Ειδικά Θέματα Βιοπληροφορικής
|
|
- Κλήμεντος Μέλιοι
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Ειδικά Θέματα Βιοπληροφορικής Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία,
2 Πολλαπλή στοίχιση ακολουθιών και φυλογενετικά δέντρα 2
3 Πολλαπλή στοίχιση Αναφέρεται στην ταυτόχρονη στοίχιση περισσοτέρων από 2 ακολουθιών Ιδιαίτερα σημαντική καθώς έτσι μπορούμε να εντοπίσουμε οικογένειες σχετιζόμενων ακολουθιών και να μελετήσουμε τα λειτουργικά χαρακτηριστικά τους Βασίζεται στις ίδιες αρχές με την κατά ζεύγη στοίχιση, αλλά υπάρχουν πιο πολλές δυσκολίες Μπορεί να μας δώσει μια εικόνα της φυλογενετικής προέλευσης των ακολουθιών 3
4 Δυναμικός προγραμματισμός σε N διαστάσεις Επέκταση των αλγορίθμων δυναμικού προγραμματισμού (SW και NW) σε περισσότερες διαστάσεις Υπολογιστικές δυσκολίες Τρόπος υπολογισμού της ομοιότητας (?) 4
5 5
6 Πολυδιάστατο Score Sum of pairs Score (αυτό χρησιμοποιείται) 6
7 MSA (Carillo and Lipman,1988, Lipman et al,1989) Περιορισμός του εύρους αναζήτησης του δυναμικού προγραμματισμού Χρήση του Sum of Pairs Score 7
8 Προοδευτική πολλαπλή στοίχιση Αρχικές κατά ζεύγη στοιχίσεις όλων των ακολουθιών Με βάση αυτές, κατάσκευή πίνακα αποστάσεων και ενός δέντρου οδηγού (guide tree) Προοδευτική στοίχιση των πιο όμοιων ακολουθιών μεταξύ τους, μέχρι τέλους 8
9 9
10 Μια καλύτερη λύση, είναι το λεγόμενο profile alignment, το οποίο μετράει τη σχετική συνεισφορά όλων των ακολουθιών της κάθε στοίχισης και τελικά πραγματοποιεί την στοίχιση λαμβάνοντας υπόψη όλες τις ακολουθίες. Τα μαθηματικά της μεθόδου είναι πολύπλοκα, αλλά μπορούν να απλοποιηθούν αν θεωρήσουμε, όπως και παραπάνω, το κενό σαν ένα πέμπτο σύμβολο (-), οπότε θα έχουμε και γραμμική ποινή για τα κενά j j ' i i, i SP m s m m i i j j ' j j ' j j ' j j ' s mi, mi s mi, mi s mi, mi i j j ' n i n j j ' N i j n, n j ' N 10
11 11
12 Feng and Doolitle (1987) Αρχικές κατά ζεύγη στοιχίσεις με NW υπολογισμός της απόστασης δυο ακολουθιών S D log S log S obs rand max rand Κατασκευή δέντρου οδηγού με ιεραρχικό Clustering Η ακολουθία στοιχίζεται με ΟΛΕΣ τις ακολουθίες μιας στοίχισης (με το γνωστό αλγόριθμο δυναμικού προγραμματισμού). Η ακολουθία προστίθεται στην πολλαπλή στοίχιση με βάση τη στοίχιση κατά ζεύγη του προηγούμενου βήματος που είχε το μεγαλύτερο score. S S 12
13 Clustal (Higgins et al, 1992; Thompson et al, 1994) Προοδευτική στοίχιση Κατά ζεύγη ομοιότητα με FASTA (default) αλλα και με δυναμικό προγραμματισμό Οι αποστάσεις υπολογίζονται απευθείας από την επί τοις εκατό ομοιότητα των ακολουθιών x (D=1- x/100) Δέντρο οδηγός με Neibhor-Joining method.η μέθοδος είναι διαθέσιμη στη διεύθυνση 13
14 συνέχεια Τέλος, χρησιμοποιεί μια σειρά από πολύ προσεκτικά επιλεγμένες ευριστικές τεχνικές οι οποίες μεγιστοποιούν το αποτέλεσμα. Για παράδειγμα, οι πολύ όμοιες ακολουθίες λαμβάνουν μικρό σχετικό βάρος (weight) έτσι ώστε να μην επηρεάζουν τόσο πολύ και να μην κατευθύνουν την πολλαπλή στοίχιση. Μια άλλη ιδιαιτερότητα είναι ότι ο πίνακας ομοιότητας δεν είναι σταθερός, αλλά επιλέγεται από τον αλγόριθμο ανάλογα με το ποσοστό ομοιότητας που εντοπίζεται στις υπό μελέτη ακολουθίες. Επιπλέον, οι ποινές για τα κενά, δεν είναι σταθερές, αλλά ειδικές ανά θέση (υδρόφοβες περιοχές λαμβάνουν μεγαλύτερη ποινή για τα κενά, με συνέπεια να καθίσταται πιο δύσκολη η εισαγωγή κενών σε αυτές τις περιοχές, αντίθετα, η ποινή μειώνεται αν βρεθούν πάνω από 5 συνεχόμενα υδρόφιλα κατάλοιπα). Τέλος, οι ποινές για τα κενά αυξάνονται αν στην ίδια στήλη της στοίχισης δεν υπάρχουν κενά, αλλά αντίθετα υπάρχει κάπου δίπλα μια περιοχή με πολλά κενά. Αυτό έχει σαν συνέπεια τα κενά να «συσσωρεύονται» σε συγκεκριμένες θέσεις σε μια στοίχιση. Όλες αυτές οι τεχνικές, έχουν βελτιωθεί με τα χρόνια και έχουν κάνει το CLUSTAL να είναι ένα από τα πιο αξιόπιστα εργαλεία πολλαπλής στοίχισης, παρόλο που κατά βάση στηρίζεται σε μια απλή ευριστική μέθοδο 14
