ΑΝΑΖΗΤΗΣΗ ΟΜΟΙΟΤΗΤΩΝ ΣΕ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΟΛΟΥΘΙΩΝ
|
|
- Πρόχορος Ζαφειρόπουλος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Αναζήτηση οµοιοτήτων ΑΝΑΖΗΤΗΣΗ ΟΜΟΙΟΤΗΤΩΝ ΣΕ ΒΑΣΕΙΣ Ε ΟΜΕΝΩΝ ΑΚΟΛΟΥΘΙΩΝ Σελίδα 1 εδοµένα Ακολουθία επερώτησης (query sequence) Ακολουθίες στη Βάση εδοµένων (subject sequences) Αναζήτηση Μέθοδοι δυναµικού προγραµµατισµού Πρακτικοί µόνο για "µικρά" προβλήµατα Ευριστικοί Αλγόριθµοι Γρήγορη αναζήτηση εν εγγυώνται την βέλτιστη στοίχιση FASTA (Lipman and Pearson, 1985) (Altschul et al, 1990) RGIKW IKWQPRSTW IKMQRHIKW DLFWHLWH IKMQRHIKW Αναζήτηση πρωτεϊνών Αναζήτηση οµοιοτήτων Περισσότερο ευαίσθητη για την εύρεση αποµακρυσµένων οµόλογων ακολουθιών Εκφυλισµός γενετικού κώδικα Συντηρητικές αντικαταστάσεις Αλφάβητο 20 γραµµάτων έναντι 4 για το DNA (στατιστική σηµαντικότητα στοιχίσεων) Πιο γρήγορη Αναζήτηση DNA Αναζήτηση οµοιοτήτων Περισσότερο ευαίσθητη όταν συγκρίνονται κοντινές εξελικτικά ακολουθίες Για µη κωδικοποιούσες ακολουθίες Εύρεση µεταλλάξεων πλαισίου ανάγνωσης (frameshift mutations) Σελίδα 3 Σελίδα 4 FASTA FASTA K-tuples (K-tup) tup): λέξεις µεγέθους k Για κάθε ακολουθία της Β αναγνώριση διαγωνίων ταύτισης βαθµολόγηση µε τη χρήση πίνακα αντικατάστασης και επιλογή των διαγωνίων µε το µεγαλύτερο score Για κάθε ακολουθία της Β Ένωση των διαγωνίων µε score µεγαλύτερο ενός κατωφλίου Χρήση δυναµικού προγραµµατισµού (banded Smith- Waterman) για τη βελτιστοποίηση της στοίχισης Σελίδα 5 Σελίδα 6
2 K-tuples (K-tup) πρωτεΐνες: 2-tuples DNA: 6-tuples FASTA η τίµη του k επηρεάζει την ευαισθησία και την ταχύτητα της αναζήτησης µεγάλη τιµή k µείωση λέξεων που ταυτίζονται αλλά δεν αντιστοιχούν σε πραγµατικές στοιχίσεις (background word hits) αύξηση ταχύτητας αλλά µείωση ευαισθησίας (sensitivity) neighborhood words Query: NKCKTPQGQRLVN, W=3, T=13 word PQG 18 PEG 15 PRG 14 PKG 14 PNG 13 PDG 13 PHG 13 PMG 13 PSG 13 PQA 12 PQN 12 score Σελίδα 7 Σελίδα 8 Σελίδα 9 Σελίδα 10 words: όλες οι δυνατές λέξεις µεγέθους W πρωτεΐνες: 3 κατάλοιπα DNA: 11 κατάλοιπα δηµιουργία ευρετηρίου µε όλες τις λέξεις στις ακολουθίες της Β για κάθε λέξη της ακολουθίας επερώτησης εύρεση όλων των λέξεων (neighborhood words) που στοιχίζονται µαζί της µε score µεγαλύτερο ενός κατωφλίου (neighborhood score threshold, T) T χρησιµοποιώντας έναν πίνακα αντικατάστασης αναζήτηση των neighborhood words έναντι του προκατασκευασµένου πίνακα µε όλες τις λέξεις των ακολουθιών της Β επέκταση της στοίχισης µεταξύ της ακολουθίας επερώτησης και των ακολουθιών της Β για την αναγνώριση ενός High- scoring Segment Pair (HSP) τερµατισµός της επέκτασης όταν το score γίνει µικρότερο ενός προκαθορισµένου κατωφλίου µεγαλύτερο Τ µείωση των προσπαθειών εύρεσης HSPs αύξηση ταχύτητας αλλά µείωση ευαισθησίας Σελίδα 11 Σελίδα 12
3 two-hit Παρατηρήσεις Η επέκταση γύρω από τα seed words αποτελεί το 90% του χρόνου εκτέλεσης του. Τα HSP έχουν µεγαλύτερο µήκος και περιέχουν πολλές λέξεις µήκους W. two-hit Επέκταση µόνο όταν υπάρχουν δύο µη επικαλυπτόµενα ζεύγη λέξεων σε απόσταση µικρότερη από ένα κατώφλι µεταξύ τους. overlap > A < A extend! Σελίδα 13 Σελίδα 14 two-hit για να διατηρηθεί η ευαισθησία της αναζήτησης, απαιτείται µικρότερο T (neighborhood score threshold) περισσότερα hits αλλά µόνο ένα µικρό ποσοστό από αυτά σχετίζονται µε δεύτερο hit αύξηση της ταχύτητας Gapped two-hit για τη δηµιουργία ενός HSP επέκταση του HSP µε κενά, αν έχει score µεγαλύτερο ενός κατωφλίου S g Σελίδα 15 Σελίδα 16 Gapped Εφαρµογή φίλτρων Σελίδα 17 Σελίδα 18
4 Εφαρµογή φίλτρων επαναλήψεις περιοχές χαµηλής πολυπλοκότητας δηµιουργία στατιστικώς σηµαντικών στοιχίσεων, αλλά χωρίς βιολογικό νόηµα Soft filtering φιλτράρισµα µόνο στη φάση αναζήτησης Hard filtering φιλτράρισµα στη φάση αναζήτησης και στη φάση τελικής στοίχισης Έστω η στοίχιση δύο ακολουθιών µε score s. Η στοίχιση είναι τυχαία ή έχει βιολογικό νόηµα; Σελίδα 19 Σελίδα 20 Ολική Στοίχιση εν είναι γνωστή η κατανοµή των scores της στοίχισης τυχαία επιλεγµένων αλληλουχιών. ηµιουργία πολλών τυχαίων ακολουθιών ίδιου µήκους και αµινοξικής σύστασης. Υπολογισµός των scores s της στοίχισής τους. Υπολογισµός του Z-score. Z-score = (s-s)/sd s = µέση τιµή s sd = τυπική απόκλιση Ολική Στοίχιση Αν το Z-score είναι µικρό, η στοίχιση δεν είναι στατιστικώς σηµαντική. Σελίδα 21 Σελίδα 22 Τοπική στοίχιση χωρίς κενά Η βαθµολογία S των τυχαίων στοιχίσεων ακολουθεί την κατανοµή ακραίων τιµών (Extreme value distribution ή Gumbel). Τοπική στοίχιση χωρίς κενά P-value = P(S s) = 1 e -Kmneλs P-value πιθανότητα να προκύψει τυχαία στοίχιση µε βαθµολογία µεγαλύτερη ή ίση του s K, λ παράµετροι κατανοµής εξαρτώνται από σύστηµα βαθµολόγησης συχνότητες υποβάθρου m, n µήκη αλληλουχιών Σελίδα 23 Σελίδα 24
