Κατά ζεύγη στοίχιση ακολουθιών Πολλαπλή στοίχιση ακολουθιών Patterns. Δρ. Μαργαρίτα Θεοδωροπούλου
|
|
- בַּעַל־זְבוּל Ανδρεάδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Κατά ζεύγη στοίχιση ακολουθιών Πολλαπλή στοίχιση ακολουθιών Patterns Δρ. Μαργαρίτα Θεοδωροπούλου
2 Από τα πιο σημαντικά προβλήματα στην Υπολογιστική Βιολογία Ιδιαίτερα πλούσια βιβλιογραφία για πάνω από 30 χρόνια Η ομοιότητα δυο ακολουθιών αντανακλά κατά βάση την κοινή εξελικτική προέλευση 2
3 3
4 Ίδιο γονίδιο, διαφορετικός οργανισμός Ίδιος οργανισμός Παρόμοια λειτουργία Προϊόν γονιδιακού διπλασιασμού 4
5 5
6 Σημαντικά ζητήματα στη στοίχιση ακολουθιών Το είδος των στοιχίσεων που μας ενδιαφέρουν Το σύστημα βαθμονόμησης (scoring system) Ο αλγόριθμος που θα χρησιμοποιήσουμε για την εύρεση της καλής ή και της βέλτιστης στοίχισης Ο τρόπος προσδιορισμού της στατιστικής σημαντικότητας μιας στοίχισης 6
7 Στοίχιση αλληλουχιών κατά ζεύγη. Γιατί; Προσδιορισμός της ομοιότητας μεταξύ δύο ακολουθιών Εύρεση όμοιων ακολουθιών σε μια μεγάλη βάση δεδομένων Ακολουθία με γνωστή λειτουργία ή/και δομή Εύρεση ομοιότητας μέσω στοίχισης κατά ζεύγη Απόδοση λειτουργικού ή/και δομικού ρόλου (ιδιότητες) σε μια άγνωστη πρωτεΐνη 7
8 Παράδειγμα Έστω 2 ακολουθίες x,y (ίδιου ή διαφορετικού μήκους) x=x 1,x 2,,x n y=y 1,y 2,,y m Μας ενδιαφέρει η εύρεση της μέγιστης κοινής περιοχής τους (πλήρης ταύτιση) Η απλή απαρίθμηση όλων των πιθανών κοινών υπό-περιοχών είναι απαγορευτική Χρειαζόμαστε έναν πιο αποδοτικό αλγόριθμο (δυναμικός προγραμματισμός) 8
9 Πίνακες ομοιότητας Μπορούμε έτσι να ορίσουμε έναν πίνακα ομοιότητας με διαστάσεις όσο το μέγεθος του αλφαβήτου (4x4 για DNA, 20x20 για πρωτεΐνες), π.χ.: Για τη μη-ταύτιση (mismatch), μπορούμε να ορίσουμε μια πολύ μεγάλη ποινή (- ) έτσι ώστε να απαγορεύουμε πρακτικά την ταύτιση μη όμοιων καταλοίπων 9
10 Διάφοροι πίνακες αντικατάστασης PAM => Point Accepted Mutations (Dayhoff et al): Ως Αποδεκτή Σημειακή Μεταλλαγή σε μια πρωτεΐνη θεωρείται η αντικατάσταση ενός αμινοξικού καταλοίπου της με ένα κατάλοιπο διαφορετικού τύπου, η οποία έχει γίνει αποδεκτή μέσω της διαδικασίας της Φυσικής Επιλογής. Προέκυψε από πολλαπλή στοίχιση ακολουθιών με γνωστή εξελικτική σχέση και επίπεδο ομοιότητας >85%. PAM1, PAM30, PAM250 κλπ. Προϋποθέτει ένα Μαρκοβιανό μοντέλο εξέλιξης. Σχεδιάστηκε για να εντοπίζει εξελικτικές σχέσεις, στοίχιση συγγενών ακολουθιών. Η χρήση πινάκων με μικρό Ν ενδείκνυται όταν οι εξεταζόμενες ακολουθίες είναι πολύ όμοιες (μικρή εξελικτική απόσταση), ενώ στην περίπτωση περισσότερο απομακρυσμένων ομοιοτήτων χρησιμοποιούμε πίνακες μεγαλύτερου Ν. Στις περιπτώσεις εκείνες κατά τις οποίες δε γνωρίζουμε εκ των προτέρων την ομοιότητα των προς σύγκριση ακολουθιών (π.χ. σε αναζητήσεις έναντι βάσεων δεδομένων) επιλέγουμε ένα ενδιάμεσο πίνακα, όπως τον PAM-250, ο οποίος αντιστοιχεί σε συντήρηση της τάξης του 20-25%. BLOSUM => BLOcks SUbstistution Matrcices (Henikoff and Henikoff): Προέκυψαν από πολλαπλές στοιχίσεις ακολουθιών με γνωστή κάθε φορά εξελικτική σχέση και διαφορετικό επίπεδο ομοιότητας Δεν προϋποθέτουν ένα εξελικτικό μοντέλο αλλά το προσεγγίζουν εμπειρικά BLOSUM50, BLOSUM62, κλπ Στοίχιση απομακρυσμένων αλληλουχιών Εύρεση τοπικών ομοιοτήτων 10
11 11
12 Scoring DNA substitutions A T C G A T C G
13 BLOSUM62 Scoring amino acid substitutions A R N D C Q E G H I L K M F P S T W Y V B Z X * A R N D C Q E G H I L K M F P S T W Y V B Z X *
14 14
15 15
16 Dotplot L W R R F H N L G T E L x x W x R x x F x H x N x V G x T x A A C G C C T G T A A A C C T A A A T G C T G T T A A C C T 16
17 17
18 18
19 19
20 20
21 21
22 22
23 23
24 24
25 25
26 26
27 Ευριστικοί Αλγόριθμοι (Heuristic) Χρησιμοποιούν προσεγγίσεις που επιτρέπουν στην αναζήτηση ομολόγων ακολουθίες στις ΒΔ να γίνει πιο γρήγορα (σε σχέση με τους σχολαστικούς αλγόριθμους) Συνεπώς δεν εγγυώνται ότι όλες οι ομόλογες ακολουθίες θα βρεθούν κατά την αναζήτηση, αν και η πιθανότητα να διαφύγουν αλληλουχίες είναι μάλλον μικρή Οι αλγόριθμοι είναι τόσο πιο γρήγοροι από τους σχολαστικού ώστε πλέον τους έχουν υποκαταστήσει πλήρως στις αναζητήσεις στις βάσεις δεδομένων Οι δύο πιο γνωστοί είναι: BLAST FASTA Η θεμελιώδης προσέγγιση που χρησιμοποιούν στηρίζεται σε «λέξεις», δηλαδή μικρού μήκους υπο-ακολουθίες διαδοχικών καταλοίπων. Η υπόθεση είναι ότι δύο ομόλογες αλληλουχίες θα έχουν τουλάχιστον μια «λέξη» κοινή. 27
28 Ευριστικοί Αλγόριθμοι (Heuristic) Οι «λέξεις» είναι μικρού μήκους ακολουθίες και έτσι η αναζήτηση στις αλληλουχίες μιας βάσης δεδομένων μπορεί να γίνει πολύ γρήγορα. Όμως το αποτέλεσμα περιέχει θόρυβο, δηλαδή πολλές αλληλουχίες οι οποίες συμπτωματικά έχουν κάποια ή κάποιες κοινές λέξεις με την αλληλουχία-στόχο. Για το λόγο αυτό και οι δύο αλγόριθμοι χρησιμοποιούν επιπλέον κριτήρια για να περιορίσουν περαιτέρω τον αριθμό των αλληλουχιών που βρίσκουν με την πρώτη έρευνα. Το μήκος αυτών των λέξεων καθορίζει και την ευαισθησία της αρχικής έρευνας: όσο μεγαλύτερο το μήκος της λέξης, τόσο πιο απίθανο θα είναι να βρεθούν οι ίδιες λέξεις στις βάσεις κατά τύχη. Ταυτόχρονα όμως αυξάνει η πιθανότητα μια αληθώς ομόλογη αλληλουχία να διαφύγει της έρευνας (ιδιαίτερα για αλληλουχίες με μακρινή εξελικτική σχέση). Συνεπώς, συνήθως το μήκος των λέξεων είναι μικρό. 28