15 Kalign Στο Kalign, όλες οι επιλογές της προοδευτικής πολλαπλής στοίχισης είναι βελτιστοποιημένες με σκοπό την ταχύτητα Χρήση του προσεγγιστικού αλγόριθμου ταύτισης συμβολοσειρών, των Wu και Manber, ο οποίος είναι γραμμικός ως προς το μήκος της ακολουθίας UPGMA profile alignment 15
16 Επαναληπτικές μέθοδοι και μέθοδοι που βασίζονται στη συνέπεια Η βασική ιδέα των επαναληπτικών μεθόδων, είναι να χρησιμοποιηθεί κάποιου είδους προοδευτική πολλαπλή στοίχιση, αλλά αυτή η διαδικασία να γίνει επαναληπτικά έτσι ώστε λάθη που είναι πιθανό να εισχωρήσουν σε αρχικά στάδια της στοίχισης, να μπορούν να αναιρεθούν σε κάποιο μετέπειτα βήμα. Η επαναληπτική διαδικασία, είναι σε γενικές γραμμές μια εύκολα υλοποιήσιμη ιδέα, και εμπειρικές αναλύσεις έχουν δείξει ότι μπορεί να χρησιμοποιηθεί ακόμα και σε ήδη υπάρχοντες αλγόριθμους, αυξάνοντας σημαντικά την απόδοσή τους. Για παράδειγμα, η ακρίβεια του CLUSTALW αυξάνει κατά 6% με αυτή τη διαδικασία 16
17 Παραδείγματα MULTALIN ( MUSCLE ( PRPP/PRRN ( PRALINE ( DIALIGN ( COBALT (ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/cobalt) T-COFFEE ( 17
18 MUSCLE 18
19 T-Coffee Όμοια με το Dialign, το T-Coffee πραγματοποιεί πρώτα όλες τις κατά ζεύγη στοιχίσεις. Παρ όλα αυτά, το T- Coffee κάνει αυτό το βήμα δυο φορές: μια με χρήση του ClustalW (global) και μια με το Lalign (local-fasta package). Τα αποτελέσματα συνδυάζονται σε μια αρχική βιβλιοθήκη Σε ένα βήμα επέκτασης της βιβλιοθήκης, καθορίζεται πως τα ζεύγη καταλοίπων στοιχίζονται σε σχέση με άλλα κατάλοιπα. Τέτοιες τριπλέτες χρησιμοποιούνται για να βρεθεί πόσο καλά οι ακολουθίες στοιχίζονται δοδομένων των υπολοίπων (σε αντίθεση με τον έλεγχο δυο ακολουθιών απομονωμένα). Η τελική στοίχιση κατασκευάζεται έπειτα, προοδευτικά με χρήση της πληροφορίας στη βιβλιοθήκη 19
20 20
21 21
22 22
23 Dialign Το Dialign πραγματοποιεί τοπική στοίχιση και στοιχιζει ολόκληρα τμήματα παρά κατάλοιπα. Αρχικά, όλες οι ανά δυο στοιχίσεις πραγματοποιούνται και συλλέγονται οι στοιχισμένες περιοχές στις οποίες δεν υπάρχουν κενά. Το όνομα Dialign βγαίνει από αυτές τις διαγώνιες περιοχές (diagonal alignments in a dot plot) Ένα συνεπές σύνολο από διαγώνιες καθορίζεται έτσι και διαδοχικά προστίθεται στη στοίχιση 23
24 Οπτικοποίηση και επεξεργασιά πολλαπλών στοιχίσεων Jalview ( Strap ( Seqpup ( Seaview ( Cinema ( Boxshade ( Bioedit ( 24
25 Jalview 25
26 Strap 26
27 BioEdit 27
28 Chroma 28
29 Seaview 29
30 Αξιολόγηση των πολλαπλών στοιχίσεων Βασίζεται κυρίως σε δομικές στοιχίσεις ελεγμένες από ειδικούς. Παρ όλα αυτά δεν υπάρχει ακόμα «απολύτως αντικειμενικός» και αποδεκτός τρόπος για αξιολόγηση BaliBase ( u-strasbg.fr/bioinfo/balibase/index.html ) OxBench ( SABmark( ) PREFAB ( ) 30
31 31
32 Συμπεράσματα Παρόλο που οι επιμέρους μελέτες διαφέρουν πολλές φορές ως προς τη μεθοδολογία, μπορούμε να εξάγουμε κάποια γενικά συμπεράσματα. Για παράδειγμα, τα περισσότερα από τα σύγχρονα εργαλεία που αναφέραμε παραπάνω, σε ένα ευρύ φάσμα συνθηκών αποδίδουν πολύ καλά, πετυχαίνοντας πάνω από 50% επιτυχία στην ανακατασκευή των στοιχίσεων αναφοράς, ακόμα και σε οικογένειες με μέσο ποσοστό ομοιότητας γύρω στο 20%. Το T-Coffee, το ProbCons και το ProbAlign είναι σε γενικές γραμμές οι πιο αποδοτικοί αλγόριθμοι, αλλά είναι και πιο χρονοβόροι και με μεγάλες απαιτήσεις σε μνήμη (ιδιαίτερα τα δύο τελευταία). Το ClustalW και το MUSCLE, ακολουθούν με μικρή διαφορά στην απόδοση, αλλά υπερτερούν σε ταχύτητα εκτέλεσης και σε απαιτήσεις σε μνήμη. Το