Θεωρι α Γραφημα των 2η Δια λεξη
|
|
- Κόριννα Παπαστεφάνου
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Θεωρι α Γραφημα των 2η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
2 Βαθμοι Κορυφω ν Βαθμός κορυφής: d G (v) = N G (v) [ορισμο ς μο νο για απλα γραφη ματα] v 7 v 1 v 2 v 3 v 4 Ελάχιστος βαθμός γραφήματος: δ(g) = min {d G (v) : v V(G)} Μέγιστος βαθμός γραφήματος: (G) = max {d G (v) : v V(G)} Μέσος βαθμός γραφήματος: d(g) = d G (v)/ V(G) v V(G) Πυκνότητα γραφήματος: ϵ(g) = E(G) / V(G) v 6 Απομονωμένη κορυφή: κορυφη v με d G (v) = 0 Εκκρεμής κορυφή: κορυφη v με d G (v) = 1 r-κανονικό γράφημα: r-regular v 5 v V(G) ισχυ ει d G (v) = r Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
3 Θεώρημα 2.1: Για κα θε γρα φημα G ισχυ ουν: i. d G (v) = 2 E(G) v V(G) ii. δ(g) d(g) (G) iii. ϵ(g) = d(g)/2 Απόδειξη : i. Πι νακας Προ σπτωσης e 1 e 2 e 3 e 4 e 5 e 6 e 7 d(v) v 1 v v v v v 1 d(v) E(G) v 2 e 1 e 4 e 2 v 3 v 5 e 3 e 5 e 6 e 7 v 4 ii. απο τον ορισμο των δ(g), d(g) και (G) iii. απο τον ορισμο των ϵ(g) και d(g) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
4 Πρόταση 2.2 : Κα θε γρα φημα G ε χει α ρτιο αριθμο κορυφω ν περιττου βαθμου Απόδειξη : } Εστω V 1 V : συ νολο κορυφω ν περιττου βαθμου V 1 V 2 = V V 2 V : συ νολο κορυφω ν α ρτιου βαθμου Ισχυ ει d G (v) + d G (v) = 2 E(G) v V 1 v V 2 d G (v) ει ναι α ρτιος αριθμο ς v V 1 V 1 ει ναι α ρτιο, γιατι d G (v), v V 1 ει ναι περιττο ς Πρόταση 2.3 : Κα θε r-κανονικο γρα φημα G ε χει r V(G) 2 ακμε ς Απόδειξη : E(G) = d G (v) v V(G) = r V(G) 2 2 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
5 Ερώτηση 2.1: Το γρα φημα G ε χει ακριβω ς δυ ο κορυφε ς με περιττο βαθμο, ε στω τις u και v. Συνδε ονται οι u και v με μονοπα τι? Ερώτηση 2.2: Υπα ρχει 3-κανονικο γρα φημα G με 9 κορυφε ς? Ερώτηση 2.3: Υπα ρχει 9-κανονικο γρα φημα G με 13 κορυφε ς? Ερώτηση 2.4: Έστω 2 ο μιλοι ποδοσφαι ρου με 13 ομα δες ο καθε νας. Μπορου με να οργανω σουμε ε να πρωτα θλημα ε τσι ω στε κα θε ομα δα να συμμετε χει σε 9 αγω νες με ομα δες του ομι λου της και σε 4 αγω νες με ομα δες του α λλου ομι λου? Ερώτηση 2.5: Έστω ε να r-κανονικο διμερε ς γρα φημα με διαμερι σεις X και Y. Το τε X = Y. Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
6 Πρόταση 2.4 : Κα θε απλο γρα φημα G ε χει δυ ο κορυφε ς ι διου βαθμου Απόδειξη : G απλο v V(G) : d G (v) {0, 1,..., n 1} ο που n = V(G) Αλλα, το συ νολο των δυνατω ν βαθμω ν για τις κορυφε ς του G δεν μπορει να περιε χει ταυτο χρονα τους βαθμου ς 0 και n 1 [Η κορυφη με βαθμο n 1 ει ναι ενωμε νη με ο λες τις α λλες κορυφε ς, οπο τε δεν υπα ρχει κορυφη με βαθμο 0] Συνεπω ς ε χουμε n 1 το πολυ δυνατου ς βαθμου ς για τις n κορυφε ς Άρα υπα ρχουν δυ ο κορυφε ς με τον ι διο βαθμο [αρχη του περιστερεω να] Πρόταση 2.5 : Σε κα θε ομα δα απο 2 η περισσο τερους ανθρω πους πα ντα υπα ρχουν δυ ο α τομα με τον ι διο αριθμο φι λων με σα στην ομα δα Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
7 Πρόταση 2.6 : Έστω απλο γρα φημα G για το οποι ο ισχυ ει δ(g) V(G) 1 2. Το τε το G ει ναι συνδεδεμε νο Απόδειξη : Θα δει ξουμε ο τι u, v V(G) υπα ρχει μονοπα τι απο την u στην v. Περίπτωση 1: e = (u, v) E Το τε υπα ρχει μονοπα τι u v Περίπτωση 2: e = (u, v) / E δ(g) { V(G) 1 2 N G (u) V(G) 1 2 N G (v) V(G) 1 2 Παρατηρου με ο τι N G (u) N G (v) (1) Εα ν N G (u) N G (v) = N G (u) N G (v) = N G (u) + N G (v) V(G) 1 (2) Αλλα {u, v} / N G (u) N G (v) N G (u) N G (v) V(G) 2 (3) άτοπο λο γω της (2) (1) w N G (u) N G (v) e 1 = (u, w), e 2 = (w, v) υπα ρχει μονοπα τι u v Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
8 Θεώρημα 2.7: Κα θε γρα φημα G χωρι ς βρο γχους ε χει διμερε ς υπογρα φημα H G με τουλα χιστον E(G) /2 ακμε ς Απόδειξη [Κατασκευαστική]: Θα κατασκευα σουμε διμερε ς υπογρα φημα H G με E(G) /2 ακμε ς. 1. Έστω αυθαι ρετη διαμε ριση X, του V(G) και H G το διμερές επαγόμενο απο τα X, γρα φημα Εα ν E(H) E(G) /2 τελειω σαμε 2.2 Αλλιω ς [E(H) < E(G) /2] Έστω v V(G) : d H (v) < d G (v)/2 (πα ντα υπα ρχει) Μετε θεσε την v στο α λλο μερι διο Προσα ρμοσε το H ω στε να ει ναι διμερε ς: αφαι ρεσε τις ακμε ς απο το H που ενω νονταν με την v πριν την μετα θεση [d H (v) ακμε ς] και προ σθεσε τις ακμε ς που ενω νονται με την v στο G αλλα ο χι στο H [>d H (v) ακμε ς] Πη γαινε στο 2. Ο αριθμο ς των ακμω ν του H αυξα νει μετα απο κα θε μετακι νηση Ο αλγο ριθμος τερματι ζει Το γρα φημα H ει ναι διμερε ς [απο κατασκευη ] E(H) E(G) /2 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
