LALING/PLALING :
|
|
- Νικηφόρος Διώνη Μπότσαρης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 1. Άρθρα- δημοσιεύσεις Scopus DBLP Pubmed Google Scholar 2. Αναζήτηση νουκλεοτιδίου- πρωτεΐνης Entrez : Uniprot (πρωτεΐνης): Blast : 3. Μετατροπή τύπων αλληλουχιών READSEQ: 4. Οπτική (dot-plot) σύγκριση δύο αλληλουχιών dotmatcher (threshold, window size) : dotpath (word size) : LALING/PLALING : 5. Ολική στοίχιση αλληλουχιών Needle (αλγόριθμος Needleman-Wunsch) Stretcher (βρίσκει την καλύτερη ολική στοίχιση ανάλογα) 6. Τοπική στοίχιση αλληλουχιών Water (αλγόριθμος Smith-Waterman) 7. Δημιουργία μοτίβου WebLogo : (
2 8. Δημιουργία δέντρων JalView (Clustalw-> Result summary -> JalView -> Calculate (καρτέλα) ->Calculate tree)
3 Σειρά πινάκων PAM-n όπου n: αποδεκτές σημειακές μεταλλάξεις εξελεγκτική απόσταση PAM PAM1: 1 αποδεκτή μετάλλαξη στα 100 αμινοξέα PAM250: 250 αποδεκτές μεταλλάξεις στα 100 αμινοξέα Μικρό n: Μικρή εξελεγκτική απόσταση μεταξύ των αλληλουχιών (λίγες αντικαταστάσεις) Μεγάλο n: Μεγάλη εξελεγκτική απόσταση μεταξύ των αλληλουχιών (πολλές αντικαταστάσεις) Πίνακες PAM με μικρό n: Περιμένουμε οι δύο εξεταζόμενες αλληλουχίες να έχουν μεγάλο ποσοστό ομοιότητας (μικρή εξελεγκτική απόσταση) Πίνακες PAM με μεγάλο n: Περιμένουμε οι δύο εξεταζόμενες αλληλουχίες να μην έχουν μεγάλο ποσοστό ομοιότητας (μεγάλη εξελεγκτική απόσταση) BLOSUMn: Το n δείχνει το ποσοστό ομοιότητας των αλληλουχιών που χρησιμοποιήθηκαν για να προκύψει ο συγκεκριμένος πίνακας. Αλληλουχίες με ομοιότητα τουλάχιστον 62% δίνουν τον πίνακα αντικατάστασης BLOSUM62s) BLOSUM με μεγάλο n: αλληλουχίες με μεγάλη ομοιότητα BLOSUM με μεγάλο n PAM με μικρό n Γενικά, οι πίνακες BLOSUM είναι καλύτεροι για την εύρεση τοπικών στοιχίσεων PAM is based on an evolutionary model using phylogenetic trees (85% similarity) BLOSUM assumes no evolutionary model, but rather conserved blocks of proteins
4 Από το window εξαρτάται το πόσα στοιχεία θα συγκρίνουμε κάθε φορά. Στην παρούσα περίπτωση συγκρίνουμε ανά δύο τα στοιχεία. Εάν τα στοιχεία είναι κοινά (πλήρης ομοιότητα) τότε βάζουμε τελεία. Σε περιπτώσεις όπου έχουμε ένα γράμμα κοινό σε κάθε ομάδα (stringency) και η θέση του γράμματος είναι η ίδια (Α-Τα με Α-G) τότε βάζουμε τελεία.
5 Με τον τρόπο αυτό μειώνουμε το θόρυβο του αρχικού dot plot. Στήλες με ίδιο γράμμα = ταίριασμα (match) Στήλες με διαφορετικό γράμμα = ασυμφωνία (mismatch) Στήλες με κενό = Πρόσθεση ή αφαίρεση στοιχείου (insertion deletion)
6 Στον αλγόριθμο Needleman-Wunsch στη στοίχιση βάζουμε κενό στα παρακάτω : Αλγόριθμος Smith - Waterman Αρνητική βαθμολογία για ταίριασμα ανόμοιων καταλοίπων Όταν μία βαθμολογία είναι αρνητική, αντικαθίσταται με το 0 Matrix traceback: Ξεκινά από τη μεγαλύτερη βαθμολογία και όχι από το στοιχείο (n,m)
7 Προοδευτική πολλαπλή στοίχιση ακολουθιών Αποδίδεται σε κάθε στοίχιση μία βαθμολογία ε η οποία δίνει μία ιδέα για τη συνεισφορά της συγκεκριμένης στοίχισης στην πολλαπλή στοίχιση, όπου ε = βέλτιστη βαθμολογία στοίχισης βαθμολογία στοίχισης στην πολλαπλή στοίχιση υψηλό ε: Η πολλαπλή στοίχιση αποκλίνει από τη στοίχιση κατά ζεύγη, χαμηλή συνεισφορά χαμηλό ε: Παρόμοια η πολλαπλή στοίχιση με τη στοίχιση κατά ζεύγη, υψηλή συνεισφορά
8
9 Ένα υψηλό SP-score υποδηλώνει ότι η στοίχιση είναι σωστή
10 Φυλογενετική ανάλυση Ομοιότητα παρουσιάζουν οι αλληλουχίες που αποτελούνται από ίδια ταυτόσημα κατάλοιπα (νουκλεοτίδια, αμινοξέα) Ομολογία παρουσιάζουν οι αλληλουχίες που προέρχονται από τον ίδιο πρόγονο. Για παράδειγμα, πρωτεΐνες με στατιστικά σημαντικό ποσοστό ομοιότητας και, πιθανά, παρόμοια δομή και λειτουργία. Όταν δύο αλληλουχίες παρουσιάζουν ομοιότητα >35%, είναι πιθανά και ομόλογες 35-20%, δεν είναι ασφαλή τα συμπεράσματα <20%, τυχαία ομοιότητα
