(αργιλικών εδαφών) 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. 6.2 Διάφορες Περιπτώσεις Προφόρτισης
|
|
- Αγάπη Καλύβας
- 8 χρόνια πριν
- Προβολές:
Transcript
1 6. ΠΡΟΦΟΡΤΙΣΗ (αργιλικών εδαφών) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 2013 ΠΕΡΙΕΧΟΜΕΝΑ 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ 6.2 Διάφορες Περιπτώσεις Προφόρτισης 6.3 Συνδυασμός Προφόρτισης με Στραγγιστήρια 6.4 Σταδιακή Προφόρτιση Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1
2 6.1 Επίδραση Προφόρτισης στην Μηχανική Συμπεριφορά δ. Κατασκευή γ. Αποφόρτιση (προφορτισμένο έδαφος) α. Αρχικό έδαφος (απροφόρτιστο) β. Προφόρτιση συμπιεστότητα φόρτιση παραμόρφωση εδαφικού στοιχείου aπευθείας επιβολή q: επιβολή q μετά την προφόρτιση: (a β) Δe I =e a -e β (γ δ) Δe II e γ -e δ e γ -e β,δe II <<< Δe I Μείωση συμπιεστότητας... από σε R (< ) Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 2
3 αστράγγιστη διατμητική αντοχή σ 1 σ 3 σ 1 - σ 3 σ 3 u = + σ 3 u 1 u 2 ισοτροπική συμπίεση ( σ c = σ 3 ) μονοαξονική συμπίεση ( σ d = σ 1 - σ 3 ) u 1 =Β σ 3 u 2 =Β A ( σ 1 - σ 3 ) άρα, τελικώς. u = B [ σ 3 + Α( σ 1 - σ 3 )] Α = Α(ε, OR) & Β=1 για πλήρως κορεσμένο έδαφος (ή αλλοιώς Β=0) άρα, τελικώς. u = B[ [ σ 3 + Α( σ 1 - σ 3 )] Α = Α(ε, OR) & Β=1 για πλήρως κορεσμένο έδαφος (ή αλλοιώς Β=0) /3 0 A(ε, OR) αξονική παραμόρφωση ε d 0 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 3
4 Θεωρητικά μπορεί να αποδειχθεί ότι η αστράγγιστη διατμητική αντοχή δίνεται από την σχέση: U 2σ' sinφ 1 (1 2A )sinφ a Μεταβολή του Α α με τον βαθμό προφόρτισης OR A a OR 1.17 Αα OR Θεωρητικά μπορεί να αποδειχθεί ότι η αστράγγιστη διατμητική αντοχή δίνεται από την σχέση: U 2σ' sinφ 1 (1 2A a )sinφ Εξ άλλου, από πειραματικές μετρήσεις προκύπτει ότι: U kσ' kσ' OR 0.80 OR kσ',max όπου: k I p (%) Είναι δηλαδή σαφές ότι αυξανομένου του OR αυξάνεται και το U. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. άρα Μηχανικών, Ε.Μ.Π. 4
5 επίδραση στην αστράγγιστη διατμητική αντοχή aπευθείας επιβολή q (a β) OR = ui ( ) σ νο Αύξηση η αστράγγιστης διατμητικής αντοχής επιβολή q μετά την προφόρτιση (γ δ) σ OR νο Δσ ν 1 σ νο Δσ ν σ II u (σ νο +Δσ ν ) c I ui + ( )Δσ 0 ν νο συντελεστής στερεοποίησης.. υπενθύμιση: για U 92%, και t 2 H V, V, U-R V,L H H ροή Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 5
6 συντελεστής στερεοποίησης.. υπενθύμιση: για U 92%, και t 2 H V, V, U-R V,L γιατί V,U-R >> V,L ;;;;; Αύξηση του συντελεστή στερεοποίησης άρα τελικώς κύρια αποτελέσματα: μείωση καθιζήσεων (λόγω μείωσης της συμπιεστότητας) αύξηση φέρουσας ικανότητας (λόγω αύξησης της αστράγγιστης διατμητικής αντοχής) δευτερευόντως: δραστική μείωση του χρόνου ολοκλήρωσης των καθιζήσεων που οφείλονται στο έργο (όχι στην προφόρτιση), μια και για U 92%, και H 2 t90 V V, U-R V, L L Ερώτηση για το σπίτι: Υπάρχει όριο στις ευεργετικές επιδράσεις της προφόρτισης (μείωση καθιζήσεων, αύξηση u, μείωση t 90 ); Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 6
7 1 η ΕΦΑΡΜΟΓΗ ΔΙΔΟΝΤΑΙ: (α) Ομοιόμορφο εδαφικό στρώμα κορεσμένης αργίλου πάχους H=10m επί διαπερατού υποβάθρου, με OR=1, e o =1, γ κορ. =20 kn/m 3, c v,l =10-7 m 2 /s, c v,u-l =10-6 m 2 /s, =0.30, R =0.06, Ip=30% (β) Φόρτιση Δq=100 kpa (γ) Τέσσερα σενάρια προφόρτισης, με p πρ. =0 kpa, 60 kpa, 100 kpa και 160 kpa. ΖΗΤEIΤΑΙ να υπολογισθούν, για κάθε ένα σενάριο προφόρτισης: η μέση αστράγγιστη διατμητική αντοχή της αργίλου κατά την στιγμή της επιβολής του φορτίου Δq, οι καθιζήσεις που θα ακολουθήσουν, και ο χρόνος που θα χρειασθεί για να ολοκληρωθούν. Ερώτηση: Υπάρχει όριο στις ευεργετικές επιδράσεις της προφόρτισης (μείωση καθιζήσεων, αύξηση u, μείωση t 90 )????? Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 7
8 6.2 Διάφορες Περιπτώσεις Προφόρτισης ΠΕΡΙΠΤΩΣΗ Ι: P>Δq II: P=Δq III: P<ΔqΔ Περίπτωση Ι Περίπτωση ΙΙ α β β γ γ δ προ-φόρτιση από-φόρτιση φόρτιση Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 8 Περίπτωση ΙΙΙ
9 ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ Δt (1) 0 ΤΕΛΟΣ ΠΡΟΦΟΡΤΙΣΗΣ H 2 V,L ΤΕΛΟΣ ΑΠΟΦΟΡΤ. ΑΡΧΗ ΦΟΡΤΙΣΗΣ ΤΕΛΟΣ ΦΟΡΤΙΣΗΣ σ Δ σ ν σ vo σ νo + P σ νo +Δq < σ νo νo +P Δu OR P u a σ νo (a= ) 0 Δe (1) 0 a (σ νo +P) a H 2 V,U-R σ' νο OR νο σ' νο 0.8 log(1 P ) ( -R)log(1 P ) σ' σ' νο νο H 2 V,U-R P Δq 1 σ' Δq a (σ νο νο Δq) OR νο 0.8 log(1 + Δq ) R σ' e e o ε Ι =e o -Δe e ΙΙ =e Ι + Δe e ΙΙΙ =e ΙΙ - Δe (1) σε σχέση με την προηγούμενη κατάσταση ΠΕΡΙΠΤΩΣΗ I: Pπροφ < Δq ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΕΛΟΣ ΠΡΟΦΟΡΤΙΣΗΣ ΤΕΛΟΣ ΑΠΟΦΟΡΤ. ΑΡΧΗ ΦΟΡΤΙΣΗΣ ΤΕΛΟΣ ΦΟΡΤΙΣΗΣ Δt (1) 0 σ ν σ vo Δu 0 OR 1.0 u a σ νo (a= ) Δe (1) 0 e e o (1) σε σχέση με την προηγούμενη κατάσταση ΠΕΡΙΠΤΩΣΗ II: Pπροφ = Δq Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 9
10 ΑΡΧΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΕΛΟΣ ΠΡΟΦΟΡΤΙΣΗΣ ΤΕΛΟΣ ΑΠΟΦΟΡΤ. ΑΡΧΗ ΦΟΡΤΙΣΗΣ ΤΕΛΟΣ ΦΟΡΤΙΣΗΣ Δt (1) 0 σ ν σ vo Δu 0 OR 1.0 u a σ νo (a= ) Δe (1) 0 e e o (1) σε σχέση με την προηγούμενη κατάσταση ΠΕΡΙΠΤΩΣΗ ΙΙΙ: Pπροφ < Δq Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 10
11 2 η ΕΦΑΡΜΟΓΗ ΔΙΔΟΝΤΑΙ: (α) Ομοιόμορφο εδαφικό στρώμα κορεσμένης αργίλου πάχους H=10m επί διαπερατού υποβάθρου, με OR=1, e o =1, γ κορ. =20 kn/m 3, c v,l =10-7 m 2 /s, c v,u-l =10-6 m 2 /s, =0.30, R =0.06, Ip=30% (β) Φόρτιση Δq=100 kpa από κυκλικό επιφανειακό θεμέλιο ακτίνας R=5m ΖΗΤEI EIΤΑΙ να υπολογισθεί το ελάχιστο απαιτούμενο φορτίο προφόρτισης εάν η επιτρεπόμενη καθίζηση είναι ρ επ. = 20cm και o ελάχιστος συντελεστής ασφαλείας FS min =2. Οι υπολογισμοί να γίνουν με αναφορά στο μέσον του στρώματος της αργίλου. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 11