5 Τοπική στοίχιση χωρίς κενά E(S s) = Kmne -λs E(S s) πλήθος τυχαίων στοιχίσεων µε βαθµολογία µεγαλύτερη ή ίση του s λ S = s lnκ bit ln2 Sbit κανονικοποιηµένο score Συγκρίσιµα αποτελέσµατα που έχουν προκύψει από διαφορετικά συστήµατα βαθµολογίας Τοπική στοίχιση χωρίς κενά E-value = E(S bit s bit ) = mn2 -s bit E-value πλήθος τυχαίων στοιχίσεων µε βαθµολογία µεγαλύτερη ή ίση του s bit "Πραγµατική" στοίχιση: E-value 0 Για ακολουθίες µήκους > 100 κατάλοιπα Τύπος Ακολουθίας E-value Ταυτότητα Καταλοίπων Νουκλεοτιδική < 10-6 > 70% Αµινοξική < 10-4 > 25% Σελίδα 25 Σελίδα 26 Βάσεις εδοµένων του Βάσεις εδοµένων του Πρωτεϊνικές Β nr περιεκτική συλλογή αλληλουχιών χωρίς πλεονασµούς month nr µε τις αλληλουχίες των τελευταίων 30 ηµερών swissprot pdb αλληλουχίες της SWISS-PROT αλληλουχίες η δοµή των οποίων είναι κατατεθειµένη στην Protein Data Bank Νουκλεοτιδικές Β nr περιεκτική συλλογή αλληλουχιών χωρίς πλεονασµούς month nr µε τις αλληλουχίες των τελευταίων 30 ηµερών refseq_mrna αλληλουχίες mrna από το NCBI Reference Sequence Project refseq_genomic γενωµικές αλληλουχίες από το NCBI Reference Sequence Project Σελίδα 27 Σελίδα 28 Παραλλαγές του Παραλλαγές του Πρωτεϊνική ακολουθία blastp ακολουθία επερώτησης: πρωτεϊνική Β : πρωτεϊνική αναγνώριση κοινών περιοχών µεταξύ πρωτεϊνών εύρεση σχετιζόµενων ακολουθιών για φυλογενετική ανάλυση πρόβλεψη λειτουργίας Πρωτεϊνική ακολουθία tblastn ακολουθία επερώτησης: πρωτεϊνική Β : νουκλεοτιδική (µετάφραση στα 6 πλαίσια ανάγνωσης) εύρεση µη σχολιασµένων κωδικοποιουσών περιοχών σε Β.. χαρτογράφηση πρωτεϊνών σε γενωµικό DNA Σελίδα 29 Σελίδα 30
6 Νουκλεοτιδική ακολουθία blastn Παραλλαγές του ακολουθία επερώτησης: νουκλεοτιδική Β : νουκλεοτιδική για ακολουθίες µε µεγάλη οµοιότητα χαρτογράφηση ολιγονουκλεοτιδίων, cdnas και προϊόντων PCR σε ένα γονιδίωµα σχολιασµός γενωµικού DNA MegaBlast 10 ταχύτερο από blastn στοίχιση mrna µε γενωµικό DNA Νουκλεοτιδική ακολουθία blastx Παραλλαγές του ακολουθία επερώτησης: νουκλεοτιδική (µετάφραση στα 6 πλαίσια ανάγνωσης) Β : πρωτεϊνική εύρεση γονιδίων που κωδικοποιούν πρωτεΐνες σε γενωµικό DNA χρήσιµο όταν δεν είναι γνωστό το πλαίσιο ανάγνωσης ή υπάρχουν σφάλµατα στο πλαίσιο ανάγνωσης Σελίδα 31 Σελίδα 32 Παραλλαγές του Παραλλαγές του Νουκλεοτιδική ακολουθία tblastx ακολουθία επερώτησης: νουκλεοτιδική (µετάφραση στα 6 πλαίσια ανάγνωσης) Β : νουκλεοτιδική (µετάφραση στα 6 πλαίσια ανάγνωσης) αναζήτηση γονιδίων που δεν έχουν αναγνωριστεί µε τις συµβατικές µεθόδους υψηλές υπολογιστικές απαιτήσεις (6 6 blastp) PSI- (Position Specific Iterated ) PSSM (Position Specific Scoring Matrix) Πολλαπλή στοίχιση ακολουθιών και υπολογισµός ενός score που σχετίζεται µε τη συχνότητα εύρεσης κάθε καταλοίπου σε µία θέση της στοίχισης. Σελίδα 33 PSI- Παραλλαγές του 1. ιεξαγωγή µιας τυπικής αναζήτησης µε την ακολουθία επερώτησης και ένα πίνακα αντικατάστασης (π.χ. BLOSUM62) 2. Αυτόµατη δηµιουργία ενός PSSM από την πολλαπλή στοίχιση των καλύτερων hits της αρχικής αναζήτησης. 3. Το PSSM αντικαθιστά τον αρχικό πίνακα αντικατάστασης (π.χ. BLOSUM62) για την εκτέλεση µιας δεύτερης αναζήτησης. PSI- Παραλλαγές του 4. Επανάληψη των βηµάτων 2 και 3 και δηµιουργία νέων PSSM. 5. Σύγκλιση του PSI- όταν στην τελευταία επανάληψη δεν βρίσκονται νέες ακολουθίες. Σελίδα 35 Σελίδα 36
7 PSI- Παραλλαγές του PSI- επιτρέπει την εύρεση περισσότερο αποµακρυσµένων οµόλογων ακολουθιών σε σχέση µε το τυπικό. χρησιµοποιεί δύο τιµές κατωφλίου: threshold E-valueE για την αρχική αναζήτηση (τυπικά ίσο µε 10) inclusion E-valueE για τη συµµετοχή των ακολουθιών στη δηµιουργία του PSSM (τυπικά ίσο µε 0.001) PSI- Παραλλαγές του Αν χρησιµοποιηθούν εσφαλµένες ακολουθίες για τη δηµιουργία του PSSM, το σφάλµα θα ανατροφοδοτείται σε κάθε κύκλο. Το E-value δεν αντικατοπτρίζει την σηµαντικότητα της στοίχισης µε την αρχική ακολουθία. Σελίδα 37 Σελίδα 38 Παραλλαγές του Παραλλαγές του PHI- (Pattern - Hit Initiated ) µοτίβο (pattern) χαρακτηρίζει µια οικογένεια πρωτεϊνών π.χ. [LIVMF]-G-E-x-[GAS]-[LIVM]-x(5,11)-R-[STAQ]- A-x-[LIVMA]-x-[STACV] PHI- εδοµένα εισόδου για την αναζήτηση: ακολουθία επερώτησης µοτίβο (regular expression) που υπάρχει στην ακολουθία επερώτησης Αναζήτηση ακολουθιών που περιέχουν το µοτίβο και έχουν οµοιότητα µε την ακολουθία επερώτησης στη γειτονική περιοχή του µοτίβου Μείωση των hits που δεν έχουν πραγµατική οµολογία µε την ακολουθία επερώτησης Σελίδα 39 Σελίδα 40 Ανταποδοτικό Ανταποδοτικό Best Reciprocal () Hit εύρεση ορθόλογων γονιδίων / πρωτεϊνών αναζήτηση µε την ακολουθία α του οργανισµού Α στις ακολουθίες του οργανισµού Β καλύτερο hit η ακολουθία β αναζήτηση µε την ακολουθία β του οργανισµού Β στις ακολουθίες του οργανισµού Α καλύτερο hit η ακολουθία α Οι ακολουθίες α και β είναι ορθόλογες. Σελίδα 41 Σελίδα 42