Prrp/Prrn είναι επίσης καλό, αλλά πιο αργό. Το Kalign, είναι σε γενικές γραμμές ελαφρώς χειρότερο, αλλά είναι έως και 10 φορές γρηγορότερο από το CLUSTALW (πολύ δε περισσότερο από τα υπόλοιπα), και κατά συνέπεια καλύτερο για αναλύσεις μεγάλου όγκου δεδομένων σε καθημερινή βάση. Τέλος, οι αλγόριθμοι που κάνουν ολική στοίχιση, αποδίδουν σε γενικές γραμμές καλύτερα, εκτός αν στις πολλαπλές στοιχίσεις υπάρχουν μεγάλες περιοχές στο αμινοτελικό ή στο καρβοξυτελικό άκρο, οι οποίες δεν ταυτίζονται σε όλα τα μέλη της οικογένειας (δηλαδή, αν υπάρχουν οικογένειες με μέλη τα οποία εμφανίζουν τοπική ομοιότητα). Το T-Coffee γενικά, είναι ένας καλός συμβιβασμός, καθώς τα καταφέρνει σχετικά καλά σε όλες τις περιπτώσεις, ενώ το Dialign αποδεικνύεται καλύτερο μόνο σε κάποια από τα σετ με τέτοιες ακολουθίες (στις πιο ακραίες περιπτώσεις). 32
33 Τα δύο τελευταία χαρακτηριστικά, δηλαδή η ταχύτητα και η ικανότητα σωστής στοίχισης σε περιπτώσεις τοπικής ομοιότητας πρέπει να ελέγχονται προσεκτικά και να λαμβάνονται σοβαρά υπόψη στην επιλογή προγράμματος. Η ταχύτητα για παράδειγμα, δεν είναι σημαντική όταν κάνουμε μια μελέτη μιας συγκεκριμένης οικογένειας (θέλουμε να πάρουμε την καλύτερη δυνατή στοίχιση και δεν μας πειράζει να περιμένουμε λίγο). Από την άλλη όμως, είναι ένας σημαντικός παράγοντας αν πρόκειται τις πολλαπλές στοιχίσεις να τις χρησιμοποιούμε λ.χ. για την υποβοήθηση μιας μεθόδου πρόγνωσης, γιατί σε αυτή την περίπτωση θα χρειάζεται να επαναλαμβάνουμε τις στοιχίσεις καθημερινά (για παράδειγμα, αν φτιάχνουμε μια διαδικτυακή εφαρμογή). Κάτι αντίστοιχο ισχύει και για τις τοπικές ομοιότητες των πρωτεϊνών. Αν μελετάμε μια συγκεκριμένη οικογένεια πρωτεϊνών, κατά πάσα πιθανότητα θα ξέρουμε τι είδους στοίχιση να περιμένουμε. Αν όμως πρόκειται η πολλαπλή στοίχιση να χρησιμοποιείται σε μια αυτοματοποιημένη διαδικασία, τότε δεν έχουμε αυτή την πολυτέλεια. Τέλος, ένας άλλος παράγοντας που πρέπει να λαμβάνεται υπόψη είναι και η ευκολία προς τον απλό χρήστη. Τα περισσότερα από τα προγράμματα που αναφέραμε (CLUSTALW, T- Cofffee, Dialign, Kalign, MUSCLE, ProbAlign, Prrp/Prrn), προσφέρονται σαν διαδικτυακές εφαρμογές αλλά και σαν τοπικές εφαρμογές τις οποίες ο χρήστης μπορεί να εγκαταστήσει στον υπολογιστή του. Τα περισσότερα από αυτά, είναι ιδιαίτερα εύκολα στην εγκατάσταση σε όλα τα συστήματα (Windows, Linux, Mac), αλλά το COBALT και το PRALINE, τα οποία απαιτούν χρήση και άλλων προγραμμάτων (PSI- BLAST κλπ), είναι πιο δύσκολα στη ρύθμιση (και για την ακρίβεια, για το PRALINE δεν είμαστε σίγουροι αν υπάρχει και διαθέσιμη εφαρμογή πέραν της διαδικτυακής). Όλα τα παραπάνω είναι παράγοντες που πρέπει να λαμβάνονται σοβαρά υπόψη από τον χρήστη πριν επιλέξει με ποιο πρόγραμμα θα πραγματοποιήσει την ανάλυση του, και σε κάθε περίπτωση, είναι χρήσιμο πάντα κάποιος να δοκιμάζει αρκετές εναλλακτικές 33 προτάσεις.
Κεφάλαιο 4 Πολλαπλή Στοίχιση Ακολουθιών
Κεφάλαιο 4 Πολλαπλή Στοίχιση Ακολουθιών Σύνοψη Η πολλαπλή στοίχιση είναι μια διαδικασία με κεντρική σημασία στη σύγχρονη βιοπληροφορική. Πολλαπλές στοιχίσεις χρησιμοποιούνται για να εντοπιστούν τα συντηρημένα
Κατά ζεύγη στοίχιση ακολουθιών Πολλαπλή στοίχιση ακολουθιών Patterns. Δρ. Μαργαρίτα Θεοδωροπούλου
Κατά ζεύγη στοίχιση ακολουθιών Πολλαπλή στοίχιση ακολουθιών Patterns Δρ. Μαργαρίτα Θεοδωροπούλου Από τα πιο σημαντικά προβλήματα στην Υπολογιστική Βιολογία Ιδιαίτερα πλούσια βιβλιογραφία για πάνω από 30
Βιοπληροφορική Ι. Παντελής Μπάγκος. Παν/µιο Στερεάς Ελλάδας
Βιοπληροφορική Ι Παντελής Μπάγκος Παν/µιο Στερεάς Ελλάδας Λαµία 2006 1 Βιοπληροφορική Ι Εισαγωγή: Ορισµός της Βιοπληροφορικής, Υποδιαιρέσεις της Βιοπληροφορικής, Τα είδη των δεδοµένων στη Βιοπληροφορική.
