Αλγόριθμοι για ανάθεση συχνοτήτων και έλεγχο αποδοχής κλήσεων σε κυψελικά ασύρματα δίκτυα. (μέρος Ι)
|
|
- Ουρανία Αυγερινός
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Αλγόριθμοι για ανάθεση συχνοτήτων και έλεγχο αποδοχής κλήσεων σε κυψελικά ασύρματα δίκτυα (μέρος Ι)
2 Online vs offline Φανταστείτε ότι καλείστε σε συνέντευξη και γνωρίζετε εκ των προτέρων τις ερωτήσεις που θα σας τεθούν Έχετε τη δυνατότητα να μελετήσετε από πριν το σύνολο των ερωτήσεων και να δώσετε τις καλύτερες δυνατές απαντήσεις χωρίς να γνωρίζετε εκ των προτέρων τις ερωτήσεις που θα σας τεθούν Πρέπει να απαντάτε αμέσως σε κάθε ερώτηση Χωρίς να γνωρίζετε το μέλλον δηλ., τις επόμενες ερωτήσεις (Συνήθως) δε μπορείτε να αναιρέσετε ό,τι ήδη είπατε
3 Online vs offline Φανταστείτε ότι καλείστε σε συνέντευξη [OFFLINE] και γνωρίζετε εκ των προτέρων τις ερωτήσεις που θα σας τεθούν Έχετε τη δυνατότητα να μελετήσετε από πριν το σύνολο των ερωτήσεων και να δώσετε τις καλύτερες δυνατές απαντήσεις χωρίς να γνωρίζετε εκ των προτέρων τις ερωτήσεις που θα σας τεθούν [ONLINE] Πρέπει να απαντάτε αμέσως σε κάθε ερώτηση Χωρίς να γνωρίζετε το μέλλον δηλ., τις επόμενες ερωτήσεις (Συνήθως) δε μπορείτε να αναιρέσετε ό,τι ήδη είπατε
4 Online vs offline αλγόριθμοι OFFLINE: Γνωρίζουν το σύνολο της εισόδου μπορούν να κάνουν βέλτιστες επιλογές ONLINE: Π.χ., δρομολόγηση σε παράλληλο υπολογιστή Η είσοδος τους αποκαλύπτεται σταδιακά πρέπει σε κάθε βήμα να λαμβάνουν απόφαση (συνήθως μη αναστρέψιμη) χωρίς να γνωρίζουν το μέλλον, έχοντας μόνο πλήρη ή μερική γνώση του παρελθόντος Ανάθεση συχνοτήτων σε χρήστες κυψελικού δικτύου
5 Ντετερμινιστική vs πιθανοτική προσέγγιση Υπάρχουν 7 ντουλαπάκια καιένα ζάριμε 7 όψεις Διαλέγετε πάντα το κόκκινο ντουλαπάκι με ετικέτα 1 Διαθέτετε πολλές επιλογές και εσείς προτιμάτε πάντα (δηλ., με πιθανότητα= 1) μία συγκεκριμένη επιλογή (ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ) Ρίχνετε το ζάρι και ανάλογα με το τι θα φέρει διαλέγετε ντουλαπάκι με την αντίστοιχη ετικέτα Διαθέτετεπολλέςεπιλογέςκαιπροτιμάτεόποιασαςυποδεικνύειμιαπηγή τυχαιότητας, π.χ., έναζάρι (ΠΙΘΑΝΟΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ) Αν το ζάρι «φέρνει»/ υποδεικνύει πάντα την ίδια επιλογή ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ
6 Ντετερμινιστικοί vs πιθανοτικοί αλγόριθμοι Ντετερμινιστικοί αλγόριθμοι: όποτε καλούνται να αποφασίσουν μεταξύ διαφορετικών επιλογών, προτιμούν σίγουρα μια συγκεκριμένη επιλογή Επιλέγω πάντα το μικρότερο από τα k στοιχεία ενός συνόλου αριθμών Πιθανοτικοί αλγόριθμοι: όποτε καλούνται να αποφασίσουν μεταξύ διαφορετικών επιλογών, προτιμούν ό,τι τους υποδεικνύει κάποια πηγή τυχαιότητας Π.χ., επιλέγω ισοπίθανα κάποιο από τα k στοιχεία ενός συνόλου αριθμών
7 Άπληστοι (greedy) αλγόριθμοι Κάνουν τη βέλτιστη επιλογή σε κάθε βήμα ελπίζοντας ότι αυτό θα οδηγήσει σε βέλτιστη λύση στο μέλλον Παράδειγμα: Έχουμε Μ EUR για να αγοράσουμε γλυκά Υπάρχουν Ν τεμάχια γλυκών και το καθένα έχει κάποιο κόστος Ταξινομούμεταγλυκάαπότοφθηνότεροστοακριβότεροκαι αγοράζουμε από την αρχή προς το τέλος της λίστας μέχρι να τελειώσουν χρήματα Αν κάθε φορά αγοράζουμε το φθηνότερο, ελπίζουμε πως συνολικά θα αγοράσουμε τα περισσότερα δυνατά γλυκά με βάση τον προϋπολογισμό μας
8 Το πρόβλημα του σακιδίου (the knapsack problem) Ποια κουτιά θα διαλέγατε για να συγκεντρώσετε το μέγιστο χρηματικό ποσό και να μην ξεπεράσετε τη χωρητικότητα της τσάντας σας; Το πρόβλημα αυτό συχνά ανακύπτει σε προβλήματα ανάθεσης (κατανομής) πόρων Είναι ένα δύσκολο πρόβλημα, δηλ., δεν έχει βρεθεί αλγόριθμος καλύτερος από το να ψάξουμε όλες τις πιθανές λύσεις
9 Το πρόβλημα του σακιδίου (the knapsack problem) Άπληστος (προσεγγιστικός) αλγόριθμος Διάταξε τα αντικείμενα σε φθίνουσα σειρά χρηματικής αξίας: κίτρινο (10), πράσινο (4), μπλε/γκρι (2), πορτοκαλί (1) Χρηματική αξία ίδια; Διάταξε τα αντικείμενα σε αύξουσα σειρά βάρους: κίτρινο (10), πράσινο (4), γκρι (2,1), μπλε (2,2), πορτοκαλί (1) Πάρε όσα περισσότερα αντικείμενα μπορείς με βάση την παραπάνω λίστα ώστε να μην ξεπεράσεις τη χωρητικότητα του σακιδίου: Υπάρχουν πολλά τεμάχια από κάθε αντικείμενο; Υπάρχει ένα τεμάχιο ανά αντικείμενο;
10 Το πρόβλημα του σακιδίου (the knapsack problem) Υπάρχουν πολλά τεμάχια από κάθε αντικείμενο Κίτρινο (10,4), Κίτρινο (10,4), Κίτρινο (10,4), Γκρι (2,1), Γκρι (2,1), Γκρι (2,1): 36$,15kg Πετυχαίνουμε πάντα τουλάχιστον 50% από το καλύτερο που θα μπορούσε να γίνει Υπάρχει ένα τεμάχιο από κάθε αντικείμενο Κίτρινο (10,4), Γκρι (2,1), Μπλε (2,2), Πορτοκαλί (1,1): 15$,8kg 15kg, 36$
11 Το πρόβλημα του σακιδίου (the knapsack problem) Υπάρχουν πολλά τεμάχια από κάθε αντικείμενο Κίτρινο (10,4), Κίτρινο (10,4), Κίτρινο (10,4), Γκρι (2,1), Γκρι (2,1), Γκρι (2,1): 36$,15kg Πετυχαίνουμε πάντα τουλάχιστον 50% από το καλύτερο που θα μπορούσε να γίνει Υπάρχει ένα τεμάχιο από κάθε αντικείμενο Κίτρινο (10,4), Γκρι (2,1), Μπλε (2,2), Πορτοκαλί (1,1): 15$,8kg 8kg, 36$