8 Ανταποδοτικό ιεπαφή κρίσιµες παράµετροι είδος φίλτρου: soft filtering vs hard filtering αλγόριθµος τελικής στοίχισης: vs Smith-Waterman τιµές κατωφλίου: E-value ή bit-score, µήκος στοίχισης σφάλµατα πρόσφατος εκτεταµένος γονιδιακός διπλασιασµός γονιδιακή σύντηξη domain rearrangements Σελίδα 43 Σελίδα 44 ιεπαφή ιεπαφή Σελίδα 45 Σελίδα 46 ιεπαφή ιεπαφή Σελίδα 47 Σελίδα 48
9 ιεπαφή Έλεγχος Αποτελεσµάτων οµοιότητα σε επαρκές µήκος των ακολουθιών υψηλό ποσοστό ταυτόσηµων καταλοίπων εµφάνιση χαρακτηριστικών δοµικών / λειτουργικών µοτίβων ποιότητα δεδοµένων στις βάσεις υποθετικά γονίδια Σελίδα 49 Σελίδα 50 servers FASTA Sequence Similarity Searching Σελίδα 51
ΑΝΑΖΗΤΗΣΗ ΟΜΟΙΟΤΗΤΩΝ ΣΕ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΚΟΛΟΥΘΙΩΝ
ΑΝΑΖΗΤΗΣΗ ΟΜΟΙΟΤΗΤΩΝ ΣΕ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΑΚΟΛΟΥΘΙΩΝ Σελίδα 1 Αναζήτηση ομοιοτήτων Δεδομένα Ακολουθία επερώτησης (query sequence) Ακολουθίες στη Βάση Δεδομένων (subject sequences) Αναζήτηση Μέθοδοι δυναμικού
Βιοπληροφορική. Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της αναγκαιότητας των ευριστικών αλγορίθμων
Βιοπληροφορική. Ενότητα 10: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Blast, (1/2) 1ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 10: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Blast, (1/2) 1ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Αναφορά στις παραλλαγές του BLAST. Εξοικείωση με τη
Βιοπληροφορική. Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 8: Αναζήτηση Ομοιοτήτων σε Βάσεις Δεδομένων Ακολουθιών, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της αναγκαιότητας των ευριστικών αλγορίθμων
ΑΣΚΗΣΗ 4η Αναζήτηση οµοιοτήτων σε βάσεις δεδοµένων ακολουθιών
ΑΣΚΗΣΗ 4η Αναζήτηση οµοιοτήτων σε βάσεις δεδοµένων ακολουθιών ΕΙΣΑΓΩΓΗ Η αναζήτηση οµοιοτήτων σε βάσεις δεδοµένων ακολουθιών (database similarity searching) αποτελεί µια από τις συχνότερα χρησιµοποιούµενες
Βιοπληροφορική. Ενότητα 9: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Στατιστική Σημαντικότητα, 1 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 9: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Στατιστική Σημαντικότητα, 1 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Παρουσίαση των εφαρμογών της αναζήτησης
PSI-Blast: τι είναι. Position specific scoring matrices (PSSMs) (Πίνακες αντικατάστασης θέσης)
PSI-Blast PSI-Blast PSI-Blast: τι είναι PSI-Blast: Position-specific iterated Blast Position specific scoring matrices (PSSMs) (Πίνακες αντικατάστασης θέσης) Altschul et al., 1997 http://www.ncbi.nlm.nih.gov/pmc/articles/pmc146917/pdf/253389.pdf
Βιοπληροφορική. Blast/PSI-Blast 3o εργαστήριο
Βιοπληροφορική Blast/PSI-Blast 3o εργαστήριο Αναζήτηση οµόλογων ακολουθιών σε βάσεις δεδοµένων (i) Οµόλογες ακολουθίες πιθανόν να έχουν παρόµοιες λειτουργίες. Ακολουθία επερώτησης (query sequence) Υποκείµενες
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 12: Αναζήτηση ομοιοτήτων έναντι βάσεων δεδομένων με τη χρήση ευρετικών αλγορίθμων Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr
Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων
Κεφάλαιο 5 ο : Αλγόριθµοι Σύγκρισης Ακολουθιών Βιολογικών εδοµένων Σε αυτό το κεφάλαιο παρουσιάζουµε 2 βασικούς αλγορίθµους σύγκρισης ακολουθιών Βιολογικών εδοµένων τους BLAST & FASTA. Οι δυο αλγόριθµοι
Βιοπληροφορική. Ενότητα 10: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Blast, (2/2) 1ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 10: Αναζήτηση Ομοιοτήτων σε ΒΔ Ακολουθιών - Blast, (2/2) 1ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Αναφορά στις παραλλαγές του BLAST. Εξοικείωση με τη
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙ: Ευριστικές μέθοδοι αναζήτησης σε βάσεις δεδομένων
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙ: Ευριστικές μέθοδοι αναζήτησης σε βάσεις δεδομένων Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of
ΑΣΚΗΣΗ 3η Στοίχιση ακολουθιών βιολογικών µακροµορίων
ΑΣΚΗΣΗ 3η Στοίχιση ακολουθιών βιολογικών µακροµορίων ΕΙΣΑΓΩΓΗ Ένας από τους πρωταρχικούς στόχους της σύγκρισης των ακολουθιών δύο µακροµορίων είναι η εκτίµηση της οµοιότητάς τους και η εξαγωγή συµπερασµάτων
Πρόβλημα. Σύνολο γνωστών αλληλουχιών
BLAST Πρόβλημα Άγνωστη αλληλουχία Σύνολο γνωστών αλληλουχιών Η χρήση ενός υπολογιστή κι ενός αλγόριθμου είναι απαραίτητη για την ανακάλυψη της σχέσης μιας αλληλουχίας με τις γνωστές υπάρχουσες Τί είναι
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙΙ: Έλεγχος στατιστικής σημαντικότητας
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος ΙΙΙ: Έλεγχος στατιστικής σημαντικότητας Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161
Κατα ζέυγη στοίχιση και στατιστική σημαντικότητα αυτής
ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Κατα ζέυγη στοίχιση και στατιστική σημαντικότητα αυτής Παντελής Μπάγκος 1 Διάλεξη 2 Αναζήτηση ομοιότητας και κατά ζεύγη στοίχιση ακολουθιών 2 Κατά ζεύγη στοίχιση ακολουθιών Από τα πιο