29 Ευριστικοί αλγόριθμοι στοίχισης (Heuristic alignment algorithms) Είναι αναγκαίοι για τη μείωση του απαιτούμενου υπολογιστικού χρόνου, ειδικά σε αναζητήσεις σε βάσεις δεδομένων Απαραίτητα χαρακτηριστικά τους: Να μη διαφέρουν σημαντικά από τις «ακριβείς» (μαθηματικά βέλτιστες) λύσεις των μεθόδων δυναμικού προγραμματισμού. Να μην αποκλείουν βιολογικά πιθανές λύσεις. Βασικές κατηγορίες τέτοιων αλγορίθμων: Μέθοδος «κοπής γωνιών» (banded alignment) Μέθοδος FASTA Μέθοδος BLAST 30
30 Η βασική ιδέα έγκειται στη δημιουργία ενός ευρετηρίου με τις θέσεις όλων των k-tuples (λέξεις μεγέθους k, τυπικό μήκος για αμινοξικές ακολουθίες 1 ή 2) που υπάρχουν και στις δύο ακολουθίες. Από τη διαφορά των θέσεών τους στις δύο ακολουθίες εντοπίζεται η διαγώνιος στην οποία βρίσκονται, οπότε στο επόμενο βήμα εντοπίζονται οι διαγώνιες με τα περισσότερα k-tuples. Ακολούθως, αυτές οι περιοχές ταύτισης συνενώνονται επιτρέποντας την εισαγωγή κενών με τον υπολογισμό της αντίστοιχης ποινής, και Τελικά πραγματοποιείται η διαδικασία πλήρους δυναμικού προγραμματισμού (με τον επιλεγμένο πίνακα αντικατάστασης), περιορισμένου σε μια ταινία γύρω από τις συγκεκριμένες διαγωνίους. Μέθοδος FASTA 31
31 32
32 33
33 Basic Local Alignment Search Tool (BLAST) Το βασικό εργαλείο στοίχισης αλληλουχιών που χρησιμοποιείται σήμερα. Σημαντικό εργαλείο για αναζήτηση σε βάσεις με αλληλουχίες. Κάνει αναζητήσεις σε βάσεις δεδομένων χρησιμοποιώντας νουκλεοτιδικές και αμινοξικές αλληλουχίες επερώτησης 34
34 Μέθοδος BLAST Η σύγκριση ξεκινά με την κατασκευή ενός καταλόγου όλων των λέξεων που θα ταίριαζαν με κάποια λέξη της άγνωστης ακολουθίας ξεπερνώντας την τιμή κατωφλίου (προκαθορισμένη Τ=13). Αναζητά αυτές τις λέξεις στις ακολουθίες της βάσης δεδομένων και όταν εντοπίζει κάποια ξεκινάει την επέκτασης προς τις δύο κατευθύνσεις, όσο η βαθμολογία συνεχίζει και αυξάνει. Από τις περιοχές μέγιστης βαθμολογίας που εντοπίζονται οι HSPs που αναφέρονται στα αποτελέσματα είναι εκείνες οι περιοχές που η βαθμολογία υπερβαίνει μια δεύτερη τιμή κατωφλίου S. Τελικά, επιλέγονται οι τοπικές ομοιότητες που εμφανίζουν υψηλή στατιστική σημαντικότητα. 35
35 37
36 Μέθοδος BLAST Words: όλες οι δυνατές λέξεις μήκους W Πρωτεΐνες: 3 κατάλοιπα DNA: 11 κατάλοιπα Δημιουργία ευρετηρίου για όλες τις λέξεις στις ακολουθίες της ΒΔ Για κάθε λέξη της ακολουθίας επερώτησης Εύρεση όλων των λέξεων (neighborhood words) που στοιχίζονται μαζί της με score μεγαλύτερο ενός κατωφλιού (neighborhood score threshold, T) χρησιμοποιώντας έναν πίνακα αντικατάστασης Αναζήτηση των neighborhood words έναντι του προκατασκευασμένου πίνακα με όλες τις λέξεις των ακολουθιών της ΒΔ για την αναγνώριση ενός High-scoring Segment Pair (HSP) Τερματισμός της επέκτασης όταν το score γίνει μικρότερο ενός προκαθορισμένου κατωφλιού Μεγαλύτερο Τ Μείωση των προσπαθειών εύρεσης HSPs 38
37 Στατιστική Σημαντικότητα των στοιχίσεων Αν λάβουμε με οποιοδήποτε τρόπο μια στοίχιση δυο ακολουθιών, θέλουμε να έχουμε έναν τρόπο να την αξιολογήσουμε (να ξέρουμε δηλαδή αν είναι στατιστικά σημαντική) Ιδιαίτερο νόημα έχει αυτό σε μια αναζήτηση σε μεγάλες βάσεις δεδομένων όπου αναμένουμε να δούμε έως και εκατοντάδες «ομόλογες» ακολουθίες Χρειαζόμαστε έναν έλεγχο υποθέσεων. Ηο: οι δυο ακολουθίες είναι ασυσχέτιστες, Ηα: οι δυο ακολουθίες σχετίζονται με κάποιο τρόπο (είναι ομόλογες) Ακόμα και αν βρεθεί στατιστικά σημαντική ομοιότητα, δεν σημαίνει ότι υπάρχει και βιολογική συσχέτιση των ακολουθιών, και το αντίστροφο (εξαρτάται από τις παραμέτρους, gap penalty, substitution matrix, αλγόριθμο στοίχισης κλπ) Τα πιο πολλά αποτελέσματα αναφέρονται στην τοπική στοίχιση 39
38 Στατιστική Σημαντικότητα των στοιχίσεων Συγκεκριμένα θέλουμε να είμαστε σε θέση να διαχωρίσουμε «τυχαία» ευρήματα από «σημαντικά». Το P-value ενός στατιστικού ελέγχου είναι η πιθανότητα ένα αποτέλεσμα τόσο ακραίο ή και περισσότερο να έχει προκύψει κατά τύχη δεδομένου ότι ισχύει η μηδενική υπόθεση (στην περίπτωσή μας ότι οι δύο ακολουθίες που συγκρίναμε δεν έχουν καμία σχέση μεταξύ τους). Είναι προφανές ότι αναφερόμαστε σε παραμετρικό έλεγχο και χρειάζεται να ξέρουμε την κατανομή που ακολουθεί η τυχαία μεταβλητή που μας ενδιαφέρει, στην προκειμένη περίπτωση το score. 40
39 41
40 42
41 43
42 Μέθοδος BLAST Η διαδικασία του BLAST, μοιάζει στα αρχικά στάδια με αυτή το FASTA, αλλά είναι ακόμα πιο γρήγορη καθώς πολλές παραμέτρους τις έχει προϋπολογισμένες και αποφεύγει τον να στοιχίσει αλληλουχίες της βάσης δεδομένων που ο αλγόριθμος κρίνει ότι δεν έχουν σημαντική ομοιότητα. Διαφορετικός τρόπος υπολογισμού της στατιστικής σημαντικότητας των ευρημάτων. Ενώ το BLAST υπολογίζει τις παραμέτρους της κατανομής (K, λ) από προσομοιώσεις, που έχει πραγματοποιήσει από πριν και έχει αποθηκευμένες τις παραμέτρους, το FASTA τις υπολογίζει από όλες τις άλλες αλληλουχίες της βάσης δεδομένων και για αυτόν τον λόγο είναι και πιο αργό. 44
43 45
44 46
45 47