12 6.3 Συνδυασμός Προφόρτισης με Στραγγιστήρια Υπολογισμός του συντελεστή στερεοποίησης για συνδυασμένη κατακόρυφη και οριζόντια στράγγιση: (1-U)=(1-Ur)(1-Uv) H H ροή Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 12
13 Κατακόρυφη Στράγγιση Οριζόντια στράγγιση U r U r U r (T r,n) T r r D t 2 De, n D e d Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 13
14 Οριζόντια στράγγιση U r ή εναλλακτικά U r Tr 1-exp(-8T r /A) r t 2 De æ ö Re 3 A= ln ç çè - R dø 4 ΠΑΡΑΤΗΡΗΣΕΙΣ D e = 1.05 S για ισόπλευρο τριγωνικό κάνναβο στραγγιστηρίων, πλευράς S D e =1.13S για τετραγωνικό κάνναβο στραγγιστηρίων, πλευράς S Η διαστασιολόγηση των στραγγιστηρίων, δηλαδή η εκτίμηση της ακτίνας R d και της πλευράς του καννάβου S, γίνεται ΕΠΑΝΑΛΗΠΤΙΚΑ (trial and error) Kr r v Kv Τύπος Αργίλου K r / K v - Ομοιογενείς Αποθέσεις Προσχωσιγενείς Αποθέσεις με διακοπτόμενες ενστρώσεις αμμο-ιλύος - Προσχωσιγενείς Αποθέσεις με συνεχείς ενστρώσεις αμμο-ιλύος Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 14
15 ΠΑΡΑΤΗΡΗΣΕΙΣ D e = 1.05 S για ισόπλευρο τριγωνικό κάνναβο στραγγιστηρίων, πλευράς S D e =1.13S για τετραγωνικό κάνναβο στραγγιστηρίων, πλευράς S Η διαστασιολόγηση των στραγγιστηρίων, δηλαδή η εκτίμηση της ακτίνας R d και της πλευράς του καννάβου S, γίνεται ΕΠΑΝΑΛΗΠΤΙΚΑ (trial and error) Kr r v Kv Τύπος Αργίλου K r / K v - Ομοιογενείς Αποθέσεις Προσχωσιγενείς Αποθέσεις με διακοπτόμενες ενστρώσεις αμμο-ιλύος - Προσχωσιγενείς Αποθέσεις με συνεχείς ενστρώσεις αμμο-ιλύος Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 15
16 3 η ΕΦΑΡΜΟΓΗ ΔΙΔΕΤΑΙ: Στρώμα κορεσμένης αργίλου, πάχους 10m, επί διαπερατού υποβάθρου, με OR=1, e o =1, γ κορ. =20 kn/m 3, c v,l =10-7 m 2 /s, c vu-l =10-6 m 2 /s, =0.30, R =0.06, k r /k v = 4 v,u L R r v ΖΗΤΕΙΤΑΙ να διαστασιολογηθεί 3-γωνικός ς κάνναβος πλαστικών στραγγιστηρίων με ισοδύναμη διάμετρο D eq = 7 cm έτσι ώστε η ολοκλήρωση της προφόρτισης να γίνει σε 2 μήνες ( sec). Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 16
17 Ζώνη Αναμόχλευσης ή SMEAR ZONE αρχι ικό έδα φος K r =1 15 k V U r 1-exp(-8T r/a) r t Tr D R A ln R 2 e e d 3-4 K K r r,s R 1ln R s d μειώνεται αποτελεσματικότητα του στραγγιστηρίου η Ζώνη Αναμόχλευσης ή SMEAR ZONE U r 1-exp(-8T r/a) r t T r μειώνεται η 2 De αποτελεσματικότητα του στραγγιστηρίου R e 3 K r R s A ln - 1ln (αυξάνεται το Α) Rd 4 Kr,s Rd Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 17
18 Παραμετρική Εφαρμογή Στον Πίνακα που ακολουθεί συνοψίζονται τα αποτελέσματα παραμετρικής εφαρμογής της ανωτέρω αναλυτικής σχέσεως για τον βαθμό ακτινικής στερεοποίησης Ur. Η παραμετρική ανάλυση αφορά στον υπολογισμό του χρόνου που απαιτείται για να επιτευχθεί Ur=90% (t 90 =0.30ADe 2 /c r ) και καλύπτει το εύρος τιμών των βασικών παραμέτρων που είναι αναμενόμενο στην πράξη. Κατά την γνώμη σας, ποιοί παράγοντες έχουν (και ποιοί δεν έχουν) σημαντική επίδραση στην εξέλιξη της ακτινικής στερεοποίησης; Ανάλυση # r m 2 /yr 2R d (m) 2R e (m) K r /K r,s R s /R d t r,90% (months) Ανάλυση #i Ανάλυση # Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 18
19 4 η ΕΦΑΡΜΟΓΗ ΔΙΔΕΤΑΙ: Ομοιόμορφο εδαφικό στρώμα κορεσμένης αργίλου, πάχους 10m, επί διαπερατού υποβάθρου, με OR=1, e o =1, γ κορ. =20 kn/m 3, c v,l =10-7 m 2 /s, c v,u-l =10-6 m 2 /s, =0.30, R = ΖΗΤΕΙΤΑΙ να διαστασιολογηθεί 3-γωνικός κάνναβος πλαστικών στραγγιστηρίων με ισοδύναμη διάμετρο D eq = 7 cm έτσι ώστε η ολοκλήρωση οο της προφόρτισης να γίνει σε 2 μήνες ( sec). Na θεωρήσετε ζώνη αναμόχλευσης με R S =2R d και k rs =0.5 k r. (συγκρίνετε τα αποτελέσματα με την 3 η Εφαρμογή) Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 19
20 6.4 Σταδιακή Προφόρτιση Ένα τελευταίο εμπόδιο το οποίο θα πρέπει να ξεπεραστεί προκειμένου ο σχεδιασμός της προφόρτισης να είναι πλήρης, είναι η εξασφάλιση της ευστάθειας του πρανούς του επιχώματος προφόρτισης έναντι (κυκλικής) μορφής αστοχίας. Ο έλεγχος αυτός είναι κρίσιμος δεδομένου το έδαφος έδρασης του επιχώματος δεν έχει ακομη στερεοποηθεί κάτω από το πρόσθετο βάρος που του επιβάλλουμε, ε με αποτέλεσμα α η αστράγγιστη σ δα διατμητική του αντοχή να είναι πολύ μικρή (ίση προς την αντοχή του φυσικου-απροφόρτιστου εδάφους). Έτσι,, σε περίπτωση που η κατασκευή του επιχώματος προφόρτισης ρ σε ένα στάδιο δεν είναι ασφαλής, το κατασκευάζουμε σταδιακά, αφήνοντας επαρκή χρόνο μεταξύ των σταδίων κατασκευής προκειμένου να ολοκληρωθούν οι καθιζήσεις του κάθε σταδίου. Προφανώς, χρησιμοποιούμε στραγγιστήρια προκειμένου ο χρόνος αναμονής να περιοριστεί. Με αυτό τον τρόπο, το ύψος του επιχώματος αυξάνεται παράλληλα με την αστράγγιστη διατμητική αντοχή του εδάφους και αποφεύγεται η αστοχία του πρανούς. Στην πράξη, ο έλεγχος ευστάθειας του πρανούς γίνεται με την «μέθοδο των λωρίδων», έτσι ώστε να μπορεί να λάβει συστηματικά υπόψη την γεωμετρία (κλίση και ύψος) ) του πρανούς, τις διαφορετικές μηχανικές ιδιότητες δό του επιχώματος και του εδάφους έδρασης, κλπ. Προσεγγιστικά,, στα πλαίσια του περιορισμένου ρ χρόνου που έχουμε στην διάθεση μας, μπορεί να χρησιμοποιηθεί και η μέθοδος Taylor (βλ. ακόλουθη διαφάνεια) η οποία ισχύει για: αστράγγιστες συνθήκες φόρτισης ενιαίες και σταθερές με το βάθος τιμές του φαινόμενου ειδικού βάρους (γ) και της αστράγγιστης διατμητικής αντοχής (u) του εδάφους και του επιχώματος Οι παραδοχές που θα χρειασθούν για την ενδεικτική εφαρμογή αυτής της μεθόδου στο «βασικό παράδειγμα προφόρτισης» που εξετάζουμε, θα σας εξηγηθούν κατά την διάρκεια του μαθήματος. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 20