11 όπου m= εξελικτικές μονάδες (πλήθος αλληλουχιών) UPGA : Heuristic (tried-and-true) methods: Είναι σχεδόν πάντα αποτελεσματικοί στην εύρεση σχετικών αλληλουχιών μιας βάσης δεδομένων αλλά δεν εγγυώνται ότι αυτή η λύση είναι και βέλτιστη, όπως συμβαίνει με τον δυναμικό προγραμματισμό. FASTA: Εντοπίζει κοινά μοτίβα μεταξύ της αλληλουχίας και των καταχωρήσεων μίας βιολογικής βάσης και τα ενώνει σε μία στοίχιση. BLAST: Παρόμοια μέθοδος με την FASTA, αλλά ταχύτερη καθώς αναζητεί ομοιότητες μόνο μεταξύ σημαντικών μοτίβων που εντοπίζονται στην αλληλουχία Τιμή Ε (E-value): Η προτεινόμενη αλληλουχία θα πρέπει να έχει Ε με μικρή τιμή και μία καλή στοίχιση με την υπό διερεύνηση αλληλουχία. Τι δείχνει: Την πιθανότητα το αποτέλεσμα να είναι τυχαίο Ανώτατο όριο για την τιμή Ε: Προσοχή: Η αλληλουχία θα πρέπει να εξεταστεί για επαναλαμβανόμενες περιοχές για την αποφυγή λανθασμένα υψηλής βαθμολόγησης της στοίχισης Ο αλγόριθμος FASTA αναζητεί περιοχές-μοτίβα που να ταιριάζουν μεταξύ της άγνωστης αλληλουχίας και των αλληλουχιών της βάσης δεδομένων Αρχή λειτουργίας: Οι βέλτιστες στοιχίσεις περιέχουν μικρές περιοχές όπου οι βαθμολογία στοίχισης είναι μεγαλύτερη από μία τιμή κατωφλίου. Μικρές περιοχές = λέξεις χωρίς κενά = k-tuples 2 αμινοξέα στην περίπτωση της πρωτεΐνης 4-6 νουκλεοτίδια στην περίπτωση DNA
12
13 Πιθανότητα μετάλλαξης σύμφωνα με PAM250 Phe Tyr = 0.15 Διαιρώ με συχνότητα εμφάνισης Phe: 0.15 / = 3.75 Υπολογίζω λογάριθμο με βάση το 10: log = 0.57 Πολλαπλασιάζω με 10: 0.57x10 = 5.7 Πιθανότητα μετάλλαξης σύμφωνα με PAM250 Tyr Phe = 0.20 Διαιρώ με συχνότητα εμφάνισης Tyr: 0.20 / = 6.7 Υπολογίζω λογάριθμο με βάση το 10: log106.7 = 0.83 Πολλαπλασιάζω με 10: 0.83x10 = 8.3 Average: = 7 Q (glutamine) E (glutamic acid), τιμή = 2
14 Επειδή το σκορ του πίνακα πολλαπλασιάστηκε επί 10 για να μην έχουμε δεκαδικά: το σκορ είναι 0.2 Συνεπώς 0.2 = log10(σχετική αναμενόμενη τιμή μετάλλαξης) σχετική αναμενόμενη τιμή μετάλλαξης = = 1.6 πολλαπλασιάζω με τη συχνότητα εμφάνισης του Q, 3.7% = x0.037 = Ερμηνεία: Η πιθανότητα μετάλλαξης από Q (glutamine) E (glutamic acid) είναι 5.92% σύμφωνα με τον πίνακα PAM250
ΑΣΚΗΣΗ 3η Στοίχιση ακολουθιών βιολογικών µακροµορίων
ΑΣΚΗΣΗ 3η Στοίχιση ακολουθιών βιολογικών µακροµορίων ΕΙΣΑΓΩΓΗ Ένας από τους πρωταρχικούς στόχους της σύγκρισης των ακολουθιών δύο µακροµορίων είναι η εκτίµηση της οµοιότητάς τους και η εξαγωγή συµπερασµάτων
ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ ΑΝΑ ΖΕΥΓΗ
ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ ΑΝΑ ΖΕΥΓΗ Σελίδα 1 Ομολογία Σελίδα 2 Ομολογία Ομολογία κοινή εξελικτική καταγωγή Ορθόλογα γονίδια ειδογένεση συνήθως, ίδια βιολογική λειτουργία Παράλογα γονίδια γονιδιακός διπλασιασμός
Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων
Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων Σε αυτό το κεφάλαιο παρουσιάζουµε 2 βασικούς αλγορίθµους σύγκρισης ακολουθιών Βιολογικών εδοµένων τους BLAST & FASTA. Οι δυο αλγόριθµοι
Βιοπληροφορική. Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της σημασίας του συστήματος βαθμολόγησης
Στοίχιση κατά ζεύγη. Στοίχιση ακολουθιών κατά ζεύγη (Pairwise alignment)
Στοίχιση ακολουθιών κατά ζεύγη (Pairwise alignment) Στοίχιση κατά ζεύγη: Τι είναι Αντιστοίχιση των νουκλεοτιδίων/αµινοξέων δυο ακολουθιών, ώστε να εντοπιστούν οι οµοιότητες και οι διαφορές τους. Χρησιµοποιείται
ΑΡΧΕΣ ΒΙΟΛΟΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ
ΑΡΧΕΣ ΒΙΟΛΟΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Εργαστήριο Βιοπληροφορικής 7 ο εξάμηνο Σχολή Μηχανολόγων Μηχανικών ΕΜΠ Διδάσκων: Λεωνίδας Αλεξόπουλος Fritz Kahn (1888 1968) 1 Περιεχόμενα Ομοιότητα πρωτεϊνών Σύγκριση αλληλουχιών
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 12: Αναζήτηση ομοιοτήτων έναντι βάσεων δεδομένων με τη χρήση ευρετικών αλγορίθμων Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr
Κατα ζέυγη στοίχιση και στατιστική σημαντικότητα αυτής
ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Κατα ζέυγη στοίχιση και στατιστική σημαντικότητα αυτής Παντελής Μπάγκος 1 Διάλεξη 2 Αναζήτηση ομοιότητας και κατά ζεύγη στοίχιση ακολουθιών 2 Κατά ζεύγη στοίχιση ακολουθιών Από τα πιο