46 Ερμηνεία των αποτελεσμάτων Το % ομοιότητα δεν είναι το καλύτερο κριτήριο για να «ανακηρύξουμε» ομολογία E-value < συνήθως θεωρείται επαρκές, αλλά αυτό εξαρτάται πάντα και από το μέγεθος της βάσης στην οποία κάνουμε αναζήτηση E-value > δεν είναι απόλυτη η μη ύπαρξη ομολογίας, καθώς μπορεί να υπάρχει σχέση αλλά μακρινή Να ξέρουμε ακριβώς τι είδους αναζητήσεις πραγματοποιούμε κάθε φορά (τα προγράμματα δεν πρόκειται να σκεφτούν για λογαριασμό μας) Να δοκιμάζουμε εναλλακτικές παραμέτρους (πίνακες αντικατάστασης, κλπ) Να έχουμε υπόψη μας ότι μπορεί να γίνει και λάθος (ένα ψευδώς θετικό αποτέλεσμα ή ένας λάθος σχολιασμός) Να έχουμε τα μάτια μας ανοιχτά για πιο ευαίσθητες μεθόδους (PSI-BLAST,HMMER) 48
47
48 Πολλαπλή στοίχιση Αναφέρεται στην ταυτόχρονη στοίχιση περισσοτέρων από 2 ακολουθιών Ιδιαίτερα σημαντική καθώς έτσι μπορούμε να εντοπίσουμε οικογένειες σχετιζόμενων ακολουθιών και να μελετήσουμε τα λειτουργικά χαρακτηριστικά τους Βασίζεται στις ίδιες αρχές με την κατά ζεύγη στοίχιση, αλλά υπάρχουν πιο πολλές δυσκολίες Μπορεί να μας δώσει μια εικόνα της φυλογενετικής προέλευσης των ακολουθιών 50
49 Προοδευτική πολλαπλή στοίχιση Αρχικές κατά ζεύγη στοιχίσεις όλων των ακολουθιών Με βάση αυτές, κατασκευή πίνακα αποστάσεων και ενός δέντρου οδηγού (guide tree) Προοδευτική στοίχιση των πιο όμοιων ακολουθιών μεταξύ τους, μέχρι τέλους 51
50 Συνέχεια 52
51 53
52 Διαθέσιμες μέθοδοι MSA ( CLUSTALW, CLUSTALX, CLUSTAL OMEGA ( DIALIGN ( T-COFFEE ( Kalign ( etc 54
53 Οπτικοποίηση και επεξεργασία πολλαπλών στοιχίσεων Jalview ( Strap ( Chroma ( Seqpup ( Seaview ( Cinema ( Boxshade ( 55
54 Jalview 56
55 Αξιολόγηση των πολλαπλών στοιχίσεων Βασίζεται κυρίως σε δομικές στοιχίσεις ελεγμένες από ειδικούς. Παρ όλα αυτά δεν υπάρχει ακόμα «απολύτως αντικειμενικός» και αποδεκτός τρόπος για αξιολόγηση BaliBase ( u-strasbg.fr/bioinfo/balibase/index.html ) OxBench ( Dbali ( APDB (O Sullivan et al, 2003) 57
56 Motifs, Profiles και Patterns σε πολλαπλές στοιχίσεις PROSITE Syntax: P-A-[FW]-X-[YW]-[LV]-S-C-X(3)-[WYH]-Q-X(1-7)-[EQ]-G-H-Y Regular Expression: PA[FW].[YW][LV]SC.{3}[WYH]Q.{1,7}[EQ]GHY 58
57 Τα αμινοξέα ή τα νουκλεοτίδια αναπαρίστανται με τον τυπικό κωδικό του ενός γράμματος της IUPAC. Κάθε θέση της πολλαπλής στοίχισης αντιστοιχεί σε μια θέση στο πρότυπο, η οποία διαχωρίζεται από τις υπόλοιπες με μία παύλα (-). Οι θέσεις είναι ανεξάρτητες μεταξύ τους. Patterns - Κανόνες Αν σε κάποια θέση εμφανίζεται μόνο ένας χαρακτήρας, τότε στο πρότυπο χρησιμοποιείται αυτούσιος (π.χ. Α, Τ κ.ο.κ.) Αν σε κάποια θέση εμφανίζονται δύο ή περισσότεροι χαρακτήρες τότε αυτοί εμφανίζονται μέσα σε άγκυστρο, για παράδειγμα [ΑΤ] σημαίνει ότι επιτρέπεται Α ή Τ, ενώ [ACG] σημαίνει ότι επιτρέπεται είτε A, είτε G, είτε C. Αν σε κάποια θέση επιτρέπεται να εμφανιστεί οποιοδήποτε σύμβολο, τότε αυτή η θέση συμβολίζεται με x. Αν σε κάποια θέση επιτρέπεται να εμφανιστεί οποιοδήποτε σύμβολο εκτός από κάποιο/α, τότε τη θέση τη συμβολίζουμε με {}. Για παράδειγμα, για να πούμε «οποιοδήποτε νουκλεοτίδιο εκτός από Α» γράφουμε {Α} το οποίο στην περίπτωση του DNA είναι ισοδύναμο με το [CGT]. Προφανώς, αυτός ο κανόνας είναι περισσότερο χρήσιμος στην περίπτωση των πρωτεϊνών με το μεγάλο αλφάβητο. Επαναλήψεις συμβολίζονται με παρένθεση (). Για παράδειγμα το Α(3) σημαίνει Α-Α-Α, ενώ το x(3) σημαίνει x-x-x (δηλαδή 3 οποιαδήποτε σύμβολα). Επίσης, μέσα στην παρένθεση μπορεί να μπει και ένα εύρος τιμών. Έτσι, το x(2,4) σημαίνει x-x, ή x-x-x, ή x-x-x-x. Η αρχή και το τέλος της αλληλουχίας συμβολίζονται με τα σύμβολα < και > αντίστοιχα. Έτσι, για να πούμε ότι η αλληλουχία αρχίζει με Α και μετά ακολουθεί οποιοδήποτε σύμβολο γράφουμε <A-x Σε κάποιες ειδικές περιπτώσεις το σύμβολο '>' μπορεί να εμφανιστεί μέσα στα άγκιστρα για να χαρακτηρίσει την ύπαρξη καρβοξυτελικού άκρου. Έτσι, το P-R-L-[G>] σημαίνει είτε P-R-LG ή P-R-L>. 59
58 Regular Expressions Όπως αναφέραμε ήδη, οι κανονικές εκφράσεις (regular expressions) και οι εκφράσεις της PROSITE είναι ισοδύναμες. Οι διαφορές στη σύνταξη είναι οι εξής: Η κάθε θέση αναγράφεται συνεχόμενα χωρίς να μεσολαβεί η παύλα (-). Το σύμβολο για «οποιοδήποτε» χαρακτήρα είναι η τελεία (.) αντί για το x Το σύμβολο για το «οποιοδήποτε χαρακτήρα εκτός από» είναι το ^ μέσα στην αγκύλη, και όχι το άγκiστρο {}. Για παράδειγμα, αν θεωρήσουμε το πρότυπο της PROSITE που δίνεται από την έκφραση: [RK]-G-{EDRKHPCG}-[AGSCI]-[FY]-[LIVA]-x-[FYM] τότε η αντίστοιχη κανονική έκφραση θα είναι: [RK]G[^EDRKHPCG][AGSCI][FY][LIVA].[FYM] 60
59 EGF domain AGRI_CHICK/1-3 PCDSH--PCLHGGTCEDD------GREFTCRCPAGKGGAVCE GLP1_CAEEL/2-0 PCDSD--PCNNG-LCYPFY------GGFQCICNNGYGGSYCE NTC3_MOUSE/25- PCFSR--PCLHGGICNPTH------PGFECTCREGFTGSQCQ NTC3_MOUSE/19- ACESQ--PCQAGGTCTSDG------IGFRCTCAPGFQGHQCE NTC3_MOUSE/32- PCESQ--PCQHGGQCRHSLGRGGG-LTFTCHCVPPFWGLRCE CRB_DROME/14-0 ECDSN--PCSKHGNCNDGI------GTYTCECEPGFEGTHCE NTC4_MOUSE/25- LCQSQ--PCSNGGSCEITTGPP---PGFTCHCPKGFEGPTCS NTC4_MOUSE/17- ACHSG--PCLNGGSCSIRP------EGYSCTCLPSHTGRHCQ FAT_DROME/2-0 VCYSK--PCRNGGSCQRSPDG----SSYFCLCRPGFRGNQCE NOTC_BRARE/3-0 ACMNS--PCRNGGTCSLLTL-----DTFTCRCQPGWSGKTCQ NOTC_BRARE/6-0 PCLPS--PCRSGGTCVQTSD-----TTHTCSCLPGFTGQTCE DLK_HUMAN/4-0 NCASS--PCQNGGTCLQHTQ-----VSYECLCKPEFTGLTCV NTC4_MOUSE/1-3 LCGGSPEPCANGGTCLRLSQ-----GQGICQCAPGFLGETCQ NOTC_BRARE/9-0 DCASA--ACSHGATCHDRV------ASFFCECPHGRTGLLCH NTC4_MOUSE/18- HCVSA--SCLNGGTCVNKP------GTFFCLCATGFQGLHCE DLL1_MOUSE/6-0 DCASS--PCANGGTCRDSV------NDFSCTCPPGYTGKNCS DL_DROME/7-0 LCLIR--PCANGGTCLNLN------NDYQCTCRAGFTGKDCS FBP1_STRPU/2-0 DCDPN--LCQNGAACTDLV------NDYACTCPPGFTGRNCE * * * * C-x-C-x(5)-G-x(2)-C 61