21 Σταδιακή Προφόρτιση (ανάλυση ευστάθειας πρανούς κατά Taylor) FS min = U / (N S γ Η) Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 21
22 5 η ΕΦΑΡΜΟΓΗ ΔΙΔΟΝΤΑΙ: (α) Ομοιόμορφο μ εδαφικό στρώμα κορεσμένης αργίλου πάχους H=10m επί διαπερατού υποβάθρου, με OR=1, e o =1, γ κορ. =20 kn/m 3, c v,l =10-7 m 2 /s, c v,u-l =10-6 m 2 /s, =0.30, R =0.06, Ip=30% (β) Επίχωμα προφόρτισης με ύψος Η επ =6.5m, γ επ =22kN/m3, φ επ =42deg (c=0) και γωνία κλίσης πρανούς α=26 deg. ΖΗΤEIΤΑΙ να ελεγχθεί: (α) Εάν είναι χρειάζεται σταδιακή προφόρτιση ή όχι. (β) Εάν είναι ασφαλής η κατασκευή του επιχώματος σε 4 στάδια (0-1.5m, m, m και m). Να ελεγχθεί κυκλική επιφάνεια αστοχίας με ακτίνα R=15m και μέγιστο βάθος 6m εντός της αργίλου. Κατά την σταδιακή προφόρτιση αρκεί συντελεστής ασφαλείας μεγαλύτερος από Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 22
23 6 η ΕΦΑΡΜΟΓΗ ΔΙΔΟΝΤΑΙ: (α) Ομοιόμορφο εδαφικό στρώμα κορεσμένης αργίλου πάχους H=10m επί διαπερατού υποβάθρου, με OR=1, e o =1, γ κορ. =20 kn/m 3, c v,l =10-7 m 2 /s, c v,u-l =10-6 m 2 /s, =0.30, R =0.06, Ip=30% (β) Φόρτιση Δq=100 kpa από κυκλικό επιφανειακό θεμέλιο ακτίνας R=5m ΖΗΤEI EIΤΑΙ να υπολογισθεί το ελάχιστο απαιτούμενο φορτίο προφόρτισης εάν η επιτρεπόμενη καθίζηση είναι ρ επ. = 20cm και o ελάχιστος συντελεστής ασφαλείας FS min =2. Οι υπολογισμοί να γίνουν με αναφορά στο μέσον του στρώματος της αργίλου. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 23
24 7 η ΕΦΑΡΜΟΓΗ (επαναληπτική) Απαιτήσεις σχεδιασμού: FS>2, ρ<12cm, t 92 =3 μήνες Επίχωμα προφόρτισης: γ επ =20 kn/m 3, φ επ =38 ο γωνία κλίσης πρανούς α=26 ο, βάθος κύκλου αστοχίας Ζ max =4m Στραγγιστήρια: Πλαστικά, D στρ =5cm ZHTOYNTAI: Η κατανομή του OR και του σ v,max με το βάθος Ζώνη αναμόχλευσης, D sm =10cm 4-γωνικός κάνναβος, πλευράς S Το ελάχιστο ύψος του επιχώματος προφόρτισης Η ελάχιστη απόσταση μεταξύ των στραγγιστηρίων Χρειάζεται σταδιακή προφόρτιση?? Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 24
25 8 η ΕΦΑΡΜΟΓΗ (επαναληπτική) Επίχωμα προφόρτισης: Η επ =10m γ επ =20 kn/m 3, φ επ =38 ο γωνία κλίσης πρανούς α=26 ο, κύκλος αστοχίας Ζ max =4m, R=15m ZHTOYNTAI: O χρόνος αφαίρεσης της προφόρτισης Η κατανομή του OR και του σ v,max με το βάθος ΤΟ ΕΠΙΧΩΜΑ ΠΡΟΦΟΡΤΙΣΗΣ ΑΦΑΙΡΕΙΤΑΙ OΤΑΝ ΤΟ ΠΟΣΟΣΤΟ ΣΤΕΡΕΟΠΟΙΗΣΗΣ ΓΙΝΕΙ U V =50 % Ο συντελεστής ασφάλειας έναντι αστοχίας FS, μετά την προφόρτιση (με αναφορά στο σημείο Μ) Οι καθίζησεις μετά την προφόρτιση (4 στρώσεις των 2m) Χρειάζεται σταδιακή προφόρτιση?? Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 25
Καθηγητής Ε.Μ.Π. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. 6.2 Δά Διάφορες Περιπτώσεις Προφόρτισης. 6.3 Συνδυασμός Προφόρτισης με Στραγγιστήρια. 6.4 Σταδιακή Προφόρτιση
6. ΠΡΟΦΟΡΤΙΣΗ (αργιλικών εδαφών) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 016 ΠΕΡΙΕΧΟΜΕΝΑ Ε 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ 6. Δά Διάφορες Περιπτώσεις Προφόρτισης 6.3 Συνδυασμός
(αργιλικών εδαφών) 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π.
6. ΠΡΟΦΟΡΤΙΣΗ (αργιλικών εδαφών) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 013 ΠΕΡΙΕΧΟΜΕΝΑ 6.1 Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ 6. Διάφορες Περιπτώσεις Προφόρτισης 6.3 Συνδυασμός
6. ΠΡΟΦΟΡΤΙΣΗ. Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. MAΡΤΙΟΣ Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ. ιάφορες Περιπτώσεις Προφόρτισης
6. ΠΡΟΦΟΡΤΙΣΗ (αργιλικών εδαφών) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. MAΡΤΙΟΣ 9 ΠΕΡΙΕΧΟΜΕΝΑ 6. Επίδραση της Προφόρτισης στην ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ 6. ιάφορες Περιπτώσεις Προφόρτισης 6.3 Συνδυασμός Προφόρτισης
Εδαφομηχανική. Εισηγητής: Αλέξανδρος Βαλσαμής
Εισηγητής: Αλέξανδρος Βαλσαμής Εδαφομηχανική Μηχανική συμπεριφορά: - Σχέσεις τάσεων και παραμορφώσεων - Μονοδιάστατη Συμπίεση - Αστοχία και διατμητική αντοχή Παραμορφώσεις σε συνεχή μέσα ε vol =-dv/v=ε
Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb
Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb Ν u Τ 81 Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb 82 Η αστοχία στα εδαφικά υλικά Νόμος Τριβής Coulomb 83 Η αστοχία στα εδαφικά υλικά Νόμος Τριβής
.. - : (5.. ) 2. (i) D, ( ).. (ii) ( )
.. - : (5.. ) 64 ( ). v, v u : ) q. ) q. ) q. ( ) 2. (i) D, ( ) ( ).. (ii) e ( ). 3. e 1 e 2. ( ) 1 0. +1.00 1. (+5.00) 4. q = 50 kn/m 2, (...) 1.0m... = 1.9 Mg/m 3 (...) 5. p = 120 5m. 2 P = 80. ( 40m
ΚΕΦΑΛΑΙΟ VΙI. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ & ΑΣΤΟΧΙΑ ΤΟΥ ΚΟΡΕΣΜΕΝΟΥ ΕΔΑΦΟΥΣ. 1. Ο τρίπτυχος ρόλος της υγρής φάσης (νερού)
ΚΕΦΑΛΑΙΟ VΙI. ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ & ΑΣΤΟΧΙΑ ΤΟΥ ΚΟΡΕΣΜΕΝΟΥ ΕΔΑΦΟΥΣ 1. Ο τρίπτυχος ρόλος της υγρής φάσης (νερού) Χημική αλληλεπίδραση Φυσική αλληλεπίδραση Μηχανική αλληλεπίδραση 2. Ανάπτυξη (υπερ-) πίεσης
Επαναληπτικές Ερωτήσεις στην Ύλη του Μαθήματος. Ιανουάριος 2011
ΕΔΑΦΟΜΗΧΑΝΙΚΗΔ Α Φ Ο Μ Α Ν Ι Κ Η Επαναληπτικές Ερωτήσεις στην Ύλη του Μαθήματος Ι Ελέγξτε τις γνώσεις σας με τις παρακάτω ερωτήσεις οι οποίες συνοψίζουν τα βασικά σημεία του κάθε κεφαλαίου. Γ. Μπουκοβάλας
Βελτίωσης Ενίσχυσης εδαφών