Βιοπληροφορική. Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της σημασίας του συστήματος βαθμολόγησης
Πρόβλημα. Σύνολο γνωστών αλληλουχιών
BLAST Πρόβλημα Άγνωστη αλληλουχία Σύνολο γνωστών αλληλουχιών Η χρήση ενός υπολογιστή κι ενός αλγόριθμου είναι απαραίτητη για την ανακάλυψη της σχέσης μιας αλληλουχίας με τις γνωστές υπάρχουσες Τί είναι
ΑΣΚΗΣΗ 4η Αναζήτηση οµοιοτήτων σε βάσεις δεδοµένων ακολουθιών
ΑΣΚΗΣΗ 4η Αναζήτηση οµοιοτήτων σε βάσεις δεδοµένων ακολουθιών ΕΙΣΑΓΩΓΗ Η αναζήτηση οµοιοτήτων σε βάσεις δεδοµένων ακολουθιών (database similarity searching) αποτελεί µια από τις συχνότερα χρησιµοποιούµενες
Βιοπληροφορική. Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών,(2/2) 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών,(2/2) 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Παρουσίαση της μεθόδου κατασκευής και
Εισαγωγή στους αλγορίθμους Βιοπληροφορικής. Στοίχιση αλληλουχιών
Στοίχιση αλληλουχιών Σύνοψη Καθολική στοίχιση Μήτρες βαθμολόγησης Τοπική στοίχιση Στοίχιση με ποινές εισαγωγής κενών Από την LCS στη στοίχιση: αλλαγές στη βαθμολόγηση Το πρόβλημα της Μεγαλύτερης Κοινής
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική. Ενότητα 7: Σύγκριση αλληλουχιών Part II
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 7: Σύγκριση αλληλουχιών Part II Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail: sbellou@uowm.gr
ΕΠΑΝΑΛΗΨΗ. Σελίδα 1 ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ. Τ. Θηραίου
ΕΠΑΝΑΛΗΨΗ Σελίδα 1 τεχνική σύγκρισης ακολουθιών υπολογισµός ενός µέτρου οµοιότητας αναζήτηση ομολογίας S-S match S1 HFCGGSLINEQWVVSAGHC HFCG S NE AGHC S2 HFCGASIYNENYA-TAGHC gap mismatch Σελίδα 2 ολική
Μέθοδοι μελέτης εξέλιξης
H διερεύνηση της μοριακής βάσης της εξέλιξης βασίζεται σε μεγάλο βαθμό στη διευκρίνιση της διαδικασίας με την οποία μετασχηματίσθηκαν στη διάρκεια της εξέλιξης πρωτεϊνες, άλλα μόρια και βιοχημικές πορείες
Πίνακες αντικατάστασης PAM και BLOSUM και εναλλακτικές προσεγγίσεις
Πίνακες αντικατάστασης PAM και BLOSUM και εναλλακτικές προσεγγίσεις Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο Κύπρου
ΑΝΑΖΗΤΗΣΗ ΟΜΟΙΟΤΗΤΩΝ ΣΕ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΚΟΛΟΥΘΙΩΝ
ΑΝΑΖΗΤΗΣΗ ΟΜΟΙΟΤΗΤΩΝ ΣΕ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΚΟΛΟΥΘΙΩΝ Σελίδα 1 Αναζήτηση ομοιοτήτων Δεδομένα Ακολουθία επερώτησης (query sequence) Ακολουθίες στη Βάση Δεδομένων (subject sequences) Αναζήτηση Μέθοδοι δυναμικού
ΑΝΑΖΗΤΗΣΗ ΟΜΟΙΟΤΗΤΩΝ ΣΕ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΟΛΟΥΘΙΩΝ
Αναζήτηση οµοιοτήτων ΑΝΑΖΗΤΗΣΗ ΟΜΟΙΟΤΗΤΩΝ ΣΕ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΟΛΟΥΘΙΩΝ Σελίδα 1 εδοµένα Ακολουθία επερώτησης (query sequence) Ακολουθίες στη Βάση εδοµένων (subject sequences) Αναζήτηση Μέθοδοι δυναµικού
Στοίχιση Ακολουθιών. Μέθοδοι σύγκρισης ακολουθιών. Είδος στοίχισης. match. gap. mismatch
Οµολογία ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ ΑΝΑ ΖΕΥΓΗ Σελίδα 1 Σελίδα 2 Οµολογία Οµολογία Οµολογία κοινή εξελικτική καταγωγή Ορθόλογα γονίδια ειδογένεση συνήθως, ίδια βιολογική λειτουργία Παράλογα γονίδια γονιδιακός
Βιοπληροφορική. Blast/PSI-Blast 3o εργαστήριο
Βιοπληροφορική Blast/PSI-Blast 3o εργαστήριο Αναζήτηση οµόλογων ακολουθιών σε βάσεις δεδοµένων (i) Οµόλογες ακολουθίες πιθανόν να έχουν παρόµοιες λειτουργίες. Ακολουθία επερώτησης (query sequence) Υποκείµενες
Βιοπληροφορική. Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της αναγκαιότητας των ευριστικών αλγορίθμων
Βιοπληροφορική. Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της αναγκαιότητας των ευριστικών αλγορίθμων
Βιοπληροφορική. Πίνακες Αντικατάστασης BLOSUM & Οπτική Σύγκριση Αλληλουχιών. Αλέξανδρος Τζάλλας
Βιοπληροφορική Πίνακες Αντικατάστασης BLOSUM & Οπτική Σύγκριση Αλληλουχιών Αλέξανδρος Τζάλλας e-mail: tzallas@teiep.gr ΤΕΙ Ηπείρου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Copyright