60 Patterns Απλά στην κατασκευή και διαισθητικά Εύκολα στην υλοποίηση και αναζήτηση Δύσκαμπτα σε πιο πολύπλοκες καταστάσεις Πολλά false positive/false negative Τα μικρά patterns έχουν μεγάλη πιθανότητα τυχαίας εμφάνισης Motifs: small patterns 62
61 Patterns - Λογισμικό PRATT ( ) MEME ( ) Gibbs Motif Sampler ( ) TEIRESIAS ( ) 63
62 Profiles και Position Specific Scoring Matrices (PSSMs) Πολύ πιο ευέλικτα και ευαίσθητα P A-[FW]-X-[YW]-[LV]-S- C- X(3) -[WYH]-Q... G P:100% A:100% F:85% X:100% Y:85% L:85% S:100% C:100% X:100% X:100% X:100% W:70% Q:100% G:100% W:15% W:15% V:15% Y:15% H:15% Ένα profile μπορούμε να το μετατρέψουμε σε PSSM 64
63 Η «αρθρωτή» φύση των πρωτεϊνών SGIRIIVVALYDYEAIHHEDLSFQKGDQMVVLEESGEWWKARSLATRKEGYIPSNYVARV DSLETEEWFFKGISRKDAERQLLAPGNMLGSFMIRDSETTKGSYSLSVRDYDPRQGDTVK HYKIRTLDNGGFYISPRSTFSTLQELVDHYKKGNDGLCQKLSVPCMSSKPQKPWEKDAWE IPRESLKLEKKLGAGQFGEVWMATYNKHTKVAVKTMKPGSMSVEAFLAEANVMKTLQHDK LVKLHAVVTKEPIYIITEFMAKGSLLDFLKSDEGSKQPLPKLIDFSAQIAEGMAFIEQRN YIHRDLRAANILVSASLVCKIADFGLARVIEDNEYTAREGAKFPIKWTAPEAINFGSFTI KSDVWSFGILLMEIVTYGRIPYPGMSNPEVIRALERGYRMPRPENCPEELYNIMMRCWKN RPEERPTFEYIQSVLDDFYTATESQEEIP Πρωτεϊνικές περιοχές (domains) 65
64 «Τοπική» ομοιότητα vav src42 csw 66
65 Εύρεση νέων domains BLAST BLAST Boring Interesting 67
66 Τι γίνεται αν δεν υπάρχει μεγάλη ομοιότητα? Ανάγκη για πιο ευαίσθητες μεθόδους PSSM, PSI-BLAST, HMMs, κλπ 68
67 PSI-BLAST (Position-specific iterated BLAST) 69
68 PHI-BLAST (Pattern-hit initiated BLAST) 70
69 Φυλογενετικές σχέσεις Χρησιμοποιούνται οι ομοιότητες και οι διαφορές των υπό μελέτη οργανισμών Τα χαρακτηριστικά που μελετώνται, ενώ παλιά ήταν μορφολογικάανατομικά, τώρα πλέον είναι όλο και περισσότερο μοριακά Οποιαδήποτε ομάδα οργανισμών προέρχεται από έναν κοινό πρόγονο μέσω της εξέλιξης Υπάρχει διχαλωτό πρότυπο στην εξέλιξη Αλλαγή στα χαρακτηριστικά εμφανίζεται μετά το πέρασμα πολλών γενιών 71
70 Clade, Taxon, Node Ορολογία στα δέντρα Στις πιο πολλές αναλύσεις, το μήκος των βραχιόνων ανταποκρίνεται στη φυλογενετική απόσταση-απόκλιση 72
71 Ορθόλογα και Παράλογα Γεγονότα ειδογένεσης Worm Ορθόλογα Fly Γεγονότα διπλασιασμού γονιδίων Human 1 Human 2 Yeast 1 Yeast 2 Παράλογα Παράλογα 73
72 Φυλογενετικές σχέσεις Όταν έχουμε κάποιες αλληλουχίες και θέλουμε να εκτιμήσουμε τις φυλογενετικές τους σχέσεις, μια αναπαράσταση σε μορφή δέντρου μας δείχνει πόσο κοντά βρίσκεται η μία αλληλουχία στην άλλη, δηλαδή με ποια σειρά οι αλληλουχίες εξελίχθηκαν η μία από την άλλη, και γυρνώντας πίσω στο χρόνο μπορούμε να εντοπίσουμε τελικά τον κοινό τους πρόγονο. Στα δέντρα με ρίζα (rooted) έχουμε ξεκάθαρη κατεύθυνση του χρόνου και μπορούμε να προσδιορίσουμε τον αρχαίο κοινό πρόγονο. Εναλλακτικά υπάρχουν και δέντρα χωρίς ρίζα (unrooted), στα οποία δεν μπορούμε να προσδιορίσουμε την κατεύθυνση κατά την οποία έχει συντελεστεί η εξελικτική διαδικασία. 74
73 75
74 76
75 77
76 78
77 79
78 80
Κατα ζέυγη στοίχιση και στατιστική σημαντικότητα αυτής
ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Κατα ζέυγη στοίχιση και στατιστική σημαντικότητα αυτής Παντελής Μπάγκος 1 Διάλεξη 2 Αναζήτηση ομοιότητας και κατά ζεύγη στοίχιση ακολουθιών 2 Κατά ζεύγη στοίχιση ακολουθιών Από τα πιο
Διαβάστε περισσότεραΕιδικά Θέματα Βιοπληροφορικής
Ειδικά Θέματα Βιοπληροφορικής Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 Πολλαπλή στοίχιση ακολουθιών και φυλογενετικά δέντρα 2 Πολλαπλή στοίχιση Αναφέρεται στην ταυτόχρονη
Διαβάστε περισσότεραΑΣΚΗΣΗ 3η Στοίχιση ακολουθιών βιολογικών µακροµορίων
ΑΣΚΗΣΗ 3η Στοίχιση ακολουθιών βιολογικών µακροµορίων ΕΙΣΑΓΩΓΗ Ένας από τους πρωταρχικούς στόχους της σύγκρισης των ακολουθιών δύο µακροµορίων είναι η εκτίµηση της οµοιότητάς τους και η εξαγωγή συµπερασµάτων
Διαβάστε περισσότεραΑΝΑΖΗΤΗΣΗ ΟΜΟΙΟΤΗΤΩΝ ΣΕ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΚΟΛΟΥΘΙΩΝ
ΑΝΑΖΗΤΗΣΗ ΟΜΟΙΟΤΗΤΩΝ ΣΕ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΚΟΛΟΥΘΙΩΝ Σελίδα 1 Αναζήτηση ομοιοτήτων Δεδομένα Ακολουθία επερώτησης (query sequence) Ακολουθίες στη Βάση Δεδομένων (subject sequences) Αναζήτηση Μέθοδοι δυναμικού
Διαβάστε περισσότεραΕιδικά Θέματα Βιοπληροφορικής
Ειδικά Θέματα Βιοπληροφορικής Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 The modular nature of proteins SGIRIIVVALYDYEAIHHEDLSFQKGDQMVVLEESGEWWKARSLATRKEGYIPSNYVARV DSLETEEWFFKGISRKDAERQLLAPGNMLGSFMIRDSETTKGSYSLSVRDYDPRQGDTVK
Διαβάστε περισσότεραΑΝΑΖΗΤΗΣΗ ΟΜΟΙΟΤΗΤΩΝ ΣΕ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΟΛΟΥΘΙΩΝ
Αναζήτηση οµοιοτήτων ΑΝΑΖΗΤΗΣΗ ΟΜΟΙΟΤΗΤΩΝ ΣΕ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΟΛΟΥΘΙΩΝ Σελίδα 1 εδοµένα Ακολουθία επερώτησης (query sequence) Ακολουθίες στη Βάση εδοµένων (subject sequences) Αναζήτηση Μέθοδοι δυναµικού
Διαβάστε περισσότεραΑΣΚΗΣΗ 4η Αναζήτηση οµοιοτήτων σε βάσεις δεδοµένων ακολουθιών
ΑΣΚΗΣΗ 4η Αναζήτηση οµοιοτήτων σε βάσεις δεδοµένων ακολουθιών ΕΙΣΑΓΩΓΗ Η αναζήτηση οµοιοτήτων σε βάσεις δεδοµένων ακολουθιών (database similarity searching) αποτελεί µια από τις συχνότερα χρησιµοποιούµενες
Διαβάστε περισσότεραLALING/PLALING :
1. Άρθρα- δημοσιεύσεις Scopus DBLP Pubmed Google Scholar 2. Αναζήτηση νουκλεοτιδίου- πρωτεΐνης Entrez : http://www.ncbi.nlm.nih.gov/nuccore/ Uniprot (πρωτεΐνης): http://www.uniprot.org/ Blast : http://blast.ncbi.nlm.nih.gov/blast.cgi