5. ΓΕΝΙΚΑ ΠΕΡΙ ΜΕΘΟΔΩΝ Βελτίωσης Ενίσχυσης εδαφών Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 2015 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 5.1 Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής
ΘΕΜΑ 1 : [ Αναλογία στο βαθµό = 5 x 20% = 100 % ]
Α Ε. Μ. ΠΟΛΥΤΕΧΝΕΙΟ - ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ Ακαδ. έτος 203-4 5 Φεβρουαρίου 204 ιάρκεια: 60 λεπτά ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΘΕΜΑ : [ Αναλογία στο βαθµό = 5 x 20% = 00 % ] Πριν κατασκευασθεί
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 5 Καθιζήσεις Επιφανειακών Θεμελιώσεων : Υπολογισμός καθιζήσεων σε αργιλικά εδάφη 02.11.2005 Υπολογισμός καθιζήσεων
2. Υπολογισμός Εδαφικών Ωθήσεων
2. Υπολογισμός Εδαφικών Ωθήσεων (επανάληψη από ΕΔΑΦΟ Ι & ΙΙ) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 2015 2.1 Ξηρό ή κορεσμένο έδαφος υπό στραγγιζόμενες συνθήκες φόρτισης 2.2 Κορεσμένο έδαφος
Ειδικά Θέματα Θεμελιώσεων 2016 16-2017 Γ. Μπουκοβάλας Αχ. Παπαδημητρίου Σοφ. Μαρονικολάκης Αλ. Βαλσαμής www.georgebouckovalas.com Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1.1 Γ. Δ. Μπουκοβάλας,
ΜΕΡΟΣ Β Βελτίωση Ενίσχυση εδαφών
ΜΕΡΟΣ Β Βελτίωση Ενίσχυση εδαφών Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1 5. ΓΕΝΙΚΑ ΠΕΡΙ ΜΕΘΟ ΩΝ Βελτίωσης Ενίσχυσης εδαφών Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. MΑΡΤΙΟΣ 2009 ΠΕΡΙΕΧΟΜΕΝΑ
Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1
Βελτίωση Βλτίωη Ενίσχυση εδαφών Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1 5. ΓΕΝΙΚΑ ΠΕΡΙ ΜΕΘΟΔΩΝ Βελτίωσης Ενίσχυσης εδαφών Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ 2013 ΠΕΡΙΕΧΟΜΕΝΑ
Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1
Εύκαμπτες Αντιστηρίξεις & Αγκυρώσεις Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1 2. ΥΠΟΛΟΓΙΣΜΟΣ ΕΔΑΦΙΚΩΝ ΩΘΗΣΕΩΝ (& επανάληψη Εδαφομηχανικής) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΦΕΒΡΟΥΑΡΙΟΣ
Τελική γραπτή εξέταση διάρκειας 2,5 ωρών
τηλ: 410-74178, fax: 410-74169, www.uth.gr Τελική γραπτή εξέταση διάρκειας,5 ωρών Ονοματεπώνυμο: Αριθμός Μητρώου Φοιτητή: Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης-Ορέστης Σ. Γεωργόπουλος,
Διδάσκων: Κίρτας Εμμανουήλ Χειμερινό Εξάμηνο Εξεταστική περίοδος Ιανουαρίου Διάρκεια εξέτασης: 2 ώρες Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Εξέταση Θεωρίας: Σχολή Τεχνολογικών Εφαρμογών ΕΔΑΦΟΜΗΧΑΝΙΚΗ Τμήμα Πολιτικών Δομικών Έργων Διδάσκων: Κίρτας Εμμανουήλ Χειμερινό Εξάμηνο 010-011 Εξεταστική περίοδος
(& επανάληψη Εδαφομηχανικής)
2. ΥΠΟΛΟΓΙΣΜΟΣ ΕΔΑΦΙΚΩΝ ΩΘΗΣΕΩΝ (& επανάληψη Εδαφομηχανικής) Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΜΑΡΤΙΟΣ 2009 ΠΕΡΙΕΧΟΜΕΝΑ 2.1 Ξηρό ή κορεσμένο έδαφος υπό στραγγιζόμενεςσυνθήκεςφόρτισης 2.2 Κορεσμένο έδαφος
Κατακόρυφα Γεωσύνθετα Στραγγιστήρια. Πολιτικός Μηχ., Μ.Εng., ΓΕΩΣΥΜΒΟΥΛΟΙ Ε.Π.Ε.
Κατακόρυφα Γεωσύνθετα Στραγγιστήρια ΠΛΑΤΗΣ, Α.Δ. Πολιτικός Μηχ., Μ.Εng., ΓΕΩΣΥΜΒΟΥΛΟΙ Ε.Π.Ε. Κατακόρυφα Γεωσύνθετα Στραγγιστήρια ΠΛΑΤΗΣ, Α.Δ. Πολιτικός Μηχ, Μ.Εng., ΓΕΩΣΥΜΒΟΥΛΟΙ Ε.Π.Ε. ΕΙΣΑΓΩΓΗ Προφόρτιση:
Εισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά
Εισηγητής: Αλέξανδρος Βαλσαμής Θεμελιώσεις Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Το πρόβλημα Γεωτεχνική Επιστήμη Συνήθη προβλήματα Μέσο έδρασης των κατασκευών (θεμελιώσεις) Μέσο που πρέπει
ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ - ΠΑΡΑΛΛΑΓΗ "Α"
Ε. Μ. ΠΟΛΥΤΕΧΝΕΙΟ - ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΕΝΔΙΑΜΕΣΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ: ΕΔΑΦΟΜΗΧΑΝΙΚΗ Ι (Τμήμα Μ-Ω) Ακαδ. έτος 007-08 5 Ιανουαρίου 008 Διάρκεια: :30 ώρες ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ
Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης.
Να πραγματοποιηθούν οι παρακάτω έλεγχοι για τον τοίχο αντιστήριξης. 1. Ανατροπής ολίσθησης. 2. Φέρουσας ικανότητας 3. Καθιζήσεων Να γίνουν οι απαραίτητοι έλεγχοι διατομών και να υπολογισθεί ο απαιτούμενος
Εισηγητής: Αλέξανδρος Βαλσαμής. Θεμελιώσεις. Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Βασικές εξισώσεις
Εισηγητής: Αλέξανδρος Βαλσαμής Θεμελιώσεις Φέρουσα Ικανότητα επιφανειακών θεμελιώσεων Γενικά Βασικές εξισώσεις Φέρουσα Ικανότητα Επιφανειακών θεμελιώσεων (πεδίλων) Φέρουσα Ικανότητα Τάσεις κάτω από το
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ ΙΙ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ ΙΙ ΕΠΙΠΛΕΟΝ ΣΗΜΕΙΩΣΕΙΣ για φέρουσα ικανότητα αβαθών θεµελίων (βασισµένες εν πολλοίς σε σηµειώσεις των Μ. Καββαδά, Καθηγητή
Στερεοποίηση των Αργίλων
Στερεοποίηση των Αργίλων Costas Sachpazis, (M.Sc., Ph.D.) Διάρκεια: 17 Λεπτά. 1 Τι είναι Στερεοποίηση ; Όταν μία κορεσμένη άργιλος φορτίζεται εξωτερικά, GL Στάθμη εδάφους κορεσμένη άργιλος το νερό συμπιέζεται
Θεμελιώσεις τεχνικών έργων. Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας
Θεμελιώσεις τεχνικών έργων Νικόλαος Σαμπατακάκης Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας Ορισμός Θεμελίωση (foundation) είναι το κατώτερο τμήμα μιας κατασκευής και αποτελεί τον τρόπο διάταξης των δομικών
Ειδικά Θέματα Θεμελιώσεων 2014-2015 Γ. Μπουκοβάλας Αρ. Καμαριώτης Σοφ. Μαρονικολάκης Αλ. Βαλσαμής Ι. Τσιάπας www.georgebouckovalas.com Γ. Δ. Μπουκοβάλας, Καθηγητής Σχολής Πολ. Μηχανικών, Ε.Μ.Π. 1.1 Γ.
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 005-06 ΔΙΑΛΕΞΗ 13 Θεμελιώσεις με πασσάλους : Εγκάρσια φόρτιση πασσάλων 1.05.005 1. Κατηγορίες πασσάλων. Αξονική φέρουσα ικανότητα
Καθηγητής Ε.Μ.Π. ΕΧ 4.1 Περιγραφή-κατασκευή αγκυρώσεων. 4.2 Πιθανές μορφές αστοχίας αγκυρώσεων. 4.4 Σύνθετη αστοχία κατά Kranz. 4.