9 E(H) E(G) /2 Απόδειξη : Στο τε λος του αλγορι θμου ισχυ ει v V(G) : d H (v) d G (v)/2 E(H) = 1 d 2 H (v) v V(H) 1 d 2 G (v)/2 [V(H) = V(G)] v V(G) = E(G) /2 Ερώτηση 2.6: Δι νει πα ντοτε ο αλγο ριθμος το με γιστο διμερε ς υπογρα φημα? g f h e a d b c H 1 : {a, b, c, d}, {e, f, g, h} E(H 1 ) = 12 H 2 : {g, h, a, b}, {c, d, e, f} E(H 1 ) = 16 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
10 Θεώρημα 2.8: Κα θε μη τετριμμε νο γρα φημα G χωρι ς βρο γχους ε χει διμερε ς υπογρα φημα H G με > E(G) /2 ακμε ς [τετριμμε νο γρα φημα: γρα φημα χωρι ς ακμε ς η κορυφε ς] Απόδειξη [Επαγωγή στο V(G) ]: βα ση V(G) = 2 G = H, ισχυ ει Ε.Υ. Κα θε μη τετριμμε νο χωρι ς βρο γχους γρα φημα G με V(G) k, k 2 ε χει διμερε ς υπογρα φημα H G με > E(G) /2 ακμε ς Ε.Β. Έστω αυθαι ρετο γρα φημα G με V(G) = k + 1 Έστω αυθαι ρετη κορυφη v V(G) Θεωρω το G\v [ε χει k κορυφε ς] Ε.Υ. = H G\v : E(H ) > E(G\v) /2 Έστω X και Y τα μερι δια του H Προσθε τω την v στην διαμε ριση ο που η v συνδε εται με τις λιγο τερες ακμε ς γρα φημα H Προσθε τουμε στο H τουλα χιστον d G (v)/2 ακμε ς. Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
11 E(H) E(H ) + d G (v)/2 > E(G\v) /2 + d G (v)/2 = ( E(G\v) + d G (v))/2 = E(G) /2 Ερώτηση 2.7: Εστω A ο πι νακας γειτνι ασης ενο ς απλου γραφη ματος G. Να δειχθει ο τι η διαγω νιος του A 2 περιε χει τους βαθμου ς των κορυφω ν του G. Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
12 Θεώρημα 2.9[Köning-1916]: Κα θε γρα φημα G ει ναι επαγο μενο υπογρα φημα κα ποιου (G)-κανονικου γραφη ματος Απόδειξη : Για κα θε γρα φημα G ορι ζουμε την ποσο τητα ( (G) d G (v)) v V(G) z(g) = V(G) Το z(g) αποτελει με τρο του πο σο απε χει το G απο το να ει ναι (G)-κανονικο Εφαρμο ζουμε επαναληπτικα την παρακα τω διαδικασι α η οποι α μειω νει το z(g) 1. G 1 = G G 2. Προ σθεσε ακμε ς μεταξυ αντι στοιχων κορυφω ν (σε διαφορετικα αντι γραφα) που ε χουν βαθμο < (G) G G 1 και z(g) > z(g 1 ) 3. Εα ν G 1 ει ναι (G)-κανονικο τελειω σαμε αλλιω ς G = G 1 πη γαινε στο 1. Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
13 Γραφικη Ακολουθι α Έστω η ακολουθι α (d 1, d 2,..., d n ) ο που 0 d i < n, d i N Με sorted((d 1, d 2,..., d n)) συμβολι ζουμε την ακολουθι α που προκυ πτει απο την ταξινο μηση σε φθι νουσα δια ταξη της (d 1, d 2,..., d n ) Έστω G = (V, E) και s = (d(v 1 ), d(v 2 ),..., d(v n )), v i V(G), V(G) = n η ακολουθι α βαθμω ν του G Η ακολουθι α sorted((d(v 1 ), d(v 2 ),..., d(v n))) ονομα ζεται γραφικη ακολουθι α του G. G v1 v4 v8 v10 Γραφικη ακολουθι α του G v3 v5 v7 v2 ( ) v6 v9 v5 v3 v7 v4 v6 v8 v9 v1 v2 v10 Γραφική ακολουθία: Μι α φθι νουσα ακολουθι α s = (d 1 d 2, d n) ονομα ζεται γραφική αν υπα ρχει γρα φημα G(V, E) και μι α 1 1 και επι απεικο νιση σ : V {1, 2,..., n}: d(v) = d σ(v) Το γρα φημα G υλοποιει την ακολουθι α s Η ακολουθι α s ει ναι η ακολουθι α βαθμω ν του G Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
14 Ερώτηση 2.8: Υπα ρχουν διμερη γραφη ματα με τις παρακα τω ακολουθι ες βαθμω ν? i. (3, 3, 2, 2, 2) ii. (3, 2, 2, 2, 2, 1) iii. (5, 2, 1, 1, 1) iv. (3, 3, 2, 2) Ερώτηση 2.9: Να δειχθει ο τι για κα θε n 2 η ακολουθι α (0, 1, 2,..., n 1) δεν ει ναι γραφικη. Ερώτηση 2.10: Να δειχθει ο τι η ακολουθι α (d 1 d 2, d n ) ει ναι γραφικη ανν η ακολουθι α sorted(n d 1 1, n d 2 1,..., n d n 1) ει ναι γραφικη. Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
15 Μεταγωγή: Έστω κορυφε ς x, y, z, w V(G) ενο ς απλου γραφη ματος G και (x, y), (z, w) E(G) αλλα (x, z)(y, w) / E(G). Ορι ζουμε ως μεταγωγή πα νω στο συ νολο {x, y, z, w} την αντικατα σταση στο G των ακμω ν (x, y), (z, w) απο τις (x, z)(y, w) Παρα δειγμα: u v w u v w u v w (u,v)(y,x) (u,v)(y,x) x y z x y z x y z Σημείωση: Μια μεταγωγη σε ε να συ νολο 4 κορυφω ν ενο ς γραφη ματος G δεν αλλα ζει την ακολουθι α βαθμω ν του G. Ανηγμένη ακολουθία: Έστω η ακολουθι α s = (d 1 d 2, d n ). Η ακολουθι α (d 2 1, d 3 1,..., d d1 +1 1, d d1 +2,..., d n) ορι ζεται ως η ανηγμένη ακολουθία της s Παρα δειγμα: Έστω s = (4, 3, 2, 2, 2, 2, 1). Η ανηγμε νη ακολουθι α της s ει ναι η s 1 = (2, 1, 1, 1, 2, 1) Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
16 Θεώρημα 2.10[Havel-Hakimi]: Μι α φθι νουσα ακολουθι α s = (d 1 d 2, d n) ει ναι γραφικη ανν η ανηγμε νη ακολουθι α της s ει ναι γραφικη Απόδειξη : Έστω s 1 = (d 2 1, d 3 1,..., d d1 +1 1, d d1 +2,..., d n) η ανηγμε νη ακολουθι α της s και ε στω ο τι η s 1 ει ναι γραφικη s 1 γραφικη G 1 με V(G { 1 ) = {v 2, v 3,..., v n} d(v i ) = d i 1 2 i d d i d i n Κατασκευα ζω γρα φημα G(V, E): V(G) = V(G 1 ) {v 1 } Ο G υλοποιει την ακολουθι α s Η ακολουθι α s ει ναι γραφικη E(G) = E(G 1 ) {(v 1, v i ) : 2 i d 1 + 1} Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