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ Σελίδα 1 Αναζήτηση πληροφορίας σε βιολογικές ΒΔ Αναζήτηση δεδομένων στην UniProt Καταγράψτε το μήκος της αμινοξικής ακολουθίας (Sequence length), τη λειτουργία (Function)
Βιοπληροφορική. Ενότητα 5: Στοίχιση ακολουθιών ανά ζεύγη, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 5: Στοίχιση ακολουθιών ανά ζεύγη, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της συσχέτισης ομολογίας ομοιότητας. Παρουσίαση των πληροφοριών
Βιοπληροφορική Ι. Παντελής Μπάγκος. Παν/µιο Στερεάς Ελλάδας
Βιοπληροφορική Ι Παντελής Μπάγκος Παν/µιο Στερεάς Ελλάδας Λαµία 2006 1 Βιοπληροφορική Ι Εισαγωγή: Ορισµός της Βιοπληροφορικής, Υποδιαιρέσεις της Βιοπληροφορικής, Τα είδη των δεδοµένων στη Βιοπληροφορική.
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 5: Πίνακες αντικατάστασης BLOSUM και οπτική σύγκριση αλληλουχιών Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ
Βιοπληροφορική. Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών, (1/2) 1ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών, (1/2) 1ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Παρουσίαση της μεθόδου κατασκευής και
Βιοπληροφορική. Ενότητα 9: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Στατιστική Σημαντικότητα, 1 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 9: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Στατιστική Σημαντικότητα, 1 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Παρουσίαση των εφαρμογών της αναζήτησης
ΠΟΛΛΑΠΛΗ ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ I
ΠΟΛΛΑΠΛΗ ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ I Σελίδα 1 Πολλαπλή στοίχιση αποκαλύπτει συντηρημένες περιοχές αντιστοίχιση καταλοίπων με κριτήρια ομοιότητας σε επίπεδο δομής εξέλιξης λειτουργίας ακολουθίας Σελίδα 2 Πολλαπλή
Ειδικά Θέματα Βιοπληροφορικής
Ειδικά Θέματα Βιοπληροφορικής Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 Πολλαπλή στοίχιση ακολουθιών και φυλογενετικά δέντρα 2 Πολλαπλή στοίχιση Αναφέρεται στην ταυτόχρονη
Ασκήσεις 1 & 2. Βάσεις Δεδομένων. Εργαλεία Αναζήτησης ClustalW & Blast
Ασκήσεις 1 & 2 Βάσεις Δεδομένων Εργαλεία Αναζήτησης ClustalW & Blast Μοριακή Προσομοίωση Εισαγωγή: Δομική Βάση Βιολογικών Φαινομένων Η αξιοποίηση του πλήθους των δομικών στοιχείων για την εξαγωγή βιολογικά
PSI-Blast: τι είναι. Position specific scoring matrices (PSSMs) (Πίνακες αντικατάστασης θέσης)
PSI-Blast PSI-Blast PSI-Blast: τι είναι PSI-Blast: Position-specific iterated Blast Position specific scoring matrices (PSSMs) (Πίνακες αντικατάστασης θέσης) Altschul et al., 1997 http://www.ncbi.nlm.nih.gov/pmc/articles/pmc146917/pdf/253389.pdf
Περιοχές με ακραία σύσταση / χαμηλή πολυπλοκότητα
Περιοχές με ακραία σύσταση / χαμηλή πολυπλοκότητα Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus Σύνοψη Βασικές έννοιες XNU SEG LCRs και αναζητήσεις
Κατά ζεύγη στοίχιση ακολουθιών Πολλαπλή στοίχιση ακολουθιών Patterns. Δρ. Μαργαρίτα Θεοδωροπούλου
Κατά ζεύγη στοίχιση ακολουθιών Πολλαπλή στοίχιση ακολουθιών Patterns Δρ. Μαργαρίτα Θεοδωροπούλου Από τα πιο σημαντικά προβλήματα στην Υπολογιστική Βιολογία Ιδιαίτερα πλούσια βιβλιογραφία για πάνω από 30
Συγκριτική Γονιδιωματική
ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Συγκριτική Γονιδιωματική Παντελής Μπάγκος 1 2 Μέθοδοι Ανάλυσης Μέθοδοι βασισμένες στην ομοιότητα ακολουθιών Τοπική ομοιότητα Ολική ομοιότητα Προγνωστικές μέθοδοι Δευτεροταγής δομή Διαμεμβρανικά
BIOTECH - GO. Μία συνδυασμένη μέθοδος εκπαίδευσης στη Βιοπληροφορική - Το μέσο των μικρομεσαίων επιχειρήσεων για τις βιοτεχνολογικές καινοτομίες
BIOTECH - GO Μία συνδυασμένη μέθοδος εκπαίδευσης στη Βιοπληροφορική - Το μέσο των μικρομεσαίων επιχειρήσεων για τις βιοτεχνολογικές καινοτομίες Η πληροφορία είναι η γνώση και η Σημερινή οικονομία είναι
ΦΥΣΙΚΗ ΑΝΘΡΩΠΟΛΟΓΙΑ. Πρωτεύοντα ΙΙΙ Χρήση µοριακών δεδοµένων