4. Ανάλυση & Σχεδιασμός ΑΓΚΥΡΩΣΕΩΝ Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. Φεβρουάριος 2016 ΠΕΡΙΕΧΟΜΕΝΑ ΕΧ 4.1 Περιγραφή-κατασκευή αγκυρώσεων 4.2 Πιθανές μορφές αστοχίας αγκυρώσεων 4.3 Αστοχία αγκυρίου 4.4
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 25-6 ΔΙΑΛΕΞΗ 9 Θεμελιώσεις με πασσάλους Αξονική φέρουσα ικανότητα έγχυτων πασσάλων 21.12.25 2. Αξονική φέρουσα ικανότητα μεμονωμένου
ΑΣΚΗΣΕΙΣ ΚΑΘΙΖΗΣΕΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ
Πανεπιστήμιο Δυτικής Αττικής Τμήμα Πολιτικών Μηχανικών ΜΑΘΗΜΑ: ΘΕΜΕΛΙΩΣΕΙΣ 6 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Α. Βαλσαμής ΑΣΚΗΣΕΙΣ ΚΑΘΙΖΗΣΕΩΝ ΕΠΙΦΑΝΕΙΑΚΩΝ ΘΕΜΕΛΙΩΣΕΩΝ ΑΣΚΗΣΗ 1 Να υπολογιστούν οι μακροχρόνιες καθιζήσεις
Ν. Σαμπατακάκης Αν. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών
ΚΕΦΑΛΑΙΟ 4 ΒΕΛΤΙΩΣΗ ΕΝΙΣΧΥΣΗ Ε ΑΦΩΝ «βελτίωση & ενίσχυση» εδαφών η αύξηση της φέρουσας ικανότητας του εδάφους και η μείωση του εύρους των αναμενόμενων καθιζήσεων ποία εδάφη χρειάζονται βελτίωση??? ΕΠΙΦΑΝΕΙΑΚΕΣ
4. Ανάλυση & Σχεδιασμός
4. Ανάλυση & Σχεδιασμός ΑΓΚΥΡΩΣΕΩΝ Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. ΜΑΡΤΙΟΣ 2009 ΠΕΡΙΕΧΟΜΕΝΑ 4.1 Περιγραφή Κατασκευή Αγκυρώσεων 4.2 Αστοχία Αγκυρίου 4.3 Αστοχία Σφήνας Εδάφους 4.4 Σύνθετη Αστοχία Εδάφους
) θα πρέπει να είναι μεγαλύτερη ή ίση από την αντίστοιχη τάση μετά από την κατασκευή της ανωδομής ( σ. ). Δηλαδή, θα πρέπει να ισχύει : σ ΚΤΙΡΙΟ A
ΜΑΘΗΜΑ : ΕΔΑΦΟΜΗΧΑΝΙΚΗ Ι - 5 ο Εξ. Πολιτικών Μηχανικών - Ακαδημαϊκό Έτος : 001 00 1η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ - ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια : Γιάννης Κουκούλης, Υποψήφιος Διδάκτορας ΕΜΠ Για την επίλυση των ασκήσεων
ΔΙΑΛΕΞΗ 2 Θεωρία Κρίσιμης Κατάστασης Αργιλικών Εδαφών
ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΥΠΟΛΟΓΙΣΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ Μέρος» 9ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 006-07 ΔΙΑΛΕΞΗ Θεωρία Κρίσιμης Κατάστασης Αργιλικών Εδαφών 0.0.006 ΔΙΑΛΕΞΗ Θεωρία Κρίσιμης Κατάστασης
ΜΕ ΚΛΕΙΣΤΑ ΒΙΒΛΙΑ - ΣΗΜΕΙΩΣΕΙΣ - ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ A
Σχολή Πολιτικών Μηχανικών ΕΜΠ Τομέας Γεωτεχνικής Εδαφομηχανική Ι Διαγώνισμα 26-10-2007 1 ΜΕ ΚΛΕΙΣΤΑ ΒΙΒΛΙΑ - ΣΗΜΕΙΩΣΕΙΣ - ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ A ΘΕΜΑ 1 ο : [Αναλογία στο βαθμό = 10%+15%+10%+10% = 45%] Βράχος
ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΔΟΚΙΜΗΣ:
ΠΑΡΟΥΣΙΑΣΗ ΤΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΔΟΚΙΜΗΣ: Στερεοποίηση Εδαφών Επιστημονικός Συνεργάτης: Δρ. Αλέξανδρος Βαλσαμής, Πολιτικός Μηχανικός Εργαστηριακός Υπεύθυνος: Παναγιώτης Καλαντζάκης, Καθηγητής Εφαρμογών Εργαστηριακοί
ΚΕΦΑΛΑΙΟ 3 ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ ΕΔΑΦΩΝ ΑΣΤΟΧΙΑ ΕΔΑΦΙΚΟΥ ΥΛΙΚΟΥ ΕΡΓΑΣΤΗΡΙΑΚΗ ΠΡΟΣΟΜΟΙΩΣΗ
ΚΕΦΑΛΑΙΟ 3 ΔΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ ΕΔΑΦΩΝ ΑΣΤΟΧΙΑ ΕΔΑΦΙΚΟΥ ΥΛΙΚΟΥ ΕΡΓΑΣΤΗΡΙΑΚΗ ΠΡΟΣΟΜΟΙΩΣΗ σ1 σ3 σ3 Εντατικές καταστάσεις που προκαλούν αστοχία είναι η ταυτόχρονη επίδραση ορθών (αξονικών και πλευρικών) τάσεων
Γιώργος Μπουκοβάλας. 4.1 Περιγραφή Κατασκευή Αγκυρώσεων. 4.2 Αστοχία Αγκυρίου. KRANZ 4.4 Αστοχία Σφήνας Εδάφους
Ανάλυση & Σχεδιασμός ΑΓΚΥΡΩΣΕΩΝ Γιώργος Μπουκοβάλας Καθηγητής Ε.Μ.Π. Μάϊος 2013 ΠΕΡΙΕΧΟΜΕΝΑ 4.1 Περιγραφή Κατασκευή Αγκυρώσεων 4.2 Αστοχία Αγκυρίου 4.3 Σύνθετη Αστοχία Εδάφους κατά KRNZ 4.4 Αστοχία Σφήνας
Ν. Σαμπατακάκης Αν. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας Παν/μιο Πατρών
ΚΕΦΑΛΑΙΟ 2 ΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ Ε ΑΦΩΝ σ1 σ3 σ3 Εντατικές καταστάσεις που προκαλούν αστοχία είναι η ταυτόχρονη επίδραση ορθών (αξονικών και πλευρικών) τάσεων ή ακόμα διατμητικών. σ11 Γενικά, υπάρχει ένας κρίσιμος
ΗΜΕΡΙΔΑ. Ανάλυση & Σχεδιασμός Οπλισμένων Επιχωμάτων: μεθοδολογία, εφαρμογή και κρίσιμες παράμετροι
ΗΜΕΡΙΔΑ ΓΕΩΣΥΝΘΕΤΙΚΑ ΥΛΙΚΑ ΣΕ ΕΡΓΑ ΠΟΛΙΤΙΚΟΥ ΜΗΧΑΝΙΚΟΥ Ανάλυση & Σχεδιασμός Οπλισμένων Επιχωμάτων: μεθοδολογία, εφαρμογή και κρίσιμες παράμετροι Νικόλαος Κλήμης, Αναπληρωτής Καθηγητής ΔΠΘ Μάνος Ψαρουδάκης,
Θεμελιώσεις. Εισηγητής: Αλέξανδρος Βαλσαμής. Καθιζήσεις Επιφανειακών Θεμελιώσεων Ι Γενικά
Εισηγητής: Αλέξανδρος Βαλσαμής Θεμελιώσεις Καθιζήσεις Επιφανειακών Θεμελιώσεων Ι Γενικά Τμήμα των διαφανειών έχει συνταχθεί σύμφωνα με τις σχετικές διαφάνειες του καθηγητή του Ε.Μ.Π. Μιχάλη Καββαδά. Θεμελιώσεις
ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΔΟΚΙΜΩΝ:
ΠΑΡΟΥΣΙΑΣΗ ΤΩΝ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΔΟΚΙΜΩΝ: Αντοχή Εδαφών Επιστημονικός Συνεργάτης: Δρ. Αλέξανδρος Βαλσαμής, Πολιτικός Μηχανικός Εργαστηριακός Υπεύθυνος: Παναγιώτης Καλαντζάκης, Καθηγητής Εφαρμογών Εργαστηριακοί
Υπόδειξη: Στην ισότροπη γραμμική ελαστικότητα, οι τάσεις με τις αντίστοιχες παραμορφώσεις συνδέονται μέσω των κάτωθι σχέσεων:
Μάθημα: Εδαφομηχανική Ι, 5 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Π.Δ.407/80, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Σχέσεις τάσεων παραμορφώσεων στο έδαφος. Ημερομηνία: Δευτέρα
ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΕΔΑΦΟΥΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,
Γραπτή εξέταση περιόδου Ιουνίου 2011 διάρκειας 2,0 ωρών
Γραπτή εξέταση περιόδου Ιουνίου 011 διάρκειας,0 ωρών Ονοματεπώνυμο: Αριθμός Μητρώου Φοιτητή: Μάθημα: Εδαφομηχανική (ΜΕ0011), 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επ.Συν.Τμ.Πολ.Εργ.Υποδ.