Διαβάστε περισσότεραΣυγκριτική Γονιδιωματική
ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Συγκριτική Γονιδιωματική Παντελής Μπάγκος 1 2 Μέθοδοι Ανάλυσης Μέθοδοι βασισμένες στην ομοιότητα ακολουθιών Τοπική ομοιότητα Ολική ομοιότητα Προγνωστικές μέθοδοι Δευτεροταγής δομή Διαμεμβρανικά
Διαβάστε περισσότεραΚεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων
Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων Σε αυτό το κεφάλαιο παρουσιάζουµε 2 βασικούς αλγορίθµους σύγκρισης ακολουθιών Βιολογικών εδοµένων τους BLAST & FASTA. Οι δυο αλγόριθµοι
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ. Σελίδα 1 ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ. Τ. Θηραίου
ΕΠΑΝΑΛΗΨΗ Σελίδα 1 τεχνική σύγκρισης ακολουθιών υπολογισµός ενός µέτρου οµοιότητας αναζήτηση ομολογίας S-S match S1 HFCGGSLINEQWVVSAGHC HFCG S NE AGHC S2 HFCGASIYNENYA-TAGHC gap mismatch Σελίδα 2 ολική
Διαβάστε περισσότεραΒιοπληροφορική. Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της αναγκαιότητας των ευριστικών αλγορίθμων
Διαβάστε περισσότεραPSI-Blast: τι είναι. Position specific scoring matrices (PSSMs) (Πίνακες αντικατάστασης θέσης)
PSI-Blast PSI-Blast PSI-Blast: τι είναι PSI-Blast: Position-specific iterated Blast Position specific scoring matrices (PSSMs) (Πίνακες αντικατάστασης θέσης) Altschul et al., 1997 http://www.ncbi.nlm.nih.gov/pmc/articles/pmc146917/pdf/253389.pdf
Διαβάστε περισσότεραΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ ΑΝΑ ΖΕΥΓΗ
ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ ΑΝΑ ΖΕΥΓΗ Σελίδα 1 Ομολογία Σελίδα 2 Ομολογία Ομολογία κοινή εξελικτική καταγωγή Ορθόλογα γονίδια ειδογένεση συνήθως, ίδια βιολογική λειτουργία Παράλογα γονίδια γονιδιακός διπλασιασμός
Διαβάστε περισσότεραΒιοπληροφορική. Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της σημασίας του συστήματος βαθμολόγησης
Διαβάστε περισσότεραΠίνακες αντικατάστασης PAM και BLOSUM και εναλλακτικές προσεγγίσεις
Πίνακες αντικατάστασης PAM και BLOSUM και εναλλακτικές προσεγγίσεις Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο Κύπρου
Διαβάστε περισσότεραΒιοπληροφορική. Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της αναγκαιότητας των ευριστικών αλγορίθμων
Διαβάστε περισσότεραΒιοπληροφορική. Blast/PSI-Blast 3o εργαστήριο
Βιοπληροφορική Blast/PSI-Blast 3o εργαστήριο Αναζήτηση οµόλογων ακολουθιών σε βάσεις δεδοµένων (i) Οµόλογες ακολουθίες πιθανόν να έχουν παρόµοιες λειτουργίες. Ακολουθία επερώτησης (query sequence) Υποκείµενες
Διαβάστε περισσότεραΒιοπληροφορική. Ενότητα 5: Στοίχιση ακολουθιών ανά ζεύγη, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 5: Στοίχιση ακολουθιών ανά ζεύγη, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της συσχέτισης ομολογίας ομοιότητας. Παρουσίαση των πληροφοριών
Διαβάστε περισσότεραΠρόβλημα. Σύνολο γνωστών αλληλουχιών
BLAST Πρόβλημα Άγνωστη αλληλουχία Σύνολο γνωστών αλληλουχιών Η χρήση ενός υπολογιστή κι ενός αλγόριθμου είναι απαραίτητη για την ανακάλυψη της σχέσης μιας αλληλουχίας με τις γνωστές υπάρχουσες Τί είναι
Διαβάστε περισσότεραΒιοπληροφορική. Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της σημασίας του συστήματος βαθμολόγησης
Διαβάστε περισσότεραΒιοπληροφορική Ι. Παντελής Μπάγκος Αναπληρωτής Καθηγητής. Πανεπιστήμιο Θεσσαλίας Λαμία, 2015
Βιοπληροφορική Ι Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 Στοίχιση αλληλουχιών 2 Τρόποι μελέτης των ακολουθιών Global information Η ακολουθία αναπαρίσταται από ένα διάνυσμα
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 12: Αναζήτηση ομοιοτήτων έναντι βάσεων δεδομένων με τη χρήση ευρετικών αλγορίθμων Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr
Διαβάστε περισσότεραΔΕΥΤΕΡΟΓΕΝΕΙΣ ΒΑΣΕΙΣ ΠΡΩΤΕΪΝΙΚΩΝ. Δρ. Μαργαρίτα Θεοδωροπούλου
ΔΕΥΤΕΡΟΓΕΝΕΙΣ ΒΑΣΕΙΣ ΠΡΩΤΕΪΝΙΚΩΝ Δρ. Μαργαρίτα Θεοδωροπούλου Βάσεις δεδομένων οικογενειών Οι πρωτεΐνες αποτελούνται από μία ή περισσότερες διακριτές λειτουργικές περιοχές (domains), οι οποίες πολλές
Διαβάστε περισσότεραΣτοίχιση κατά ζεύγη. Στοίχιση ακολουθιών κατά ζεύγη (Pairwise alignment)
Στοίχιση ακολουθιών κατά ζεύγη (Pairwise alignment) Στοίχιση κατά ζεύγη: Τι είναι Αντιστοίχιση των νουκλεοτιδίων/αµινοξέων δυο ακολουθιών, ώστε να εντοπιστούν οι οµοιότητες και οι διαφορές τους. Χρησιµοποιείται
Διαβάστε περισσότεραΒιοπληροφορική. Ενότητα 10: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Blast, (1/2) 1ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 10: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Blast, (1/2) 1ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Αναφορά στις παραλλαγές του BLAST. Εξοικείωση με τη
Διαβάστε περισσότεραΜέθοδοι μελέτης εξέλιξης
H διερεύνηση της μοριακής βάσης της εξέλιξης βασίζεται σε μεγάλο βαθμό στη διευκρίνιση της διαδικασίας με την οποία μετασχηματίσθηκαν στη διάρκεια της εξέλιξης πρωτεϊνες, άλλα μόρια και βιοχημικές πορείες
Διαβάστε περισσότεραΒιοπληροφορική Ι. Παντελής Μπάγκος. Παν/µιο Στερεάς Ελλάδας
Βιοπληροφορική Ι Παντελής Μπάγκος Παν/µιο Στερεάς Ελλάδας Λαµία 2006 1 Βιοπληροφορική Ι Εισαγωγή: Ορισµός της Βιοπληροφορικής, Υποδιαιρέσεις της Βιοπληροφορικής, Τα είδη των δεδοµένων στη Βιοπληροφορική.