ΦΥΣΙΚΗ ΑΝΘΡΩΠΟΛΟΓΙΑ Πρωτεύοντα ΙΙΙ Χρήση µοριακών δεδοµένων Φυλογένεση Η φυλογένεσης αφορά την ανεύρεση των συνδετικών εκείνων κρίκων που συνδέουν τα διάφορα είδη µεταξύ τους εξελικτικά, σε µονοφυλετικές
Βιοπληροφορική. Ενότητα 10: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Blast, (1/2) 1ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 10: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Blast, (1/2) 1ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Αναφορά στις παραλλαγές του BLAST. Εξοικείωση με τη
Βιοπληροφορική Ι. Παντελής Μπάγκος Αναπληρωτής Καθηγητής. Πανεπιστήμιο Θεσσαλίας Λαμία, 2015
Βιοπληροφορική Ι Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 Στοίχιση αλληλουχιών 2 Τρόποι μελέτης των ακολουθιών Global information Η ακολουθία αναπαρίσταται από ένα διάνυσμα
ΒΙΟ230 - Εισαγωγή στην Υπολογιστική Βιολογία Πρακτικό Εργαστήριο: Basic Local Alignment Search Tool BLAST
ΒΙΟ230 - Εισαγωγή στην Υπολογιστική Βιολογία Πρακτικό Εργαστήριο: Basic Local Alignment Search Tool BLAST Στέλλα Ταμανά, Βασίλης Προμπονάς Λευκωσία 2016-2018 Περίληψη (Overview) Κατά τη διάρκεια αυτού
Αλληλοεπικαλυπτόμενα επιστημονικά πεδία Υπολογιστικής Βιολογίας
Αλληλοεπικαλυπτόμενα επιστημονικά πεδία Υπολογιστικής Βιολογίας Βάσεις Δεδομένων, Αποθετήρια γνώσεων και αλγόριθμων Red rectangles are true matching of identical residue-pairs and green rectangles represent
Μέθοδοι Φυλογένεσης. Μέθοδοι που βασίζονται σε αποστάσεις UPGMA Κοντινότερης γειτονίας (Neighbor joining) Fitch-Margoliash Ελάχιστης εξέλιξης
Μέθοδοι Φυλογένεσης Μέθοδοι που βασίζονται σε αποστάσεις UPGMA Κοντινότερης γειτονίας (Neighbor joining) Fitch-Margoliash Ελάχιστης εξέλιξης Μέθοδοι που βασίζονται σε χαρακτήρες Μέγιστη φειδωλότητα (Maximum
Στοίχιση ανά ζεύγη Εισαγωγή
2 Στοίχιση ανά ζεύγη 2.1. Εισαγωγή Η πιο απλή ανάλυση που μπορεί να γίνει σε επίπεδο αλληλουχιών είναι να διερευνηθεί αν δύο αλληλουχίες «σχετίζονται» 1. Συνήθως αυτό το κάνουμε πρώτα «στοιχίζοντας» 2
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Βιοπληροφορική. Ενότητα 3 η : Πολλαπλή ευθυγράμμιση. Σ. Γκέλης Τμήμα Βιολογίας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3 η : Πολλαπλή ευθυγράμμιση Σ. Γκέλης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙ: Ευριστικές μέθοδοι αναζήτησης σε βάσεις δεδομένων
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙ: Ευριστικές μέθοδοι αναζήτησης σε βάσεις δεδομένων Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of
Βιοπληροφορική. Πίνακες Αντικατάστασης & Οπτική Σύγκριση Αλληλουχιών. Αλέξανδρος Τζάλλας
Βιοπληροφορική Πίνακες Αντικατάστασης & Οπτική Σύγκριση Αλληλουχιών Αλέξανδρος Τζάλλας e-mail: tzallas@teiep.gr ΤΕΙ Ηπείρου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Copyright Πανεπιστήμιο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ BIO 230 Εισαγωγή στην Υπολογιστική Βιολογία Διδάσκων: Βασίλειος Ι. Προμπονάς, Ph.D. Επίκουρος Καθηγητής Βιοπληροφορικής ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Δευτέρα
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική. Ενότητα 6: Σύγκριση αλληλουχιών Part I
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 6: Σύγκριση αλληλουχιών Part I Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail: sbellou@uowm.gr
Πολλαπλή στοίχιση multiple sequence alignment (MSA)
Πολλαπλή στοίχιση multiple sequence alignment (MSA) MSA: Τι είναι Στοίχιση για 3 ή περισσότερες ακολουθίες. Αποκαλύπτονται οι συντηρηµένες περιοχές µεταξύ των ακολουθιών µιας οικογένειας. Χρειάζεται για:
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 4: Πίνακες αντικατάστασης & οπτική σύγκριση αλληλουχιών Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΟΝΙΚΗΣ & ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδοι Στοίχισης Ακολουθιών Σύγκριση Αλγορίθµων Στοίχισης Ακολουθιών σε
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙΙ: Έλεγχος στατιστικής σημαντικότητας