12 Online αλγόριθμοι Αλγόριθμοι που πρέπει να λάβουν αποφάσεις χωρίς πλήρη γνώση της εισόδου Διαθέτουν πλήρη (ή μερική) γνώση του παρελθόντος αλλά καμία (ή μερική) γνώση του μέλλοντος Για τέτοιου είδους προβλήματα σχεδιάζονται αλγόριθμοι που είναι ανταγωνιστικοί σε σχέση με κάποιον βέλτιστο offline αλγόριθμο, δηλ., τον αλγόριθμο που έχει πλήρη γνώση του μέλλοντος
13 Το πρόβλημα ενοικίασης σκι (The ski rental problem) Επιθυμείτε να πάτε για σκι για κάποιες μέρες d δεν ξέρετε για πόσες... Η ενοικίαση του εξοπλισμού σκι κοστίζει 1 EUR τη μέρα ενώ η αγορά του εξοπλισμού αυτού κοστίζει 10 (y) EUR (άπαξ) Κάθε μέρα μπορείτε να αποφασίσετε αν θα νοικιάσετε τον εξοπλισμό για μία μέρα ή αν να τον αγοράσετε Τι πρέπει να κάνετε (ακολουθώντας ντετερμινιστική στρατηγική) δεδομένου ότι δε γνωρίζετε εκ των προτέρων για πόσες μέρες θα κάνετε σκι προκειμένου να ελαχιστοποιήσετε το συνολικό κόστος για τον εξοπλισμό; Δηλ., αν τελικά κάνετε σκι για 1 μέρα θα σας συνέφερε να νοικιάσετε τον εξοπλισμό πληρώνοντας 1 EUR Αν τελικά κάνετε σκι για 30 μέρες θα σας συνέφερε να αγοράσετε τον εξοπλισμό πληρώνοντας 10 EUR αντί να τον νοικιάσετε πληρώνοντας συνολικά 30 EUR...
14 Το πρόβλημα ενοικίασης σκι (The ski rental problem) Αν γνωρίζατε εξ αρχής τις μέρες d που θα κάνετε σκι, η απόφαση θα ήταν απλή: Αν θα κάνατε σκι περισσότερες από 10 (y) φορές, θα αγοράζατε αμέσως τον εξοπλισμό, αλλιώς θα τον νοικιάζατε Το κόστος αυτού του αλγορίθμου είναι min(d,y) Αυτήηστρατηγικήπουέχειπλήρηγνώσητουμέλλοντοςκαλείταιoffline Αλλά δε γνωρίζετε εξ αρχής τις μέρες d που θα κάνετε σκι Μια στρατηγική θα ήταν η εξής: Θα νοικιάζατε τον εξοπλισμό για k 1 φορές και θα τον αγοράζατε μετά κατά την k φορά Αν θέσετε k=10 (y) δε θα πληρώσετε ποτέ περισσότερο από το διπλάσιο του κόστους της offline στρατηγικής Αν νοικιάσουμε τον εξοπλισμό για 9 μέρες και τον αγοράσουμε τη 10 η θα πληρώσουμε: 9*1EUR+10EUR=19EUR Με βάση την offline στρατηγική το αντίστοιχο κόστος θα ήταν 10 EUR ΓΙΑΤΙ;
15 Το πρόβλημα ενοικίασης σκι (The ski rental problem) Όταν αγοράσετε τον εξοπλισμό κατά τη k(=y) επίσκεψη ισχύει ότι d y Το συνολικό σας κόστος θα είναι: k 1+y =2y 1 Το αντίστοιχο κόστος της offline στρατηγικής θα ήταν min(d, y) = y O λόγος ανταγωνιστικότητας είναι (2y 1)/y = 2 1/y Επομένως, η στρατηγική σας είναι (2 1/y) ανταγωνιστική
16 Λόγος ανταγωνιστικότητας (Competitive ratio) Ένας online αλγόριθμος A είναι c ανταγωνιστικός αν υπάρχει σταθερά b έτσι ώστε για όλες τις ακολουθίες s στιςοποίεςεκτελείται ο αλγόριθμος να ισχύει: A(s) < c OPT(s) + b A(s) το κόστος του A για την ακολουθία s OPT(s) το βέλτιστο offline κόστος για την ίδια ακολουθία Ο λόγος ανταγωνιστικότητας (Competitive ratio) είναι φράγμα χειρότερης περίπτωσης
17 Το πρόβλημα ενοικίασης σκι (The ski rental problem) Υπάρχει καλύτερη στρατηγική από αυτή που περιγράψαμε; Έστω ότι νοικιάζουμε τον εξοπλισμό για k μέρες και τον αγοράζουμε μετά. Το συνολικό κόστος είναι k 1+y. Το βέλτιστο (ελάχιστο) offline κόστος είναι min(k,y). Για κάθε k, ο λόγος CR=(k 1+y)/min(k,y) είναι τουλάχιστον (2 1/y): ΓΙΑΤΙ; Αν k y τότε CR= (k 1+y)/k=1+(y 1)/k που γίνεται ελάχιστο όταν y 1/k γίνεται ελάχιστο: αυτό συμβαίνει όταν το k παίρνει τη μέγιστη δυνατή τιμή που είναι y και τότε y 1/k=y 1/y=1 1/y CR 1+1 1/y=2 1/y Αν k>y τότε CR= (k 1+y)/y=1+(k 1)/y που γίνεται ελάχιστο όταν k 1/y γίνεται ελάχιστο: αφού k>y αυτό συμβαίνει όταν το k=y+1 και τότε k 1/y=y+1 1/y=1 CR 1+1 = 2 Επομένως, κάθε στρατηγική είναι τουλάχιστον (2 1/y) ανταγωνιστική
18 Ασύρματα δίκτυα Πρόβλημα ανάθεσης συχνοτήτων σε κυψελικά δίκτυα Πρόβλημα ελέγχου αποδοχής κλήσεων σε δίκτυα με κυψελικές, επίπεδες, αυθαίρετες τοπολογίες
19 On line προβλήματα χρήστες/εκπομποί εμφανίζονται ένας ένας σταδιακά και η ακολουθία μπορεί να διακοπεί οποιαδήποτε στιγμή αλγόριθμοι αποκρίνονται άμεσα αποφάσεις αλγορίθμων δε μπορούν να αλλάξουν Εκτίμηση απόδοσης αλγορίθμων μέθοδος ανταγωνιστικής ανάλυσης μέτρο απόδοσης = τιμή του λόγου ανταγωνιστικότητας
20 Κυψελικά ασύρματα δίκτυα Ένας γεωγραφικός χώρος χωρίζεται σε περιοχές (κυψέλες) Κάθε περιοχή αποτελεί την εμβέλεια ενός σταθμού βάσης Οι σταθμοί βάσης διασυνδέονται μέσω ενός δικτύου υψηλής ταχύτητας
21
22
23 Επικοινωνία Απαιτείται πάντα επικοινωνία μεταξύ του χρήστη και του σταθμού βάσης του Τεχνολογία Πολύπλεξης Διαμοιρασμού Συχνότητας (FDM Frequency Division Multiplexing): πολλοί χρήστες σε μία κυψέλη μπορούν ταυτόχρονα να επικοινωνήσουν με το σταθμό βάσης τους χρησιμοποιώντας διαφορετικές συχνότητες [Hale 80]