ΚΕΦΑΛΑΙΟ 12 ΕΙΔΙΚΑ ΘΕΜΑΤA Εκτίμηση των Υποχωρήσεων των Κατασκευών
Ειδικά Θέματα Σελίδα ΚΕΦΑΛΑΙΟ ΕΙΔΙΚΑ ΘΕΜΑΤA Στο Κεφάλαιο αυτό αναπτύσσονται μερικά ειδικά θέματα Εδαφομηχανικής, τα οποία είτε συνθέτουν όσα αναφέρθηκαν στα προηγούμενα Κεφάλαια (όπως π.χ. η εκτίμηση των
ΔΙΑΛΕΞΗ 2 Ανάλυση της ευστάθειας γεωφραγμάτων
ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΕΙΔΙΚΑ ΓΕΩΤΕΧΝΙΚΑ ΕΡΓΑ - Γεωτεχνική Φραγμάτων» 9ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 2006-07 ΔΙΑΛΕΞΗ 2 Ανάλυση της ευστάθειας γεωφραγμάτων 20.10.2006 Μέθοδος λωρίδων για
ΣΤΕΡΕΟΠΟΙΗΣΗ - ΚΑΘΙΖΗΣΕΙΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,
α) Προτού επιβληθεί το φορτίο q οι τάσεις στο σημείο Μ είναι οι γεωστατικές. Κατά συνέπεια θα είναι:
6 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ ΑΠΑΝΤΗΣΕΙΣ ΚΑΙ ΣΧΟΛΙΑ Επιμέλεια: Μιχάλης Μπαρδάνης, Υποψήφιος Διδάκτορας ΕΜΠ Για την επίλυση των ασκήσεων σειράς αυτής αρκούν οι σχέσεις και οι πίνακες που παρατίθενται στα οικεία κεφάλαια
Θεμελιώσεις. Ενότητα 2 η : Καθιζήσεις. Δρ. Εμμανουήλ Βαϊρακτάρης Τμήμα Πολιτικών Μηχανικών Τ.Ε.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θεμελιώσεις Ενότητα 2 η : Καθιζήσεις Δρ. Εμμανουήλ Βαϊρακτάρης Τμήμα Πολιτικών Μηχανικών Τ.Ε. Άδειες Χρήσης Το παρόν εκπαιδευτικό
Ε ΑΦΟΜΗΧΑΝΙΚΗ. Κεφάλαιο 3 ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΟΥ Ε ΑΦΟΥΣ. β) Τάσεις λόγω εξωτερικών φορτίων. Αναπτυσσόμενες τάσεις στο έδαφος
Ε ΑΦΟΜΗΧΑΝΙΚΗ Κεφάλαιο 3 Αναπτυσσόμενες τάσεις στο έδαφος Εδαφομηχανική - Μαραγκός Ν. (2009). Προσθήκες Κίρτας Ε. (2010) σελ. 3.1 ΕΝΤΑΤΙΚΗ ΚΑΤΑΣΤΑΣΗ ΤΟΥ Ε ΑΦΟΥΣ ΤΑΣΕΙΣ ΠΟΥ ΡΟΥΝ ΣΤΟ Ε ΑΦΟΣ α) Τάσεις λόγω
1. Αστοχία εδαφών στην φύση & στο εργαστήριο 2. Ορισμός αστοχίας [τ max ή (τ/σ ) max?] 3. Κριτήριο αστοχίας Μohr 4. Κριτήριο αστοχίας Mohr Coulomb
ΚΕΦΑΛΑΙΟ VΙ: ΑΣΤΟΧΙΑ & ΙΑΤΜΗΤΙΚΗ ΑΝΤΟΧΗ Ε ΑΦΩΝ 1. Αστοχία εδαφών στην φύση & στο εργαστήριο 2. Ορισμός αστοχίας [τ max ή (τ/σ ) max?] 3. Κριτήριο αστοχίας Μohr 4. Κριτήριο αστοχίας Mohr Coulomb Παράμετροι
ΘΕΜΕΛΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟ 3 3.1
ΘΕΜΕΛΙΩΣΕΙΣ ΕΡΓΑΣΤΗΡΙΟ 3 3.1 ΕΡΓΑΣΤΗΡΙΟ 3 ΕΡΓΑΣΤΗΡΙΟ 3Ο 3.1 Άσκηση Άκαμπτο πέδιλο πλάτους Β=2m και μεγάλου μήκους φέρει κατακόρυφο φορτίο 1000kN ανά μέτρο μήκους του θεμελίου και θεμελιώνεται σε βάθος
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 2005-06 ΔΙΑΛΕΞΗ 8β Θεμελιώσεις με πασσάλους : Αξονική φέρουσα ικανότητα εμπηγνυόμενων πασσάλων με στατικούς τύπους 25.12.2005
Στερεοποίηση. Στερεοποίηση
Στερεοποίηση Στερεοποίηση Όταν ένα κορεσμένο έδαφος φορτίζεται με κάποιο εξωτερικό φορτίο, αυτό σε πρώτη φάση παραλαμβάνεται από το νερό το οποίο λόγου της υπερπίεσης που εμφανίζεται απομακρύνεται σταδιακά.
ΚΕΦΑΛΑΙΟ IV: ΠΑΡΑΜΟΡΦΩΣΕΙΣ ΣΤΟ Ε ΑΦΟΣ
ΚΕΦΑΛΑΙΟ IV: ΠΑΡΑΜΟΡΦΩΣΕΙΣ ΣΤΟ Ε ΑΦΟΣ. Παραμορφώσεις σε συνεχή μέσα : Ορισμοί 2. Σχέσεις τάσεων παραμορφώσεων: Υπενθύμιση από την «Μηχανική» 3. Παραμορφώσεις σε α-συνεχή μέσα: Φύση και προέλευση των ελαστικών
8.1.7 Σχεδιασμός και μη-γραμμική ανάλυση
Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης
Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων
Επαλήθευση πεδιλοδοκού Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 02.11.2005 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 199211 : Καθιζήσεις Μέθοδος
Ανάλυση τοίχου βαρύτητας Εισαγωγή δεδομένων
Ανάλυση τοίχου βαρύτητας Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 8.0.005 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99 : Φέρουσα (πέτρα) τοιχοπ :
ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΒΡΑΧΟΜΗΧΑΝΙΚΗ ΣΗΡΑΓΓΕΣ», Μέρος 2 : ΣΗΡΑΓΓΕΣ. 04 Ανάλυση της Μόνιμης Επένδυσης
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΕΠΟΠΤΙΚΟ ΥΛΙΚΟ ΔΙΑΛΕΞΕΩΝ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΒΡΑΧΟΜΗΧΑΝΙΚΗ ΣΗΡΑΓΓΕΣ», Μέρος 2 : ΣΗΡΑΓΓΕΣ 9 ο Εξ. ΠΟΛ. ΜΗΧ. - Ακαδ. Ετος 2013-14 04 Ανάλυση
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων 1. Υπολογισμός Διατμητικής Αντοχής Εδάφους Συνοχή (c) Γωνία τριβής (φ ο ) 2. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας
ΘΕΜΕΛΙΩΣΕΙΣ & ΑΝΤΙΣΤΗΡΙΞΕΙΣ. ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ (επίλυση βάσει EC2 και EC7)
Θεμελιώσεις & Αντιστηρίξεις - Εργαστηριακών Ασκήσεων 1 ΘΕΜΕΛΙΩΣΕΙΣ & ΑΝΤΙΣΤΗΡΙΞΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ (επίλυση βάσει EC και EC7) Παρακάτω δίνονται τα τελικά αποτελέσματα στις ασκήσεις του
Μεθοδολογία επίλυσης εργασίας Εδαφομηχανικής (εαρινό εξάμηνο 2010-2011)
Μεθοδολογία ίλυσης εργασίας Εδαφομηχανικής (εαρινό εξάμηνο 2010-2011) Στη συνέχεια δίνονται ενδεικτικά τα βήματα που πρέπει να γίνουν, όπως και κάποια σημεία που χρίζουν ιδιαίτερης προσοχής, κατά τη διαδικασία
Θεµελιώσεις - Απαντήσεις Εργαστηριακών Ασκήσεων 1 ΘΕΜΕΛΙΩΣΕΙΣ. = 180 kpa, σ = 206 kpa
Θεµελιώσεις - Εργαστηριακών Ασκήσεων 1 ΘΕΜΕΛΙΩΣΕΙΣ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΤΗΡΙΑΚΩΝ ΑΣΚΗΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ 1Ο Άσκηση 1.1 Βάθος z=0.0: σ = 0, u = 0, σ = 0 w Βάθος z=-2.0: σ Βάθος z=-7.0: σ Βάθος z=-20.0: σ = 6 kpa,
. Υπολογίστε το συντελεστή διαπερατότητας κατά Darcy, την ταχύτητα ροής και την ταχύτητα διηθήσεως.