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙΙ: Έλεγχος στατιστικής σημαντικότητας Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161
Αλγόριθµοι Εύρεσης Οµοιοτήτων Ακολουθιών Μέρος ΙΙΙ: Έλεγχος στατιστικής σηµαντικότητας. Πίνακες αντικατάστασης για σύγκριση ακολουθιών
Αλγόριθµοι Εύρεσης Οµοιοτήτων Ακολουθιών Μέρος ΙΙΙ: Έλεγχος στατιστικής σηµαντικότητας Πίνακες αντικατάστασης για σύγκριση ακολουθιών Vasilis Promponas Bioinformatics Research Laboratory Department of
Ασκήσεις 3& 4. Πρωτεϊνική Αρχιτεκτονική. Πλατφόρμες Πρόβλεψης & Προσομοίωσης 2ταγούς Δομής. Μοριακή Απεικόνιση
Ασκήσεις 3& 4 Πρωτεϊνική Αρχιτεκτονική Πλατφόρμες Πρόβλεψης & Προσομοίωσης 2ταγούς Δομής Μοριακή Απεικόνιση Πρωτεϊνική Αρχιτεκτονική Πρωτεϊνική Αρχιτεκτονική: Η τρισδιάστατη δομή μιας πρωτεΐνης και πως
Εξερευνώντας την Εξέλιξη Κεφάλαιο 7
Εξερευνώντας την Εξέλιξη Κεφάλαιο 7 Εξερευνώντας την Εξέλιξη Σχέση μεταξύ αλληλουχίας αμινοξέων, δομής και λειτουργίας πρωτεϊνών Καταγωγή από έναν κοινό πρόγονο Εξελικτική Συγγένεια/Προέλευση Δύο ομάδες
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος Ι: Στοιχίσεις ακολουθιών κατά ζεύγη Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο
Βιοπληροφορική. Ενότητα 10: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Blast, (2/2) 1ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 10: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Blast, (2/2) 1ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Αναφορά στις παραλλαγές του BLAST. Εξοικείωση με τη
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ (ΒΙΟ 003) Εισαγωγή στη Βιοπληροφορική Διδάσκων: Βασίλειος Ι. Προμπονάς, Ph.D. Λέκτορας Βιοπληροφορικής ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Φροντιστήριο Τρίτη και
Εφαρμοσμένη Βιοτεχνολογία Εργαστηριακή Άσκηση Εισαγωγή στην Βιοπληροφορική
Εφαρμοσμένη Βιοτεχνολογία Εργαστηριακή Άσκηση Εισαγωγή στην Βιοπληροφορική Δραστηριότητες 1. Εύρεση γονιδίων/πρωτεϊνών από βάσεις δεδομένων 2. Ευθυγράμμιση και σύγκριση γονιδίων/πρωτεϊνών 3. Δημιουργία
Βιοπληροφορική. Ενότητα 11: Πολλαπλή Στοίχιση Ακολουθιών, 1ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 11: Πολλαπλή Στοίχιση Ακολουθιών, 1ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι κατανόηση της έννοιας και των εφαρμογών της πολλαπλής στοίχισης ακολουθιών.
ΜΕΛΕΤΗ ΜΕ ΥΠΟΛΟΓΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΑΝΘΡΩΠΙΝΗΣ ΠΡΩΤΕΪΝΗΣ GEMININB
ΣΧΟΛΗ ΙΑΤΡΙΚΗΣ ΤΜΗΜΑ ΒΙΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΠΛΗΡΟΦΟΡΙΚΗ ΕΠΙΣΤΗΜΩΝ ΖΩΗΣ ΜΕΛΕΤΗ ΜΕ ΥΠΟΛΟΓΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΑΝΘΡΩΠΙΝΗΣ ΠΡΩΤΕΪΝΗΣ GEMININB ΔΡΙΤΣΟΠΟΥΛΟΥ ΕΛΕΝΗ Α.Μ. 1003 ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ 2
ΔΟΜΗ ΠΡΩΤΕΪΝΩΝ II. Σελίδα 1 ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ. Τ. Θηραίου
ΔΟΜΗ ΠΡΩΤΕΪΝΩΝ II Σελίδα 1 Υπολογιστικός Προσδιορισμός Δομής πειραματικός προσδιορισμός δομών κρυσταλλογραφία ακτίνων X πυρηνικός μαγνητικός συντονισμός (NMR) χρόνος / κόστος / περιορισμοί sequence - structure
Βιοπληροφορική. Ενότητα 13: Μοντέλα Πολλαπλής Στοίχισης (1/2), 1.5ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 13: Μοντέλα Πολλαπλής Στοίχισης (1/2), 1.5ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι παρουσίαση των μοντέλων πολλαπλής στοίχισης. κατανόηση των εφαρμογών
Μέθοδοι Προσπέλασης για την Επεξεργασία Μεγάλων Βιολογικών Βάσεων Δεδομένων. Ανδρουλάκης Ανδρέας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΙΑΤΡΙΚΗ Μέθοδοι Προσπέλασης για την Επεξεργασία Μεγάλων Βιολογικών Βάσεων Δεδομένων Ανδρουλάκης Ανδρέας ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Υπεύθυνος Βασιλακόπουλος
ΔΕΥΤΕΡΟΓΕΝΕΙΣ ΒΑΣΕΙΣ ΠΡΩΤΕΪΝΙΚΩΝ. Δρ. Μαργαρίτα Θεοδωροπούλου
ΔΕΥΤΕΡΟΓΕΝΕΙΣ ΒΑΣΕΙΣ ΠΡΩΤΕΪΝΙΚΩΝ Δρ. Μαργαρίτα Θεοδωροπούλου Βάσεις δεδομένων οικογενειών Οι πρωτεΐνες αποτελούνται από μία ή περισσότερες διακριτές λειτουργικές περιοχές (domains), οι οποίες πολλές
Ερώτημα 1. Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n.
