάτω αριθμητικές παραστάσεις : 1 7 1 7 1 1 ) - 1 4 : ) -1 1 : 1 4 10 9 6. Να λυθούν οι εξισώσεις:
4.3 Η ΣΥΝΑΡΤΗΣΗ f (x) x
1 4.3 Η ΣΥΝΑΡΤΗΣΗ f () A Ομάδας Ασκήσεις σχολικού βιβλίου σελίδας 164 167 1. Να βρείτε τη γωνία που σχηματίζει με τον άξονα η ευθεία = + = 3 1 i = + 1 iv) = 3 + εφω = 1 ω = 45 ο εφω = 3 ω = 60 ο i εφω
Το σενάριο προτείνεται να υλοποιηθεί με το λογισμικό Geogebra.
9.3. Σενάριο 9. Μελέτη της συνάρτησης f(x) = αx +βx+γ Γνωστική περιοχή: Άλγεβρα Α Λυκείου. Η συνάρτηση ψ= αχ +βχ+γ (γραφική παράσταση, μονοτονία, ακρότατα). Θέμα: Το προτεινόμενο θέμα αφορά την κατασκευή
Δύναμη σημείου ως προς κύκλο: ένας αθέατος κόσμος συμμεταβολών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Μεταπτυχιακό Tμήμα Τομέας: Διδακτική & Μεθοδολογία των Μαθηματικών Ενσωμάτωση της Τεχνολογίας στη Δ.τ.Μ Δύναμη σημείου ως προς κύκλο: ένας αθέατος κόσμος συμμεταβολών ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ
Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ
Α. Πότε μια αλγεβρική παράσταση λέγεται μονώνυμο και από ποια μέρη αποτελείται; Β. Πότε δύο μονώνυμα λέγονται όμοια;. Τι λέγεται πολυώνυμο; Θέμα ο Α. Να διατυπώσετε την πρόταση που είναι γνωστή ως θεώρημα
ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10
ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 04 Θ ΕΩΡΙA 0 ΘΕΜΑ A Α Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στην κόλλα σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη
ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας
. Δίνεται η εξίσωση, (). i) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει μία τουλάχιστον πραγματική ρίζα. ii) Να βρεθεί ο αριθμός ώστε η εξίσωση () να έχει δύο ίσες πραγματικές ρίζες. iii) Να βρεθεί ο
ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ
ΤΑΞΗ: A ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ Ημερομηνία: Σάββατο 11 Μαΐου 019 Διάρκεια Εξέτασης: ώρες ΘΕΜΑ Α Α1. Θεωρία. Σχολικό βιβλίο σελίδα 90 ΑΠΑΝΤΗΣΕΙΣ Α. α. (αα 1) β. (ββ 3) γ. (γγ ) δ. (δδ 5) Α3. α.
To σενάριο προτείνεται να υλοποιηθεί µε το λογισµικό Function probe.
Σενάριο 7. Η Οµοιότητα Τριγώνων ως Λόγος Πλευρών Γνωστική περιοχή: Άλγεβρα Α' Λυκείου. Η γραµµική συνάρτηση ψ= αχ. Συντελεστής διεύθυνσης ευθείας. Γεωµετρία Α' Λυκείου Οµοιότητα τριγώνων Θέµα: To προτεινόµενο
ΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ
ΑΛΓΕΒΡΑ B ΛΥΚΕΙΥ Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΛΙΚΥ ΒΙΒΛΙΥ Σχολικό βιβλίο: Απαντήσεις Λύσεις Κεφάλαιο ο: Συστήματα Γραμμικά συστήματα Α ΜΑΔΑΣ Έχουμε: = 4 i = 6 = + = + = = Άρα, η λύση του συστήματος
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1
ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Κεφ. 1 - Συστήματα 1 1.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Η εξίσωση α + βy = γ 1. Υπάρχουν προβλήματα που η επίλυση τους οδηγεί σε μια γραμμική εξίσωση με δύο αγνώστους, y και η οποία είναι της μορφής
Ερωτήσεις αντιστοίχισης
Ερωτήσεις αντιστοίχισης 1. ** Να αντιστοιχίσετε κάθε ευθεία που η εξίσωσή της βρίσκεται στη του πίνακα (Ι) µε τον συντελεστή της που βρίσκεται στη, συµπληρώνοντας τον πίνακα (ΙΙ) (α, β 0). 1. ε 1 : y =
ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο
ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΘΕΜΑ ο _6950 α) Να κατασκευάσετε ένα γραμμικό σύστημα δυο εξισώσεων με δυο αγνώστους με συντελεστές διάφορους του μηδενός, το οποίο να είναι αδύνατο. β) Να παραστήσετε γραφικά
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ
Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος 013-014, Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός
ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α.
ΘΕΜΑΤΑ ΘΕΜΑ 6 3 α) Να λύσετε την εξίσωση : 3 β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : < α. ΘΕΜΑ α) Να λύσετε την ανίσωση : + < 7. β) Αν ο είναι λύση της ανίσωσης του