17 Παρα δειγμα: v 4 G 1 v 4 v 3 v 3 v 1 v 5 v 6 v 5 v 6 v 2 v 7 v 2 v 7 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
18 s = (d 1 d 2, d n ) ει ναι γραφικη s = (d 2 1, d 3 1,..., d d1 +1 1, d d1 +2,..., d n ) ει ναι γραφικη s γραφικη G = (V, E) με V(G) = {v 1, v 2,..., v n } : d(v i ) = d i, i = 1,..., n Περίπτωση 1: u V(G) : d(u) = d 1 και η u ει ναι γειτονικη με κορυφε ς με βαθμου ς d 2, d 3,..., d d1 +1 G\u ε χει ακολουθι α βαθμω ν την s Περίπτωση 2: κορυφη u ο πως στην περι πτωση 1 Έστω η κορυφη v i ε χει βαθμο d(v i ) = d i, i = 1,..., n Επειδη η v 1 δεν ει ναι γειτονικη με ο λες τις v 2, v 3,..., v d1 +1 v j και v k με d j > d k : Λο γω του ο τι d(v j ) > d(v k ) κορυφη v l : v 1 δεν ει ναι γειτονικη με v j v 1 ει ναι γειτονικη με v k v l ει ναι γειτονικη με v j και v l δεν ει ναι γειτονικη με v k Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
19 v 1 v k Μι α μεταγωγη στις v 1, v k, v j, v l δι νει γρα - φημα G με ι δια ακολουθι α βαθμω ν με το G. ΑΛΛΑ: το α θροισμα των βαθμω ν των γειτο - νων της v 1 στο G ει ναι μεγαλυ τερο απο το ι διο α θροισμα στο G v 1 v j v k v l μεταγωγή Συνεχι ζοντας ομοι ως θα φτα σουμε στην περι πτωση 1. η s ει ναι γραφικη v j v l Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
20 Παρα δειγμα: Ει ναι η ακολουθι α (5, 4, 3, 2, 2, 1, 1) γραφικη? Εα ν ναι, να δοθει γρα φημα G που την υλοποιει. s 1 = (5, 4, 3, 2, 2, 1, 1) s 1 = ( 3, 2, 1, 1, 0, 1) s 2 = sorted(s 1 ) s 2 = ( 3, 2, 1, 1, 1, 0) s 2 = ( 1, 0, 0, 1, 0) s 3 = sorted(s 2 ) s 2 = ( 1, 1, 0, 0, 0) Γραφικη G 3 : s G 2 : s G 1 : s 1 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
21 Θεώρημα 2.11[Erdös-Gallai]: Μι α φθι νουσα ακολουθι α s = (d 1 d 2, d n ), n 2, d 1 1 ει ναι γραφικη ανν n k n i. d i ει ναι α ρτιο και ii. k : 1 k < n d i k(k 1) + min {k, d i } i=1 i=1 i=k+1 Απόδειξη : i. Προφανε ς V 1 V \V 1 k ii. d i : v 1 v 2... v k v k+1... v n i=1 E 2 : ακμε ς απο το V 1 στο V\V 1 E 1 E 2 Κα θε κορυφη u του V\V 1 ενω νεται} με ( ) το πολυ με d u κορυφε ς του V 1 ακμε ς ανα μεσα το πολυ με k κορυφε ς του V 1 E 1 : 2 στις κορυφε ς του V το πολυ με min {k, d u } 1 n k(k 1) Συνολικα : min {k, d i } i=k+1 k n d i k(k 1) + min {k, d i }, 1 k < n i=1 i=k+1 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
22 Ερώτηση 2.11: Να δειχθει ο τι για πολυγραφη ματα ισχυ ει: η φθι νουσα ακολουθι α n s = (d 1 d 2, d n ), n 2, d 1 1 d i ει ναι α ρτιο. i=1 ει ναι γραφικη Σύνολα βαθμών κορυφών: Παρα δειγμα: Δεδομε νου γραφη ματος G συμβολι ζουμε με D G το σύνολο των [διακριτών] βαθμών των κορυφω ν του G G : s = (4, 3, 3, 2, 2, 2, 2, 1, 1) D G = {4, 3, 2, 1} Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
23 Θεώρημα 2.12[Kapoor-Polimeni-Wall]: Για κα θε συ νολο S = {a 1, a 2,..., a n }, n 1, θετικω ν ακεραι ων με a 1 < a 2 < < a n υπα ρχει γρα φημα G με συ νολο βαθμω ν D G = S. Επιπλε ον υπα ρχει τε τοιο γρα φημα G με V(G) = a n + 1. Απόδειξη [Κατασκευαστικά με επαγωγή στο n]: Ο βαθμο ς του G ει ναι a n + 1. Συνεπω ς θα δει ξουμε ο τι υπα ρχει G με V(G) = a n + 1 n = 1 Το πλη ρες γρα φημα K an +1 με a n + 1 κορυφε ς ει ναι το ζητου μενο. Όλες οι κορυφε ς του ε χουν βαθμο a 1. n = 2 Συμβολι ζουμε με A λ το γρα φημα με λ κορυφε ς και χωρι ς ακμε ς. A λ = ({v 1, v 2,..., v λ }, ) Το γρα φημα K a1 A a2 a 1 +1 [ : συ νδεση γραφημα των] a 1 1 K a1 a 2 a βαθμός a 2 a a 1 a a 2 a βαθμός = a 2 a 1 ε χει συ νολο βαθμω ν {a 1, a 2 } V(G) = a 2 a a 1 = a Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
24 Ε.Υ. Για κα θε συ νολο S = {a 1, a 2,..., a m } με θετικου ς ακεραι ους a 1 < a 2 < < a m και 1 m < n ισχυ ει ο τι: i. υπα ρχει γρα φημα G με συ νολο βαθμω ν S ii. V(G) = a m + 1 Ε.B. Έστω συ νολο S = {a 1, a 2,..., a n, a n+1 } με a i N +, a 1 < < a n < a n+1 Απο Ε.Υ. γρα φημα G 1 με συ νολο βαθμω ν {a 2 a 1, a 3 a 1,..., a n a 1 } και V(G 1 ) = a n a Θεωρη στε το γρα φημα G = K a1 A an+1 a n G 1 a 1 1 K a1 a n a G 1 V (G 1) = a n a βαθμοί: {a 2, a 3,..., a n} βαθμός: a 1 1+ a n a a n+1 a n = a n+1 a n+1 a n A an+1 an βαθμός a 1 ε χει συ νολο βαθμω ν {a 1, a 2,..., a n, a n+1 } V(G) = }{{} a 1 + a n+1 a n + a }{{} n a = a }{{} n K a1 A an+1 G an 1 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
25 Παρα δειγμα: Να κατασκευαστει γρα φημα με 8 κορυφε ς και συ νολο βαθμω ν {2, 4, 6, 7} D 1 = {2, 4, 6, 7} D 2 = {d 2 d 1, d 3 d 1 } = {2, 4} G 2 V (G 2 ) = 5 G 1 a n+1 = 7 G 2 {d 2, d 3 } = {4, 6} K 2 A 3 D G1 = {2, 4, 6, 7} V(G 1 ) = 8 K 2 A an+1 an a 1 = 2 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 2η Δια λεξη Φεβρουα ριος / 47
Θεωρι α Γραφημα των 10η Δια λεξη