LALING/PLALING :
1. Άρθρα- δημοσιεύσεις Scopus DBLP Pubmed Google Scholar 2. Αναζήτηση νουκλεοτιδίου- πρωτεΐνης Entrez : http://www.ncbi.nlm.nih.gov/nuccore/ Uniprot (πρωτεΐνης): http://www.uniprot.org/ Blast : http://blast.ncbi.nlm.nih.gov/blast.cgi
ΒΙΟ230 - Εισαγωγή στην Υπολογιστική Βιολογία Πρακτικό Εργαστήριο: Basic Local Alignment Search Tool BLAST
ΒΙΟ230 - Εισαγωγή στην Υπολογιστική Βιολογία Πρακτικό Εργαστήριο: Basic Local Alignment Search Tool BLAST Στέλλα Ταμανά, Βασίλης Προμπονάς Λευκωσία 2016-2018 Περίληψη (Overview) Κατά τη διάρκεια αυτού
Στοίχιση ακολουθιών κατά ζεύγη (Pairwise alignment) Blast
Στοίχιση ακολουθιών κατά ζεύγη (Pairwise alignment) & Blast Στοίχιση κατά ζεύγη Αντιστοίχιση των νουκλεοτιδίων/αµινοξέων δυο ακολουθιών, ώστε να εντοπιστούν οι οµοιότητες και οι διαφορές τους. Χρησιµοποιείται
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ
ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ Σελίδα 1 Αναζήτηση πληροφορίας σε βιολογικές ΒΔ Αναζήτηση δεδομένων στην UniProt Καταγράψτε το μήκος της αμινοξικής ακολουθίας (Sequence length), τη λειτουργία (Function)
Μέθοδοι μελέτης εξέλιξης
H διερεύνηση της μοριακής βάσης της εξέλιξης βασίζεται σε μεγάλο βαθμό στη διευκρίνιση της διαδικασίας με την οποία μετασχηματίσθηκαν στη διάρκεια της εξέλιξης πρωτεϊνες, άλλα μόρια και βιοχημικές πορείες
Σηµειώσεις Βιοπληροφορικής
Σηµειώσεις Βιοπληροφορικής Αναζήτηση Οµοιοτήτων σε Βάσεις εδοµένων Ακολουθιών Βάσεις εδοµένων Βιολογικών Ακολουθιών - Πρακτικά Ζητήµατα Προσεγγιστικοί Ευριστικοί Αλγόριθµοι Στατιστική Σηµαντικότητα Εφαρµογές
Βιοπληροφορική. Ενότητα 5: Στοίχιση ακολουθιών ανά ζεύγη, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 5: Στοίχιση ακολουθιών ανά ζεύγη, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της συσχέτισης ομολογίας ομοιότητας. Παρουσίαση των πληροφοριών
Κατά ζεύγη στοίχιση ακολουθιών Πολλαπλή στοίχιση ακολουθιών Patterns. Δρ. Μαργαρίτα Θεοδωροπούλου
Κατά ζεύγη στοίχιση ακολουθιών Πολλαπλή στοίχιση ακολουθιών Patterns Δρ. Μαργαρίτα Θεοδωροπούλου Από τα πιο σημαντικά προβλήματα στην Υπολογιστική Βιολογία Ιδιαίτερα πλούσια βιβλιογραφία για πάνω από 30
Βιοπληροφορική Ι. Παντελής Μπάγκος Αναπληρωτής Καθηγητής. Πανεπιστήμιο Θεσσαλίας Λαμία, 2015
Βιοπληροφορική Ι Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 Στοίχιση αλληλουχιών 2 Τρόποι μελέτης των ακολουθιών Global information Η ακολουθία αναπαρίσταται από ένα διάνυσμα
Πίνακες αντικατάστασης PAM και BLOSUM και εναλλακτικές προσεγγίσεις
Πίνακες αντικατάστασης PAM και BLOSUM και εναλλακτικές προσεγγίσεις Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο Κύπρου
Αλγόριθµοι Εύρεσης Οµοιοτήτων Ακολουθιών Μέρος ΙΙΙ: Έλεγχος στατιστικής σηµαντικότητας. Πίνακες αντικατάστασης για σύγκριση ακολουθιών
Αλγόριθµοι Εύρεσης Οµοιοτήτων Ακολουθιών Μέρος ΙΙΙ: Έλεγχος στατιστικής σηµαντικότητας Πίνακες αντικατάστασης για σύγκριση ακολουθιών Vasilis Promponas Bioinformatics Research Laboratory Department of
ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ ΑΝΑ ΖΕΥΓΗ
ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ ΑΝΑ ΖΕΥΓΗ Σελίδα 1 Ομολογία Σελίδα 2 Ομολογία Ομολογία κοινή εξελικτική καταγωγή Ορθόλογα γονίδια ειδογένεση συνήθως, ίδια βιολογική λειτουργία Παράλογα γονίδια γονιδιακός διπλασιασμός
BIOTECH - GO. Μία συνδυασμένη μέθοδος εκπαίδευσης στη Βιοπληροφορική - Το μέσο των μικρομεσαίων επιχειρήσεων για τις βιοτεχνολογικές καινοτομίες
BIOTECH - GO Μία συνδυασμένη μέθοδος εκπαίδευσης στη Βιοπληροφορική - Το μέσο των μικρομεσαίων επιχειρήσεων για τις βιοτεχνολογικές καινοτομίες Η πληροφορία είναι η γνώση και η Σημερινή οικονομία είναι
ΕΠΑΝΑΛΗΨΗ. Σελίδα 1 ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ. Τ. Θηραίου
ΕΠΑΝΑΛΗΨΗ Σελίδα 1 τεχνική σύγκρισης ακολουθιών υπολογισµός ενός µέτρου οµοιότητας αναζήτηση ομολογίας S-S match S1 HFCGGSLINEQWVVSAGHC HFCG S NE AGHC S2 HFCGASIYNENYA-TAGHC gap mismatch Σελίδα 2 ολική
Στοίχιση κατά ζεύγη. Στοίχιση ακολουθιών κατά ζεύγη (Pairwise alignment)
Στοίχιση ακολουθιών κατά ζεύγη (Pairwise alignment) Στοίχιση κατά ζεύγη: Τι είναι Αντιστοίχιση των νουκλεοτιδίων/αµινοξέων δυο ακολουθιών, ώστε να εντοπιστούν οι οµοιότητες και οι διαφορές τους. Χρησιµοποιείται
Περιοχές με ακραία σύσταση / χαμηλή πολυπλοκότητα
Περιοχές με ακραία σύσταση / χαμηλή πολυπλοκότητα Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus Σύνοψη Βασικές έννοιες XNU SEG LCRs και αναζητήσεις
Βιοπληροφορική Ι. Παντελής Μπάγκος. Παν/µιο Στερεάς Ελλάδας
Βιοπληροφορική Ι Παντελής Μπάγκος Παν/µιο Στερεάς Ελλάδας Λαµία 2006 1 Βιοπληροφορική Ι Εισαγωγή: Ορισµός της Βιοπληροφορικής, Υποδιαιρέσεις της Βιοπληροφορικής, Τα είδη των δεδοµένων στη Βιοπληροφορική.