Πρώτο Σύνολο Ασκήσεων 2014-2015 Κατερίνα Ποντζόλκοβα, 5405 Αθανασία Ζαχαριά, 5295 Ερώτημα 1 Μας δίνεται μια συλλογή από k ακολοθίες, k >=2 και αναζητούμε το πρότυπο Ρ, μεγέθους n. Ο αλγόριθμος εύρεσης
Φυλογένεση. 5o εργαστήριο
Φυλογένεση 5o εργαστήριο Φυλογένεση οργανισµών Δείχνει την εξελικτική πορεία µιας οµάδας οργανισµών. Οι κόµβοι (nodes) στο δένδρο απεικονίζουν γεγονότα ειδογένεσης. H φυλογένεση µπορεί να γίνει από µια
Μελέτη και Υλοποίηση Αλγορίθμων για Βιολογικές Εφαρμογές σε MapReduce Περιβάλλον
Μελέτη και Υλοποίηση Αλγορίθμων για Βιολογικές Εφαρμογές σε MapReduce Περιβάλλον Δανάη Κούτρα Eργαστήριο Συστημάτων Βάσεων Γνώσεων και Δεδομένων Εθνικό Μετσόβιο Πολυτεχνείο Θέματα Σκοπός της διπλωματικής
Βιοπληροφορική. Ενότητα 12: Μέθοδοι Πολλαπλής Στοίχισης, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 12: Μέθοδοι Πολλαπλής Στοίχισης, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση των μεθόδων πολλαπλής στοίχισης. Ανάδειξη των πλεονεκτημάτων και
ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ
ΠΑΡΑΛΛΗΛΗ ΕΠΕΞΕΡΓΑΣΙΑ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 211/212 Εισαγωγή Η ανακάλυψη πως τα νουκλεϊκά οξέα αποτελούνται από ακολουθίες συγκεκριμένων νουκλεοτιδίων, καθώς επίσης πως οι πρωτεΐνες αποτελούνται από ακολουθίες
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ (ΒΙΟ 650) Ειδικά Θέματα Βιοπληροφορικής Διδάσκων: Βασίλειος Ι. Προμπονάς, Ph.D. Λέκτορας Βιοπληροφορικής ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Δευτέρα και Πέμπτη
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ (ΒΙΟ 003) Εισαγωγή στη Βιοπληροφορική Διδάσκοντες: Χρήστος Ουζούνης, Βασίλειος Ι. Προµπονάς ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Τρίτη και Παρασκευή 10:30 12:00,
ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Ανάπτυξη του αλγορίθμου BLASΤ σε περιβάλλον GPU» Λάμπρος Κ. Γαλάνης ΜΠΠΛ 10018 Επιβλέπων: Λέκτoρας Α. Πικράκης Συνεπιβλέπων: Επίκουρος Καθηγητής Μ. Ψαράκης Συνεπιβλέπων
Πολλαπλές στοιχίσεις ακολουθιών (Προοδευτικές μέθοδοι)
Πολλαπλές στοιχίσεις ακολουθιών (Προοδευτικές μέθοδοι) Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus Σύνοψη Εισαγωγή Πολλαπλή στοίχιση και
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική. Ενότητα 1: Εισαγωγή στη Βιοπληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 1: Εισαγωγή στη Βιοπληροφορική Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail: sbellou@uowm.gr
Βιοπληροφορική. Ενότητα 16: Μεθοδολογίες (Ανα-) Κατασκευής, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 16: Μεθοδολογίες (Ανα-) Κατασκευής, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Επεξήγηση των μεθόδων (ανα-)κατασκευής φυλογενετικών δέντρων. Παρουσίαση
Βιοπληροφορική. Ενότητα 20: Υπολογιστικός Προσδιορισμός Δομής (2/3), 1 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 20: Υπολογιστικός Προσδιορισμός Δομής (2/3), 1 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι κατανόηση της μεθόδου προτυποποίησης πρωτεϊνών με ομολογία. παρουσίαση
Πίνακες Διασποράς. Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h. Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση
Πίνακες Διασποράς Χρησιμοποιούμε ένα πίνακα διασποράς T και μια συνάρτηση διασποράς h Ένα στοιχείο με κλειδί k αποθηκεύεται στη θέση κλειδί k T 0 1 2 3 4 5 6 7 U : χώρος πιθανών κλειδιών Τ : πίνακας μεγέθους
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ (ΒΙΟ 650) Ειδικά Θέματα Βιοπληροφορικής Διδάσκων: Βασίλειος Ι. Προμπονάς, Ph.D. Επίκουρος Καθηγητής Βιοπληροφορικής ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Δευτέρα
Υπερπροσαρμογή (Overfitting) (1)
Αλγόριθμος C4.5 Αποφυγή υπερπροσαρμογής (overfitting) Reduced error pruning Rule post-pruning Χειρισμός χαρακτηριστικών συνεχών τιμών Επιλογή κατάλληλης μετρικής για την επιλογή των χαρακτηριστικών διάσπασης
Κεφάλαιο 4 ο : Αλγόριθµοι προσεγγιστικής εύρεσης προτύπου και στοίχισης συµβολοσειρών.
Κεφάλαιο 4 ο : Αλγόριθµοι προσεγγιστικής εύρεσης προτύπου και στοίχισης. Στα πλαίσια αυτού του κεφαλαίου παρουσιάζουµε τους βασικούς αλγορίθµους προσεγγιστικής εύρεσης προτύπου και στοίχισης. Όπως ήδη
Δευτεροταγείς βάσεις δεδομένων (Secondary databases)
Δευτεροταγείς βάσεις δεδομένων (Secondary databases) Οι δευτεροταγείς (pattern) βάσεις δεδομένων (ΒΔ) περιέχουν τα αποτελέσματα από τις αναλύσεις των αλληλουχιών που βρίσκονται στις πρωτοταγείς πηγές πληροφόρησης.