Θεωρι α Γραφημα των 0η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 05 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 0η Δια λεξη Φεβρουα ριος 05 99 / 0 Χρωματισμο ς Ακμω ν k-χρωματισμός ακμών: Η ανα
Θεωρία Γραφημάτων 2η Διάλεξη
Θεωρία Γραφημάτων 2η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη
Θεωρία Γραφημάτων 2η Διάλεξη
Θεωρία Γραφημάτων 2η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη
Θεωρι α Γραφημα των 3η Δια λεξη
Θεωρι α Γραφημα των 3η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 3η Δια λεξη Φεβρουα ριος 2015 48 / 71 Μονοπα τια-κυ κλοι και Αποστα σεις Έστω ε
Θεωρι α Γραφημα των 7η Δια λεξη
Θεωρι α Γραφημα των 7η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 7η Δια λεξη Φεβρουα ριος 2015 143 / 167 Hamiltonian γραφη ματα κύκλος Hamilton:
Θεωρι α Γραφημα των 11η Δια λεξη
Θεωρι α Γραφημα των 11η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 11η Δια λεξη Φεβρουα ριος 2015 211 / 228 απεικόνιση γραφήματος στο επίπεδο (Embedding):
Θεωρι α Γραφημα των 8η Δια λεξη
Θεωρι α Γραφημα των 8η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 8η Δια λεξη Φεβρουα ριος 2015 168 / 182 Χρωματισμοι Γραφημα των Χρωματισμο ς Κορυφω
Θεωρι α Γραφημα των 9η Δια λεξη
Θεωρι α Γραφημα των 9η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 9η Δια λεξη Φεβρουα ριος 2015 183 / 198 Ταιρια σματα (Matchings) Ταίριασμα: Ένα
Θεωρι α Γραφημα των 5η Δια λεξη
Θεωρι α Γραφημα των 5η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 2015 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των 5η Δια λεξη Φεβρουα ριος 2015 107 / 122 Δε νδρα Δένδρο: Ένα γρα φημα το οποι ο
Θεωρι α Γραφημα των 1η Δια λεξη
Θεωρι α Γραφημα των η Δια λεξη Α. Συμβω νης Ε Μ Π Σ Ε Μ Φ Ε Τ Μ Φεβρουα ριος 205 Α. Συμβω νης (ΕΜΠ) Θεωρι α Γραφημα των η Δια λεξη Φεβρουα ριος 205 / 22 Εισαγωγη Διδα σκων: Αντω νιος Συμβω νης ΣΕΜΦΕ, κτι
ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ ΠΛΑΙ ΣΙΟ ΧΡΗ ΜΑ ΤΟ ΔΟ ΤΗ ΣΗΣ
ΣΤΟ ΧΟΣ- Ε ΠΙ ΔΙΩ ΞΗ Στό χος του Ο λο κλη ρω μέ νου Προ γράμ μα τος για τη βιώ σι μη α νά πτυ ξη της Πίν δου εί ναι η δια μόρ φω ση συν θη κών α ει φό ρου α νά πτυ ξης της ο ρει νής πε ριο χής, με τη δη
2ο Μάθημα Πιθανότητες
2ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαι κο Έτος 2014-2015 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 2ο Μάθημα
Τι μπορεί να δει κάποιος στο μουσείο της Ι.Μ. Μεγάλου Μετεώρου
18/05/2019 Τι μπορεί να δει κάποιος στο μουσείο της Ι.Μ. Μεγάλου Μετεώρου / Ιερές Μονές Η μο νή του Με γά λου Με τε ώ ρου δι α μόρ φω σε μί α σει ρά α πό πε ρι κα λείς μου σεια κούς χώ ρους, για την α
Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων
Σημειω σεις Μεταπτυχιακη ς Θεωρι ας Ομα δων Β. Μεταφτση ς 15 Δεκεμβρι ου 2016 1 Παραστάσεις Ομάδων Έστω a, b, c,... ε να συ νολο απο διακριτα συ μβολα και a 1, b 1, c 1,... νε α συ μβολα. Μια λέξη W στα
α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε
Ἦχος Νη α κα ρι ι ο ος α α νηρ ος ου ουκ ε πο ρε ε ευ θη εν βου λη η η α α σε ε ε βων και εν ο δω ω α α µαρ τω λω ων ουουκ ε ε ε στη η και ε πι κα α θε ε ε ε δρα α λοι οι µων ου ουκ ε ε κα θι ι σε ε ε
Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΙΔΑ: «ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ, ΜΙΑ ΕΜΠΕΙΡΙΑ ΖΩΗΣ» ΣΤΡΑΤΗ ΣΤΑΜΑΤΙΑ Επιβλέπων Καθηγητής: ΚΑΡΑΧΑΛΙΟΣ ΝΙΚΟΛΑΟΣ Φορέας υλοποίησης: Φ.Μ.Ε. ΑΛΦΑ ΚΑΡΛΟΒΑΣΙ, ΜΑΪΟΣ 2012 ΣΤΟΙΧΕΙΑ
The Probabilistic Method - Probabilistic Techniques. Lecture 8: Markov Chains
The Probabilistic Method - Probabilistic Techniques Lecture 8: Markov Chains Sotiris Nikoletseas Chistoforos Raptopoulos Computer Engineering and Informatics Department 205-206 Chistoforos Raptopoulos
Η ΑΜΟΤΟΕ προκηρυ σσει για το 2019, Πανελλη νιο Πρωτα θλημα Dragster αποτελου μενο απο 6 αγω νες, με το παρακα τω προ γραμμα:
Προκη ρυξη Πανελληνιόυ Πρωταθλη ματος Dragster 2019 Η ΑΜΟΤΟΕ προκηρυ σσει για το 2019, Πανελλη νιο Πρωτα θλημα Dragster αποτελου μενο απο 6 αγω νες, με το παρακα τω προ γραμμα: 1ος ΑΓΩΝΑΣ 13-14/04/2019
6ο Μάθημα Πιθανότητες
6ο Μάθημα Πιθανότητες Σωτήρης Νικολετσέας, αναπληρωτής καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής, Πανεπιστήμιο Πατρών Ακαδημαι κο Έτος 2014-2015 Σωτη ρης Νικολετσε ας, αναπληρωτη ς καθηγητη ς 6ο Μάθημα
ο Θε ος η η µων κα τα φυ γη η και δυ υ υ να α α α µις βο η θο ος ε εν θλι ψε ε ε σι ταις ευ ρου ου ου ου ου σαις η η µα α α ας σφο ο ο ο
Ἐκλογή ἀργοσύντοµος εἰς τὴν Ἁγίν Κυρικήν, κὶ εἰς ἑτέρς Γυνίκς Μάρτυρς. Μέλος Ἰωάννου Ἀ. Νέγρη. Ἦχος Νη ε Κ ι δυ υ υ υ ν µι ις Α λ λη λου ου ου ι ι ι ι ο Θε ος η η µων κ τ φυ γη η κι δυ υ υ ν µις βο η θο
Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ.