της φοιτήτριας του Τµήµατος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστηµίου Πατρών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ: ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΕΝΣΥΡΜΑΤΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΣ ιπλωµατική Εργασία της φοιτήτριας
ΦΥΣΙΚΗ ΑΝΘΡΩΠΟΛΟΓΙΑ. Πρωτεύοντα ΙΙΙ Χρήση µοριακών δεδοµένων
ΦΥΣΙΚΗ ΑΝΘΡΩΠΟΛΟΓΙΑ Πρωτεύοντα ΙΙΙ Χρήση µοριακών δεδοµένων Φυλογένεση Η φυλογένεσης αφορά την ανεύρεση των συνδετικών εκείνων κρίκων που συνδέουν τα διάφορα είδη µεταξύ τους εξελικτικά, σε µονοφυλετικές
ΠΟΛΛΑΠΛΗ ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ I
ΠΟΛΛΑΠΛΗ ΣΤΟΙΧΙΣΗ ΑΚΟΛΟΥΘΙΩΝ I Σελίδα 1 Πολλαπλή στοίχιση αποκαλύπτει συντηρημένες περιοχές αντιστοίχιση καταλοίπων με κριτήρια ομοιότητας σε επίπεδο δομής εξέλιξης λειτουργίας ακολουθίας Σελίδα 2 Πολλαπλή
Εισαγωγή στους αλγορίθμους Βιοπληροφορικής. Στοίχιση αλληλουχιών
Στοίχιση αλληλουχιών Σύνοψη Καθολική στοίχιση Μήτρες βαθμολόγησης Τοπική στοίχιση Στοίχιση με ποινές εισαγωγής κενών Από την LCS στη στοίχιση: αλλαγές στη βαθμολόγηση Το πρόβλημα της Μεγαλύτερης Κοινής
Ασκήσεις 1 & 2. Βάσεις Δεδομένων. Εργαλεία Αναζήτησης ClustalW & Blast
Ασκήσεις 1 & 2 Βάσεις Δεδομένων Εργαλεία Αναζήτησης ClustalW & Blast Μοριακή Προσομοίωση Εισαγωγή: Δομική Βάση Βιολογικών Φαινομένων Η αξιοποίηση του πλήθους των δομικών στοιχείων για την εξαγωγή βιολογικά
Βιοπληροφορική. Ενότητα 13: Μοντέλα Πολλαπλής Στοίχισης (1/2), 1.5ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου
Βιοπληροφορική Ενότητα 13: Μοντέλα Πολλαπλής Στοίχισης (1/2), 1.5ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι παρουσίαση των μοντέλων πολλαπλής στοίχισης. κατανόηση των εφαρμογών
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών
Αλγόριθμοι Εύρεσης Ομοιοτήτων Ακολουθιών Μέρος Ι: Στοιχίσεις ακολουθιών κατά ζεύγη Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο
Βιοπληροφορική. Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της σημασίας του συστήματος βαθμολόγησης
Συγκριτική Γονιδιωματική
ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Συγκριτική Γονιδιωματική Παντελής Μπάγκος 1 2 Μέθοδοι Ανάλυσης Μέθοδοι βασισμένες στην ομοιότητα ακολουθιών Τοπική ομοιότητα Ολική ομοιότητα Προγνωστικές μέθοδοι Δευτεροταγής δομή Διαμεμβρανικά
Αλληλοεπικαλυπτόμενα επιστημονικά πεδία Υπολογιστικής Βιολογίας
Αλληλοεπικαλυπτόμενα επιστημονικά πεδία Υπολογιστικής Βιολογίας Βάσεις Δεδομένων, Αποθετήρια γνώσεων και αλγόριθμων Red rectangles are true matching of identical residue-pairs and green rectangles represent
Βιοπληροφορική Ι (ΜΕΡΟΣ Α) Βιοπληροφορική Ανάλυση Γονιδιωμάτων. Εισαγωγή στης Βιολογικές Βάσεις Δεδομένων
Βιοπληροφορική Ι (ΜΕΡΟΣ Α) Βιοπληροφορική Ανάλυση Γονιδιωμάτων Εισαγωγή στης Βιολογικές Βάσεις Δεδομένων Η επιστήμη της Βιολογίας έχει μετατραπεί τα τελευταία χρόνια σε μια υπερπλούσια σε πληροφορίες επιστήμη.
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 5: Πίνακες αντικατάστασης BLOSUM και οπτική σύγκριση αλληλουχιών Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ
Βιοπληροφορική. Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών,(2/2) 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών,(2/2) 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Παρουσίαση της μεθόδου κατασκευής και
Βιοπληροφορική. Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 6: Στοίχιση ακολουθιών ανά ζεύγη Σύστημα βαθμολόγησης, 2 ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Κατανόηση της σημασίας του συστήματος βαθμολόγησης
Μέθοδοι Προσπέλασης για την Επεξεργασία Μεγάλων Βιολογικών Βάσεων Δεδομένων. Ανδρουλάκης Ανδρέας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΕ ΕΦΑΡΜΟΓΕΣ ΣΤΗ ΒΙΟΙΑΤΡΙΚΗ Μέθοδοι Προσπέλασης για την Επεξεργασία Μεγάλων Βιολογικών Βάσεων Δεδομένων Ανδρουλάκης Ανδρέας ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Υπεύθυνος Βασιλακόπουλος
Βιοπληροφορική. Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών, (1/2) 1ΔΩ. Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ.