24 Τεχνολογία FDM FDM: Frequency Division Multiplexing Πολυπλεξία Διαμοιρασμού Συχνότητας Πολυπλεξία: Τεχνική για χρήση ενός κοινού μέσου από πολλούς χρήστες Διαμοιρασμός συχνότητας: το φάσμα συχνοτήτων διαιρείται σε επιμέρους συχνότητες και κάθε μία από αυτές εξυπηρετεί άλλον χρήστη
25 Γραφήματα (graphs) Αναπαράσταση συνόλου αντικειμένων στην οποία κάποια αντικείμενα συνδέονται μεταξύ τους Τα αντικείμενα αναπαρίστανται από αφηρημένα κατασκευάσματα που καλούνται κορυφές και οι σύνδεσμοι μεταξύ κάποιων κορυφών καλούνται ακμές Κορυφές που συνδέονται με ακμή καλούνται γειτονικές Βαθμός κορυφής: πόσες άλλες κορυφές συνδέονται με αυτή; Βαθμός γραφήματος: μέγιστος βαθμός κορυφής Συνήθως τα γραφήματα αναπαρίστανται με διαγράμματα που περιέχουν σύνολο κορυφών (τελείες) και σύνολο ακμών (γραμμές μεταξύ κάποιων τελειών) Ηλέξη"γράφημα" πρωτοχρησιμοποιήθηκε με αυτή την έννοια το 1878 από τον Άγγλο μαθηματικό James Joseph Sylvester
26 Κατευθυνόμενα και μη κατευθυνόμενα γραφήματα Τα γραφήματα χαρακτηρίζονται κατευθυνόμενα ή μη κατευθυνόμενα ανάλογα με το αν οι ακμές τους είναι κατευθυνόμενες ή μη κατευθυνόμενες Αν οι κορυφές αναπαριστούν άτομα σε ένα party και υπάρχει ακμή μεταξύ δύο κορυφών αν τα αντίστοιχα άτομα ανταλλάσσουν χειραψία τότε προκύπτει ένα μη κατευθυνόμενο γράφημα Αν ένα άτομο A χαιρετάει ένα άτομο B τότε και το άτομο B χαιρετάει το άτομο A (συμμετρική σχέση) Αντίθετα, αν οι κορυφές αναπαριστούν άτομα σε ένα party και υπάρχει ακμή μεταξύ δύο κορυφών αν τα αντίστοιχα άτομα γνωρίζονται τότε προκύπτει ένα κατευθυνόμενο γράφημα Αν ένα άτομο A γνωρίζει ένα άτομο B δεν είναι απαραίτητο το άτομο B να γνωρίζει επίσης το άτομο A (όχι απαραίτητα συμμετρική σχέση)
27 Ιδιότητες γραφημάτων Γειτονικές κορυφές σε κατευθυνόμενο γράφημα λέγονται διαδοχικές Ένα γράφημα στο οποίο υπάρχουν όλες οι δυνατές ακμές μεταξύ των κορυφών του λέγεται πλήρες Ένα μη κατευθυνόμενο γράφημα είναι συνεκτικό όταν υπάρχει μονοπάτι (δηλ., ακολουθία ακμών) που συνδέει οποιεσδήποτε 2 κορυφές του αλλιώς είναι μη συνεκτικό Ένα κατευθυνόμενο γράφημα είναι ισχυρά συνεκτικό όταν υπάρχει μονοπάτι και προς τις δύο κατευθύνσεις που συνδέει οποιεσδήποτε 2 κορυφές του Είναι ασθενώς συνεκτικό όταν αντικαθιστώντας τις κατευθυνόμενες ακμές με μη κατευθυνόμενες προκύπτει συνεκτικό γράφημα Γράφημα με βάρη στις κορυφές ήτιςακμές του λέγεται ζυγισμένο 3 2 7
28 Γιατί χρησιμοποιούμε γραφήματα; Συνήθως είναι δύσκολο αν όχι ανέφικτο να μελετήσουμε ένα πρόβλημα σε πραγματικές συνθήκες Δε μπορώ να κάνω δοκιμές για τρόπους ανάθεσης συχνοτήτων με πραγματικό κυψελικό δίκτυο λόγω κόστους, αποστάσεων, δυσκολίας εγκατάστασης, μεγέθους δικτύου κτλ Δε μπορώ να κάνω δοκιμές για τρόπους ελαχιστοποίησης κατανάλωσης ενέργειας με πραγματικά WSN (ασύρματα δίκτυα αισθητήρων) λόγω κόστους, αποστάσεων, δυσκολίας εγκατάστασης, μεγέθους δικτύου κτλ
29 Πώς χρησιμοποιούμε γραφήματα; Απεικονίζω τα στοιχεία του πραγματικού προβλήματος σε κορυφές που συνδέονται μεταξύ τους με ακμές και μελετώ το πρόβλημα με «μυαλό, μολύβι & χαρτί και υπολογιστή» αντί «στ αλήθεια» Για να δοκιμάσω αν είναι καλός ένας αλγόριθμος ανάθεσης συχνοτήτων σε κυψελικά ασύρματα δίκτυα κατασκευάζω ένα γράφημα για το δίκτυο Απεικονίζω τις κυψέλες του δικτύου (δηλ., του σταθμούς βάσης) σε κορυφές και για γειτονικές κυψέλες τοποθετώ ακμή μεταξύ των κορυφών σε ένα γράφημα Π.χ., για να δοκιμάσω την ιδέα μου σε ένα δίκτυο με σταθμούς βάσης αρκεί να προσθέσω κορυφές σε ένα σχήμα Εκφράζω την ιδέα (που ήρθε στο μυαλό) μου προσαρμοσμένη σε κορυφές και ακμές Αναλύω την ιδέα μου με μολύβι και χαρτί για να διαπιστώσω ποια απόδοση μπορώ να ελπίζω ότι θα επιτύχει Χρησιμοποιώ προσομοιώσεις δηλ., υπολογιστή, για να ελέγξω πειραματικά το πώς λειτουργεί πρακτικά ηιδέαμου
30 Ακανόνιστα δίκτυα Γράφημα παρεμβολών
31 Γράφημα παρεμβολών Κυψελικά δίκτυα απόσταση επαναχρησιμοποίησης (k): η ελάχιστη απόσταση δύο κυψελών στις οποίες μπορεί να χρησιμοποιηθεί η ίδια συχνότητα
32 Ανάθεση συχνοτήτων Δεδομένα Ένα κυψελικό δίκτυο και χρήστες που επιθυμούν να επικοινωνήσουν με τους σταθμούς βάσης τους Ζητούμενο Ανάθεση συχνοτήτων σε όλους τους χρήστες, έτσι ώστε: Χρήστες στην ίδια ή σε γειτονικές κυψέλες να λαμβάνουν διαφορετικές συχνότητες Ο αριθμός των χρησιμοποιούμενων συχνοτήτων να ελαχιστοποιείται
33 Χρωματισμοί σε γραφήματα Αν φανταστούμε: συχνότητες χρώματα χρήστες που επιθυμούν να επικοινωνήσουν με το σταθμό βάσης τους κορυφές του γραφήματος παρεμβολών του ασύρματου δικτύου Τότε: πρόβλημα ανάθεσης συχνοτήτων στους χρήστες του δικτύου πρόβλημα ελάχιστου πολυχρωματισμού του γραφήματος παρεμβολών του δικτύου το γράφημα σχηματίζεται σταδιακά οι κορυφές παρουσιάζονται μία μία καθώς εμφανίζονται και οι κλήσεις
34 Χρωματισμοί σε γραφήματα