σελ. 13 σελ. 17 σελ. 21 σελ. 49 σελ. 79 σελ. 185 σελ. 263 σελ. 323 σελ. 393 σελ. 453 σελ. 483 σελ. 509 σελ. 517 Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει
Δομές Ελέγχου και Επανάληψης
Εργαστήριο 3 ο Δομές Ελέγχου και Επανάληψης Εισαγωγή Σκοπο ς του εργαστηρι ου αυτου ει ναι η εισαγωγη στην εκτε λεση εντολω ν υπο συνθη κη και στις δομές επανάληψης. Δομές Ελέγχου Η ικανότητα να μπορεί
Πολυμεταβλητή Στατιστική Ανάλυση. Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς
Πολυμεταβλητή Στατιστική Ανάλυση Δρ. Αθανάσιος Δαγούμας, Επ. Καθηγητής Οικονομικής της Ενέργειας & των Φυσικών Πόρων, Πανεπιστήμιο Πειραιώς Στην πρα ξη τα δεδομένα ενο ς ερευνητη ει ναι απο τη φυ ση τους
Π α σα πνο η αι νε σα τω τον Κυ ρι. Π α σα πνο η αι νε σα α τω τον. Ἕτερον. Τάξις Ἑωθινοῦ Εὐαγγελίου, Ὀ Ν Ψαλµός. Μέλος Ἰωάννου Ἀ. Νέγρη.
Τάξις Ἑωθινοῦ Εὐαγγελίου, Ὀ Ν Ψαλµός. Μέλος Ἰωάννου Ἀ. Νέγρη. Κυ ρι ε ε λε η σον Ἦχος Πα Α µην Π α σα πνο η αι νε σα τω τον Κυ ρι ον Ἕτερον. Π α σα πνο η αι νε σα α τω τον Κυ υ ρι ι ον 1 ΙΩΑΝΝΟΥ Α. ΝΕΓΡΗ
ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Θέμα Α Στις ερωτη σεις Α1 Α4 να γρα ψετε στο τετρα διο σας τον αριθμο της ερω τησης και
ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA
ΚΩΔΙΚΑΣ ΔΙΑΧΕΙΡΙΣΗΣ ΑΙΤΗΜΑΤΩΝ ΚΑΙ ΠΑΡΑΠΟΝΩΝ ΠΕΛΑΤΩΝ ΚΑΙ ΛΟΙΠΩΝ ΚΑΤΑΝΑΛΩΤΩΝ (ΥΠΟΨΗΦΙΩΝ ΠΕΛΑΤΩΝ) ΤΗΣ VOLTERRA Α. Γενικά Η VOLTERRA, ως Προμηθευτη ς Ηλεκτρικη ς Ενε ργειας και ε χοντας ως αντικειμενικο στο
Η εταιρεία Kiefer. ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις. μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων. Ηλεκτροπαραγωγη ς απο Ανανεω σιμες
Η εταιρεία Kiefer ιδρυ θηκε το 2014 και θεωρει ται μι α απο τις μεγαλυ τερες εταιρει ες Κατασκευη ς Μονα δων Ηλεκτροπαραγωγη ς απο Ανανεω σιμες Πηγε ς Ενε ργειας στην Ελλα δα. Αναλαμβα νει ε ργα ως EPC
καλύψουν τα έξοδα µετάβασης-µετακίνησης στον τόπο άσκησης των καθηκόντων τούς.
καλύψουν τα έξοδα µετάβασης-µετακίνησης στον τόπο άσκησης των καθηκόντων τούς. Επιπλέον, σε συνεργασία µε το συναρµόδιο Υπουργείο Οικονοµικών Θα πρέπει να εξευρεθεί λύση στη διαδικασία ως προς την άµεση
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
των Κοι νω νι κών λει τουρ γών που α πα σχο λού νται στις Νευ ρο ψυ χι α τρι κές κλι νι κές Α θη νών & περιχώρων Ot02R03
των Κοι νω νι κών λει τουρ γών που α πα σχο λού νται στις Νευ ρο ψυ χι α τρι κές κλι νι κές Α θη νών & περιχώρων Ot02R03 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΚOΙ ΝΩΩ ΝΙ ΚΩΩΝ
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
1.2.3 ιαρ θρω τι κές πο λι τι κές...35 1.2.4 Σύ στη μα έ λεγ χου της κοι νής α λιευ τι κής πο λι τι κής...37
ΠΕΡΙΕΧΟΜΕΝΑ ΕΙΣΑΓΩΓΙΚΟ ΚΕ Φ Α Λ ΑΙΟ ΤΟ ΙΚΑΙΟ ΤΗΣ ΑΛΙΕΙΑΣ... 21 ΚΕ Φ Α Λ ΑΙΟ 1 o Η ΑΛΙΕΥΤΙΚΗ ΠΟΛΙΤΙΚΗ 1.1 Η Α λιεί α ως Οι κο νο μι κή ρα στη ριό τη τα...25 1.2 Η Κοι νο τι κή Α λιευ τι κή Πο λι τι κή...28
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
Θεωρία Γραφημάτων 5η Διάλεξη
Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη
ΔΙΑΚΗΡΥΞΗ ΔΗΜΟΣΙΟΥ ΜΕΙΟΔΟΤΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΥ
Λάρισα, 5/9/2018 Αρ. πρωτ.: 2223 ΔΙΑΚΗΡΥΞΗ ΔΗΜΟΣΙΟΥ ΜΕΙΟΔΟΤΙΚΟΥ ΔΙΑΓΩΝΙΣΜΟΥ Η Διοικουb σα Επιτροπηb του ΤΕΕ Τμηb ματος Κεντρικής & Δυτικής Θεσσαλίας, εbχοντας υπ οb ψιν τις διαταb ξεις του Π.Δ. 715/1979
d u d dt u e u d dt e u d u 1 u dt e 0 2 e
Ρ ΤΟ Θ ΜΑ Μ. Α ΑΠΟ ε ΞεΤε ΤΙ ΑΝΑΓΚΑ Α ΚΑΙ ΙΚΑΝ ΣΥΝΘ ΚΗ ΣΤε ΝΑ Ι ΝΥΣΜΑ u t 0 ΝΑ ΠΑΡΑΜ ΝεΙ ΠΑΡ ΛΛΗΛΟ ΠΡΟ ΜΙΑ ε ΟΜ ΝΗ ευθε Α ε ΝΑΙ u t u 0 Π ειξη Α ΑΠΟ ε ΞΟΥΜε ΤΟ ΙΚΑΝ ΗΛΑ ΑΝ ε ΝΑΙ ΠΑΡ ΛΛΗΛΟ ΠΡΟ ε ΟΜ ΝΗ ευθε
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