Βιοπληροφορική Ενότητα 7: Στοίχιση ακολουθιών ανά ζεύγη Τεχνικές Στοίχισης Ακολουθιών, (1/2) 1ΔΩ Τμήμα: Βιοτεχνολογίας Όνομα καθηγητή: Τ. Θηραίου Μαθησιακοί Στόχοι Παρουσίαση της μεθόδου κατασκευής και
ΑΡΧΕΣ ΒΙΟΛΟΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ
ΑΡΧΕΣ ΒΙΟΛΟΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ Εργαστήριο Βιοπληροφορικής 7 ο εξάμηνο Σχολή Μηχανολόγων Μηχανικών ΕΜΠ Διδάσκων: Λεωνίδας Αλεξόπουλος Fritz Kahn (1888 1968) 1 Περιεχόμενα Ομοιότητα πρωτεϊνών Σύγκριση αλληλουχιών
Μάθημα 16 ο ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ
Μάθημα 16 ο ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ Περιεχόμενα Παρουσίασης Βιολογικό υπόβαθρο Το κεντρικό αξίωμα Σύνοψη της Βιοπληροφορικής Ερευνητικές περιοχές Πηγές πληροφοριών Τι είναι η Βιοπληροφορική Βιο Πληροφορική μοριακή
Λειτουργική γονιδιωµατική. 6ο εργαστήριο
Λειτουργική γονιδιωµατική 6ο εργαστήριο Λειτουργική γονιδιωµατική Προσπαθεί να κατανοήσει τις λειτουργίες των βιολογικών µορίων, σε επίπεδο ολόκληρου του γονιδιώµατος. Γίνονται µετρήσεις για το σύνολο
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ (ΒΙΟ 650) Ειδικά Θέματα Βιοπληροφορικής Διδάσκων: Βασίλειος Ι. Προμπονάς, Ph.D. Λέκτορας Βιοπληροφορικής ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Δευτέρα και Πέμπτη
Πρόγνωση δομής πρωτεϊνών (Μέρος Ι)
Πρόγνωση δομής πρωτεϊνών (Μέρος Ι) Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο Κύπρου Ταχ.Κιβ. 20537 1678, Λευκωσία ΚΥΠΡΟΣ
Βιοπληροφορική. Πίνακες Αντικατάστασης BLOSUM & Οπτική Σύγκριση Αλληλουχιών. Αλέξανδρος Τζάλλας
Βιοπληροφορική Πίνακες Αντικατάστασης BLOSUM & Οπτική Σύγκριση Αλληλουχιών Αλέξανδρος Τζάλλας e-mail: tzallas@teiep.gr ΤΕΙ Ηπείρου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Copyright
Φυλογένεση. 5o εργαστήριο
Φυλογένεση 5o εργαστήριο Φυλογένεση οργανισµών Δείχνει την εξελικτική πορεία µιας οµάδας οργανισµών. Οι κόµβοι (nodes) στο δένδρο απεικονίζουν γεγονότα ειδογένεσης. H φυλογένεση µπορεί να γίνει από µια
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Βιοπληροφορική. Ενότητα 2 η : Ανάλυση ακολουθίας Ηλίας Καππάς Τμήμα Βιολογίας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2 η : Ανάλυση ακολουθίας Ηλίας Καππάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Μέθοδοι Φυλογένεσης. Μέθοδοι που βασίζονται σε αποστάσεις UPGMA Κοντινότερης γειτονίας (Neighbor joining) Fitch-Margoliash Ελάχιστης εξέλιξης
Μέθοδοι Φυλογένεσης Μέθοδοι που βασίζονται σε αποστάσεις UPGMA Κοντινότερης γειτονίας (Neighbor joining) Fitch-Margoliash Ελάχιστης εξέλιξης Μέθοδοι που βασίζονται σε χαρακτήρες Μέγιστη φειδωλότητα (Maximum
Ειδικά Θέματα Βιοπληροφορικής
Ειδικά Θέματα Βιοπληροφορικής Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 Πολλαπλή στοίχιση ακολουθιών και φυλογενετικά δέντρα 2 Πολλαπλή στοίχιση Αναφέρεται στην ταυτόχρονη
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ (ΒΙΟ 650) Ειδικά Θέματα Βιοπληροφορικής Διδάσκων: Βασίλειος Ι. Προμπονάς, Ph.D. Επίκουρος Καθηγητής Βιοπληροφορικής ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Δευτέρα
Πιθανοθεωρητικά µοντέλα αναπαράστασης ακολουθιών
Πιθανοθεωρητικά µοντέλα αναπαράστασης ακολουθιών Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus ΣΥΝΟΨΗ Εισαγωγή Αλυσίδες Markov και αλληλουχίες
Άσκηση 7. Προσομοίωση 3D Δομών Βιομορίων μέσω. Ομολογίας & Threading
Άσκηση 7 Προσομοίωση 3D Δομών Βιομορίων μέσω Ομολογίας & Threading Προσομοίωση 2ταγούς δομής πρωτεϊνών Δευτεροταγής Δομή: Η 2ταγής δομή των πρωτεϊνών είναι σταθερή τοπική διαμόρφωση της πολυπεπτιδικής
Ειδικά Θέματα Βιοπληροφορικής
Ειδικά Θέματα Βιοπληροφορικής Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 Διάλεξη 5 Profile Hidden Markov Models και Transformational Grammars 2 Profile HMM Ένα ΗΜΜ με left-to-right
ΜΕΛΕΤΗ ΜΕ ΥΠΟΛΟΓΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΑΝΘΡΩΠΙΝΗΣ ΠΡΩΤΕΪΝΗΣ GEMININB
ΣΧΟΛΗ ΙΑΤΡΙΚΗΣ ΤΜΗΜΑ ΒΙΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΠΛΗΡΟΦΟΡΙΚΗ ΕΠΙΣΤΗΜΩΝ ΖΩΗΣ ΜΕΛΕΤΗ ΜΕ ΥΠΟΛΟΓΙΣΤΙΚΑ ΕΡΓΑΛΕΙΑ ΤΗΣ ΑΝΘΡΩΠΙΝΗΣ ΠΡΩΤΕΪΝΗΣ GEMININB ΔΡΙΤΣΟΠΟΥΛΟΥ ΕΛΕΝΗ Α.Μ. 1003 ΠΕΡΙΕΧΟΜΕΝΑ ΠΕΡΙΕΧΟΜΕΝΑ 2
Μελέτη και Υλοποίηση Αλγορίθμων για Βιολογικές Εφαρμογές σε MapReduce Περιβάλλον
Μελέτη και Υλοποίηση Αλγορίθμων για Βιολογικές Εφαρμογές σε MapReduce Περιβάλλον Δανάη Κούτρα Eργαστήριο Συστημάτων Βάσεων Γνώσεων και Δεδομένων Εθνικό Μετσόβιο Πολυτεχνείο Θέματα Σκοπός της διπλωματικής
Εισαγωγή στη Γενετική και στη Γονιδιωματική Τι είναι η κληρονομικότητα, και πώς μεταβιβάζεται η πληροφορία από γενιά σε γενιά;