Μάθημα: Εδαφομηχανική Ι, 7 ο εξάμηνο. Διδάσκων: Ιωάννης Ορέστης Σ. Γεωργόπουλος, Επιστημονικός Συνεργάτης Τμήματος Πολιτικών Έργων Υποδομής, Δρ Πολιτικός Μηχανικός Ε.Μ.Π. Θεματική περιοχή: Υδατική ροή
Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων» Μάθηµα: «Αντισεισµικός Σχεδιασµός Θεµελιώσεων,
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ»
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. ΠΟΛ-ΜΗΧ ΜΗΧ. ΕΜΠ - Ακαδ. Ετος 006-07 ΔΙΑΛΕΞΗ 6 Καθιζήσεις Επιφανειακών Θεμελιώσεων : Υπολογισμός καθιζήσεων σε αμμώδη εδάφη 0.1.006 Υπολογισμός καθιζήσεων σε
ΕΙΣΑΓΩΓΗ ΣΤΗΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ
εκέµβριος 2006 ΕΙΣΑΓΩΓΗ ΣΤΗΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ 1. Ε ΑΦΟΤΕΧΝΙΚΗ ΕΡΕΥΝΑ Γίνεται µε τους εξής τρόπους: 1.1. Γεωτρύπανο 1.2. Στατικό Πενετρόµετρο Ολλανδικού Τύπου 1.3. Επίπεδο Ντιλατόµετρο Marchetti 1.4. Πρεσσιόµετρο
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Θεμελιώσεις
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Θεμελιώσεις Ενότητα 4 η : Φέρουσα Ικανότητα Αβαθών Θεμελιώσεων Δρ. Εμμανουήλ Βαϊρακτάρης Τμήμα Πολιτικών Μηχανικών Τ.Ε. Τμήμα
Γεωτεχνική Έρευνα Μέρος 1. Nigata Καθίζηση και κλίση κατασκευών
Επιχειρησιακό Πρόγραμμα Εκπαίδευση και ια Βίου Μάθηση Πρόγραμμα ια Βίου Μάθησης ΑΕΙ για την Επικαιροποίηση Γνώσεων Αποφοίτων ΑΕΙ: Σύγχρονες Εξελίξεις στις Θαλάσσιες Κατασκευές Α.Π.Θ. Πολυτεχνείο Κρήτης
Μικροζωνικές Μελέτες. Κεφάλαιο 24. Ε.Σώκος Εργαστήριο Σεισμολογίας Παν.Πατρών
Μικροζωνικές Μελέτες Κεφάλαιο 24 Ε.Σώκος Εργαστήριο Σεισμολογίας Παν.Πατρών Ορισμός Με τον όρο μικροζωνική μελέτη εννοούμε την εκτίμηση των αναμενόμενων εδαφικών κινήσεων σε μία περιοχή λαμβάνοντας υπ
Επαλήθευση πασσάλου Εισαγωγή δεδομένων
Επαλήθευση πασσάλου Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 28.0.205 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : CSN 73 20 R Πάσσαλος Συντ ασφάλειας πάσσαλου θλίψης
ΕΙΣΑΓΩΓΗ ΣΤΗΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ (γιατί υπάρχουν οι γεωτεχνικοί µελετητές;)
Απρίλιος 2008 ΕΙΣΑΓΩΓΗ ΣΤΗΝ Ε ΑΦΟΜΗΧΑΝΙΚΗ (γιατί υπάρχουν οι γεωτεχνικοί µελετητές;) Τι είναι η Εδαφοµηχανική και τι είναι Γεωτεχνική Μελέτη; Ετοιµολογία: Γεωτεχνική: Επιθετικός προσδιορισµός που χαρακτηρίζει
ΚΕΦΑΛΑΙΟ 3 ΣΥΜΠΙΕΣΤΟΤΗΤΑ ΤΟΥ Ε ΑΦΟΥΣ ΚΑΘΙΖΗΣΕΙΣ
ΚΕΦΑΛΑΙΟ 3 ΣΥΜΠΙΕΣΤΟΤΗΤΑ ΤΟΥ Ε ΑΦΟΥΣ ΚΑΘΙΖΗΣΕΙΣ Καθίζηση (Dunn et al., 198, Budhu, 1999) Υποχώρηση του επιπέδου έδρασης µιας κατασκευής λόγω παραµόρφωσης του υποκείµενου εδάφους, χωρίς πλευρική διόγκωση.
Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7. Αιµίλιος Κωµοδρόµος, Καθηγητής, Εργαστήριο Υ.Γ.Μ. Πανεπιστήµιο Θεσσαλίας Τµήµα Πολιτικών Μηχανικών
Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 Υπολογισµός Φέρουσας Ικανότητας Ευρωκώδικας 7 Αστράγγιστες Συνθήκες Επιφανειακές Θεµελιώσεις Ευρωκώδικας 7 [ c b s i q] R k
ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ. Μέθοδος θαλάμων και στύλων
ΥΠΟΓΕΙΑ ΑΝΑΠΤΥΞΗ και A. Μπενάρδος Λέκτορας ΕΜΠ Δ. Καλιαμπάκος Καθηγητής ΕΜΠ και - Hunt Midwest (Subtroolis) και - Hunt Midwest (Subtroolis) Εφαρμογής - Η μέθοδος και (rooms and illars) ανήκει στην κατηγορία
7. Στρέψη. Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών. 7. Στρέψη/ Μηχανική Υλικών
7. Στρέψη Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 7. Στρέψη/ Μηχανική Υλικών 2015 1 Εισαγωγή Σε προηγούμενα κεφάλαια μελετήσαμε πώς να υπολογίζουμε τις ροπές και τις τάσεις σε δομικά μέλη τα
Παροράµατα. Σηµειώσεις Θεωρίας: Ε ΑΦΟΜΗΧΑΝΙΚΗ. (για την έκδοση Σεπτέµβριος 2010)
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙ ΕΥΤΙΚΟ Ι ΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ - ΤΜΗΜΑ ΟΜΙΚΩΝ ΕΡΓΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Παροράµατα Σηµειώσεις Θεωρίας: Ε ΑΦΟΜΗΧΑΝΙΚΗ (για την έκδοση Σεπτέµβριος 010) Επιµέλεια-Συγγραφή:
Ε. Μ. ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ
Ε. Μ. ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ ΜΑΘΗΜΑ : ΕΔΑΦΟΜΗΧΑΝΙΚΗ Ι (5 ο Εξαμ. ΠΟΛ. ΜΗΧ) 2 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ (Φυσικά Χαρακτηριστικά Εδαφών) 1. (α) Να εκφρασθεί το πορώδες (n) συναρτήσει
Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων
Επαλήθευση της ομάδας πασσάλων Εισαγωγή δεδομένων Έργο Ημερομηνία : 6.12.2012 Ονομασία : Έργο Στάδιο : 1 7,00 2,00 +z 12,00 ΥΥΟ Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από
Σχεδιασμός Θαλάμων και Στύλων
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Μηχανικών Μεταλλείων Μεταλλουρών Σχεδιασμός Θαλάμων και Στύλων Ανδρέας Μπενάρδος Δρ. Μηχανικός Μεταλλείων Μεταλλουρός Ε.Μ.Π. Μέθοδος Θαλάμων και Στύλων (Room and Pillar)
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. A. Γεωστατικές τάσεις. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων A. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας και Υδρογεωλογίας
«ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. Πολ. Μηχανικών Ακ. Έτος
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ-ΤΟΜΕΑΣ ΓΕΩΤΕΧΝΙΚΗΣ «ΘΕΜΕΛΙΩΣΕΙΣ» 7ο Εξ. Πολ. Μηχανικών Ακ. Έτος 01-014 ΙΑΛΕΞΗ 1: ΟΡΙΖΟΝΤΙΑ ΦΟΡΤΙΣΗ ΜΕΜΟΝΩΜΕΝΩΝ ΠΑΣΣΑΛΩΝ Οι διαλέξεις υπάρχουν στην
ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκοντες: Βασίλειος Παπαδόπουλος,
ΚΕΦΑΛΑΙΟ 10 ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ Ε ΑΦΩΝ ΣΤΗ ΟΚΙΜΗ ΤΗΣ ΚΥΛΙΝ ΡΙΚΗΣ ΤΡΙΑΞΟΝΙΚΗΣ ΦΟΡΤΙΣΗΣ
οκιµή Κυλινδρικής Τριαξονικής Φόρτισης Σελίδα ΚΕΦΑΛΑΙΟ 0 ΜΗΧΑΝΙΚΗ ΣΥΜΠΕΡΙΦΟΡΑ ΤΩΝ Ε ΑΦΩΝ ΣΤΗ ΟΚΙΜΗ ΤΗΣ ΚΥΛΙΝ ΡΙΚΗΣ ΤΡΙΑΞΟΝΙΚΗΣ ΦΟΡΤΙΣΗΣ 0. Εισαγωγή Σε προηγούµενα Κεφάλαια µελετήθηκε η παραµόρφωση των
AΡΧΙΚΕΣ ή ΓΕΩΣΤΑΤΙΚΕΣ ΤΑΣΕΙΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΜΕΤΑΛΛΕΙΩΝ ΜΕΤΑΛΛΟΥΡΓΩΝ ΤΟΜΕΑΣ ΓΕΩΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΗΡΩΩΝ ΠΟΛΥΤΕΧΝΕΙΟΥ 9 15780 ΖΩΓΡΑΦΟΥ ΑΘΗΝΑ ΕΔΑΦΟΜΗΧΑΝΙΚΗ & ΣΤΟΙΧΕΙΑ ΘΕΜΕΛΙΩΣΕΩΝ Διδάσκων: Κωνσταντίνος Λουπασάκης,
Ονοματεπώνυμο φοιτητή:... ΑΕΜ:...