Οι τα α α α α α α α Κ. ε ε ε ε ε ε ε ε ε Χε ε ε. ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι. ιµ µυ στι κω ω ω ω ω ως ει κο ο
ΧΕΡΟΥΒΙΟ ΛΕΙΤΟΥΡΓΙΑ ΟΙΝΩΝΙΟ Λ. Β Χερουβικόν σε ἦχο πλ. β. Ἐπιλογές Ἦχος Μ Α µη η η η ην Οι τ Χε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε ε Χε ε ε ε ε ε ε ε ε ρου ου βι ι ι ι ι ι ι ιµ µυ στι κω ω ω ω ω ως ει κο ο
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
Θεωρία Γραφημάτων 4η Διάλεξη
Θεωρία Γραφημάτων 4η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 4η Διάλεξη
ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ
Γιάννης Θεοδωράκης Πανεπιστήμιο Θεσσαλίας ΑΣΚΗΣΗ, ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΘΕΣΣΑΛΟΝΙΚΗ 2010 ΠΕΡΙΕΧΟΜΕΝΑ Πρό λο γος...6 1. Ά σκη ση και ψυ χική υ γεί α Ει σα γω γή...9 Η ψυ χο λο γί α της ά σκη σης...11
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
ΠΡΑΣΙΝΟ ΤΑΜΕΙΟ - ΕΝΕΡΓΕΙΑΚΟ ΓΡΑΦΕΙΟ ΑΙΓΑΙΟΥ ΧΩΡΟΘΕΤΗΣΗ ΑΠΕ ΣΕ ΝΗΣΙΩΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
POWERPOINT 2011 ΡΥΘΜΙΣΤΙΚΟ ΣΧΕ ΙΟ ΓΙΑ ΤΟΝ ΠΡΟΣ ΙΟΡΙΣΜΟ ΤΩΝ ΒΕΛΤΙΣΤΩΝ ΧΩΡΙΚΩΝ ΚΑΤΑΝΟΜΩΝ ΚΑΙ ΣΥΓΚΕΝΤΡΩΣΕΩΝ ΑΙΟΛΙΚΩΝ ΠΑΡΚΩΝ ΚΑΙ ΤΗΝ ΠΡΟΣΤΑΣΙΑ ΤΟΥ ΤΟΠΙΟΥ ΣΕ ΝΗΣΙΑ ΤΟΥ ΑΙΓΑΙΟΥ Για την υποστη ριξη του ε ργου
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
Αποτελεσματικός Προπονητής
ÐÝñêïò Ι. ÓôÝ öá íïò & Χριστόπουλος Β. Γιάννης Αποτελεσματικός Προπονητής Ένας οδηγός για προπονητές όλων των ομαδικών αθλημάτων Θεσσαλονίκη 2011 Ðå ñéå ü ìå íá Ðñü ëï ãïò...6 Åé óá ãù ãþ...11 Êå öü ëáéï
ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα.
ΑΕΠΠ ΕΠΙΛΟΓΕΣ Κατασκευα στε υποπρο γραμμα το οποί ο να ελε γχεί αν ε νας πί νακας εί ναί ταξίνομημε νος σε αυ ξουσα σείρα. ΔΣ6. Δίνονταί οί πίνακες Σ1(Κ, Κ) καί Π1(Κ, Κ) που περίέχουν τα αποτελέσματα των
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
ΠΑΡΑΣΚΕΥΗ ΣΤ ΕΒ ΟΜΑ ΟΣ ΤΩΝ ΝΗΣΤΕΙΩΝ. ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης
ΠΑΡΑΣΚΕΥΗ ΣΤ ΕΒ ΟΜΑ ΟΣ ΤΩΝ ΝΗΣΤΕΙΩΝ ΠΡΟ ΤΩΝ ΒΑΪΩΝ ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης Ψάλλεται ἡ ἀκολουθία τοῦ Ἁγίου Λαζάρου ὡς ἐν τῷ Τριωδίῳ Ἦχος Νη Ἰωάννου Πρωτοψάλτου υ υ υ υ ρι ι ι ι ε ε κε κρα α ξα προ
ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ
ΠΕΡΙEΧΟΜΕΝΑ Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ Ει σα γω γή 1 ου Μέ ρους...16 1 ο Κε φά λαιο: Ε ΛΕΥ ΘΕ ΡΟΣ ΧΡΟ ΝΟΣ & Α ΝΑ ΨΥ ΧΗ 1.1 Οι έν νοιες του ε λεύ θε ρου χρό νου και της ανα ψυ χής...17
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
Θεωρία Γραφημάτων 5η Διάλεξη
Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
ε πι λο γές & σχέ σεις στην οι κο γέ νεια
ε πι λο γές & σχέ σεις στην οι κο γέ νεια ΚΕΙΜΕΝΟ: Υπτγος ε.α Άρης Διαμαντόπουλος, Διδάκτορας Φιλοσοφίας - Ψυχολόγος ΕΙΚΟΝΟΓΡΑΦΗΣΗ: Στρατιωτική Επιθεώρηση Α ξί α Οι κο γέ νειας Ό,τι εί ναι το κύτ τα ρο
ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ, ΣΤΑΤΙΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΔΙΚΑΣΙΑΣ ΚΑΙ ΙΚΑΝΟΤΗΤΑ ΔΙΑΔΙΚΑΣΙΑΣ
Κεφάλαιο 2 ΔΙΟΙΚΗΣΗ ΟΛΙΚΗΣ ΠΟΙΟΤΗΤΑΣ, ΣΤΑΤΙΣΤΙΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΔΙΚΑΣΙΑΣ ΚΑΙ ΙΚΑΝΟΤΗΤΑ ΔΙΑΔΙΚΑΣΙΑΣ Τι ει ναι ποιο τητα και γιατι ει ναι σημαντικη για κα θε επιχει ρηση; Τι ει ναι διοι κηση ολικη ς ποιο τητας;
ΠΕΡΙEΧΟΜΕΝΑ. Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ
ΠΕΡΙEΧΟΜΕΝΑ Πρό λο γος...13 ΜΕ ΡΟΣ Ι: Υ ΠΑΙ ΘΡΙΑ Α ΝΑ ΨΥ ΧΗ Ει σα γω γή 1 ου Μέ ρους...16 1 ο Κε φά λαιο: Ε ΛΕΥ ΘΕ ΡΟΣ ΧΡΟ ΝΟΣ & Α ΝΑ ΨΥ ΧΗ 1.1 Οι έν νοιες του ε λεύ θε ρου χρό νου και της ανα ψυ χής...17
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
0a1qqW+1a1`qÁlw n εν σοί Κύ ρι ε τρο πού μαι τού τον.