35 Έλεγχος αποδοχής κλήσεων Δεδομένα Ένα κυψελικό δίκτυο που υποστηρίζει w συχνότητες και χρήστες που επιθυμούν να επικοινωνήσουν με τους σταθμούς βάσης τους Ζητούμενο Ανάθεση συχνοτήτων σε κάποιους από τους χρήστες, έτσι ώστε: Χρήστες στην ίδια ή σε γειτονικές κυψέλες να λαμβάνουν διαφορετικές συχνότητες Να χρησιμοποιούνται το πολύ w συχνότητες Ο αριθμός των χρηστών που εξυπηρετούνται να μεγιστοποιείται
36 Εύρεση ανεξάρτητων συνόλων Αν φανταστούμε: συχνότητες χρώματα χρήστες που επιθυμούν να επικοινωνήσουν με το σταθμό βάσης τους κορυφές του γραφήματος παρεμβολών του ασύρματου δικτύου Τότε: πρόβλημα ελέγχου κλήσεων πρόβλημα εύρεσης ανεξάρτητων συνόλων στο γράφημα παρεμβολών του δικτύου το γράφημα παρεμβολών σχηματίζεται σταδιακά οι κορυφές του παρουσιάζονται μία μία καθώς εμφανίζονται και οι κλήσεις
37 Εύρεση ανεξάρτητων συνόλων
38 Ανεξάρτητα σύνολα Σύνολα κορυφών μεταξύ των οποίων ΔΕΝ υπάρχουν ακμές Το να βρούμε μέγιστο ανεξάρτητο σύνολο σε ένα γράφημα είναι υπολογιστικά δύσκολο πρόβλημα Γενικά, δε μπορώ να κάνω κάτι καλύτερο από το να ψάξω όλες τις πιθανές λύσεις
39 Ανεξάρτητα σύνολα και κυψελικά δίκτυα Γειτονικά κελιά ΔΕΝ χρησιμοποιούν τις ίδιες συχνότητες
40 Ανεξάρτητα σύνολα και κυψελικά δίκτυα Γειτονικά κελιά ΔΕΝ χρησιμοποιούν τις ίδιες συχνότητες
41 Ανεξάρτητα σύνολα και κυψελικά δίκτυα Γειτονικά κελιά ΔΕΝ χρησιμοποιούν τις ίδιες συχνότητες
42 Ανεξάρτητα σύνολα και κυψελικά δίκτυα Η μέγιστη γειτονιά στην οποία μπορούν να χρησιμοποιηθούν οι ίδιες συχνότητες έχει μέγεθος 3 Γειτονικά κελιά ΔΕΝ χρησιμοποιούν τις ίδιες συχνότητες
43 Χρωματισμός Δεδομένου γραφήματος, χρωμάτισε τις κορυφές του ώστε γειτονικές να μη λαμβάνουν το ίδιο χρώμα Χρωματισμός κορυφών γραφήματος (μπορεί να έχω και χρωματισμό ακμών, όψεων ) Χρωματικός αριθμός, k: ελάχιστος αριθμός χρωμάτων για χρωματισμό γραφήματος Το να βρούμε το χρωματικό αριθμό γραφημάτων είναι, γενικά, υπολογιστικά δύσκολο πρόβλημα Γενικά, δε μπορώ να κάνω κάτι καλύτερο από το να ψάξω όλες τις πιθανές λύσεις
44 Χρωματισμός Δεδομένου γραφήματος, χρωμάτισε τις κορυφές του ώστε γειτονικές να μη λαμβάνουν το ίδιο χρώμα Χρωματισμός κορυφών γραφήματος (μπορεί να έχω και χρωματισμό ακμών, όψεων ) Χρωματικός αριθμός, k: ελάχιστος αριθμός χρωμάτων για χρωματισμό γραφήματος Το να βρούμε το χρωματικό αριθμό γραφημάτων είναι, γενικά, υπολογιστικά δύσκολο πρόβλημα Γενικά, δε μπορώ να κάνω κάτι καλύτερο από το να ψάξω όλες τις πιθανές λύσεις Ειδικά για επίπεδα γραφήματα: k=1: εύκολο k=2: εύκολο (δείχνω ότι γράφημα είναι διμερές με DFS/BFS) k=3: δύσκολο k 4: υπάρχει θεώρημα σύμφωνα με το οποίο κάθε επίπεδο γράφημα είναι 4 χρωματίσιμο
45 Χρωματικός αριθμός Ελάχιστος αριθμός χρωμάτων για το χρωματισμό των κορυφών ενός γραφήματος
46 Χρωματισμός και ανεξάρτητα σύνολα Παρατηρήστε ότι: Οι κόκκινες κορυφές είναι ένα ανεξάρτητο σύνολο στο γράφημα Οι πράσινες κορυφές είναι ένα ανεξάρτητο σύνολο στο γράφημα Οι μπλε κορυφές είναι ένα ανεξάρτητο σύνολο στο γράφημα
47 Ανεξάρτητα σύνολα, χρωματισμός, ανάθεση συχνοτήτων, έλεγχος αποδοχής κλήσεων Ανάθεση συχνοτήτων χρωματισμός Έλεγχοςαποδοχήςκλήσεων ανεξάρτητα σύνολα
48 Ανταγωνιστική ανάλυση Ανάθεση συχνοτήτων Κόστος: Αριθμός χρησιμοποιούμενων συχνοτήτων Έλεγχος αποδοχής κλήσεων Κέρδος: Αριθμός εξυπηρετούμενων χρηστών Λόγος ανταγωνιστικότητας: Λόγος ανταγωνιστικότητας : C A( σ ) ρ = max σ C ( σ ) OPT ρ B = max σ B OPT A ( σ ) ( σ ) E[C A( σ )] ρ = max σ C ( σ ) OPT B ρ = max σ E[B OPT A ( σ ) ( σ )]
ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ
ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ Εύρεση ελάχιστων μονοπατιών Αλγόριθμος του ijkstra Θέματα μελέτης Πρόβλημα εύρεσης ελάχιστων μονοπατιών σε γραφήματα (shortest path problem) Αλγόριθμος
Διαβάστε περισσότεραΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ
ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, Κεφάλαιο 4 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 4) 1 Θέματα
Διαβάστε περισσότεραΕιδικά θέματα σε κινητά και ασύρματα δίκτυα
Ειδικά θέματα σε κινητά και ασύρματα δίκτυα Ενότητα 4: Ανάθεση συχνοτήτων και έλεγχος αποδοχής κλήσεων σε ασύρματα κυψελικά δίκτυα Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης
Διαβάστε περισσότεραΕισαγωγή στους Αλγόριθμους
Εισαγωγή στους Αλγόριθμους Ενότητα 14: Εύρεση ελάχιστων μονοπατιών σε γραφήματα Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών
Διαβάστε περισσότεραΑλγόριθμοι για ανάθεση συχνοτήτων και έλεγχο αποδοχής κλήσεων σε κυψελικά ασύρματα δίκτυα. (μέρος ΙΙ)
Αλγόριθμοι για ανάθεση συχνοτήτων και έλεγχο αποδοχής κλήσεων σε κυψελικά ασύρματα δίκτυα (μέρος ΙΙ) Ανάθεση συχνοτήτων Ο αλγόριθμος σταθερών αναθέσεων FA (Fixed Allocation) Ο άπληστος (Greedy) αλγόριθμος
Διαβάστε περισσότεραΑλγόριθμοι για ανάθεση συχνοτήτων και έλεγχο αποδοχής κλήσεων σε κυψελικά ασύρματα δίκτυα
Αλγόριθμοι για ανάθεση συχνοτήτων και έλεγχο αποδοχής κλήσεων σε κυψελικά ασύρματα δίκτυα (μέρος ΙIΙ) Έλεγχος αποδοχής κλήσεων Οάπληστος(Greedy) αλγόριθμος ελέγχου αποδοχής κλήσεων Ο αλγόριθμος ταξινόμησης