Βιοπληροφορική. Ενότητα 12: Μέθοδοι Πολλαπλής Στοίχισης, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 12: Μέθοδοι Πολλαπλής Στοίχισης, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση των μεθόδων πολλαπλής στοίχισης. Ανάδειξη των πλεονεκτημάτων και
Πολλαπλές στοιχίσεις ακολουθιών (Προοδευτικές μέθοδοι)
Πολλαπλές στοιχίσεις ακολουθιών (Προοδευτικές μέθοδοι) Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus Σύνοψη Εισαγωγή Πολλαπλή στοίχιση και
LALING/PLALING :
1. Άρθρα- δημοσιεύσεις Scopus DBLP Pubmed Google Scholar 2. Αναζήτηση νουκλεοτιδίου- πρωτεΐνης Entrez : http://www.ncbi.nlm.nih.gov/nuccore/ Uniprot (πρωτεΐνης): http://www.uniprot.org/ Blast : http://blast.ncbi.nlm.nih.gov/blast.cgi
ΕΠΑΝΑΛΗΨΗ. Σελίδα 1 ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ. Τ. Θηραίου
ΕΠΑΝΑΛΗΨΗ Σελίδα 1 τεχνική σύγκρισης ακολουθιών υπολογισµός ενός µέτρου οµοιότητας αναζήτηση ομολογίας S-S match S1 HFCGGSLINEQWVVSAGHC HFCG S NE AGHC S2 HFCGASIYNENYA-TAGHC gap mismatch Σελίδα 2 ολική
ΠΟΛΛΑΠΛΗ ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ I
ΠΟΛΛΑΠΛΗ ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ I Σελίδα 1 Πολλαπλή στοίχιση αποκαλύπτει συντηρημένες περιοχές αντιστοίχιση καταλοίπων με κριτήρια ομοιότητας σε επίπεδο δομής εξέλιξης λειτουργίας ακολουθίας Σελίδα 2 Πολλαπλή
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙ: Ευριστικές μέθοδοι αναζήτησης σε βάσεις δεδομένων
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙ: Ευριστικές μέθοδοι αναζήτησης σε βάσεις δεδομένων Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of
ΑΣΚΗΣΗ 3η Στοίχιση ακολουθιών βιολογικών µακροµορίων
ΑΣΚΗΣΗ 3η Στοίχιση ακολουθιών βιολογικών µακροµορίων ΕΙΣΑΓΩΓΗ Ένας από τους πρωταρχικούς στόχους της σύγκρισης των ακολουθιών δύο µακροµορίων είναι η εκτίµηση της οµοιότητάς τους και η εξαγωγή συµπερασµάτων
Συγκριτική Γονιδιωματική
ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Συγκριτική Γονιδιωματική Παντελής Μπάγκος 1 2 Μέθοδοι Ανάλυσης Μέθοδοι βασισμένες στην ομοιότητα ακολουθιών Τοπική ομοιότητα Ολική ομοιότητα Προγνωστικές μέθοδοι Δευτεροταγής δομή Διαμεμβρανικά
Κατα ζέυγη στοίχιση και στατιστική σημαντικότητα αυτής
ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Κατα ζέυγη στοίχιση και στατιστική σημαντικότητα αυτής Παντελής Μπάγκος 1 Διάλεξη 2 Αναζήτηση ομοιότητας και κατά ζεύγη στοίχιση ακολουθιών 2 Κατά ζεύγη στοίχιση ακολουθιών Από τα πιο
Πρόγνωση δομής πρωτεϊνών (Μέρος Ι)
Πρόγνωση δομής πρωτεϊνών (Μέρος Ι) Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο Κύπρου Ταχ.Κιβ. 20537 1678, Λευκωσία ΚΥΠΡΟΣ
Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων
Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων Σε αυτό το κεφάλαιο παρουσιάζουµε 2 βασικούς αλγορίθµους σύγκρισης ακολουθιών Βιολογικών εδοµένων τους BLAST & FASTA. Οι δυο αλγόριθµοι
Βιοπληροφορική. Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της αναγκαιότητας των ευριστικών αλγορίθμων
Ειδικά Θέματα Βιοπληροφορικής
Ειδικά Θέματα Βιοπληροφορικής Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 Διάλεξη 5 Profile Hidden Markov Models και Transformational Grammars 2 Profile HMM Ένα ΗΜΜ με left-to-right
Βιοπληροφορική. Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της αναγκαιότητας των ευριστικών αλγορίθμων
Σηµειώσεις Βιοπληροφορικής
Σηµειώσεις Βιοπληροφορικής Πολλαπλή Στοίχιση Ακολουθιών Βασικές Έννοιες Γενίκευση των Αλγορίθµων Στοίχισης Κατά Ζεύγη Προοδευτική Πολλαπλή Στοίχιση CLUSTALW Πρακτικά Ζητήµατα ΒΑΣΙΛΗΣ ΠΡΟΜΠΟΝΑΣ ΑΘΗΝΑ 2004-2005,
Πολλαπλή στοίχιση multiple sequence alignment (MSA)
Πολλαπλή στοίχιση multiple sequence alignment (MSA) MSA: Τι είναι Στοίχιση για 3 ή περισσότερες ακολουθίες. Αποκαλύπτονται οι συντηρηµένες περιοχές µεταξύ των ακολουθιών µιας οικογένειας. Χρειάζεται για:
ΑΣΚΗΣΗ 4η Αναζήτηση οµοιοτήτων σε βάσεις δεδοµένων ακολουθιών
ΑΣΚΗΣΗ 4η Αναζήτηση οµοιοτήτων σε βάσεις δεδοµένων ακολουθιών ΕΙΣΑΓΩΓΗ Η αναζήτηση οµοιοτήτων σε βάσεις δεδοµένων ακολουθιών (database similarity searching) αποτελεί µια από τις συχνότερα χρησιµοποιούµενες
Βιοπληροφορική. Blast/PSI-Blast 3o εργαστήριο
Βιοπληροφορική Blast/PSI-Blast 3o εργαστήριο Αναζήτηση οµόλογων ακολουθιών σε βάσεις δεδοµένων (i) Οµόλογες ακολουθίες πιθανόν να έχουν παρόµοιες λειτουργίες. Ακολουθία επερώτησης (query sequence) Υποκείµενες