Διαβάστε περισσότεραΠολλαπλή στοίχιση multiple sequence alignment (MSA)
Πολλαπλή στοίχιση multiple sequence alignment (MSA) MSA: Τι είναι Στοίχιση για 3 ή περισσότερες ακολουθίες. Αποκαλύπτονται οι συντηρηµένες περιοχές µεταξύ των ακολουθιών µιας οικογένειας. Χρειάζεται για:
Διαβάστε περισσότεραΠΟΛΛΑΠΛΗ ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ I
ΠΟΛΛΑΠΛΗ ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ I Σελίδα 1 Πολλαπλή στοίχιση αποκαλύπτει συντηρημένες περιοχές αντιστοίχιση καταλοίπων με κριτήρια ομοιότητας σε επίπεδο δομής εξέλιξης λειτουργίας ακολουθίας Σελίδα 2 Πολλαπλή
Διαβάστε περισσότεραΕισαγωγή στους αλγορίθμους Βιοπληροφορικής. Στοίχιση αλληλουχιών
Στοίχιση αλληλουχιών Σύνοψη Καθολική στοίχιση Μήτρες βαθμολόγησης Τοπική στοίχιση Στοίχιση με ποινές εισαγωγής κενών Από την LCS στη στοίχιση: αλλαγές στη βαθμολόγηση Το πρόβλημα της Μεγαλύτερης Κοινής
Διαβάστε περισσότεραΒιοπληροφορική. Ενότητα 9: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Στατιστική Σημαντικότητα, 1 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 9: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Στατιστική Σημαντικότητα, 1 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Παρουσίαση των εφαρμογών της αναζήτησης
Διαβάστε περισσότεραΦΥΣΙΚΗ ΑΝΘΡΩΠΟΛΟΓΙΑ. Πρωτεύοντα ΙΙΙ Χρήση µοριακών δεδοµένων
ΦΥΣΙΚΗ ΑΝΘΡΩΠΟΛΟΓΙΑ Πρωτεύοντα ΙΙΙ Χρήση µοριακών δεδοµένων Φυλογένεση Η φυλογένεσης αφορά την ανεύρεση των συνδετικών εκείνων κρίκων που συνδέουν τα διάφορα είδη µεταξύ τους εξελικτικά, σε µονοφυλετικές
Διαβάστε περισσότεραΑλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙ: Ευριστικές μέθοδοι αναζήτησης σε βάσεις δεδομένων
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙ: Ευριστικές μέθοδοι αναζήτησης σε βάσεις δεδομένων Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of
Διαβάστε περισσότεραΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ Σελίδα 1 Αναζήτηση πληροφορίας σε βιολογικές ΒΔ Αναζήτηση δεδομένων στην UniProt Καταγράψτε το μήκος της αμινοξικής ακολουθίας (Sequence length), τη λειτουργία (Function)
Διαβάστε περισσότεραΒιοπληροφορική. Ενότητα 13: Μοντέλα Πολλαπλής Στοίχισης (1/2), 1.5ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 13: Μοντέλα Πολλαπλής Στοίχισης (1/2), 1.5ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι παρουσίαση των μοντέλων πολλαπλής στοίχισης. κατανόηση των εφαρμογών
Διαβάστε περισσότεραΜάθημα 16 ο ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ
Μάθημα 16 ο ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ Περιεχόμενα Παρουσίασης Βιολογικό υπόβαθρο Το κεντρικό αξίωμα Σύνοψη της Βιοπληροφορικής Ερευνητικές περιοχές Πηγές πληροφοριών Τι είναι η Βιοπληροφορική Βιο Πληροφορική μοριακή
Διαβάστε περισσότεραΦυλογένεση. 5o εργαστήριο
Φυλογένεση 5o εργαστήριο Φυλογένεση οργανισµών Δείχνει την εξελικτική πορεία µιας οµάδας οργανισµών. Οι κόµβοι (nodes) στο δένδρο απεικονίζουν γεγονότα ειδογένεσης. H φυλογένεση µπορεί να γίνει από µια
Διαβάστε περισσότεραΕιδικά Θέματα Βιοπληροφορικής
Ειδικά Θέματα Βιοπληροφορικής Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 Διάλεξη 5 Profile Hidden Markov Models και Transformational Grammars 2 Profile HMM Ένα ΗΜΜ με left-to-right
Διαβάστε περισσότεραΠεριοχές με ακραία σύσταση / χαμηλή πολυπλοκότητα
Περιοχές με ακραία σύσταση / χαμηλή πολυπλοκότητα Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus Σύνοψη Βασικές έννοιες XNU SEG LCRs και αναζητήσεις
Διαβάστε περισσότεραΑλγόριθµοι Εύρεσης Οµοιοτήτων Ακολουθιών Μέρος ΙΙΙ: Έλεγχος στατιστικής σηµαντικότητας. Πίνακες αντικατάστασης για σύγκριση ακολουθιών
Αλγόριθµοι Εύρεσης Οµοιοτήτων Ακολουθιών Μέρος ΙΙΙ: Έλεγχος στατιστικής σηµαντικότητας Πίνακες αντικατάστασης για σύγκριση ακολουθιών Vasilis Promponas Bioinformatics Research Laboratory Department of
Διαβάστε περισσότεραΣτοίχιση Ακολουθιών. Μέθοδοι σύγκρισης ακολουθιών. Είδος στοίχισης. match. gap. mismatch
Οµολογία ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ ΑΝΑ ΖΕΥΓΗ Σελίδα 1 Σελίδα 2 Οµολογία Οµολογία Οµολογία κοινή εξελικτική καταγωγή Ορθόλογα γονίδια ειδογένεση συνήθως, ίδια βιολογική λειτουργία Παράλογα γονίδια γονιδιακός
Διαβάστε περισσότεραΒΙΟ230 - Εισαγωγή στην Υπολογιστική Βιολογία Πρακτικό Εργαστήριο: Basic Local Alignment Search Tool BLAST
ΒΙΟ230 - Εισαγωγή στην Υπολογιστική Βιολογία Πρακτικό Εργαστήριο: Basic Local Alignment Search Tool BLAST Στέλλα Ταμανά, Βασίλης Προμπονάς Λευκωσία 2016-2018 Περίληψη (Overview) Κατά τη διάρκεια αυτού
Διαβάστε περισσότεραΒιοπληροφορική. Ενότητα 10: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Blast, (2/2) 1ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 10: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Blast, (2/2) 1ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Αναφορά στις παραλλαγές του BLAST. Εξοικείωση με τη
Διαβάστε περισσότεραΑσκήσεις 1 & 2. Βάσεις Δεδομένων. Εργαλεία Αναζήτησης ClustalW & Blast
Ασκήσεις 1 & 2 Βάσεις Δεδομένων Εργαλεία Αναζήτησης ClustalW & Blast Μοριακή Προσομοίωση Εισαγωγή: Δομική Βάση Βιολογικών Φαινομένων Η αξιοποίηση του πλήθους των δομικών στοιχείων για την εξαγωγή βιολογικά
Διαβάστε περισσότεραΠολλαπλές στοιχίσεις ακολουθιών (Προοδευτικές μέθοδοι)
Πολλαπλές στοιχίσεις ακολουθιών (Προοδευτικές μέθοδοι) Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus Σύνοψη Εισαγωγή Πολλαπλή στοίχιση και
Διαβάστε περισσότεραΑλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙΙ: Έλεγχος στατιστικής σημαντικότητας
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙΙ: Έλεγχος στατιστικής σημαντικότητας Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161
Διαβάστε περισσότεραΕξερευνώντας την Εξέλιξη Κεφάλαιο 7
Εξερευνώντας την Εξέλιξη Κεφάλαιο 7 Εξερευνώντας την Εξέλιξη Σχέση μεταξύ αλληλουχίας αμινοξέων, δομής και λειτουργίας πρωτεϊνών Καταγωγή από έναν κοινό πρόγονο Εξελικτική Συγγένεια/Προέλευση Δύο ομάδες
Διαβάστε περισσότεραΛίγη εξέλιξη: οµολογία
Φυλογένεση Η εκτίµηση της εξελικτικής ιστορίας γονιδίων/πρωτεϊνών ή οργανισµών. Η απεικόνιση αυτής της ιστορίας γίνεται µε φυλογράµµατα/ κλαδογράµµατα Λίγη εξέλιξη: οµολογία Οµόλογα γονίδια: κοινός εξελικτικός
Διαβάστε περισσότεραΜέθοδοι Φυλογένεσης. Μέθοδοι που βασίζονται σε αποστάσεις UPGMA Κοντινότερης γειτονίας (Neighbor joining) Fitch-Margoliash Ελάχιστης εξέλιξης
Μέθοδοι Φυλογένεσης Μέθοδοι που βασίζονται σε αποστάσεις UPGMA Κοντινότερης γειτονίας (Neighbor joining) Fitch-Margoliash Ελάχιστης εξέλιξης Μέθοδοι που βασίζονται σε χαρακτήρες Μέγιστη φειδωλότητα (Maximum
Διαβάστε περισσότεραΔευτεροταγείς βάσεις δεδομένων (Secondary databases)
Δευτεροταγείς βάσεις δεδομένων (Secondary databases) Οι δευτεροταγείς (pattern) βάσεις δεδομένων (ΒΔ) περιέχουν τα αποτελέσματα από τις αναλύσεις των αλληλουχιών που βρίσκονται στις πρωτοταγείς πηγές πληροφόρησης.