Διαβάστε περισσότεραΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1
ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 Θέματα μελέτης Πρόβλημα αναζήτησης σε γραφήματα Αναζήτηση κατά βάθος (Depth-first search DFS) Αναζήτηση κατά πλάτος (Breadth-first search BFS) 2 Γράφημα (graph) Αναπαράσταση συνόλου
Διαβάστε περισσότεραΕισαγωγή στους Αλγόριθμους
Εισαγωγή στους Αλγόριθμους Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Παρουσίαση και μελέτη αλγορίθμων
Διαβάστε περισσότεραΤο Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)
Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Τι είναι το Πρόβλημα της Πινακοθήκης; Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη
Διαβάστε περισσότεραΤο Πρόβλημα της Πινακοθήκης (The Art Gallery Problem)
Το Πρόβλημα της Πινακοθήκης (The Art Gallery Problem) Διατύπωση Σας ανήκει μια πινακοθήκη και επιθυμείτε να τοποθετήσετε κάμερες ασφαλείας έτσι ώστε όλη η γκαλερί να είναι προστατευμένη από κλέφτες. Σε
Διαβάστε περισσότεραΘεωρία Γραφημάτων 10η Διάλεξη
Θεωρία Γραφημάτων 0η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 07 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 0η Διάλεξη
Διαβάστε περισσότεραΧρωματισμός γραφημάτων
Χρωματισμός γραφημάτων Χρωματισμός γραφημάτων Έστω γράφημα G Αποδίδουμε 1 ακριβώς χρώμα σε κάθε κορυφή του G έτσι ώστε κορυφές που συνδέονται με ακμή να λαμβάνουν διαφορετικά χρώματα Χρωματισμός γραφημάτων
Διαβάστε περισσότεραΘεωρία Γραφημάτων 8η Διάλεξη
Θεωρία Γραφημάτων 8η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 8η Διάλεξη
Διαβάστε περισσότεραΑλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST)
Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST) Γεννητικό δέντρο (Spanning Tree) Ένα γεννητικό δέντρο για ένα γράφημα G είναι ένα υπογράφημα του G που είναι δέντρο (δηλ., είναι συνεκτικό και δεν
Διαβάστε περισσότεραΤο πρόβλημα μονοδρόμησης (The One-Way Street Problem)
Το πρόβλημα μονοδρόμησης (The One-Way Street Problem) Το πρόβλημα Σχετίζεται με τη διαχείριση της κίνησης οχημάτων στους δρόμους Αν δεν υπήρχαν καθυστερήσεις στην κίνηση στις πόλεις Αποφυγή σπατάλης ενέργειας
Διαβάστε περισσότεραγια NP-Δύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Διαβάστε περισσότεραΘέματα υπολογισμού στον πολιτισμό
Θέματα υπολογισμού στον πολιτισμό Ενότητα 9: Το πρόβλημα της Πινακοθήκης (The art gallery problem) Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος
Διαβάστε περισσότεραΔρομολόγηση Και Πολύχρωματισμός. Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026
Δρομολόγηση Και Πολύχρωματισμός Μονοπατιών Γραφημάτων ΚΑΡΑΓΕΩΡΓΟΣ ΤΙΜΟΘΕΟΣ Α.Μ 1026 Εισαγωγή. Το πρόβλημα με το οποίο θα ασχοληθούμε εδώ είναι γνωστό σαν: Δρομολόγηση και Πολύ-χρωματισμός Διαδρομών (Routing
Διαβάστε περισσότεραΠροσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αντιμετώπιση NP- υσκολίας Αν P NP, όχι αλγόριθμος
Διαβάστε περισσότεραχ(k n ) = n χ(c 5 ) = 3
Διάλεξη 20: 16.12.26 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Παναγιώτης Ρεπούσκος 20.1 Βασικές Ιδιότητες Θεώρημα 20.1 Για ένα πλέγμα Γ r r, ισχύει ότι bn(γ r r ) r + 1. Απόδειξη: Κατασκευάζουμε
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος
Διαβάστε περισσότεραΦροντιστήριο 11 Λύσεις
Άσκηση 1 Φροντιστήριο 11 Λύσεις Να αποδείξετε ότι η κλάση Ρ είναι κλειστή ως προς τις πράξεις της ένωσης, της συναρμογής και του συμπληρώματος. Θα πρέπει να δείξουμε ότι: (α) Ένωση: Αν οι Λ 1 και Λ 2 είναι
Διαβάστε περισσότεραΚατανεμημένα Συστήματα Ι
Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου 11η Διάλεξη 12 Ιανουαρίου 2017 1 Ανεξάρτητο σύνολο Δοθέντος ενός μη κατευθυνόμενου γραφήματος G = (V, E), ένα ανεξάρτητο σύνολο (independent set) είναι ένα
Διαβάστε περισσότεραΠροσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα
Προσεγγιστικοί Αλγόριθμοι για NP- ύσκολα Προβλήματα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια
Διαβάστε περισσότεραΤο πρόβλημα του σταθερού γάμου
Το πρόβλημα του σταθερού γάμου Γάμος και Θεωρία Γραφημάτων Γάμος πρόβλημα ταιριάσματος Θα δούμε έναν αλγόριθμο ταιριάσματος (matching algorithm) που χρησιμοποιείται σε πολλές εφαρμογές Γνωριμίες (γραφεία,
Διαβάστε περισσότεραΤυχαιοκρατικοί Αλγόριθμοι
Πιθανότητες και Αλγόριθμοι Ανάλυση μέσης περίπτωσης Μελέτα τη συμπεριφορά ενός αλγορίθμου σε μια «μέση» είσοδο (ως προς κάποια κατανομή) Τυχαιοκρατικός αλγόριθμος Λαμβάνει τυχαίες αποφάσεις καθώς επεξεργάζεται
Διαβάστε περισσότερα... a b c d. b d a c
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ ιδάσκοντες: Φωτάκης, Σούλιου η Γραπτή Εργασία Θέµα (Αρχή του Περιστερώνα, 8 µονάδες) α) Σε ένα διάστηµα
Διαβάστε περισσότεραΔιακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότερα(n + r 1)! (n 1)! (n 1)!