n 00211000Aqq11j1w Εκ νε ό τη τός μου ο εχ θρό ός με πει ρά ζει, 00qaj-1`q`qq+0)q11l1 ταίς η δο ναίς φλέ γει με ε γώ δέ πε ποι θώς, 0a1qqW+1a1`qÁlw n εν σοί Κύ ρι ε τρο πού μαι τού τον. 211`w1l1+000 0wl1
Κυ ρι ε ε κε κρα α ξα προ ο ος σε ε ει σα
ΤΗ Ζ ΤΟΥ ΜΗΝΟΣ ΑΥΓΟΥΣΤΟΥ ΜΝΗΜΗ ΤΟΥ ΤΟΥ ΟΣΙΟΥ ΚΑΙ ΘΕΟΦΟΡΟΥ ΠΑΤΡΟΣ ΗΜΩΝ ΝΙΚΑΝΟΡΟΣ ΤΟΥ ΘΑΥΜΑΤΟΥΡΓΟΥ Ἡ µουσική καταγραφή τῶν µελῶν ἔγινε ἀπό τὰ χειρόγραφα µουσικά κείµενα τοῦ π. Χρίστου Κυριακοπούλου Μετὰ
Θεωρία Γραφημάτων 8η Διάλεξη
Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη
Βασικά Χαρακτηριστικά Αριθμητικών εδομένων
ΚΕΦΑΛΑΙΟ 3 Βασικά Χαρακτηριστικά Αριθμητικών εδομένων Α ντι κείμε νο του κε φα λαί ου εί ναι: Να κα τα νο ή σου με τα βα σι κά χαρα κτη ρι στι κά των α ριθ μη τι κών δεδο μέ νων (τά ση, δια σπο ρά, α συμ
Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει μέ νου. Friedrich Schelling. σελ. 13. σελ. 17. σελ.
σελ. 13 σελ. 17 σελ. 21 σελ. 49 σελ. 79 σελ. 185 σελ. 263 σελ. 323 σελ. 393 σελ. 453 σελ. 483 σελ. 509 σελ. 517 Ό λοι οι κα νό νες πε ρί με λέ της συ νο ψί ζο νται στον ε ξής έ να: Μά θε, μό νο προκει
Ευγενία Κατσιγιάννη* & Σπύρος Κρίβας**
ÅðéóôçìïíéêÞ Åðåôçñßäá Ðáéäáãùãéêïý ÔìÞìáôïò Ä.Å. Πανεπιστημίου Ιωαννίνων, 20 (2007), 41-55 Ευγενία Κατσιγιάννη* & Σπύρος Κρίβας** Αντιλήψεις γονέων και δασκάλων απέναντι στην κοινωνική ένταξη των ατόμων
των Κοι νω νι κών Λει τουρ γών που α πα σχο λού νται στους ι δι ω τι κούς παι δι κούς σταθ µούς όλης της χώρας O21R09
των Κοι νω νι κών Λει τουρ γών που α πα σχο λού νται στους ι δι ω τι κούς παι δι κούς σταθ µούς όλης της χώρας O21R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΚOΙ ΝΩΩ ΝΙ ΚΩΩΝ ΛΕΙ
ΧΑΙ ΡΕ ΤΙ ΣΜΟΣ ΤΟΥ ΠΡΟ Ε ΔΡΟΥ ΤΗΣ Ο ΤΟ Ε
ÊËÁÄÉÊÅÓ ÓÕËËÏÃÉÊÅÓ ÓÕÌÂÁÓÅÉÓ ΧΑΙ ΡΕ ΤΙ ΣΜΟΣ ΤΟΥ ΠΡΟ Ε ΔΡΟΥ ΤΗΣ Ο ΤΟ Ε σ. Σταύ ρου Κού κου. Κυ ρί ες και κύ ριοι, Συ να δέλ φισ σες και συ νά δελ φοι, Η σημερινή εκδήλωση του Ινστιτούτου Εργασίας της ΟΤΟΕ
των Ξε να γών Ρόδου Ot04R14
των Ξε να γών Ρόδου Ot04R14 να γούς που εργάζονται στη Ρόδο, οι οποίοι πα ρέ χουν τις υπηρεσίες τους στους εργοδότες τους τουριστικούς πράκτορες πραγµατικά µε σχέση εξηρτηµένης εργασίας Δ. ΚΑ ΘO ΡΙ ΣΜOΣ
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
των Καθηγητών Φροντιστηρίων Ξένων γλωσσών όλης της χώρας O18R11
των Καθηγητών Φροντιστηρίων Ξένων γλωσσών όλης της χώρας O18R11 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΚΑ ΘΗ ΓΗ ΤΩΩΝ ΦΡO ΝΤΙ ΣΤΗ ΡΙ ΩΩΝ ΞΕ ΝΩΩΝ ΓΛΩΩΣ ΣΩΩΝ O ΛΗΣ ΤΗΣ ΧΩΩ ΡΑΣ Α.