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Δομικών Έργων Χειμερινό Εξάμηνο 00-0 Διάρκεια εξέτασης: ώρες Εξέταση Θεωρίας: ΘΕΜΕΛΙΩΣΕΙΣ Διδάσκων: Κίρτας Εμμανουήλ
Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών Μεταπτυχιακό πρόγραµµα σπουδών «Αντισεισµικός Σχεδιασµός Τεχνικών Έργων» Μάθηµα: «Αντισεισµικός Σχεδιασµός Θεµελιώσεων,
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων. 1. Υπολογισµός Διατµητικής Αντοχής Εδάφους. 2. Γεωστατικές τάσεις
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων 1. Υπολογισµός Διατµητικής Αντοχής Εδάφους Συνοχή (c) Γωνία τριβής (φ ο ) 2. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας
Y- 4.1 ΚΛΙΜΑΚΑ : ΟΡΙΣΤΙΚΗ ΥΔΡΑΥΛΙΚΗ ΜΕΛΕΤΗ ΧΕΡΣAIΑ ΖΩΝΗ ΛΙΜΕΝΑ 1 : 20
. ΤΥΠΙΚΟ ΣΚΑΜΜΑ ΑΓΩΓΩΝ ΟΜΡΙΩΝ ΑΠΟ ΤΣΙΜΕΝΤΟΣΩΛΗΝΕΣ. ΤΥΠΙΚΟ ΣΚΑΜΜΑ ΑΓΩΓΩΝ ΑΠΟΧΕΤΕΥΣΗΣ 1. TΥΠΙΚΗ ΔΙΑΤΟΜΗ 2. TΥΠΙΚΗ ΔΙΑΤΟΜΗ 1. TΥΠΙΚΗ ΔΙΑΤΟΜΗ 2. TΥΠΙΚΗ ΔΙΑΤΟΜΗ α)το ύψος επίχωσης είναι μεγαλύτερο απο 0,80m
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ. 3 η Σειρά Ασκήσεων (3 Α ) A. Γεωστατικές τάσεις. Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής
ΤΕΧΝΙΚΗ ΓΕΩΛΟΓΙΑ 3 η Σειρά Ασκήσεων (3 Α ) A. Γεωστατικές τάσεις Ολικές τάσεις Ενεργές τάσεις Πιέσεις πόρων Διδάσκοντες: Β. Χρηστάρας Καθηγητής Β. Μαρίνος, Επ. Καθηγητής Εργαστήριο Τεχνικής Γεωλογίας και
Διάλεξη ΣΤΗΡΙΞΗ ΑΣΤΑΘΟΥΣ ΜΕΤΩΠΟΥ ΣΗΡΑΓΓΑΣ
Εργαστήριο Τεχνολογίας Διάνοιξης Σηράγγων, Ε.Μ.Π. Καθηγητής: ΑΙ ΣΟΦΙΑΝΟΣ. Διάλεξη ΣΤΗΡΙΞΗ ΑΣΤΑΘΟΥΣ ΜΕΤΩΠΟΥ ΣΗΡΑΓΓΑΣ Μέτρα Υποστήριξης Σηράγγων ΔΠΜΣ: Σχεδιασμός και Κατασκευή Υπογείων Έργων ΑΙ Σοφιανός
Μεθοδολογία επίλυσης εργασίας Εδαφομηχανικής
Μεθοδολογία ίλυσης εργασίας Εδαφομηχανικής Στη συνέχεια δίνονται ενδεικτικά τα βήματα που πρέπει να γίνουν κατά την ίλυση των ασκήσεων της εργασίας Εδαφομηχανικής, ενώ τονίζονται κάποια σημεία που χρίζουν
ΚΕΦΑΛΑΙΟ 4 ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΤΟΥ Ε ΑΦΟΥΣ ΣΥΜΠΥΚΝΩΣΗ ΤΟΥ Ε ΑΦΟΥΣ
ΚΕΦΑΛΑΙΟ 4 ΦΕΡΟΥΣΑ ΙΚΑΝΟΤΗΤΑ ΤΟΥ Ε ΑΦΟΥΣ ΣΥΜΠΥΚΝΩΣΗ ΤΟΥ Ε ΑΦΟΥΣ Φέρουσα ικανότητα εδάφους (Dunn et al., 1980, Budhu, 1999) (Τελική) φέρουσα ικανότητα -q, ονοµάζεται το φορτίο, ανά µονάδα επιφανείας εδάφους,
Ασκήσεις Εδαφοµηχανικής (Capper et al., 1978, Salglerat et al., 1985)
Ασκήσεις Εδαφοµηχανικής (Capper et al., 1978, Salglerat et al., 1985) Β. Χρηστάρας ΑΠΘ - Τµήµα Γεωλογίας Εργαστήριο Τεχνικής Γεωλογίας & Υδρογεωλογίας christar@geo.auth.gr Νόµος του Coulomb Νόµος Coulomb
«ΜΕΓΑΛΑ ΤΕΧΝΙΚΑ ΕΡΓΑ ΤΙΘΟΡΕΑΣ ΔΟΜΟΚΟΥ»
Βελτίωση Eδάφους για την Έδραση των Επιχωμάτων της ΝΣΓΥΤ στο Τμήμα Τιθορέα Λειανοκλάδι με τη Mέθοδο της Bαθιάς Aνάμιξης (Deep Mixing) Παπαχαραλάμπους Γιώργος, Πολιτικός Μηχανικός M.Sc. Σωτηρόπουλος Ηλίας,
Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων
Επαλήθευση ενισχυμένης τοιχοποιίας Εισαγωγή δεδομένων Μελέτη Ημερομηνία : 0.08.006 Ρυθμίσεις (εισαγωγή τρέχουσας εργασίας) Υλικά και πρότυπα Κατασκευές από σκυρόδεμα : Συντελεστές EN 99-- : Ενισχυμένη
14. Θεµελιώσεις (Foundations)
14. Θεµελιώσεις (Foundations) 14.1 Εισαγωγή Οι θεµελιώσεις είναι η υπόγεια βάση του δοµήµατος που µεταφέρει στο έδαφος τα φορτία της ανωδοµής. Για τον σεισµό σχεδιασµού το σύστηµα θεµελίωσης πρέπει να