Στοιχειώδης συνδυαστική Διανομή αντικειμένων σε υποδοχές Διανομή Αντικειμένων σε Υποδοχές Με πόσους τρόπους μπορούμε να διανείμουμε r αντικείμενα (διακεκριμένα ή όχι) σε n υποδοχές. Διακρίνουμε περιπτώσεις:
Διαβάστε περισσότεραΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων
ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Αντίστοιχη βαθμολογικά και ποιοτικά με την
Διαβάστε περισσότεραΘεωρία Γραφημάτων 11η Διάλεξη
Θεωρία Γραφημάτων 11η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 11η Διάλεξη
Διαβάστε περισσότεραΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αρκετά απαιτητικά ερωτήματα,
Διαβάστε περισσότεραΑλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Ροή Δικτύου Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Μοντελοποίηση Δικτύων Μεταφοράς Τα γραφήματα χρησιμοποιούνται συχνά για την μοντελοποίηση
Διαβάστε περισσότεραΑλγοριθμικές Τεχνικές. Brute Force. Διαίρει και Βασίλευε. Παράδειγμα MergeSort. Παράδειγμα. Τεχνικές Σχεδιασμού Αλγορίθμων
Τεχνικές Σχεδιασμού Αλγορίθμων Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και Βασίλευε (Divide and
Διαβάστε περισσότεραΠροσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Διαβάστε περισσότεραe 2 S F = [V (H), V (H)]. 3-1 e 1 e 3
Διάλεξη 3: 19.10.2016 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Βασίλης Λίβανος & Σ. Κ. 3.1 Ακμοδιαχωριστές, Τομές, Δεσμοί Ορισμός 3.1 Ακμοδιαχωριστής (edge-separator) ενός γραφήματος =
Διαβάστε περισσότεραΑλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Διδάσκοντες: E. Ζάχος, Α. Παγουρτζής Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο
Διαβάστε περισσότεραΠανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ
Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 4 η Διάλεξη Κύκλοι και μονοπάτια Hamilton Ικανές ή αναγκαίες συνθήκες για ύπαρξη κύκλων Αλγόριθμος κατασκευής μονοπατιών Hamilton
Διαβάστε περισσότεραΚατανεμημένα Συστήματα Ι
Κατανεμημένα Συστήματα Ι Εκλογή αρχηγού και κατασκευή BFS δένδρου σε σύγχρονο γενικό δίκτυο Παναγιώτα Παναγοπούλου Περίληψη Εκλογή αρχηγού σε γενικά δίκτυα Ορισμός του προβλήματος Ο αλγόριθμος FloodMax
Διαβάστε περισσότεραy(p) = 0 y(p) = 0 y(p) = 0
Διακριτά Μαθηματικά Φροντιστήριο Θεωρία μέτρησης Polya Ι 1 / 21 Οι έξι όψεις ενός κύβου θα χρωματιστούν με 6 διαφορετικά χρώματα, κάθε όψη με ένα διαφορετικό χρώμα. Με πόσους τρόπους μπορεί να γίνει αυτό
Διαβάστε περισσότεραΚεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήµατα v1.0 (2010-05-25) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων
Διαβάστε περισσότεραΑναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα
Διαβάστε περισσότεραΑλγοριθμικές Τεχνικές
Αλγοριθμικές Τεχνικές Παύλος Εφραιμίδης, Λέκτορας http://pericles.ee.duth.gr Αλγοριθμικές Τεχνικές 1 Τεχνικές Σχεδιασμού Αλγορίθμων Ορισμένες γενικές αρχές για τον σχεδιασμό αλγορίθμων είναι: Διαίρει και
Διαβάστε περισσότεραΚατανεμημένα Συστήματα Ι
Συναίνεση χωρίς την παρουσία σφαλμάτων Κατανεμημένα Συστήματα Ι 4η Διάλεξη 27 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Κατανεμημένα Συστήματα Ι 4η Διάλεξη 1 Συναίνεση χωρίς την παρουσία σφαλμάτων Προηγούμενη
Διαβάστε περισσότεραΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ
ÌïëëÜ Ì. Á μýô Á.Ì. : 5 moll@moll.r ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΤΥΟ (ΕΡΓΑΣΤΗΡΙΟ) Ε ΕΞΑΜΗΝΟ ΕΙΣΗΓΗΤΕΣ: Χαϊδόγιαννος Χαράλαμπος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ
Διαβάστε περισσότεραΠανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ
Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ 3 η Διάλεξη Μονοπάτια και Κύκλοι Μήκη και αποστάσεις Κέντρο και μέσο γράφου. Ακτίνα και Διάμετρος Δυνάμεις Γραφημάτων Γράφοι Euler.