Διαβάστε περισσότεραΒιοπληροφορική Ι. Παντελής Μπάγκος Αναπληρωτής Καθηγητής. Παν/μιο Θεσσαλίας Λαμία 2015
Βιοπληροφορική Ι Παντελής Μπάγκος Αναπληρωτής Καθηγητής Παν/μιο Θεσσαλίας Λαμία 215 Το Κεντρικό Δόγμα της Μοριακής Βιολογίας http://www.accessexcellence.org/ab/gg/central.html Βιολογικές Βάσεις Δεδομένων
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ BIO 230 Εισαγωγή στην Υπολογιστική Βιολογία Διδάσκων: Βασίλειος Ι. Προμπονάς, Ph.D. Επίκουρος Καθηγητής Βιοπληροφορικής ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Δευτέρα
Διαβάστε περισσότεραΣτοίχιση ακολουθιών κατά ζεύγη (Pairwise alignment) Blast
Στοίχιση ακολουθιών κατά ζεύγη (Pairwise alignment) & Blast Στοίχιση κατά ζεύγη Αντιστοίχιση των νουκλεοτιδίων/αµινοξέων δυο ακολουθιών, ώστε να εντοπιστούν οι οµοιότητες και οι διαφορές τους. Χρησιµοποιείται
Διαβάστε περισσότεραΒιοπληροφορική. Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών,(2/2) 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών,(2/2) 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Παρουσίαση της μεθόδου κατασκευής και
Διαβάστε περισσότεραΒιοπληροφορική. Ενότητα 14: Μοντέλα Πολλαπλής Στοίχισης (2/2), 1.5ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 14: Μοντέλα Πολλαπλής Στοίχισης (2/2), 1.5ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι παρουσίαση των μοντέλων πολλαπλής στοίχισης. κατανόηση των εφαρμογών
Διαβάστε περισσότεραΒιοπληροφορική. Πίνακες Αντικατάστασης BLOSUM & Οπτική Σύγκριση Αλληλουχιών. Αλέξανδρος Τζάλλας
Βιοπληροφορική Πίνακες Αντικατάστασης BLOSUM & Οπτική Σύγκριση Αλληλουχιών Αλέξανδρος Τζάλλας e-mail: tzallas@teiep.gr ΤΕΙ Ηπείρου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Copyright
Διαβάστε περισσότεραΆσκηση 7. Προσομοίωση 3D Δομών Βιομορίων μέσω. Ομολογίας & Threading
Άσκηση 7 Προσομοίωση 3D Δομών Βιομορίων μέσω Ομολογίας & Threading Προσομοίωση 2ταγούς δομής πρωτεϊνών Δευτεροταγής Δομή: Η 2ταγής δομή των πρωτεϊνών είναι σταθερή τοπική διαμόρφωση της πολυπεπτιδικής
Διαβάστε περισσότεραΒιοπληροφορική Ι. Παντελής Μπάγκος Αναπληρωτής Καθηγητής. Πανεπιστήμιο Θεσσαλίας Λαμία, 2015
Βιοπληροφορική Ι Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 Φυλογενετικές σχέσεις Χρησιμοποιούνται οι ομοιότητες και οι διαφορές των μελετούμενων οργανισμών Τα χαρακτηριστικά
Διαβάστε περισσότεραΒιοπληροφορική. Εισαγωγή. Αλέξανδρος Τζάλλας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ.
Βιοπληροφορική Αλέξανδρος Τζάλλας e-mail: tzallas@teiep.gr ΤΕΙ Ηπείρου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Περιεχόμενα Διάλεξης Βιολογικό υπόβαθρο Το κεντρικό αξίωμα Σύνοψη της
Διαβάστε περισσότεραΒιοπληροφορική. Ενότητα 12: Μέθοδοι Πολλαπλής Στοίχισης, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 12: Μέθοδοι Πολλαπλής Στοίχισης, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση των μεθόδων πολλαπλής στοίχισης. Ανάδειξη των πλεονεκτημάτων και
Διαβάστε περισσότεραΑΡΧΕΣ ΒΙΟΛΟΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ
ΑΡΧΕΣ ΒΙΟΛΟΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Εργαστήριο Βιοπληροφορικής 7 ο εξάμηνο Σχολή Μηχανολόγων Μηχανικών ΕΜΠ Διδάσκων: Λεωνίδας Αλεξόπουλος Fritz Kahn (1888 1968) 1 Περιεχόμενα Ομοιότητα πρωτεϊνών Σύγκριση αλληλουχιών
Διαβάστε περισσότεραΜέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν
Διαβάστε περισσότεραBIOTECH - GO. Μία συνδυασμένη μέθοδος εκπαίδευσης στη Βιοπληροφορική - Το μέσο των μικρομεσαίων επιχειρήσεων για τις βιοτεχνολογικές καινοτομίες
BIOTECH - GO Μία συνδυασμένη μέθοδος εκπαίδευσης στη Βιοπληροφορική - Το μέσο των μικρομεσαίων επιχειρήσεων για τις βιοτεχνολογικές καινοτομίες Η πληροφορία είναι η γνώση και η Σημερινή οικονομία είναι
Διαβάστε περισσότεραΜέθοδοι μονοδιάστατης ελαχιστοποίησης
Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 5: Πίνακες αντικατάστασης BLOSUM και οπτική σύγκριση αλληλουχιών Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ
Διαβάστε περισσότεραΣ ΤΑΤ Ι Σ Τ Ι Κ Η. Statisticum collegium iv
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i Statisticum collegium iv Στατιστική Συμπερασματολογία Ι Σημειακές Εκτιμήσεις Διαστήματα Εμπιστοσύνης Στατιστική Συμπερασματολογία (Statistical Inference) Το πεδίο της Στατιστικής Συμπερασματολογία,
Διαβάστε περισσότεραΠρόγνωση δομής πρωτεϊνών (Μέρος Ι)
Πρόγνωση δομής πρωτεϊνών (Μέρος Ι) Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο Κύπρου Ταχ.Κιβ. 20537 1678, Λευκωσία ΚΥΠΡΟΣ
Διαβάστε περισσότεραΑλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος Ι: Στοιχίσεις ακολουθιών κατά ζεύγη Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο
Διαβάστε περισσότερα3.4.1 Ο Συντελεστής ρ του Spearman
3.4. Ο Συντελεστής ρ του Spearma Έστω (, ), (, ),..., (, ) ένα δείγμα παρατηρήσεων πάνω στο τυχαίο διάνυσμα (, ). Έστω ( ) ο βαθμός ή η τάξη μεγέθους της μεταβλητής όταν αυτή συγκρίνεται με τις άλλες Χ
Διαβάστε περισσότεραΚεφάλαιο 4 Πολλαπλή Στοίχιση Ακολουθιών
Κεφάλαιο 4 Πολλαπλή Στοίχιση Ακολουθιών Σύνοψη Η πολλαπλή στοίχιση είναι μια διαδικασία με κεντρική σημασία στη σύγχρονη βιοπληροφορική. Πολλαπλές στοιχίσεις χρησιμοποιούνται για να εντοπιστούν τα συντηρημένα
Διαβάστε περισσότεραΜέθοδοι Προσπέλασης για την Επεξεργασία Μεγάλων Βιολογικών Βάσεων Δεδομένων. Ανδρουλάκης Ανδρέας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΙΑΤΡΙΚΗ Μέθοδοι Προσπέλασης για την Επεξεργασία Μεγάλων Βιολογικών Βάσεων Δεδομένων Ανδρουλάκης Ανδρέας ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Υπεύθυνος Βασιλακόπουλος
Διαβάστε περισσότεραΒιοπληροφορική. Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών, (1/2) 1ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών, (1/2) 1ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Παρουσίαση της μεθόδου κατασκευής και
Διαβάστε περισσότεραΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. β Α2. γ Α3. δ Α4. γ Α5. β
ΘΕΜΑ Α Α1. β Α2. γ Α3. δ Α4. γ Α5. β 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΕΤΑΡΤΗ 10 ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ:
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΕΠΛ 450 ΥΠΟΛΟΓΙΣΤΙΚΗ ΒΙΟΛΟΓΙΑ. Παύλος Αντωνίου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΕΠΛ 450 ΥΠΟΛΟΓΙΣΤΙΚΗ ΒΙΟΛΟΓΙΑ Παύλος Αντωνίου Με μια ματιά: Εισαγωγή στη Βιολογία Ευθυγράμμιση Ακολουθιών Αναζήτηση ομοίων ακολουθιών από βάσεις δεδομενων Φυλογενετική πρόβλεψη Πρόβλεψη
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ (ΒΙΟ 650) Ειδικά Θέματα Βιοπληροφορικής Διδάσκων: Βασίλειος Ι. Προμπονάς, Ph.D. Λέκτορας Βιοπληροφορικής ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Δευτέρα και Πέμπτη