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
Θεωρία Γραφημάτων 3η Διάλεξη
Θεωρία Γραφημάτων 3η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 3η Διάλεξη
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
ΠΕΤΡΟΥ ΛΑΜΠΑΔΑΡΙΟΥ Η ΑΓΙΑ ΚΑΙ ΜΕΓΑΛΗ ΕΒΔΟΜΑΣ
ΠΕΤΡΟΥ ΛΑΜΠΑΔΑΡΙΟΥ Η ΑΓΙΑ ΚΑΙ ΜΕΓΑΛΗ ΕΒΔΟΜΑΣ ΤΗ ΑΓΙΑ ΚΑΙ ªΕΓΑΛΗ ΔΕΥΤΕΡΑ. Eις τους Αίνους. Ε ρ χο με νος ο Κυ ρι ος προς το ε κου ου σι ο ον πα α α θος τοις Α πο στο λοις ε λε γε εν εν τη η η η ο ο ο ο
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
ΠΑΡΑΣΚΕΥΗ Ε ΕΒ ΟΜΑ ΟΣ ΤΩΝ ΝΗΣΤΕΙΩΝ ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης
ΠΑΡΑΣΚΕΥΗ Ε ΕΒ ΟΜΑ ΟΣ ΤΩΝ ΝΗΣΤΕΙΩΝ ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης Ἦχος Πα Ἰωάννου Πρωτοψάλτου ε ε υ ρι ι ε ε κε κρα α ξα α προ ος σε ει σα α α κου ου σο ον μου ει σα κου σο ο ον μου Κυ υ ρι ι ι ε Κυ
των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09
των ερ γα το τε χνι τών εργοστασίων Τσιµεντολίθων, ό λης της χώρας O41R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΕΡ ΓΑ ΤO ΤΕ ΧΝΙ ΤΩΩΝ ΕΡ ΓO ΣΤΑ ΣΙ ΩΩΝ ΤΣΙ ΜΕ ΝΤO ΛΙ ΘΩΩΝ, ΤΣΙ
των ερ γα ζο µέ νων σε ε πι χει ρή σεις Έ ρευ νας - Ε ξό ρυ ξης, Με λε τών και Δ ιΰ λι σης Αρ γού Πε τρε λαί ου ό λης της χώ ρας K65R10
των ερ γα ζο µέ νων σε ε πι χει ρή σεις Έ ρευ νας - Ε ξό ρυ ξης, Με λε τών και Δ ιΰ λι σης Αρ γού Πε τρε λαί ου ό λης της χώ ρας K65R10 2 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΕΡ ΓΑΖO ΜΕ ΝΩΩΝ ΣΕ
Ἐν τῷ Ἑσπερινῷ τῆς Προηγιασμένης
Ἐν τῷ Ἑσπερινῷ τῆς Προηγιασμένης Ἦχος Γα υ ρι ι ε ε κε ε κρα ξα προ ος σε ε ε ει σα κου ου σο ο ο ο ον μου ου ει σα κου σο ον μου Κυ ρι ε ε Κυ ρι ε ε κε κρα ξα προς σε ε ει σα κου σο ο ο ον μου ου προ
Κα λόν ύπ νο και όνειρ α γλυκά
Κα λόν ύπ νο και όνειρ α γλυκά Οδηγίες ανάγνωσης Προσοχή! Μη διαβάσετε ποτέ μεγαλόφωνα το βιβλίο αυτό σε κάποιον που οδηγεί αυτοκίνητο ή άλλο όχημα, διότι το παραμύθι έχει ως σκοπό να αποκοιμίσει αυτόν
Θεωρία Γραφημάτων 6η Διάλεξη
Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη
των εργαζοµένων στα Συµβολαιογραφεία όλης της χώρας K67R09
των εργαζοµένων στα Συµβολαιογραφεία όλης της χώρας K67R09 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΕΡ ΓΑΖO ΜΕ ΝΩΩΝ ΣΤΑ ΣYΜ ΒO ΛΑΙ O ΓΡΑ ΦΕΙ Α O ΛΗΣ ΤΗΣ ΧΩΩ ΡΑΣ Α. ΓΙΑ ΤΗΝ ΚΩΩ
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO
BOYΛH TΩΝ EΛ ΛH NΩN ΔIEY ΘYN ΣH NO MO ΘE TI KOY EP ΓOY E BΔO MA ΔIAIO ΔEΛ TIO Tων νο µο σχε δί ων και των προ τά σε ων νό µων, που εκ κρε µούν στη Bου λή για συζήτηση και ψή φι ση και κα τα τέ θη καν µέ
Ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης
Ἐν τῷ ἑσπερινῷ τῆς Προηγιασμένης Ἦχος Νη υ υ υ υ ρι ι ι ι ε ε κε κρα α ξα προ ος σε ε ε ει σα κου ου ου σο ο ον μου ου ει σα κου σον μου Κυ υ υ υ ρι ι ι ι ε Κυ ρι ι ε ε κε κρα α ξα α προ ο ος σε ε ε ει
L 345/4 EL Επ σηµη Εφηµερ δα των Ευρωπαϊκ ν Κοινοτ των Τα ρθρα 3 ω 10 αντικαθ στανται απ το ακ λουθο κε µενο: «ρθρο 3 ρµακα για τον νθρω
19. 12. 98 EL Επ σηµη Εφηµερ δα των Ευρωπαϊκ ν Κοινοτ των L 345/3 Ι (Πρ ξει για την ισχ των οπο ων απαιτε ται δηµοσ ευση) ΚΑΝΟΝΙΣΜΟΣ (ΕΚ) αριθ. 2743/98 ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ τη 14η εκεµβρ ου 1998 για την τροποπο
Αρ χές Ηγε σί ας κα τά Πλά τω να
. Αρ χές Ηγε σί ας κα τά Πλά τω να ΚΕΙΜΕΝΟ: Υπτγος ε.α. Ά ρης Δια μα ντό που λος, Ψυχο λό γος, Δι δά κτω ρ Φι λο σο φί ας χή, στο σώ μα και στο πνεύ μα, 84 ΣΤΡΑΤΙΩΤΙΚΗ ΕΠΙΘΕΩΡΗΣΗ ΝΟΕΜΒΡΙΟΣ - ΔΕΚΕΜΒΡΙΟΣ
ΑΠΟΛΥΤΙΚΙΑ & ΘΕΟΤΟΚΙΑ ΕΣΠΕΡΑΣ 1-15 ΑΥΓΟΥΣΤΟΥ. Παρασκευή 1/08/2014 Ἑσπέρας Ψάλλοµεν τὸ Ἀπολυτίκιο τῆς 2/8/2014. Ἦχος.
ΑΟΛΥΤΙΚΙΑ & ΘΕΟΤΟΚΙΑ ΕΣΕΡΑΣ 1-15 ΑΥΟΥΣΤΟΥ αρασκευή 1/08/2014 Ἑσπέρας Ψάλλοµεν τὸ Ἀπολυτίκιο τῆς 2/8/2014 δ Ταχὺ προκατάλαβε ι α σι λει ον δι α δη µα ε στε φθη ση κο ρυ φη εξ α θλων ων υ πε µει νας υ περ
ΠΡΟΣΚΛΗΣΗ. Των μετόχων της Ανώνυμης Εταιρείας με την επωνυμία. Σε Τακτική Γενική Συνέλευση
ΠΡΟΣΚΛΗΣΗ Των μετόχων της Ανώνυμης Εταιρείας με την επωνυμία «AUTOGLASSSERVICE ΕΙΣΑΓΩΓΗ ΕΜΠΟΡΙΑ ΚΡΥΣΤΑΛΛΩΝ, ΑΝΤΑΛΛΑΚΤΙΚΩΝ &ΑΞΕΣΟΥΑΡ ΟΧΗΜΑΤΩΝ &ΤΟΠΟΘΕΤΗΣΗ ΚΡΥΣΤΑΛΛΩΝ ΟΧΗΜΑΤΩΝ ΕΜΠΟΡΙΚΗ ΕΤΑΙΡΕΙΑ». ΑΡ. Γ.Ε.Μ.Η.
των Κα θη γη τών Φρο ντι στη ρί ων Μέ σης Εκ παί δευ σης Ν. Ατ τι κής Ot01R12
των Κα θη γη τών Φρο ντι στη ρί ων Μέ σης Εκ παί δευ σης Ν. Ατ τι κής Ot01R12 ΚΩΩ Δ Ι ΚO ΠOΙ Η ΣΗ ΣYΛ ΛO ΓΙ ΚΩΩΝ ΡYΘ ΜΙ ΣΕ ΩΩΝ (ΣΣΕ & Δ Α) ΤΩΩΝ ΚΑ ΘΗ ΓΗ ΤΩΩΝ ΦΡO ΝΤΙ ΣΤΗ ΡΙ ΩΩΝ ΜΕ ΣΗΣ ΕΚ ΠΑΙ Δ ΕY ΣΗΣ Ν.