Διαβάστε περισσότεραΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων
ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Πολύ ενθαρρυντική εικόνα. Σαφώς καλύτερη
Διαβάστε περισσότεραjτο πλήθος των ταξιδιών που κάνει η αεροσυνοδός µέχρι την j ηµέρα. Σχηµατίζω µία ακολουθία που αποτελείται από τα a.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΙΑΚΡΙΤA ΜΑΘΗΜΑΤΙΚΑ ιδάσκοντες: Φωτάκης, Σούλιου, Θ Λιανέας η Γραπτή Εργασία Θέµα (Αρχή του Περιστερώνα, 8 µονάδες) α)
Διαβάστε περισσότεραΘεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 7 ΧΡΩΜΑΤΙΣΜΟΣ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Εισαγωγή Χρωματισμός κορυφών-ακμών-περιοχών. Χρωματική τάξη (color class):
Διαβάστε περισσότεραΔιακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραΜορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ
Μαθηματικά Πληροφορικής 4ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης.
Διαβάστε περισσότεραΣειρά Προβλημάτων 5 Λύσεις
Άσκηση 1 Σειρά Προβλημάτων 5 Λύσεις Να δείξετε ότι οι πιο κάτω γλώσσες είναι διαγνώσιμες. (α) { G 1, G 2 οι G 1 και G 2 είναι δύο CFG που παράγουν μια κοινή λέξη μήκους 144 } (β) { D,k το D είναι ένα DFA
Διαβάστε περισσότεραΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αξιόλογη προσπάθεια,
Διαβάστε περισσότεραΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων
ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 4 η Εργασία: Γενική Εικόνα Ενθαρρυντική εικόνα, σαφώς καλύτερη από
Διαβάστε περισσότεραΑναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,
Διαβάστε περισσότεραΚατανεμημένα Συστήματα Ι
Εκλογή αρχηγού σε γενικά δίκτυα 20 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Εκλογή αρχηγού σε γενικά δίκτυα Προηγούμενη διάλεξη Σύγχρονα Κατανεμημένα Συστήματα Μοντελοποίηση συστήματος Πρόβλημα εκλογής αρχηγού
Διαβάστε περισσότεραΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός
ΘΕΩΡΙΑ ΓΡΑΦΩΝ 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός Βασικές Έννοιες Στο κεφάλαιο αυτό θα μελετηθεί ο βαθμός συνεκτικότητας (συνδεσμικότητας)
Διαβάστε περισσότεραΑλγόριθμοι και Πολυπλοκότητα
7ο εξάμηνο Σ.Η.Μ.Μ.Υ. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 4η εβδομάδα: Εύρεση k-οστού Μικρότερου Στοιχείου, Master Theorem, Τεχνική Greedy: Knapsack, Minimum Spanning Tree, Shortest Paths
Διαβάστε περισσότεραΘεωρία Γραφημάτων 7η Διάλεξη
Θεωρία Γραφημάτων 7η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 7η Διάλεξη
Διαβάστε περισσότεραΠροσεγγιστικοί Αλγόριθμοι
Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. http://xkcd.com/287/ Πολλά NP-πλήρη προβλήματα έχουν μεγάλο πρακτικό ενδιαφέρον. Πως μπορούμε να αντιμετωπίσουμε το γεγονός ότι είναι απίθανη(;)
Διαβάστε περισσότεραΘεωρία Γραφημάτων 2η Διάλεξη
Θεωρία Γραφημάτων 2η Διάλεξη Α Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 2η Διάλεξη
Διαβάστε περισσότερα3η Σειρά Γραπτών Ασκήσεων
1/48 3η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 2/48 1 Άσκηση 1: Πομποί και Δέκτες 2 Άσκηση 2: Διακοπές στην Ικαρία 3 Άσκηση 3: Επιστροφή στη Γη 4 Άσκηση
Διαβάστε περισσότεραΗ ενοικίαση του εξοπλισμού χιονοδρομίας
/8/ Αλγόριθμοι on line Βιβλιογραφία: Dorit Hochbaum, Deterministic Algorithms for NP-hard problems, PWS Publishing Company, Boston, 997. Η ενοικίαση του εξοπλισμού χιονοδρομίας Υπόθεση: Το κόστος αγοράς
Διαβάστε περισσότεραΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ
Tel.: +30 2310998051, Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Ιστοσελίδα: http://users.auth.gr/theodoru ΙΑ ΟΧΙΚΕΣ ΒΕΛΤΙΩΣΕΙΣ
Διαβάστε περισσότεραn ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4
Διακριτά Μαθηματικά Ι Επαναληπτικό Μάθημα 1 Συνδυαστική 2 Μεταξύ 2n αντικειμένων, τα n είναι ίδια. Βρείτε τον αριθμό των επιλογών n αντικειμένων από αυτά τα 2n αντικείμενα. Μεταξύ 3n + 1 αντικειμένων τα
Διαβάστε περισσότεραΚατανεμημένα Συστήματα Ι
Κατανεμημένα Συστήματα Ι Συναίνεση και Σφάλματα Διεργασιών Παναγιώτα Παναγοπούλου Περίληψη Συναίνεση με σφάλματα διεργασιών Το πρόβλημα Ο αλγόριθμος FloodSet Επικύρωση δοσοληψιών Ορισμός του προβλήματος
Διαβάστε περισσότεραΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης
ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων Λουκάς Γεωργιάδης loukas@cs.uoi.gr www.cs.uoi.gr/~loukas Βασικές έννοιες και εφαρμογές Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δομή
Διαβάστε περισσότεραΚεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων
Διαβάστε περισσότεραΠάνω στον πίνακα έχουµε γραµµένο το γινόµενο 1 2 3 4 595. ύο παίκτες Α και Β παίζουν το εξής παιχνίδι. Ο ένας µετά τον άλλο, διαγράφουν από έναν παράγοντα του γινοµένου αρχίζοντας από τον παίκτη Α. Νικητής
Διαβάστε περισσότεραu v 4 w G 2 G 1 u v w x y z 4
Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E
Διαβάστε περισσότεραΘεωρία Γραφημάτων 6η Διάλεξη
Θεωρία Γραφημάτων 6η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 6η Διάλεξη
Διαβάστε περισσότεραΕπίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα
Αλγόριθμοι πολυωνυμικού χρόνου Ένας αλγόριθμος πολυωνυμικού χρόνου έχει χρόνο εκτέλεσης όπου είναι μία (θετική) σταθερά Κλάση πολυπλοκότητας : περιλαμβάνει τα προβλήματα που επιδέχονται λύση σε πολυωνυμικό
Διαβάστε περισσότεραΣτοιχεία Θεωρίας Γράφων (Graph Theory)
Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,
Διαβάστε περισσότεραΕιδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις
Διαβάστε περισσότεραΒασικές Έννοιες Θεωρίας Γραφημάτων
Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση
Διαβάστε περισσότεραΒασικές Έννοιες Θεωρίας Γραφημάτων
Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων
Διαβάστε περισσότεραΠανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 9 η Διάλεξη Χρωματισμός γράφων Θεωρήματα Τεχνικές Εφαρμογές
Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής ΘΕΩΡΙΑ ΓΡΑΦΩΝ 9 η Διάλεξη Χρωματισμός γράφων Θεωρήματα Τεχνικές Εφαρμογές Βασικές Εννοιές (1) Πρόβλημα του χρωματισμού των κορυφών ετσι ώστε κανένα ζεύγος
Διαβάστε περισσότεραΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων ημήτρης Φωτάκης ιακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Ικανοποιητική εικόνα, αντίστοιχη
Διαβάστε περισσότεραTFT TV. Τι είναι οι TFT και πως λειτουργούν;
TFT TV Τι είναι οι TFT και πως λειτουργούν; Η ετυμολογία του όρου TFT (Thin Film Transistor ή τρανζίστορ λεπτού φιλμ) μας παραπέμπει στο δομικό στοιχείο ελέγχου της οθόνης, που είναι το τρανζίστορ. Οι
Διαβάστε περισσότεραΘεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 5 ΣΥΝΕΚΤΙΚΟΤΗΤΑ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Συνεκτικότητα Έννοια της συνδεσμικότητας: «Ποσότητα συνδεσμικότητας»...