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 08-09 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Επικ. Καθηγητής v.koutras@fme.aegea.gr Τηλ: 7035468 Εκτίμηση Διαστήματος
Διαβάστε περισσότεραΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική
ΤΕΙ Αθήνας Μεθοδολογία της έρευνας και Ιατρική στατιστική Ενότητα 3: Έλεγχοι υποθέσεων - Διαστήματα εμπιστοσύνης Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Οι ερευνητικές υποθέσεις Στην έρευνα ελέγχουμε
Διαβάστε περισσότεραΠοσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διαβάστε περισσότεραΑσκήσεις 3& 4. Πρωτεϊνική Αρχιτεκτονική. Πλατφόρμες Πρόβλεψης & Προσομοίωσης 2ταγούς Δομής. Μοριακή Απεικόνιση
Ασκήσεις 3& 4 Πρωτεϊνική Αρχιτεκτονική Πλατφόρμες Πρόβλεψης & Προσομοίωσης 2ταγούς Δομής Μοριακή Απεικόνιση Πρωτεϊνική Αρχιτεκτονική Πρωτεϊνική Αρχιτεκτονική: Η τρισδιάστατη δομή μιας πρωτεΐνης και πως
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική. Ενότητα 7: Σύγκριση αλληλουχιών Part II
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 7: Σύγκριση αλληλουχιών Part II Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail: sbellou@uowm.gr
Διαβάστε περισσότεραΓονιδιωματική Συγκριτική γονιδιωματική[4] Τμήμα Γεωπονίας, Ιχθυολογίας και Υδάτινου Περιβάλλοντος. Μεζίτη Αλεξάνδρα
Γονιδιωματική Συγκριτική γονιδιωματική[4] Τμήμα Γεωπονίας, Ιχθυολογίας και Υδάτινου Περιβάλλοντος Μεζίτη Αλεξάνδρα Μέγεθος και οργάνωση γονιδιωμάτων Μελετάμε τα γονιδιώματα για να καταλάβουμε πως λειτουργεί
Διαβάστε περισσότεραΜΕΛΕΤΗ ΜΕ ΥΠΟΛΟΓΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΑΝΘΡΩΠΙΝΗΣ ΠΡΩΤΕΪΝΗΣ GEMININB
ΣΧΟΛΗ ΙΑΤΡΙΚΗΣ ΤΜΗΜΑ ΒΙΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΠΛΗΡΟΦΟΡΙΚΗ ΕΠΙΣΤΗΜΩΝ ΖΩΗΣ ΜΕΛΕΤΗ ΜΕ ΥΠΟΛΟΓΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΑΝΘΡΩΠΙΝΗΣ ΠΡΩΤΕΪΝΗΣ GEMININB ΔΡΙΤΣΟΠΟΥΛΟΥ ΕΛΕΝΗ Α.Μ. 1003 ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ 2
Διαβάστε περισσότεραΚύρια σημεία. Η έννοια του μοντέλου. Έρευνα στην εφαρμοσμένη Στατιστική. ΈρευναστηΜαθηματικήΣτατιστική. Αντικείμενο της Μαθηματικής Στατιστικής
Κύρια σημεία Ερευνητική Μεθοδολογία και Μαθηματική Στατιστική Απόστολος Μπουρνέτας Τμήμα Μαθηματικών ΕΚΠΑ Αναζήτηση ερευνητικού θέματος Εισαγωγή στην έρευνα Ολοκλήρωση ερευνητικής εργασίας Ο ρόλος των
Διαβάστε περισσότεραΕνότητα 2: Έλεγχοι Υποθέσεων Διαστήματα Εμπιστοσύνης
ΕΘΝΙΚΟ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ - ΙΑΤΡΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΣΜΕΝΗ ΝΕΥΡΟΑΝΑΤΟΜΙΑ» «Βιοστατιστική, Μεθοδολογία και Συγγραφή Επιστημονικής Μελέτης» Ενότητα 2: Έλεγχοι Υποθέσεων
Διαβάστε περισσότερασ = και σ = 4 αντιστοίχως. Τότε θα ισχύει
Θέματα ομάδας A 1. Σε κάποιο πείραμα τύχης μία τυχαία μεταβλητή λαμβάνει τις τιμές = 10 και = 10. Τότε η μέση τιμή x της θα είναι α. 10 β. 10 γ.,5 10 δ. 19,5 10 1= 10, = 10,. Δυο τυχαίες μεταβλητές, ακολουθούν
Διαβάστε περισσότεραΠολλαπλή στοίχιση Φυλογένεση
Πολλαπλή στοίχιση Φυλογένεση MSA: Τι είναι Στοίχιση για 3 ή περισσότερες ακολουθίες. Αποκαλύπτονται οι συντηρηµένες περιοχές µεταξύ των ακολουθιών µιας οικογένειας. Χρειάζεται για: Δηµιουργία profiles/motifs
Διαβάστε περισσότεραΕισαγωγή στη Γενετική και στη Γονιδιωματική Τι είναι η κληρονομικότητα, και πώς μεταβιβάζεται η πληροφορία από γενιά σε γενιά;
ΒΙΟΛΟΓΙΚΗ ΑΝΘΡΩΠΟΛΟΓΙΑ 12 26/10/2016 Κεφάλαιο 3 Α μέρος Εισαγωγή στη Γενετική και στη Γονιδιωματική Τι είναι η κληρονομικότητα, και πώς μεταβιβάζεται η πληροφορία από γενιά σε γενιά; Ποια είναι η δομή
Διαβάστε περισσότεραΑλληλοεπικαλυπτόμενα επιστημονικά πεδία Υπολογιστικής Βιολογίας
Αλληλοεπικαλυπτόμενα επιστημονικά πεδία Υπολογιστικής Βιολογίας Βάσεις Δεδομένων, Αποθετήρια γνώσεων και αλγόριθμων Red rectangles are true matching of identical residue-pairs and green rectangles represent
Διαβάστε περισσότεραΚεφάλαιο 5 Αναζήτηση προτύπων σε αλληλουχίες
Κεφάλαιο 5 Αναζήτηση προτύπων σε αλληλουχίες Σύνοψη Στο κεφάλαιο αυτό θα μελετήσουμε τα πρότυπα αλληλουχιών και θα εξετάσουμε τη χρησιμότητά τους. Θα δούμε τον τρόπο ορισμού των προτύπων της PROSITE και
Διαβάστε περισσότεραΣ ΤΑΤ Ι Σ Τ Ι Κ Η ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ
Σ ΤΑΤ Ι Σ Τ Ι Κ Η i ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ Κατανομή Δειγματοληψίας του Δειγματικού Μέσου Ο Δειγματικός Μέσος X είναι μια Τυχαία Μεταβλητή. Καθώς η επιλογή και χρήση διαφορετικών δειγμάτων από έναν
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ (ΒΙΟ 003) Εισαγωγή στη Βιοπληροφορική Διδάσκοντες: Χρήστος Ουζούνης, Βασίλειος Ι. Προµπονάς ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Τρίτη και Παρασκευή 10:30 12:00,
Διαβάστε περισσότεραΕισαγωγή στη θεωρία ακραίων τιμών
Εισαγωγή στη θεωρία ακραίων τιμών Αντικείμενο της θεωρίας ακραίων τιμών αποτελεί: Η ανάπτυξη και μελέτη στοχαστικών μοντέλων με σκοπό την επίλυση προβλημάτων που σχετίζονται με την εμφάνιση «πολύ μεγάλων»
Διαβάστε περισσότεραΑναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Διαβάστε περισσότερα2.5.1 ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ
.5. ΕΚΤΙΜΗΣΗ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ Η μέθοδος κατασκευής διαστήματος εμπιστοσύνης για την πιθανότητα που περιγράφεται στην προηγούμενη ενότητα μπορεί να χρησιμοποιηθεί για την κατασκευή διαστημάτων
Διαβάστε περισσότεραΦΥΛΟΓΕΝΕΤΙΚ Α ΔΕΝΤΡΑ
ΦΥΛΟΓΕΝΕΤΙΚΑ ΔΕΝΤΡΑ Χαρακτηριστική πτυχή της ζωής είναι η απεριόριστη ποικιλότητα της. Δεν υπάρχουν δύο ίδια άτομα σε έναν πληθυσμό, δύο ίδιοι πληθυσμοί σε ένα είδος, δύο ίδια είδη, κ. ο. κ. Παντού, υπάρχει
Διαβάστε περισσότεραΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17
ΚΕΦΑΛΑΙΟ 17 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Στο κεφάλαιο αυτό θα αναφερθούμε σε ένα άλλο πρόβλημα της Στατιστικής που έχει κυρίως (αλλά όχι μόνο) σχέση με τις παραμέτρους ενός πληθυσμού (τις παραμέτρους της κατανομής
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα
Διαβάστε περισσότεραΕφαρμοσμένη Βιοτεχνολογία Εργαστηριακή Άσκηση Εισαγωγή στην Βιοπληροφορική
Εφαρμοσμένη Βιοτεχνολογία Εργαστηριακή Άσκηση Εισαγωγή στην Βιοπληροφορική Δραστηριότητες 1. Εύρεση γονιδίων/πρωτεϊνών από βάσεις δεδομένων 2. Ευθυγράμμιση και σύγκριση γονιδίων/πρωτεϊνών 3. Δημιουργία
Διαβάστε περισσότερα7.1.1 Η Μέθοδος των Ελαχίστων Τετραγώνων
7.. Η Μέθοδος των Ελαχίστων Τετραγώνων Όπως ήδη αναφέρθηκε, μία ευρύτατα διαδεδομένη μέθοδος για την εκτίμηση των σταθερών α και β είναι η μέθοδος των ελαχίστων τετραγώνων. Η μέθοδος αυτή επιλέγει εκτιμήτριες
Διαβάστε περισσότερα