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 12: Αναζήτηση ομοιοτήτων έναντι βάσεων δεδομένων με τη χρήση ευρετικών αλγορίθμων Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Βιοπληροφορική. Ενότητα 3 η : Πολλαπλή ευθυγράμμιση. Σ. Γκέλης Τμήμα Βιολογίας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Πολλαπλή ευθυγράμμιση Σ. Γκέλης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Βιοπληροφορική. Ενότητα 11: Πολλαπλή Στοίχιση Ακολουθιών, 1ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 11: Πολλαπλή Στοίχιση Ακολουθιών, 1ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι κατανόηση της έννοιας και των εφαρμογών της πολλαπλής στοίχισης ακολουθιών.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Χατζηλιάδη Παναγιώτα Ευανθία
ΜΠΣ «ΜΕΘΟΔΟΛΟΓΙΑ ΒΪΟΙΑΤΡΙΚΗΣ ΕΡΕΥΝΑΣ, ΒΙΟΣΤΑΤΙΣΤΙΚΗ ΚΑΙ ΚΛΙΝΙΚΗ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ» ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΙΑΤΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Ανάπτυξη λογισμικού σε γλώσσα προγραματισμού python για ομαδοποίηση
Πίνακες αντικατάστασης PAM και BLOSUM και εναλλακτικές προσεγγίσεις
Πίνακες αντικατάστασης PAM και BLOSUM και εναλλακτικές προσεγγίσεις Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο Κύπρου
Βιοπληροφορική. Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών,(2/2) 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών,(2/2) 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Παρουσίαση της μεθόδου κατασκευής και
Βιοπληροφορική. Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών, (1/2) 1ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών, (1/2) 1ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Παρουσίαση της μεθόδου κατασκευής και
Μέθοδοι Φυλογένεσης. Μέθοδοι που βασίζονται σε αποστάσεις UPGMA Κοντινότερης γειτονίας (Neighbor joining) Fitch-Margoliash Ελάχιστης εξέλιξης
Μέθοδοι Φυλογένεσης Μέθοδοι που βασίζονται σε αποστάσεις UPGMA Κοντινότερης γειτονίας (Neighbor joining) Fitch-Margoliash Ελάχιστης εξέλιξης Μέθοδοι που βασίζονται σε χαρακτήρες Μέγιστη φειδωλότητα (Maximum
ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ ΑΝΑ ΖΕΥΓΗ
ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ ΑΝΑ ΖΕΥΓΗ Σελίδα 1 Ομολογία Σελίδα 2 Ομολογία Ομολογία κοινή εξελικτική καταγωγή Ορθόλογα γονίδια ειδογένεση συνήθως, ίδια βιολογική λειτουργία Παράλογα γονίδια γονιδιακός διπλασιασμός
Βιοπληροφορική. Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της σημασίας του συστήματος βαθμολόγησης
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος Ι: Στοιχίσεις ακολουθιών κατά ζεύγη Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο
Βιοπληροφορική. Ενότητα 5: Στοίχιση ακολουθιών ανά ζεύγη, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 5: Στοίχιση ακολουθιών ανά ζεύγη, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της συσχέτισης ομολογίας ομοιότητας. Παρουσίαση των πληροφοριών
Μέθοδοι μελέτης εξέλιξης
H διερεύνηση της μοριακής βάσης της εξέλιξης βασίζεται σε μεγάλο βαθμό στη διευκρίνιση της διαδικασίας με την οποία μετασχηματίσθηκαν στη διάρκεια της εξέλιξης πρωτεϊνες, άλλα μόρια και βιοχημικές πορείες
PSI-Blast: τι είναι. Position specific scoring matrices (PSSMs) (Πίνακες αντικατάστασης θέσης)
PSI-Blast PSI-Blast PSI-Blast: τι είναι PSI-Blast: Position-specific iterated Blast Position specific scoring matrices (PSSMs) (Πίνακες αντικατάστασης θέσης) Altschul et al., 1997 http://www.ncbi.nlm.nih.gov/pmc/articles/pmc146917/pdf/253389.pdf
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)
ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) 1 Προέλευση και ιστορία της Επιχειρησιακής Έρευνας Αλλαγές στις επιχειρήσεις Τέλος του 19ου αιώνα: βιομηχανική
Ασκήσεις 1 & 2. Βάσεις Δεδομένων. Εργαλεία Αναζήτησης ClustalW & Blast
Ασκήσεις 1 & 2 Βάσεις Δεδομένων Εργαλεία Αναζήτησης ClustalW & Blast Μοριακή Προσομοίωση Εισαγωγή: Δομική Βάση Βιολογικών Φαινομένων Η αξιοποίηση του πλήθους των δομικών στοιχείων για την εξαγωγή βιολογικά
Βραχυπρόθεσμη τοπική μετεωρολογική πρόγνωση με αναζήτηση ανάλογων καταστάσεων
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Βραχυπρόθεσμη τοπική μετεωρολογική πρόγνωση με αναζήτηση ανάλογων καταστάσεων Γεώργιος Θεοδωρόπουλος Επιβλέπων
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε
A sequence alignment algorithm using the transition quantity
1 1 1 MTRAP A sequence alignment algorithm using the transition quantity Toshihide Hara, 1 Keiko Sato 1 and Masanori Ohya 1 We have been developed a sequence alignment algorithm using the transition quantity.