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX
ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ ΤΗΣ ΜΕΘΟΔΟΥ SIMPLEX Θεμελιώδης αλγόριθμος επίλυσης προβλημάτων Γραμμικού Προγραμματισμού που κάνει χρήση της θεωρίας της Γραμμικής Άλγεβρας Προτάθηκε από το Dantzig (1947) και πλέον
Μέθοδος μέγιστης πιθανοφάνειας
Αν x =,,, παρατηρήσεις των Χ =,,,, τότε έχουμε διαθέσιμο ένα δείγμα Χ={Χ, =,,,} της κατανομής F μεγέθους με από κοινού σκ της Χ f x f x Ορισμός : Θεωρούμε ένα τυχαίο δείγμα Χ=(Χ, Χ,, Χ ) από πληθυσμό το
Προγραμματισμός Ι (ΗΥ120)
Προγραμματισμός Ι (ΗΥ120) Διάλεξη 20: Δυαδικό Δέντρο Αναζήτησης Δυαδικό δέντρο Κάθε κόμβος «γονέας» περιέχει δύο δείκτες που δείχνουν σε δύο κόμβους «παιδιά» του ιδίου τύπου. Αν οι δείκτες προς αυτούς
Κεφάλαιο 3 Αλγόριθμοι Στοίχισης Αλληλουχιών
Κεφάλαιο 3 Αλγόριθμοι Στοίχισης Αλληλουχιών Σύνοψη Στο κεφάλαιο αυτό θα παρουσιαστούν αρχικά, τα απαραίτητα μαθηματικά μοντέλα που περιγράφουν τις αλληλουχίες μακρομορίων και κάποια βασικά ασυμπτωτικά
της φοιτήτριας του Τµήµατος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστηµίου Πατρών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΕΝΣΥΡΜΑΤΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΣ ιπλωµατική Εργασία της φοιτήτριας
Συνάφεια μεταξύ ποιοτικών μεταβλητών. Εκδ. #3,
Συνάφεια μεταξύ ποιοτικών μεταβλητών Εκδ. #3, 19.03.2016 Ο έλεγχος ανεξαρτησίας χ 2 Ο έλεγχος ανεξαρτησίας χ 2 εφαρμόζεται για να εξετάσουμε τη συνάφεια μεταξύ δύο ποιοτικών μεταβλητών με την έννοια της
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος
Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. β Α2. γ Α3. δ Α4. γ Α5. β
ΘΕΜΑ Α Α1. β Α2. γ Α3. δ Α4. γ Α5. β 1 ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΕΤΑΡΤΗ 10 ΣΕΠΤΕΜΒΡΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ:
Εισαγωγή στη Γενετική και στη Γονιδιωματική Τι είναι η κληρονομικότητα, και πώς μεταβιβάζεται η πληροφορία από γενιά σε γενιά;
ΒΙΟΛΟΓΙΚΗ ΑΝΘΡΩΠΟΛΟΓΙΑ 12 26/10/2016 Κεφάλαιο 3 Α μέρος Εισαγωγή στη Γενετική και στη Γονιδιωματική Τι είναι η κληρονομικότητα, και πώς μεταβιβάζεται η πληροφορία από γενιά σε γενιά; Ποια είναι η δομή
Συστήματα Ανάκτησης Πληροφοριών ΗΥ-463
ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ COMPUTER SCIENCE DEPARTMENT UNIVERSITY OF CRETE Συστήματα Ανάκτησης Πληροφοριών ΗΥ-463 4 η Σειρά Ασκήσεων Ψαράκη Μαρία-Γεωργία ΜΕΤ 556 psaraki@csd.uoc.gr Εαρινό Εξάμηνο 2008-2009
Ειδικά Θέματα Βιοπληροφορικής
Ειδικά Θέματα Βιοπληροφορικής Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 Διάλεξη 5 Profile Hidden Markov Models και Transformational Grammars 2 Profile HMM Ένα ΗΜΜ με left-to-right
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Κατακερματισμός. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Κατακερματισμός Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Λεξικό Dictionary Ένα λεξικό (dictionary) είναι ένας αφηρημένος τύπος δεδομένων (ΑΤΔ) που διατηρεί
PCR Εφαρμογές-2. RACE Site directed mutagenesis
PCR Εφαρμογές-2 RACE Site directed mutagenesis Σκοπός της αντίδρασης PCR (Polymerase Chain Reaction) είναι το να φτιάξει ένα μεγάλο αριθμό αντιγράφων. BHMATA 1. ΑΠΟΔΙΑΤΑΞΗ 2. ΥΒΡΙΔΙΣΜΟΣ 3. ΕΠΙΜΗΚΥΝΣΗ Επειδή
Βιοπληροφορική Δεύτερη Άσκηση Αλγόριθμοι και Εφαρμογές στις Συγκρίσεις μεγάλων γονιδιωματικών ακολουθιών
Βιοπληροφορική Δεύτερη Άσκηση 2014-2015 Συνεργάτες: Κατερίνα Ποντζόλκοβα, 5405 Αθανασία Ζαχαριά, 5295 Αλγόριθμοι και Εφαρμογές στις Συγκρίσεις μεγάλων γονιδιωματικών ακολουθιών Εισαγωγή Η σύγκριση γονιδιωματικών
Στοίχιση ακολουθιών κατά ζεύγη (Pairwise alignment) Blast
Στοίχιση ακολουθιών κατά ζεύγη (Pairwise alignment) & Blast Στοίχιση κατά ζεύγη Αντιστοίχιση των νουκλεοτιδίων/αµινοξέων δυο ακολουθιών, ώστε να εντοπιστούν οι οµοιότητες και οι διαφορές τους. Χρησιµοποιείται
10. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ
0. ΠΟΛΛΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ 0. ΤΟ ΓΕΝΙΚΟ ΓΡΑΜΜΙΚΟ ΜΟΝΤΕΛΟ Συχνά στην πράξη το μοντέλο της απλής γραμμικής παλινδρόμησης είναι ανεπαρκές για την περιγραφή της μεταβλητότητας που υπάρχει στην εξαρτημένη