Διαβάστε περισσότερα1. Σε ένα τουρνουά με 8 παίκτες μπορεί οι παίκτες να συμμετείχαν σε: 6,5,4,4,4,3,1,1 αγώνες αντίστοιχα;
Ασκήσεις υποδειγματικές για το θεωρητικό μέρος του μαθήματος Α1. Εξετάστε αν είναι Σωστή ή Λάθος κάθε μία από τις επόμενες προτάσεις. Εξηγείστε την απάντησή σας. 1. Σε ένα τουρνουά με 8 παίκτες μπορεί
Διαβάστε περισσότεραΣειρά Προβλημάτων 1 Λύσεις
ΕΠΛ2: Θεωρία Υπολογισμού και Πολυπλοκότητα Σειρά Προβλημάτων Λύσεις Άσκηση Να βρείτε το σφάλμα στην πιο κάτω απόδειξη. Ισχυρισμός: Όλα τα βιβλία που έχουν γραφτεί στη Θεωρία Υπολογισμού έχουν τον ίδιο
Διαβάστε περισσότεραΚινητές επικοινωνίες. Εργαστηριακό Μάθημα 1 Κυψελοποίηση
Κινητές επικοινωνίες Εργαστηριακό Μάθημα 1 Κυψελοποίηση 1 Αρχική Μορφή της Αρχιτεκτονικής του Τηλεφωνικού Συστήματος Κινητές Υπηρεσίες πρώτης γενιάς το σχέδιο με το οποίο έχει δομηθεί είναι παρόμοιο με
Διαβάστε περισσότεραΔιακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραΤομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα
Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)
Διαβάστε περισσότεραΘεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα
Διαβάστε περισσότεραΑναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΔομές Δεδομένων & Αλγόριθμοι
Θέματα Απόδοσης Αλγορίθμων 1 Η Ανάγκη για Δομές Δεδομένων Οι δομές δεδομένων οργανώνουν τα δεδομένα πιο αποδοτικά προγράμματα Πιο ισχυροί υπολογιστές πιο σύνθετες εφαρμογές Οι πιο σύνθετες εφαρμογές απαιτούν
Διαβάστε περισσότεραΕισαγωγή Ορισμός Frequency moments
The space complexity of approximating the frequency moments Κωστόπουλος Δημήτριος Μπλα Advanced Data Structures June 2007 Εισαγωγή Ορισμός Frequency moments Έστω ακολουθία Α = {a 1,a 2,...,a m ) με κάθε
Διαβάστε περισσότερα(β) Θεωρούµε µια ακολουθία Nθετικών ακεραίων η οποία περιέχει ακριβώς
Θέµα (Αρχή του Περιστερώνα, 8 µονάδες) (α) Επιλέγουµε αυθαίρετα φυσικούς αριθµούς από το σύνολο {,,3,, 3, } Να δείξετε ότι µεταξύ των αριθµών που έχουµε επιλέξει υπάρχει πάντα ένα ζευγάρι όπου ο µεγαλύτερος
Διαβάστε περισσότεραΑναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήµατα Μοντελοποίηση πολλών σηµαντικών προβληµάτων (π.χ. δίκτυα
Διαβάστε περισσότεραΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΟΛΙΤΙΣΜΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΔΙΔΑΚΤΙΚΗ ΕΝΟΤΗΤΑ 3 ΘΕΜΑ: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ ΓΡΑΦΗΜΑΤΑ Επίκουρος Καθηγητής ΠΕΡΙΕΧΟΜΕΝΟ
Διαβάστε περισσότεραΠροσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό
Προσεγγιστικοί Αλγόριθμοι βασισμένοι σε Γραμμικό Προγραμματισμό ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Προσεγγιστικοί Αλγόριθμοι Απόδοση χειρότερης
Διαβάστε περισσότεραE(G) 2(k 1) = 2k 3.
Διάλεξη :..06 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Τζαλάκας Ανδρέας & Σ.Κ.. Εξωεπίπεδα γραφήματα (συνέχεια) Ορισμός. Εστω γράφημα G = (V, E) και S V. S-λοβός (S-lobe) ενάγεται από
Διαβάστε περισσότεραΜαθηματική Επαγωγή. Τεχνικές Απόδειξης. Αποδείξεις Ύπαρξης. Μαθηματική Επαγωγή
Μαθηματική Επαγωγή Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τεχνικές Απόδειξης Εξαντλητική
Διαβάστε περισσότερα1.1 ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ
ΚΕΦΑΛΑΙΟ : ΠΙΘΑΝΟΤΗΤΕΣ. ΔΕΙΓΜΑΤΙΚΟΙ ΧΩΡΟΙ ΕΝΔΕΧΟΜΕΝΑ Αιτιοκρατικό πείραμα ονομάζουμε κάθε πείραμα για το οποίο, όταν ξέρουμε τις συνθήκες κάτω από τις οποίες πραγματοποιείται, μπορούμε να προβλέψουμε με
Διαβάστε περισσότεραΤο Πρόβλημα Μεταφοράς
Το Πρόβλημα Μεταφοράς Αφορά τη μεταφορά ενός προϊόντος από διάφορους σταθμούς παραγωγής σε διάφορες θέσεις κατανάλωσης με το ελάχιστο δυνατό κόστος. Πρόκειται για το πιο σπουδαίο πρότυπο προβλήματος γραμμικού
Διαβάστε περισσότεραΘέματα Υπολογισμού στον Πολιτισμό - Δένδρα. Δένδρα
Δένδρα Δένδρα Ειδική κατηγορία γραφημάτων: συνεκτικά γραφήματα που δεν περιέχουν απλά κυκλώματα [1857] Arthur Cayley: για απαρίθμηση ορισμένων ειδών χημικών ενώσεων Χρησιμοποιούνται σε πληθώρα προβλημάτων,
Διαβάστε περισσότεραΚατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός
Κατευθυνόμενα γραφήματα Μαθηματικά Πληροφορικής 6ο Μάθημα Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήμιο Αθηνών Κατευθυνόμενο γράφημα G είναι ένα ζεύγος (V, E ) όπου V πεπερασμένο σύνολο του οποίου
Διαβάστε περισσότεραΘεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Διαβάστε περισσότερα