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»
Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ BIO 230 Εισαγωγή στην Υπολογιστική Βιολογία Διδάσκων: Βασίλειος Ι. Προμπονάς, Ph.D. Επίκουρος Καθηγητής Βιοπληροφορικής ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Δευτέρα
Βιοπληροφορική Ι. Παντελής Μπάγκος Αναπληρωτής Καθηγητής. Πανεπιστήμιο Θεσσαλίας Λαμία, 2015
Βιοπληροφορική Ι Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 Φυλογενετικές σχέσεις Χρησιμοποιούνται οι ομοιότητες και οι διαφορές των μελετούμενων οργανισμών Τα χαρακτηριστικά
Βιοπληροφορική. Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της σημασίας του συστήματος βαθμολόγησης
ΦΥΣΙΚΗ ΑΝΘΡΩΠΟΛΟΓΙΑ. Πρωτεύοντα ΙΙΙ Χρήση µοριακών δεδοµένων
ΦΥΣΙΚΗ ΑΝΘΡΩΠΟΛΟΓΙΑ Πρωτεύοντα ΙΙΙ Χρήση µοριακών δεδοµένων Φυλογένεση Η φυλογένεσης αφορά την ανεύρεση των συνδετικών εκείνων κρίκων που συνδέουν τα διάφορα είδη µεταξύ τους εξελικτικά, σε µονοφυλετικές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ (ΒΙΟ 650) Ειδικά Θέματα Βιοπληροφορικής Διδάσκων: Βασίλειος Ι. Προμπονάς, Ph.D. Λέκτορας Βιοπληροφορικής ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Δευτέρα και Πέμπτη
Μάθημα Επιλογής 8 ου εξαμήνου
EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού Μάθημα Επιλογής 8 ου εξαμήνου Διδάσκων:
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ Σελίδα 1 Αναζήτηση πληροφορίας σε βιολογικές ΒΔ Αναζήτηση δεδομένων στην UniProt Καταγράψτε το μήκος της αμινοξικής ακολουθίας (Sequence length), τη λειτουργία (Function)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ BIO 331 - Αρχές και Μέθοδοι Βιοπληροφορικής I Διδάσκων: Βασίλειος Ι. Προμπονάς, Ph.D. Λέκτορας Βιοπληροφορικής ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Δευτέρα και Πέμπτη
Θέματα Μεταγλωττιστών
Θέματα Μεταγλωττιστών Γιώργος Δημητρίου Ενότητα 1 η : Parsers Πανεπιστήμιο Θεσσαλίας - Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Συντακτική Ανάλυση για ΓΧΣ Οι τεχνικές συντακτικής ανάλυσης κατηγοριοποιούνται
Περιοχές με ακραία σύσταση / χαμηλή πολυπλοκότητα
Περιοχές με ακραία σύσταση / χαμηλή πολυπλοκότητα Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus Σύνοψη Βασικές έννοιες XNU SEG LCRs και αναζητήσεις
Θέματα Μεταγλωττιστών
Γιώργος Δημητρίου Ενότητα 1 η : Parsers Συντακτική Ανάλυση για ΓΧΣ Οι τεχνικές συντακτικής ανάλυσης κατηγοριοποιούνται με βάση διάφορα κριτήρια: Κατεύθυνση ανάλυσης μη τερματικών συμβόλων Σειρά επιλογής
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική. Ενότητα 7: Σύγκριση αλληλουχιών Part II
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 7: Σύγκριση αλληλουχιών Part II Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail: sbellou@uowm.gr
Αρχιτεκτονική και Υλο οίηση σε Αναδιατασσόµενη Λογική του Αλγορίθµου T-Coffee για συνένωση κοµµατιών DNA
Αρχιτεκτονική και Υλο οίηση σε Αναδιατασσόµενη Λογική του Αλγορίθµου T-Coffee για συνένωση κοµµατιών DNA Λάκκα Ματίνα ιπλωµατική Εργασία Πολυτεχνείο Κρήτης Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Ηλεκτρονικών
Πρόβλημα. Σύνολο γνωστών αλληλουχιών
BLAST Πρόβλημα Άγνωστη αλληλουχία Σύνολο γνωστών αλληλουχιών Η χρήση ενός υπολογιστή κι ενός αλγόριθμου είναι απαραίτητη για την ανακάλυψη της σχέσης μιας αλληλουχίας με τις γνωστές υπάρχουσες Τί είναι
Μη γράφετε στο πίσω μέρος της σελίδας
Εισαγωγή στο Σχεδιασμό & την Ανάλυση Αλγορίθμων Εξέταση Ιουνίου 2015 Σελ. 1 από 7 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες
ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΔΙΑΧΕΙΡΙΣΗ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ Συνδυασμένη χρήση μοντέλων προσομοίωσης βελτιστοποίησης. Η μέθοδος του μητρώου μοναδιαίας απόκρισης Νικόλαος
5. Απλή Ταξινόμηση. ομές εδομένων. Χρήστος ουλκερίδης. Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 5. Απλή Ταξινόμηση 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 11/11/2016 Εισαγωγή Η
Outline. 6 Edit Distance
Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι και Δυναμικός Προγραμματισμός Ασκήσεις CoReLab ΣΗΜΜΥ - Ε.Μ.Π. 16 Νοεμβρίου 216 (CoReLab - NTUA) Αλγόριθμοι - Ασκήσεις 16 Νοεμβρίου 216 1 / 52 Outline 1
Μάθημα 16 ο ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ
Μάθημα 16 ο ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ Περιεχόμενα Παρουσίασης Βιολογικό υπόβαθρο Το κεντρικό αξίωμα Σύνοψη της Βιοπληροφορικής Ερευνητικές περιοχές Πηγές πληροφοριών Τι είναι η Βιοπληροφορική Βιο Πληροφορική μοριακή
Κεφ.11: Ευρετήρια και Κατακερματισμός
Κεφ.11: Ευρετήρια και Κατακερματισμός Database System Concepts, 6 th Ed. See www.db-book.com for conditions on re-use Κεφ. 11: Ευρετήρια-Βασική θεωρία Μηχανισμοί ευρετηρίου χρησιμοποιούνται για την επιτάχυνση
Μέθοδοι πολυδιάστατης ελαχιστοποίησης
Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo
Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής
Βιοπληροφορική Ι. Παντελής Μπάγκος Αναπληρωτής Καθηγητής. Πανεπιστήμιο Θεσσαλίας Λαμία, 2015
Βιοπληροφορική Ι Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 Στοίχιση αλληλουχιών 2 Τρόποι μελέτης των ακολουθιών Global information Η ακολουθία αναπαρίσταται από ένα διάνυσμα
ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών
44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων Πληροφορικής 2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών 3. Ο αλγόριθμος
Βιοπληροφορική. Ενότητα 20: Υπολογιστικός Προσδιορισμός Δομής (2/3), 1 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 20: Υπολογιστικός Προσδιορισμός Δομής (2/3), 1 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι κατανόηση της μεθόδου προτυποποίησης πρωτεϊνών με ομολογία. παρουσίαση
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο. Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1 Εισαγωγή Η τακτοποίηση των δεδομένων με ιδιαίτερη σειρά είναι πολύ σημαντική λειτουργία που ονομάζεται
Βιοπληροφορική. Ενότητα 16: Μεθοδολογίες (Ανα-) Κατασκευής, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 16: Μεθοδολογίες (Ανα-) Κατασκευής, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Επεξήγηση των μεθόδων (ανα-)κατασκευής φυλογενετικών δέντρων. Παρουσίαση
Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής
Μία μέθοδος προσομοίωσης ψηφιακών κυκλωμάτων Εξελικτικής Υπολογιστικής Βασισμένο σε μια εργασία των Καζαρλή, Καλόμοιρου, Μαστοροκώστα, Μπαλουκτσή, Καλαϊτζή, Βαλαή, Πετρίδη Εισαγωγή Η Εξελικτική Υπολογιστική
Άσκηση 7. Προσομοίωση 3D Δομών Βιομορίων μέσω. Ομολογίας & Threading
Άσκηση 7 Προσομοίωση 3D Δομών Βιομορίων μέσω Ομολογίας & Threading Προσομοίωση 2ταγούς δομής πρωτεϊνών Δευτεροταγής Δομή: Η 2ταγής δομή των πρωτεϊνών είναι σταθερή τοπική διαμόρφωση της πολυπεπτιδικής
BMI/CS 776 Lecture #14: Multiple Alignment - MUSCLE. Colin Dewey
BMI/CS 776 Lecture #14: Multiple Alignment - MUSCLE Colin Dewey 2007.03.08 1 Importance of protein multiple alignment Phylogenetic tree estimation Prediction of protein secondary structure Critical residue
6η Δραστηριότητα. Ναυμαχία Αλγόριθμοι αναζήτησης. Περίληψη. Αντιστοιχία με το σχολικό πρόγραμμα * Ικανότητες. Ηλικία. Υλικά
6η Δραστηριότητα Ναυμαχία Αλγόριθμοι αναζήτησης Περίληψη Συχνά ζητάμε από τους υπολογιστές να ψάξουν πληροφορίες στο εσωτερικό μεγάλων αρχείων δεδομένων. Για να το καταφέρουν, απαιτούνται ταχείες και αποτελεσματικές
Αναγνώριση Προτύπων Ι
Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Οδηγός γρήγορης εκκίνησης του PowerSuite
Το PowerSuite είναι η ολοκληρωμένη λύση απόδοσης για τον υπολογιστή σας. Ενσωματώνοντας το RegistryBooster, το DriverScanner και το SpeedUpMyPC σε ένα ενιαίο περιβάλλον εργασίας σάρωσης, το PowerSuite
Πανεπιστήµιο Θεσσαλίας Σχολή Τεχνολογικών Επιστηµών Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας
Πανεπιστήµιο Θεσσαλίας Σχολή Τεχνολογικών Επιστηµών Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΤΗΣ ΠΑΡΑΓΩΓΗΣ Ασκήσεις Χρονικού Προγραµµατισµού Παραγωγής Λύσεις Πρόβληµα 1. ίνεται
ΑΕΠΠ Ερωτήσεις θεωρίας
ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος
APP INVENTOR ΟΔΗΓΟΣ 8 Οκτωβρίου 2018
Πώς φτιάχνω Εφαρμογές για Android με το App Inventor Έχετε μια ιδέα για μια mobile εφαρμογή, αλλά δεν ξέρετε πώς να την υλοποιήσετε; Το App Inventor είναι ένα χρήσιμο εργαλείο για κάθε αρχάριο προγραμματιστή
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδοι Στοίχισης Ακολουθιών Σύγκριση Αλγορίθµων Στοίχισης Ακολουθιών σε
Ενδεικτικές Ερωτήσεις Θεωρίας
Ενδεικτικές Ερωτήσεις Θεωρίας Κεφάλαιο 2 1. Τι καλούμε αλγόριθμο; 2. Ποια κριτήρια πρέπει οπωσδήποτε να ικανοποιεί ένας αλγόριθμος; 3. Πώς ονομάζεται μια διαδικασία που δεν περατώνεται μετά από συγκεκριμένο