ΒΙΟΛΟΓΙΚΗ ΑΝΘΡΩΠΟΛΟΓΙΑ 12 26/10/2016 Κεφάλαιο 3 Α μέρος Εισαγωγή στη Γενετική και στη Γονιδιωματική Τι είναι η κληρονομικότητα, και πώς μεταβιβάζεται η πληροφορία από γενιά σε γενιά; Ποια είναι η δομή
ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΒΙΟΧΗΜΕΙΑΣ ΚΑΙ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΣΙΜΠΙΔΗΣ ΜΙΧΑΗΛ ΛΑΡΙΣΑ 2016 1 T-RECs: Ένα εργαλείο για γρήγορο και μεγάλης κλίμακας εντοπισμό ανασυνδυασμών ανάμεσα
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική. Ενότητα 7: Σύγκριση αλληλουχιών Part II
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 7: Σύγκριση αλληλουχιών Part II Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail: sbellou@uowm.gr
ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ. Ενότητα 1 η : Εισαγωγή. Ηλίας Καππάς Τμήμα Βιολογίας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ Ενότητα 1 η : Εισαγωγή Ηλίας Καππάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
ΑΣΚΗΣΗ 2η Αναζήτηση πληροφορίας σε βιολογικές βάσεις δεδοµένων
ΑΣΚΗΣΗ 2η Αναζήτηση πληροφορίας σε βιολογικές βάσεις δεδοµένων ΕΙΣΑΓΩΓΗ Μια βιολογική βάση δεδοµένων (ΒΒ ) χρησιµοποιείται για την οργάνωση, αποθήκευση, επεξεργασία, αναζήτηση και ανάκτηση της βιολογικής
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ BIO 230 Εισαγωγή στην Υπολογιστική Βιολογία Διδάσκων: Βασίλειος Ι. Προμπονάς, Ph.D. Επίκουρος Καθηγητής Βιοπληροφορικής ΓΕΝΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Διαλέξεις Δευτέρα
ΜΕΛΕΤΗ ΤΟΥ ΓΟΝΙΔΙΩΜΑΤΟΣ
ΜΕΛΕΤΗ ΤΟΥ ΓΟΝΙΔΙΩΜΑΤΟΣ Σελίδα 1 Μελέτη του γονιδιώματος Ποια είναι τα γονίδια και που βρίσκονται; Ποιοι μηχανισμοί ρυθμίζουν την έκφραση κάθε γονιδίου; Σε τι επίπεδα εκφράζονται τα γονίδια υπό διαφορετικές
ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Ανάπτυξη του αλγορίθμου BLASΤ σε περιβάλλον GPU» Λάμπρος Κ. Γαλάνης ΜΠΠΛ 10018 Επιβλέπων: Λέκτoρας Α. Πικράκης Συνεπιβλέπων: Επίκουρος Καθηγητής Μ. Ψαράκης Συνεπιβλέπων
ΔΕΥΤΕΡΟΓΕΝΕΙΣ ΒΑΣΕΙΣ ΠΡΩΤΕΪΝΙΚΩΝ. Δρ. Μαργαρίτα Θεοδωροπούλου
ΔΕΥΤΕΡΟΓΕΝΕΙΣ ΒΑΣΕΙΣ ΠΡΩΤΕΪΝΙΚΩΝ Δρ. Μαργαρίτα Θεοδωροπούλου Βάσεις δεδομένων οικογενειών Οι πρωτεΐνες αποτελούνται από μία ή περισσότερες διακριτές λειτουργικές περιοχές (domains), οι οποίες πολλές
Μοριακή Ανάλυση Φυτών
Μοριακή Ανάλυση Φυτών Μοριακοί Δείκτες Αριστοτέλης Χ. Παπαγεωργίου Εργαστήριο Δασικής Γενετικής / ΔΠΘ Γενετική ποικιλομορφία Είναι η βάση της εξέλιξης Προϋπόθεση προσαρμογής σε νέα περιβάλλοντα Το μέρος
Λίγη εξέλιξη: οµολογία
Φυλογένεση Η εκτίµηση της εξελικτικής ιστορίας γονιδίων/πρωτεϊνών ή οργανισµών. Η απεικόνιση αυτής της ιστορίας γίνεται µε φυλογράµµατα/ κλαδογράµµατα Λίγη εξέλιξη: οµολογία Οµόλογα γονίδια: κοινός εξελικτικός
Στοίχιση ανά ζεύγη Εισαγωγή
2 Στοίχιση ανά ζεύγη 2.1. Εισαγωγή Η πιο απλή ανάλυση που μπορεί να γίνει σε επίπεδο αλληλουχιών είναι να διερευνηθεί αν δύο αλληλουχίες «σχετίζονται» 1. Συνήθως αυτό το κάνουμε πρώτα «στοιχίζοντας» 2
ΗΥ562 Προχωρημένα Θέματα Βάσεων Δεδομένων Efficient Query Evaluation over Temporally Correlated Probabilistic Streams
ΗΥ562 Προχωρημένα Θέματα Βάσεων Δεδομένων Efficient Query Evaluation over Temporally Correlated Probabilistic Streams Αλέκα Σεληνιωτάκη Ηράκλειο, 26/06/12 aseliniotaki@csd.uoc.gr ΑΜ: 703 1. Περίληψη Συνεισφοράς
Δασική Γενετική Εισαγωγή: Βασικές έννοιες
Δασική Γενετική Εισαγωγή: Βασικές έννοιες Χειμερινό εξάμηνο 2014-2015 Γενετική Πειραματική επιστήμη της κληρονομικότητας Προέκυψε από την ανάγκη κατανόησης της κληρονόμησης οικονομικά σημαντικών χαρακτηριστικών
Βιοτεχνολογία Φυτών. Μοριακοί Δείκτες (Εισαγωγή στη Μοριακή Βιολογία)
Βιοτεχνολογία Φυτών ΔΠΘ / Τμήμα Αγροτικής Ανάπτυξης ΠΜΣ Αειφορικά Συστήματα Παραγωγής και Περιβάλλον στη Γεωργία Μοριακοί Δείκτες (Εισαγωγή στη Μοριακή Βιολογία) Αριστοτέλης Χ. Παπαγεωργίου Εργαστήριο
Εφαρμοσμένη Βιοτεχνολογία Εργαστηριακή Άσκηση Εισαγωγή στην Βιοπληροφορική
Εφαρμοσμένη Βιοτεχνολογία Εργαστηριακή Άσκηση Εισαγωγή στην Βιοπληροφορική Δραστηριότητες 1. Εύρεση γονιδίων/πρωτεϊνών από βάσεις δεδομένων 2. Ευθυγράμμιση και σύγκριση γονιδίων/πρωτεϊνών 3. Δημιουργία
Εξερευνώντας την Εξέλιξη Κεφάλαιο 7
Εξερευνώντας την Εξέλιξη Κεφάλαιο 7 Εξερευνώντας την Εξέλιξη Σχέση μεταξύ αλληλουχίας αμινοξέων, δομής και λειτουργίας πρωτεϊνών Καταγωγή από έναν κοινό πρόγονο Εξελικτική Συγγένεια/Προέλευση Δύο ομάδες
Πολλαπλές στοιχίσεις ακολουθιών (Προοδευτικές μέθοδοι)
Πολλαπλές στοιχίσεις ακολουθιών (Προοδευτικές μέθοδοι) Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus Σύνοψη Εισαγωγή Πολλαπλή στοίχιση και
Μ.Δ.Ε. ''ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ''
ΑΡΧΕΣ & ΜΕΘΟΔΟΙ ΒΙΟΠΛΗΡΟΦΟΡΙΚΗΣ (16:00-19:00) 17/10/2005 Εισαγωγή (Ι) 24/10/2005 Εισαγωγή (ΙΙ) 31/10/2005 Βάσεις Δεδομένων Ζωή Λίτου 7/11/2005 14/11/2005 21/11/2005 28/11/2005 5/12/2005 12/12/2005 19/12/2005
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Βιοπληροφορική. Ενότητα 1: Εισαγωγή στη Βιοπληροφορική
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοπληροφορική Ενότητα 1: Εισαγωγή στη Βιοπληροφορική Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail: sbellou@uowm.gr
Προγνωστικές μέθοδοι με βάση αλληλουχίες DNA
Προγνωστικές μέθοδοι με βάση αλληλουχίες DNA Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus ΣΥΝΟΨΗ Εισαγωγή Αλυσίδες Markov και αλληλουχίες
Βιοπληροφορική. Μαργαρίτα Θεοδωροπούλου. Πανεπιστήμιο Θεσσαλίας, Λαμία 2016
Βιοπληροφορική Μαργαρίτα Θεοδωροπούλου Πανεπιστήμιο Θεσσαλίας, Λαμία 2016 Βιοπληροφορική Εισαγωγή στη Μοριακή Βιολογία, Γενωμική και Βιοπληροφορική. Βάσεις Βιολογικών Δεδομένων. Ακολουθίες Πρωτεϊνών και
Πολλαπλή στοίχιση multiple sequence alignment (MSA)
Πολλαπλή στοίχιση multiple sequence alignment (MSA) MSA: Τι είναι Στοίχιση για 3 ή περισσότερες ακολουθίες. Αποκαλύπτονται οι συντηρηµένες περιοχές µεταξύ των ακολουθιών µιας οικογένειας. Χρειάζεται για:
Χρήσεις Η/Υ και Βάσεις Βιολογικών Δεδομένων : ΒΙΟ109 [8] Βάσεις Δεδομένων Γονιδιωματικής
Χρήσεις Η/Υ και Βάσεις Βιολογικών Δεδομένων : ΒΙΟ109 [8] Βάσεις Δεδομένων Γονιδιωματικής Στόχοι του μαθήματος Στο συγκεκριμένο μάθημα θα συζητηθούν θέματα σχετικά με τις κυριότερες βάσεις δεδομένων γονιδιωματικής,
ΔΟΜΗ ΠΡΩΤΕΪΝΩΝ II. Σελίδα 1 ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ. Τ. Θηραίου
ΔΟΜΗ ΠΡΩΤΕΪΝΩΝ II Σελίδα 1 Υπολογιστικός Προσδιορισμός Δομής πειραματικός προσδιορισμός δομών κρυσταλλογραφία ακτίνων X πυρηνικός μαγνητικός συντονισμός (NMR) χρόνος / κόστος / περιορισμοί sequence - structure
ΠΡΟΓΡΑΜΜΑ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΑΕΙ ΓΙΑ ΤΗΝ ΕΠΙΚΑΙΡΟΠΟΙΗΣΗ ΓΝΩΣΕΩΝ ΑΠΟΦΟΙΤΩΝ ΑΕΙ (ΠΕΓΑ)
ΠΡΟΓΡΑΜΜΑ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΑΕΙ ΓΙΑ ΤΗΝ ΕΠΙΚΑΙΡΟΠΟΙΗΣΗ ΓΝΩΣΕΩΝ ΑΠΟΦΟΙΤΩΝ ΑΕΙ (ΠΕΓΑ) «Οι σύγχρονες τεχνικές βιο-ανάλυσης στην υγεία, τη γεωργία, το περιβάλλον και τη διατροφή» Πρόγραμμα Δια Βίου Μάθησης.
Σύγκριση και κατηγοριοποίηση πρωτεϊνικών δομών
Σύγκριση και κατηγοριοποίηση πρωτεϊνικών δομών Βασίλης Προμπονάς, PhD Ερευνητικό Εργαστήριο Βιοπληροφορικής Τμήμα Βιολογικών Επιστημών Νέα Παν/πολη, Γραφείο B161 Πανεπιστήμιο Κύπρου Ταχ.Κιβ. 20537 1678,
Βιοπληροφορική. Εισαγωγή. Αλέξανδρος Τζάλλας Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ.
Βιοπληροφορική Αλέξανδρος Τζάλλας e-mail: tzallas@teiep.gr ΤΕΙ Ηπείρου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Περιεχόμενα Διάλεξης Βιολογικό υπόβαθρο Το κεντρικό αξίωμα Σύνοψη της
Chalkou I. C. [PROJECT] Ανάθεση εργασιών.
Πληροφορική της Υγείας 2014 Chalkou I. C. [PROJECT] Ανάθεση εργασιών. Περιεχόμενα 1. Ομάδα Δ... 3 1.1 Σκιαδά Σαϊσανά Σιδέρη- Γεωργίου... 3 1.2 ΜΗΤΡΟΥ - ΜΠΑΡΑ... 3 1.3 ΜΠΟΧΑΤΖΙΑΡ Α.- ΜΠΟΧΑΤΖΙΑΡ Φ. - ΠΛΕΥΡΙΑ...
Προγνωστικές μέθοδοι με βάση αμινοξικές αλληλουχίες
Προγνωστικές μέθοδοι με βάση αμινοξικές αλληλουχίες Vasilis Promponas Bioinformatics Research Laboratory Department of Biological Sciences University of Cyprus ΣΥΝΟΨΗ Εισαγωγή Πρόγνωση της δομής πρωτεϊνών
Δ10. Συμπίεση Δεδομένων
Συμπίεση Δεδομένων 203-204 Κωδικοποίηση εικονοροής (Video) Δρ. Ν. Π. Σγούρος 2 Ανάλυση Οθονών Δρ. Ν. Π. Σγούρος 3 Πρωτόκολλα μετάδοσης εικονοροών Πρωτόκολλο Ρυθμός (Hz) Φίλμ 23.976 ATSC 24 PAL,DVB-SD,DVB-HD
ΑΣΚΗΣΗ: ΣΧΕΔΙΑΣΜΟΣ ΕΚΚΙΝΗΤΩΝ ΕΥΡΕΣΗ ΘΕΣΕΩΝ ΠΕΡΙΟΡΙΣΜΟΥ
ΑΣΚΗΣΗ: ΣΧΕΔΙΑΣΜΟΣ ΕΚΚΙΝΗΤΩΝ ΕΥΡΕΣΗ ΘΕΣΕΩΝ ΠΕΡΙΟΡΙΣΜΟΥ ΑΣΚΗΣΗ: ΣΧΕΔΙΑΣΜΟΣ ΕΚΚΙΝΗΤΩΝ ΕΥΡΕΣΗ ΘΕΣΕΩΝ ΠΕΡΙΟΡΙΣΜΟΥ Σκοπός της άσκησης Η εξοικείωση με τη βάση δεδομένων NCBI. Ο σχεδιασμός ειδικών εκκινητών με
ΒΙΟ Αρχές και Μέθοδοι Βιοπληροφορικής Ι
Π Κ Τ Β Ε Ε Ε Β Β Ι. Π, PHD P.O. BOX 20537, 1678 Λ, Κ email: vprobon@ucy.ac.cy, web: http://troodos.biol.ucy.ac.cy ΒΙΟ 331 - Αρχές και Μέθοδοι Βιοπληροφορικής Ι Θέματα εργασιών και αρχικές οδηγίες, 16
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας. Εισηγητής Αναστάσιος Κεσίδης
Μεταπτυχιακό Πρόγραμμα «Γεωχωρικές Τεχνολογίες» Ψηφιακή Επεξεργασία Εικόνας Εισηγητής Αναστάσιος Κεσίδης Τμηματοποίηση εικόνας Τμηματοποίηση εικόνας Γενικά Διαμερισμός μιας εικόνας σε διακριτές περιοχές
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΕΠΛ 450 ΥΠΟΛΟΓΙΣΤΙΚΗ ΒΙΟΛΟΓΙΑ. Παύλος Αντωνίου
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΕΠΛ 450 ΥΠΟΛΟΓΙΣΤΙΚΗ ΒΙΟΛΟΓΙΑ Παύλος Αντωνίου Με μια ματιά: Εισαγωγή στη Βιολογία Ευθυγράμμιση Ακολουθιών Αναζήτηση ομοίων ακολουθιών από βάσεις δεδομενων Φυλογενετική πρόβλεψη Πρόβλεψη