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016
Ταξινόμηση: Εισαγωγικά. Ταξινόμηση (Sor ng) Αλγόριθμοι Απλής Ταξινόμησης. Βασικά Βήματα των Αλγορίθμων
Ταξινόμηση: Εισαγωγικά Ταξινόμηση (Sor ng) Ορέστης Τελέλης Βασικό πρόβλημα για την Επιστήμη των Υπολογιστών. π.χ. αλφαβητική σειρά, πωλήσεις ανά τιμή, πόλεις με βάση πληθυσμό, Μπορεί να είναι ένα πρώτο
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙΙ: Έλεγχος στατιστικής σημαντικότητας
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙΙ: Έλεγχος στατιστικής σημαντικότητας Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση με περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 9-10 η /2017 Τι παρουσιάστηκε
ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ
ΠΡΟΔΙΑΓΡΑΦΕΣ - ΟΔΗΓΙΕΣ ΔΙΑΜΟΡΦΩΣΗΣ ΘΕΜΑΤΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ Μαθηματικά (Άλγεβρα - Γεωμετρία) Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α, Β ΤΑΞΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ και Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΕΠΑΛ ΚΕΝΤΡΙΚΗ
Σύνοψη Προηγούμενου. Πίνακες (Arrays) Πίνακες (Arrays): Βασικές Λειτουργίες. Πίνακες (Arrays) Ορέστης Τελέλης
Σύνοψη Προηγούμενου Πίνακες (Arrays Ορέστης Τελέλης telelis@unipi.gr Τμήμα Ψηφιακών Συστημάτων, Πανεπιστήμιο Πειραιώς Διαδικαστικά θέματα. Aντικείμενο Μαθήματος. Aντικείμενα, Κλάσεις, Μέθοδοι, Μεταβλητές.
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ
ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ Κ Υ Κ Λ Ο Υ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Κ Α Ι Υ Π Η Ρ Ε Σ Ι Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η
Σενάριο Χρήσης myschool
Σενάριο Χρήσης ΦΟΡΕΙΣ Επιβεβαίωση των Στοιχείων του Φορέα Αρχικά, θα κληθείτε να ελέγξετε την ορθότητα των στοιχείων του Φορέα σας. Επιλέγοντας την καρτέλα «Φορείς», από το μενού που βρίσκεται στο πάνω
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 12/10/2017
Βιοπληροφορική. Ενότητα 13: Μοντέλα Πολλαπλής Στοίχισης (1/2), 1.5ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 13: Μοντέλα Πολλαπλής Στοίχισης (1/2), 1.5ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι παρουσίαση των μοντέλων πολλαπλής στοίχισης. κατανόηση των εφαρμογών
Εισαγωγή στους αλγορίθμους Βιοπληροφορικής. Στοίχιση αλληλουχιών
Στοίχιση αλληλουχιών Σύνοψη Καθολική στοίχιση Μήτρες βαθμολόγησης Τοπική στοίχιση Στοίχιση με ποινές εισαγωγής κενών Από την LCS στη στοίχιση: αλλαγές στη βαθμολόγηση Το πρόβλημα της Μεγαλύτερης Κοινής
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ. Βήματα προς τη δημιουργία εκτελέσιμου κώδικα
Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ Βήματα προς τη δημιουργία εκτελέσιμου κώδικα Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Βήματα προς τη δημιουργία εκτελέσιμου κώδικα
Εισαγωγικές Έννοιες. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο
Εισαγωγικές Έννοιες ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος. Ε. Μαρκάκης. Επικ. Καθηγητής
Θεωρία Παιγνίων και Αποφάσεων Ενότητα 5: Εύρεση σημείων ισορροπίας σε παίγνια μηδενικού αθροίσματος Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Παίγνια μηδενικού αθροίσματος PessimisIc play Αμιγείς max-min και
3η Σειρά Γραπτών Ασκήσεων
1/48 3η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 2/48 1 Άσκηση 1: Πομποί και Δέκτες 2 Άσκηση 2: Διακοπές στην Ικαρία 3 Άσκηση 3: Επιστροφή στη Γη 4 Άσκηση
ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ. Δυναμικός Προγραμματισμός. Παντελής Μπάγκος
ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Δυναμικός Προγραμματισμός Παντελής Μπάγκος Δυναμικός Προγραμματισμός Στοίχιση (τοπική-ολική) RNA secondary structure prediction Διαμεμβρανικά τμήματα Hidden Markov Models Άλλες εφαρμογές
Ερώτημα 1. Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n.
Πρώτο Σύνολο Ασκήσεων 2014-2015 Κατερίνα Ποντζόλκοβα, 5405 Αθανασία Ζαχαριά, 5295 Ερώτημα 1 Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n. Ο αλγόριθμος εύρεσης
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων
Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή
Σειρά Προβλημάτων 3 Λύσεις
Σειρά Προβλημάτων 3 Λύσεις Άσκηση 1 Να δώσετε ασυμφραστικές γραμματικές που να παράγουν τις πιο κάτω γλώσσες: (α) {0 n 1 n n > 0} {0 n 1 2n n > 0} (β) {w {a,b} * η w ξεκινά και τελειώνει με το ίδιο σύμβολο